autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260117__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/__init__.py +1 -0
- autogluon/tabular/configs/config_helper.py +18 -6
- autogluon/tabular/configs/feature_generator_presets.py +3 -1
- autogluon/tabular/configs/hyperparameter_configs.py +42 -9
- autogluon/tabular/configs/presets_configs.py +38 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
- autogluon/tabular/experimental/_scikit_mixin.py +6 -2
- autogluon/tabular/experimental/_tabular_classifier.py +3 -1
- autogluon/tabular/experimental/_tabular_regressor.py +3 -1
- autogluon/tabular/experimental/plot_leaderboard.py +73 -19
- autogluon/tabular/learner/abstract_learner.py +160 -42
- autogluon/tabular/learner/default_learner.py +78 -22
- autogluon/tabular/models/__init__.py +2 -2
- autogluon/tabular/models/_utils/rapids_utils.py +3 -1
- autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
- autogluon/tabular/models/automm/automm_model.py +12 -3
- autogluon/tabular/models/automm/ft_transformer.py +5 -1
- autogluon/tabular/models/catboost/callbacks.py +2 -2
- autogluon/tabular/models/catboost/catboost_model.py +93 -29
- autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
- autogluon/tabular/models/catboost/catboost_utils.py +3 -1
- autogluon/tabular/models/ebm/ebm_model.py +8 -13
- autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
- autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
- autogluon/tabular/models/fastainn/callbacks.py +20 -3
- autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
- autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
- autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
- autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
- autogluon/tabular/models/knn/knn_model.py +41 -8
- autogluon/tabular/models/lgb/callbacks.py +32 -9
- autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
- autogluon/tabular/models/lgb/lgb_model.py +150 -34
- autogluon/tabular/models/lgb/lgb_utils.py +12 -4
- autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
- autogluon/tabular/models/lr/lr_model.py +40 -10
- autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
- autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
- autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
- autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
- autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
- autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
- autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
- autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
- autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
- autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
- autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
- autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
- autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
- autogluon/tabular/models/mitra/mitra_model.py +16 -11
- autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
- autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
- autogluon/tabular/models/rf/compilers/onnx.py +1 -1
- autogluon/tabular/models/rf/rf_model.py +45 -12
- autogluon/tabular/models/rf/rf_quantile.py +4 -2
- autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
- autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
- autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
- autogluon/tabular/models/tabm/tabm_model.py +8 -4
- autogluon/tabular/models/tabm/tabm_reference.py +53 -85
- autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
- autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
- autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
- autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
- autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
- autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
- autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
- autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
- autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
- autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
- autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
- autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
- autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
- autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
- autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
- autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
- autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
- autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
- autogluon/tabular/models/xgboost/callbacks.py +9 -3
- autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
- autogluon/tabular/models/xt/xt_model.py +1 -0
- autogluon/tabular/predictor/interpretable_predictor.py +3 -1
- autogluon/tabular/predictor/predictor.py +409 -128
- autogluon/tabular/registry/__init__.py +1 -1
- autogluon/tabular/registry/_ag_model_registry.py +4 -5
- autogluon/tabular/registry/_model_registry.py +1 -0
- autogluon/tabular/testing/fit_helper.py +55 -15
- autogluon/tabular/testing/generate_datasets.py +1 -1
- autogluon/tabular/testing/model_fit_helper.py +10 -4
- autogluon/tabular/trainer/abstract_trainer.py +644 -230
- autogluon/tabular/trainer/auto_trainer.py +19 -8
- autogluon/tabular/trainer/model_presets/presets.py +33 -9
- autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
- autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/METADATA +27 -27
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/RECORD +127 -135
- autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
- /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260117-py3.11-nspkg.pth +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/WHEEL +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/LICENSE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/NOTICE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/namespace_packages.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/top_level.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/zip-safe +0 -0
{autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/RECORD
RENAMED
|
@@ -1,215 +1,207 @@
|
|
|
1
|
-
autogluon.tabular-1.5.
|
|
2
|
-
autogluon/tabular/__init__.py,sha256=
|
|
3
|
-
autogluon/tabular/version.py,sha256=
|
|
1
|
+
autogluon.tabular-1.5.1b20260117-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
|
|
2
|
+
autogluon/tabular/__init__.py,sha256=U6uEVR2npE1vNPvJrIjzlWLf_RQHRdAeE0ohcDRmZ2g,401
|
|
3
|
+
autogluon/tabular/version.py,sha256=rHmvesrbP8KkHAs-IyXJluyfqZYb7mRwf0cQrh5n2RY,91
|
|
4
4
|
autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
5
|
-
autogluon/tabular/configs/config_helper.py,sha256=
|
|
6
|
-
autogluon/tabular/configs/feature_generator_presets.py,sha256=
|
|
7
|
-
autogluon/tabular/configs/hyperparameter_configs.py,sha256=
|
|
5
|
+
autogluon/tabular/configs/config_helper.py,sha256=8dnkDaEVfLLXc1ucc-bo-aHR5xS8u1fkQ6qqavpX3qs,21252
|
|
6
|
+
autogluon/tabular/configs/feature_generator_presets.py,sha256=TTkEDesQcjbrM_0tURA-25-Xrj2Au8qAg05qFqyDvz0,1253
|
|
7
|
+
autogluon/tabular/configs/hyperparameter_configs.py,sha256=bx5cqQbfZV2a0b3eeuZ45sIbqJDEc1fKQRWOrM9Ag30,7709
|
|
8
8
|
autogluon/tabular/configs/pipeline_presets.py,sha256=ccrT3C56pYHW8x8VB_Q9zAu_eCxlgNQpt7TXpVUzDfE,4761
|
|
9
|
-
autogluon/tabular/configs/presets_configs.py,sha256=
|
|
9
|
+
autogluon/tabular/configs/presets_configs.py,sha256=XLHf3XF8z_0wG-e0qyrls4nefSzl8kspUjEc7AoeiIs,9383
|
|
10
10
|
autogluon/tabular/configs/zeroshot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
11
|
-
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=
|
|
12
|
-
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=
|
|
13
|
-
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py,sha256=
|
|
14
|
-
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py,sha256=
|
|
11
|
+
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=szLmbZFNertGziQrbVeFHE3FeNvCcVDDVoVL4fW80_Q,30603
|
|
12
|
+
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=4v--QoUMaqjL1cMN-Ex3qR97_mea-KGAbVTDB3UkGyc,9119
|
|
13
|
+
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py,sha256=kYmt40JcGN7PgeZfkMnl_Oxtu9JRmoRWFwNUJQcHqgg,29776
|
|
14
|
+
autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py,sha256=FtHaQY5kn2JkPyZSUTWaWNemJlezeEXud0_XiTbmk58,17141
|
|
15
15
|
autogluon/tabular/experimental/__init__.py,sha256=PpkdMSv_pPZted1XRIuzcFWKjM-66VMUukTnCcoiW0s,100
|
|
16
|
-
autogluon/tabular/experimental/_scikit_mixin.py,sha256=
|
|
17
|
-
autogluon/tabular/experimental/_tabular_classifier.py,sha256=
|
|
18
|
-
autogluon/tabular/experimental/_tabular_regressor.py,sha256=
|
|
19
|
-
autogluon/tabular/experimental/plot_leaderboard.py,sha256=
|
|
16
|
+
autogluon/tabular/experimental/_scikit_mixin.py,sha256=tmFKLqQ6ZNKz1ukrhUxiaytoQ9GCxbQ8xMRqgUFTc3M,2335
|
|
17
|
+
autogluon/tabular/experimental/_tabular_classifier.py,sha256=vf7CIf3qoOCmYB7GsPCKfegp9dLTJiITsW58AhLaMuc,2557
|
|
18
|
+
autogluon/tabular/experimental/_tabular_regressor.py,sha256=xOpruwjDDA3PsvtseVjNhTrt3TC3VHBlZnPm8ili_M8,1962
|
|
19
|
+
autogluon/tabular/experimental/plot_leaderboard.py,sha256=0Imhv7lDg_ACBGG-MKoQ-zROWi7HFWZcDHHrOM1f2wQ,10200
|
|
20
20
|
autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
|
|
21
|
-
autogluon/tabular/learner/abstract_learner.py,sha256=
|
|
22
|
-
autogluon/tabular/learner/default_learner.py,sha256=
|
|
23
|
-
autogluon/tabular/models/__init__.py,sha256=
|
|
21
|
+
autogluon/tabular/learner/abstract_learner.py,sha256=wDAtuqwKzwNfJ2SOH7rJW_EDPLz0iNBt0G4Y-ekP9Nc,57008
|
|
22
|
+
autogluon/tabular/learner/default_learner.py,sha256=DCh4beW0Tf_aJ7eo2lqeFLcWfnvB3TIgKy26VkqgkO8,25571
|
|
23
|
+
autogluon/tabular/models/__init__.py,sha256=IQY9semC_XA2gkIsFuq6ZBwDtt2kIweQOqYexSOQRVQ,1372
|
|
24
24
|
autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
25
|
-
autogluon/tabular/models/_utils/rapids_utils.py,sha256=
|
|
25
|
+
autogluon/tabular/models/_utils/rapids_utils.py,sha256=x8cqJlN0XT9JyHRSQNBc9h5x8jyIX4pd8XBTkE53ivU,1105
|
|
26
26
|
autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
|
|
27
27
|
autogluon/tabular/models/abstract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
28
|
-
autogluon/tabular/models/abstract/abstract_torch_model.py,sha256=
|
|
28
|
+
autogluon/tabular/models/abstract/abstract_torch_model.py,sha256=SC5WOEUNJDFnWwJQ9KDjRqQAPZjCYEhaczWaLuGVqR0,5632
|
|
29
29
|
autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
30
|
-
autogluon/tabular/models/automm/automm_model.py,sha256=
|
|
31
|
-
autogluon/tabular/models/automm/ft_transformer.py,sha256=
|
|
30
|
+
autogluon/tabular/models/automm/automm_model.py,sha256=k-nUF9u5RS6futD7V2-NPasGUxlxkvueCqb0-re6okI,11463
|
|
31
|
+
autogluon/tabular/models/automm/ft_transformer.py,sha256=KuLNyJIN-cGy4oZ73OrumX6I6VPG0qixJchmt3IKNXQ,3957
|
|
32
32
|
autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
33
|
-
autogluon/tabular/models/catboost/callbacks.py,sha256=
|
|
34
|
-
autogluon/tabular/models/catboost/catboost_model.py,sha256=
|
|
35
|
-
autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=
|
|
36
|
-
autogluon/tabular/models/catboost/catboost_utils.py,sha256=
|
|
33
|
+
autogluon/tabular/models/catboost/callbacks.py,sha256=djAHIIGd6sO-YTa2gExg_cgHVW7RLeahNHx8W7En060,7190
|
|
34
|
+
autogluon/tabular/models/catboost/catboost_model.py,sha256=UxSEMYMgog10-UT8HHnHZkJMuw66RUWEn0viNx5pgSc,19096
|
|
35
|
+
autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=dqEud2Sw0GVr_GAfV1S6SQvrQTVofA4ER-EQU2v5P_c,3965
|
|
36
|
+
autogluon/tabular/models/catboost/catboost_utils.py,sha256=f1fi8VJSImSvwq_-1WEBKsSU7swch4Z_tbPzLzrhPrk,3929
|
|
37
37
|
autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
38
38
|
autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
|
|
39
39
|
autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
|
|
40
40
|
autogluon/tabular/models/ebm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
41
|
-
autogluon/tabular/models/ebm/ebm_model.py,sha256=
|
|
41
|
+
autogluon/tabular/models/ebm/ebm_model.py,sha256=STv3AR9Mv-u5H1DLhcLUJGyol2X2NjiDouctIal1SBs,8443
|
|
42
42
|
autogluon/tabular/models/ebm/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
43
|
-
autogluon/tabular/models/ebm/hyperparameters/parameters.py,sha256=
|
|
44
|
-
autogluon/tabular/models/ebm/hyperparameters/searchspaces.py,sha256=
|
|
43
|
+
autogluon/tabular/models/ebm/hyperparameters/parameters.py,sha256=1MHQV4I7FFRZt7A9RtdPD1E1VUCCpo4tV9rg5WMqRwE,1081
|
|
44
|
+
autogluon/tabular/models/ebm/hyperparameters/searchspaces.py,sha256=PU8Ssg9yCJf9hkDR10YGb7P9RDeiA-3TG4eUv0ZtYfg,2192
|
|
45
45
|
autogluon/tabular/models/fastainn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
46
|
-
autogluon/tabular/models/fastainn/callbacks.py,sha256=
|
|
46
|
+
autogluon/tabular/models/fastainn/callbacks.py,sha256=0OFpo26UtqxuM6XlffTcfdJ40Q_twTDKnL1cDzLZwJ4,4923
|
|
47
47
|
autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
|
|
48
48
|
autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
|
|
49
|
-
autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=
|
|
50
|
-
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=
|
|
49
|
+
autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=Q3mkw8AQFD--6I9MRS0PNHXPE3gzuDh5HyKyOgWBHdg,1934
|
|
50
|
+
autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=bAmmuGaMZBiXMVSJMSmFpPQz8qhG13_vXDUWqtx9wIU,30541
|
|
51
51
|
autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
52
52
|
autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
|
|
53
|
-
autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=
|
|
53
|
+
autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=RGtsOCNT6FzbEh2Y4hOtITfk_Yys0TQUZESLSFMTQN4,1781
|
|
54
54
|
autogluon/tabular/models/fasttext/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
55
|
-
autogluon/tabular/models/fasttext/fasttext_model.py,sha256=
|
|
55
|
+
autogluon/tabular/models/fasttext/fasttext_model.py,sha256=fQ4qBWUMaJ7aP_60T2ZukGZcAYwLDKTuiX1U7276mIU,7233
|
|
56
56
|
autogluon/tabular/models/fasttext/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
57
57
|
autogluon/tabular/models/fasttext/hyperparameters/parameters.py,sha256=DbkLlHlxRh1uGWJ_sUYNrweSJj4yjlOBH_H2COyaWL8,1234
|
|
58
58
|
autogluon/tabular/models/image_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
59
|
-
autogluon/tabular/models/image_prediction/image_predictor.py,sha256=
|
|
59
|
+
autogluon/tabular/models/image_prediction/image_predictor.py,sha256=BJ9tIw93hXpEl02vxniEUOLQkSNtZf3s3FH21r8hk7c,5681
|
|
60
60
|
autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
61
61
|
autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
|
|
62
62
|
autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
63
63
|
autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
|
|
64
|
-
autogluon/tabular/models/knn/knn_model.py,sha256=
|
|
64
|
+
autogluon/tabular/models/knn/knn_model.py,sha256=CYhnnmpONHX8pftCXLu65sfdjzRXCmwq0UtDavN5s1Y,14397
|
|
65
65
|
autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
|
|
66
66
|
autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
|
|
67
67
|
autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
68
|
-
autogluon/tabular/models/lgb/callbacks.py,sha256=
|
|
69
|
-
autogluon/tabular/models/lgb/lgb_model.py,sha256=
|
|
70
|
-
autogluon/tabular/models/lgb/lgb_utils.py,sha256=
|
|
68
|
+
autogluon/tabular/models/lgb/callbacks.py,sha256=nB8XwpVkxxvaEPYqn6d5lTZvoiNPGyT-CB2DBltTgyk,12767
|
|
69
|
+
autogluon/tabular/models/lgb/lgb_model.py,sha256=urEY6_VG9Mma47J97mtrNfVbyrMYVBPxpuHMk3MD3bA,32160
|
|
70
|
+
autogluon/tabular/models/lgb/lgb_utils.py,sha256=5u8oCN-zZXtdNkophKRN1gbQZoTnRG2hLf0pTAY3aqc,7494
|
|
71
71
|
autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
72
72
|
autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
|
|
73
|
-
autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=
|
|
73
|
+
autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=2WtcCbHimUxY8NMUouHpTkhwVy5V6g4cANmYmFxifGU,1952
|
|
74
74
|
autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
75
|
-
autogluon/tabular/models/lr/lr_model.py,sha256=
|
|
75
|
+
autogluon/tabular/models/lr/lr_model.py,sha256=vq48nX6ZwVmwfRqEFm5D4ljukKD6Q-8Q8hy8Ysaw5Vs,16213
|
|
76
76
|
autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=tgb75V6zHfMJh8m9GDs5404ItdfwNakqykTk0qjBtFE,1045
|
|
77
|
-
autogluon/tabular/models/lr/lr_rapids_model.py,sha256=
|
|
77
|
+
autogluon/tabular/models/lr/lr_rapids_model.py,sha256=1oEYMre0KBjq16XcLjjEO4XO4t4uJTBvZ41bvFbhRbY,4034
|
|
78
78
|
autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
79
79
|
autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
|
|
80
|
-
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=
|
|
80
|
+
autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=2kYNJdcDWqEb-GNvjH47RttZmO6bbKGxqJcosX_WZz4,307
|
|
81
81
|
autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
82
|
-
autogluon/tabular/models/mitra/mitra_model.py,sha256=
|
|
83
|
-
autogluon/tabular/models/mitra/sklearn_interface.py,sha256=
|
|
84
|
-
autogluon/tabular/models/mitra/_internal/__init__.py,sha256=
|
|
85
|
-
autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=
|
|
86
|
-
autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=
|
|
87
|
-
autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=
|
|
88
|
-
autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=
|
|
89
|
-
autogluon/tabular/models/mitra/_internal/core/__init__.py,sha256=
|
|
90
|
-
autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=
|
|
91
|
-
autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=
|
|
92
|
-
autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=
|
|
93
|
-
autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=
|
|
94
|
-
autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=
|
|
95
|
-
autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=
|
|
96
|
-
autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=
|
|
97
|
-
autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=
|
|
98
|
-
autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=
|
|
99
|
-
autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=
|
|
100
|
-
autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=
|
|
101
|
-
autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=
|
|
102
|
-
autogluon/tabular/models/mitra/_internal/models/base.py,sha256=
|
|
103
|
-
autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=
|
|
104
|
-
autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=
|
|
105
|
-
autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=
|
|
106
|
-
autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=
|
|
82
|
+
autogluon/tabular/models/mitra/mitra_model.py,sha256=b01EYW_tZjPTV2qOGyw5nAwYfH3WBOqxG78OB8m5ZTs,14893
|
|
83
|
+
autogluon/tabular/models/mitra/sklearn_interface.py,sha256=QR0bqoOcnGP6bgewcGRW3p6CvRkkWuVyrhfenZqN8q8,17663
|
|
84
|
+
autogluon/tabular/models/mitra/_internal/__init__.py,sha256=_3G5Q2aZd6WKuun2RJmD_Nvl_H79QoS-RRfTCx_DH_Q,34
|
|
85
|
+
autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=CVRuZcfqj8fz_uD0EwHLqhwM8EyTasDeEekELWDikRQ,39
|
|
86
|
+
autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=SJSBFyv2KnJZlnp0dKbAazaP9UPVuAJUjPkTqivhuxw,5967
|
|
87
|
+
autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=iyKEUGUovLNv7zvreRNCrlo53pGyNe0DJEyjYwp_upU,561
|
|
88
|
+
autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=wr3q2OiBgg5jy6vHy0Xw7fEoJ7wcoSsPbK3C6YfEvsM,3931
|
|
89
|
+
autogluon/tabular/models/mitra/_internal/core/__init__.py,sha256=ktAxn2cuGWqMrO9O5W7KvehXT56RKdY5saA6rf1Q1Ko,30
|
|
90
|
+
autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=NxpMRIeNtbkVvJQ04ZT-u58c07VxmLzMLvA6Oz5EJUc,2579
|
|
91
|
+
autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=l2mlPlmiKcpr1Un_noDAFnxQY1TkBcITE7WNZi2qk-U,2242
|
|
92
|
+
autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=XoyhUU8ybv49ZJgaVVoyu4ClpENiKwpHSdsSu-PhyI4,3283
|
|
93
|
+
autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=H4qmEGo2DOB4qMiA883lrG60MRKQDmGfyBEH_FuZFLw,2058
|
|
94
|
+
autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=2n7V_HtHkBWkJSWZ_-A32gVRbwQHaKpCgfBMGH-W7eI,4438
|
|
95
|
+
autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=mBemZDwYaWU_bNQWXxx06huyvPF6FBieLku0tnJHqac,19071
|
|
96
|
+
autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=8CN9-FbLfxmDRiRrLcspJatWk7nfF7ESo-skTb4l_c0,41
|
|
97
|
+
autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=mg9Vd_AumX7i6JstxTVlauHuSGoKuuYSvKAjXxjRb1I,2398
|
|
98
|
+
autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=VSDLobBHUYHJnikPFmFrVXk293tlECneYVKYyCtiHoE,4256
|
|
99
|
+
autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=E4VnBGgIh6B78TFDR6OfVE-0NVmrmyJXQ3iRu-HKkMo,2039
|
|
100
|
+
autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=qbwp-d1x0pp3padOX0wGBPExm7I2PvQAlRyXRT50NgY,14486
|
|
101
|
+
autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=gy6DQpnM4LHnfnccDmhlF37PYqi1reCz9lRjvJ8RErI,44
|
|
102
|
+
autogluon/tabular/models/mitra/_internal/models/base.py,sha256=v3re9JV6u_HpaL7OjfWLShlSq7JSHIsIg_c6HolPMDI,422
|
|
103
|
+
autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=QsYeY4in_S_MZxgr6foFF33mANT9-1uxhNSwttWBgVw,6174
|
|
104
|
+
autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=u5chSh3SmM2JynOoygFGHC2ZPqC9UxEBrpP4xyrsuXE,26211
|
|
105
|
+
autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=FCUlkLrUryXNM0fpdiQIJruxZ1b2SozI4IrO9_biiFU,33
|
|
106
|
+
autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=JILm6NXzvtpjDfO7P1lTWpQeQ0gt8p7_3EvurPd1_FA,343
|
|
107
107
|
autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
108
|
-
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=
|
|
108
|
+
autogluon/tabular/models/realmlp/realmlp_model.py,sha256=8TDqnlimO8FXx9v1jY2VcarE-p6wQ6PrcEd_ehsLDec,14996
|
|
109
109
|
autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
110
|
-
autogluon/tabular/models/rf/rf_model.py,sha256=
|
|
111
|
-
autogluon/tabular/models/rf/rf_quantile.py,sha256=
|
|
110
|
+
autogluon/tabular/models/rf/rf_model.py,sha256=JP00WglovZs23I1kJZlRvCOe1s0ptsQekqSXU64zvu0,22185
|
|
111
|
+
autogluon/tabular/models/rf/rf_quantile.py,sha256=i4bpemg0tidReThVarSIzDg8Qha8aC_xzDxnylUowiI,36479
|
|
112
112
|
autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
|
|
113
113
|
autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
114
114
|
autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
|
|
115
|
-
autogluon/tabular/models/rf/compilers/onnx.py,sha256=
|
|
115
|
+
autogluon/tabular/models/rf/compilers/onnx.py,sha256=BZj8rR_c1X1FQwFhzypAzZ48FG_v5labxiILwoWZZM4,4315
|
|
116
116
|
autogluon/tabular/models/tabdpt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
117
|
-
autogluon/tabular/models/tabdpt/tabdpt_model.py,sha256=
|
|
117
|
+
autogluon/tabular/models/tabdpt/tabdpt_model.py,sha256=o6V06yCy_AO1mv7Co4cw2nUKu36HQoeLR8992LHFThg,9240
|
|
118
118
|
autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
119
|
-
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=
|
|
119
|
+
autogluon/tabular/models/tabicl/tabicl_model.py,sha256=jF4f10FKyyKB9oWwhkdfs2JuJ-6x4vYVQSQCP_i_aso,7005
|
|
120
120
|
autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
121
|
-
autogluon/tabular/models/tabm/_tabm_internal.py,sha256=
|
|
122
|
-
autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=
|
|
123
|
-
autogluon/tabular/models/tabm/tabm_model.py,sha256=
|
|
124
|
-
autogluon/tabular/models/tabm/tabm_reference.py,sha256=
|
|
121
|
+
autogluon/tabular/models/tabm/_tabm_internal.py,sha256=XAOkT8JfvV9RdO800DZAP5bx8IkVZ3Px42K9mMU7gys,21100
|
|
122
|
+
autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=1e1NOuOH5LRUqpUa7AF7tgXX79z6Rt_tikLJBeC0lrE,29479
|
|
123
|
+
autogluon/tabular/models/tabm/tabm_model.py,sha256=tB8URDo5vUuK8Xvvosji2-0AaIdTHv0Y6MsuQW51eNA,10959
|
|
124
|
+
autogluon/tabular/models/tabm/tabm_reference.py,sha256=3wG9c7D8YmnJdnI4ZSeIRQPasExI4EuUO8LWyJVOzz4,21550
|
|
125
125
|
autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
126
|
-
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=
|
|
126
|
+
autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=EVrZK_Pln8rpIIw7uqWTbZvXdM1GCZ8clgS-ViDZ4RE,16882
|
|
127
127
|
autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
128
|
-
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=
|
|
129
|
-
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=
|
|
128
|
+
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=GNERt30KWELLIt9fMnPMvgHACKKkZ2QivD88HlX1Ky0,3606
|
|
129
|
+
autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=MZRJDIcbH2Sbjk8m7Ob-4XzSIhyi93F6LR76FuFgRI4,3375
|
|
130
130
|
autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
131
131
|
autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py,sha256=dnyEBOIS3QX4_JsjepLMxsK8Qv-CTsE1gEIG-0v1YCU,232
|
|
132
132
|
autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
133
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py,sha256=
|
|
134
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/collator.py,sha256=
|
|
135
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py,sha256=
|
|
136
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/enums.py,sha256=
|
|
137
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py,sha256=
|
|
138
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py,sha256=
|
|
139
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py,sha256
|
|
140
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py,sha256=
|
|
141
|
-
autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py,sha256=
|
|
133
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py,sha256=oPkNBKFA2W5WEEvY8NuQ7y3E6mXCTgdLftlXvCJpAZ0,3132
|
|
134
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/collator.py,sha256=8z1F6vazu4O3FhYhumN1ukvIjcQaNPf9kNFCsuWt8Fc,1800
|
|
135
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py,sha256=UVXqZr4ZXbwJLJ07yIcrb6s25QKCCTWv2I7qhFOscsg,1335
|
|
136
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/enums.py,sha256=TcTM1cZaMC311Yhb6RG4qi7QchskX-7OOVyNn-KjqFg,80
|
|
137
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py,sha256=JMRiC3TDiwgH4-tB-hIeVNcXEsyRn5RAyIEvZmJm7C4,185
|
|
138
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py,sha256=LeSzpVyR_MUQm5fa5qhEkjr6SCDenlSMGTv8HWFeB8k,810
|
|
139
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py,sha256=-AHg9mckBNtpj1MlyGIL1T8k0FBo2HVqy6lZYRoZvH4,418
|
|
140
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py,sha256=satC5Mb-nohPHV58zh_JVvXbodpKV2_7RCzWytUM4tY,12815
|
|
141
|
+
autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py,sha256=5e_xSaoUbgBgE26QoPRNGRKnBSxHKUNyPF2dL3xHzfI,1327
|
|
142
142
|
autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
143
|
-
autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py,sha256=
|
|
144
|
-
autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py,sha256=
|
|
143
|
+
autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py,sha256=BO_FTt1oQISaaXSod4M7Wk6u-tCmBTxl2k7zDv0n1MQ,4168
|
|
144
|
+
autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py,sha256=UoIazi4sh_V2YPb1-ZLLJY3rPuKROa3cexv955eELuE,5203
|
|
145
145
|
autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
146
146
|
autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
147
|
-
autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py,sha256=
|
|
148
|
-
autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py,sha256=
|
|
147
|
+
autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py,sha256=oqgrOKinv6rumeRx-qL7Mcs747J4MCLRmsCZDIIfRqU,3430
|
|
148
|
+
autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py,sha256=g1Tg3amD00ihKxm8vNtBekkK5RjwPjtXgag8lOIbwfM,5394
|
|
149
149
|
autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
150
|
-
autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=
|
|
150
|
+
autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=sUKEGtg04zqGQy6C74EW0Fdo8Wtg_jETeJPoPxFTWWo,1739
|
|
151
151
|
autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
152
|
-
autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py,sha256=
|
|
153
|
-
autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dfbxNiwP-qLWOt2aKNx4zSbdPpDoC7a_TIjiHK_sr44,18219
|
|
154
|
-
autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
|
|
155
|
-
autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
|
|
156
|
-
autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
|
|
157
|
-
autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py,sha256=-KQNm_HYWem6HWUsdbnIX4lKe-eW0PQAXZUny2kqego,55582
|
|
158
|
-
autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py,sha256=FRJSelTtDaKnpsKKHphjy2rJrFX302miSdHZ0YqHxCQ,28045
|
|
159
|
-
autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py,sha256=jv2ZHsGwcO4Inhxtol_tig3NoXZQR649dhmW_Kv69QY,29607
|
|
160
|
-
autogluon/tabular/models/tabpfnv2/rfpfn/utils.py,sha256=vjMQsNaZZcW1BBf0hduSCtrNCtSd467xfkhsbHspUog,3489
|
|
152
|
+
autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py,sha256=rzw1y_RgjkY1oVcZnThM_dJXAcD0RUpXC6JFqs8enQc,16632
|
|
161
153
|
autogluon/tabular/models/tabprep/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
162
154
|
autogluon/tabular/models/tabprep/prep_lgb_model.py,sha256=mSCWVoFIE-1ROf5v43Y3njfg5ZpXhTOUR3EnGmyTtL4,931
|
|
163
|
-
autogluon/tabular/models/tabprep/prep_mixin.py,sha256=
|
|
155
|
+
autogluon/tabular/models/tabprep/prep_mixin.py,sha256=FHBSjRS_Lqw2zTDR-YzyYye98NSoAjykdihzTNlE7wQ,9997
|
|
164
156
|
autogluon/tabular/models/tabular_nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
165
157
|
autogluon/tabular/models/tabular_nn/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
166
158
|
autogluon/tabular/models/tabular_nn/compilers/native.py,sha256=W8d8cqBj7U-KVhfGK3hdtGj8JJm3lXr_SecU0615Gbs,1330
|
|
167
|
-
autogluon/tabular/models/tabular_nn/compilers/onnx.py,sha256=
|
|
159
|
+
autogluon/tabular/models/tabular_nn/compilers/onnx.py,sha256=D9AE8aq1J8Ac3d3EExiKk-MpP2B44pVlFhoRtPolslY,15143
|
|
168
160
|
autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
169
161
|
autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
|
|
170
162
|
autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
|
|
171
163
|
autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
172
|
-
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=
|
|
173
|
-
autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=
|
|
174
|
-
autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=
|
|
164
|
+
autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=b31PDXcLwKWJyc5vQ_fiRVcyH5GO1E4OK72nDXa8JoU,44413
|
|
165
|
+
autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=zhSKCRtlAnpbP-ivTlodgfaQQstjNtr_21mBYf4ltw0,13561
|
|
166
|
+
autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=_1QJupgSXQr7AK652xjnvGrZ0cQnzSah5SBBXzZoKLA,11571
|
|
175
167
|
autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
176
|
-
autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=
|
|
177
|
-
autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=
|
|
178
|
-
autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=
|
|
168
|
+
autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=4ijBWSyGyJVwWXk2BbJvwK9QxIV5mNpZVM3vSmwjMMU,35988
|
|
169
|
+
autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=F8HXYFFblaOJRPPlpeCeA4f8g50WgtBKMQQ2AV-CUmM,5966
|
|
170
|
+
autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=sabTOdT1Zz1kvlDfIFjVEkcbAtSTb8ZOePzUGi0D064,3017
|
|
179
171
|
autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
180
172
|
autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
|
|
181
173
|
autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
182
|
-
autogluon/tabular/models/xgboost/callbacks.py,sha256=
|
|
183
|
-
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=
|
|
174
|
+
autogluon/tabular/models/xgboost/callbacks.py,sha256=T4v3n9hPyu7GnPlTQmDLy8WS5goY6wDqw70C6vf5qDM,7091
|
|
175
|
+
autogluon/tabular/models/xgboost/xgboost_model.py,sha256=8jKIvIlSlM1XYEH8OBXPOX-kzEKIfulHpEFkAwPMtyI,16359
|
|
184
176
|
autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
|
|
185
177
|
autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
186
178
|
autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
|
|
187
179
|
autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py,sha256=lFwI34pcRtlVQkxmsdZsSaPry8t_WSMBhig4soMK54k,2140
|
|
188
180
|
autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
189
|
-
autogluon/tabular/models/xt/xt_model.py,sha256=
|
|
181
|
+
autogluon/tabular/models/xt/xt_model.py,sha256=x3m5HehGWukAfTRnoMff0BVqTpfa5yQAf2igOa7JE84,1004
|
|
190
182
|
autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
|
|
191
|
-
autogluon/tabular/predictor/interpretable_predictor.py,sha256=
|
|
192
|
-
autogluon/tabular/predictor/predictor.py,sha256=
|
|
193
|
-
autogluon/tabular/registry/__init__.py,sha256=
|
|
194
|
-
autogluon/tabular/registry/_ag_model_registry.py,sha256=
|
|
195
|
-
autogluon/tabular/registry/_model_registry.py,sha256=
|
|
183
|
+
autogluon/tabular/predictor/interpretable_predictor.py,sha256=4ajYLTQQX2oSH3CVXhl8lsrmKS3a7QxouiabS_raGsE,6956
|
|
184
|
+
autogluon/tabular/predictor/predictor.py,sha256=HE9Zwq7hxCPjTlh2PvRGhWGBSpJaI9ekgLClleR6IBI,366729
|
|
185
|
+
autogluon/tabular/registry/__init__.py,sha256=81TaV2bi2bksdPSounqr72Vl8iZzygiXt6akX3LnIxg,93
|
|
186
|
+
autogluon/tabular/registry/_ag_model_registry.py,sha256=SDx1ng0-tY8a7eMgu96eJzba85mItjbDjRsGzT22We0,1718
|
|
187
|
+
autogluon/tabular/registry/_model_registry.py,sha256=QMvF53KEkrowYa2VhYDzILC5NBO8LWELXO0GLtGSS-c,6825
|
|
196
188
|
autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
|
|
197
|
-
autogluon/tabular/testing/fit_helper.py,sha256=
|
|
198
|
-
autogluon/tabular/testing/generate_datasets.py,sha256=
|
|
199
|
-
autogluon/tabular/testing/model_fit_helper.py,sha256=
|
|
189
|
+
autogluon/tabular/testing/fit_helper.py,sha256=QAs7lnKI4u2G6RaO9lK-bgcpB1TDZTykzpN4oxdY73s,24159
|
|
190
|
+
autogluon/tabular/testing/generate_datasets.py,sha256=2seBFvE-RjXiqvLZ1NdDOYGcIJUrNL6-Xx7uT45FN5U,3884
|
|
191
|
+
autogluon/tabular/testing/model_fit_helper.py,sha256=FwADHMRwJuZj3kOnGTOJDdaWUbYtVyKJ3On57K6JnRw,3878
|
|
200
192
|
autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
|
|
201
|
-
autogluon/tabular/trainer/abstract_trainer.py,sha256=
|
|
202
|
-
autogluon/tabular/trainer/auto_trainer.py,sha256=
|
|
193
|
+
autogluon/tabular/trainer/abstract_trainer.py,sha256=V8okB5CBBzW66YmZSW55H2RKJTs8FrorD4N9IYfI_h4,240790
|
|
194
|
+
autogluon/tabular/trainer/auto_trainer.py,sha256=QoIxgjC8T0QYyur8fHfhqv6XKfNBOhemdec8H9XzZYY,9095
|
|
203
195
|
autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
204
|
-
autogluon/tabular/trainer/model_presets/presets.py,sha256=
|
|
205
|
-
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=
|
|
196
|
+
autogluon/tabular/trainer/model_presets/presets.py,sha256=l39rkoRxqVm7XXGVsOWWQJ-gVYn0WEzjHtmBX_TRY70,16793
|
|
197
|
+
autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=gakcDThDcvQcmfqBLpqrV1wgu2CK19hnyzRCy4XckZg,3391
|
|
206
198
|
autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
207
199
|
autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
|
|
208
|
-
autogluon_tabular-1.5.
|
|
209
|
-
autogluon_tabular-1.5.
|
|
210
|
-
autogluon_tabular-1.5.
|
|
211
|
-
autogluon_tabular-1.5.
|
|
212
|
-
autogluon_tabular-1.5.
|
|
213
|
-
autogluon_tabular-1.5.
|
|
214
|
-
autogluon_tabular-1.5.
|
|
215
|
-
autogluon_tabular-1.5.
|
|
200
|
+
autogluon_tabular-1.5.1b20260117.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
|
|
201
|
+
autogluon_tabular-1.5.1b20260117.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
|
|
202
|
+
autogluon_tabular-1.5.1b20260117.dist-info/METADATA,sha256=WbJos2ifPrtd9jCb52oNnL0PApaLGtH19QqlbajtoBg,17060
|
|
203
|
+
autogluon_tabular-1.5.1b20260117.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
204
|
+
autogluon_tabular-1.5.1b20260117.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
205
|
+
autogluon_tabular-1.5.1b20260117.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
|
|
206
|
+
autogluon_tabular-1.5.1b20260117.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
|
|
207
|
+
autogluon_tabular-1.5.1b20260117.dist-info/RECORD,,
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
from .configs import TabPFNRFConfig
|
|
2
|
-
from .sklearn_based_decision_tree_tabpfn import (
|
|
3
|
-
DecisionTreeTabPFNClassifier,
|
|
4
|
-
DecisionTreeTabPFNRegressor,
|
|
5
|
-
)
|
|
6
|
-
from .sklearn_based_random_forest_tabpfn import (
|
|
7
|
-
RandomForestTabPFNClassifier,
|
|
8
|
-
RandomForestTabPFNRegressor,
|
|
9
|
-
)
|
|
10
|
-
|
|
11
|
-
# Backward compatibility for imports
|
|
12
|
-
# These classes were previously in CamelCase files but are now imported from snake_case files
|
|
13
|
-
|
|
14
|
-
__all__ = [
|
|
15
|
-
"DecisionTreeTabPFNClassifier",
|
|
16
|
-
"DecisionTreeTabPFNRegressor",
|
|
17
|
-
"RandomForestTabPFNClassifier",
|
|
18
|
-
"RandomForestTabPFNRegressor",
|
|
19
|
-
"TabPFNRFConfig",
|
|
20
|
-
]
|
|
@@ -1,40 +0,0 @@
|
|
|
1
|
-
# Copyright (c) Prior Labs GmbH 2025.
|
|
2
|
-
# Licensed under the Apache License, Version 2.0
|
|
3
|
-
|
|
4
|
-
from __future__ import annotations
|
|
5
|
-
|
|
6
|
-
from dataclasses import dataclass
|
|
7
|
-
from typing import Literal
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
@dataclass
|
|
11
|
-
class TabPFNRFConfig:
|
|
12
|
-
min_samples_split: int = 1000
|
|
13
|
-
min_samples_leaf: int = 5
|
|
14
|
-
max_depth: int = 5
|
|
15
|
-
splitter: Literal["best", "random"] = "best"
|
|
16
|
-
n_estimators: int = 16
|
|
17
|
-
max_features: Literal["sqrt", "auto"] = "sqrt"
|
|
18
|
-
criterion: Literal[
|
|
19
|
-
"gini",
|
|
20
|
-
"entropy",
|
|
21
|
-
"log_loss",
|
|
22
|
-
"squared_error",
|
|
23
|
-
"friedman_mse",
|
|
24
|
-
"poisson",
|
|
25
|
-
] = "gini"
|
|
26
|
-
preprocess_X: bool = False
|
|
27
|
-
preprocess_X_once: bool = False
|
|
28
|
-
adaptive_tree: bool = True
|
|
29
|
-
fit_nodes: bool = True
|
|
30
|
-
adaptive_tree_overwrite_metric: Literal["logloss", "roc"] = None
|
|
31
|
-
adaptive_tree_test_size: float = 0.2
|
|
32
|
-
adaptive_tree_min_train_samples: int = 100
|
|
33
|
-
adaptive_tree_min_valid_samples_fraction_of_train: int = 0.2
|
|
34
|
-
adaptive_tree_max_train_samples: int = 5000
|
|
35
|
-
adaptive_tree_skip_class_missing: bool = True
|
|
36
|
-
max_predict_time: float = -1
|
|
37
|
-
|
|
38
|
-
bootstrap: bool = True
|
|
39
|
-
rf_average_logits: bool = False
|
|
40
|
-
dt_average_logits: bool = True
|