autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260117__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of autogluon.tabular might be problematic. Click here for more details.

Files changed (135) hide show
  1. autogluon/tabular/__init__.py +1 -0
  2. autogluon/tabular/configs/config_helper.py +18 -6
  3. autogluon/tabular/configs/feature_generator_presets.py +3 -1
  4. autogluon/tabular/configs/hyperparameter_configs.py +42 -9
  5. autogluon/tabular/configs/presets_configs.py +38 -14
  6. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
  7. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
  8. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
  9. autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
  10. autogluon/tabular/experimental/_scikit_mixin.py +6 -2
  11. autogluon/tabular/experimental/_tabular_classifier.py +3 -1
  12. autogluon/tabular/experimental/_tabular_regressor.py +3 -1
  13. autogluon/tabular/experimental/plot_leaderboard.py +73 -19
  14. autogluon/tabular/learner/abstract_learner.py +160 -42
  15. autogluon/tabular/learner/default_learner.py +78 -22
  16. autogluon/tabular/models/__init__.py +2 -2
  17. autogluon/tabular/models/_utils/rapids_utils.py +3 -1
  18. autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
  19. autogluon/tabular/models/automm/automm_model.py +12 -3
  20. autogluon/tabular/models/automm/ft_transformer.py +5 -1
  21. autogluon/tabular/models/catboost/callbacks.py +2 -2
  22. autogluon/tabular/models/catboost/catboost_model.py +93 -29
  23. autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
  24. autogluon/tabular/models/catboost/catboost_utils.py +3 -1
  25. autogluon/tabular/models/ebm/ebm_model.py +8 -13
  26. autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
  27. autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
  28. autogluon/tabular/models/fastainn/callbacks.py +20 -3
  29. autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
  30. autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
  31. autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
  32. autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
  33. autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
  34. autogluon/tabular/models/knn/knn_model.py +41 -8
  35. autogluon/tabular/models/lgb/callbacks.py +32 -9
  36. autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
  37. autogluon/tabular/models/lgb/lgb_model.py +150 -34
  38. autogluon/tabular/models/lgb/lgb_utils.py +12 -4
  39. autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
  40. autogluon/tabular/models/lr/lr_model.py +40 -10
  41. autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
  42. autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
  43. autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
  44. autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
  45. autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
  46. autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
  47. autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
  48. autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
  49. autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
  50. autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
  51. autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
  52. autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
  53. autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
  54. autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
  55. autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
  56. autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
  57. autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
  58. autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
  59. autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
  60. autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
  61. autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
  62. autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
  63. autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
  64. autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
  65. autogluon/tabular/models/mitra/mitra_model.py +16 -11
  66. autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
  67. autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
  68. autogluon/tabular/models/rf/compilers/onnx.py +1 -1
  69. autogluon/tabular/models/rf/rf_model.py +45 -12
  70. autogluon/tabular/models/rf/rf_quantile.py +4 -2
  71. autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
  72. autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
  73. autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
  74. autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
  75. autogluon/tabular/models/tabm/tabm_model.py +8 -4
  76. autogluon/tabular/models/tabm/tabm_reference.py +53 -85
  77. autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
  78. autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
  79. autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
  80. autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
  81. autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
  82. autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
  83. autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
  84. autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
  85. autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
  86. autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
  87. autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
  88. autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
  89. autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
  90. autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
  91. autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
  92. autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
  93. autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
  94. autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
  95. autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
  96. autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
  97. autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
  98. autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
  99. autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
  100. autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
  101. autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
  102. autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
  103. autogluon/tabular/models/xgboost/callbacks.py +9 -3
  104. autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
  105. autogluon/tabular/models/xt/xt_model.py +1 -0
  106. autogluon/tabular/predictor/interpretable_predictor.py +3 -1
  107. autogluon/tabular/predictor/predictor.py +409 -128
  108. autogluon/tabular/registry/__init__.py +1 -1
  109. autogluon/tabular/registry/_ag_model_registry.py +4 -5
  110. autogluon/tabular/registry/_model_registry.py +1 -0
  111. autogluon/tabular/testing/fit_helper.py +55 -15
  112. autogluon/tabular/testing/generate_datasets.py +1 -1
  113. autogluon/tabular/testing/model_fit_helper.py +10 -4
  114. autogluon/tabular/trainer/abstract_trainer.py +644 -230
  115. autogluon/tabular/trainer/auto_trainer.py +19 -8
  116. autogluon/tabular/trainer/model_presets/presets.py +33 -9
  117. autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
  118. autogluon/tabular/version.py +1 -1
  119. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/METADATA +27 -27
  120. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/RECORD +127 -135
  121. autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
  122. autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
  123. autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
  124. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
  125. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
  126. autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
  127. autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
  128. autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
  129. /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260117-py3.11-nspkg.pth +0 -0
  130. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/WHEEL +0 -0
  131. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/LICENSE +0 -0
  132. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/NOTICE +0 -0
  133. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/namespace_packages.txt +0 -0
  134. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/top_level.txt +0 -0
  135. {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/zip-safe +0 -0
@@ -1,215 +1,207 @@
1
- autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
- autogluon/tabular/__init__.py,sha256=2OXpJCvENRHubBTYNIPpHX93WWuFZzsJBtTZbNVHVas,400
3
- autogluon/tabular/version.py,sha256=PADf1YKl2aZrUPa7UG3t_UZEVw0VutLybK7hstCtTPY,91
1
+ autogluon.tabular-1.5.1b20260117-py3.11-nspkg.pth,sha256=kAlKxjI5mE3Pwwqphu2maN5OBQk8W8ew70e_qbI1c6A,482
2
+ autogluon/tabular/__init__.py,sha256=U6uEVR2npE1vNPvJrIjzlWLf_RQHRdAeE0ohcDRmZ2g,401
3
+ autogluon/tabular/version.py,sha256=rHmvesrbP8KkHAs-IyXJluyfqZYb7mRwf0cQrh5n2RY,91
4
4
  autogluon/tabular/configs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
- autogluon/tabular/configs/config_helper.py,sha256=Rby5gRhuY5IlZWdKbtsmzbSt948B97qxwQ2f1MbH_38,21070
6
- autogluon/tabular/configs/feature_generator_presets.py,sha256=EV5Ym8VW15q92MwOUpTi7wZFS2QooM51fLg3RdUsn-M,1223
7
- autogluon/tabular/configs/hyperparameter_configs.py,sha256=yAZaoHJkxxXW1KNTA69GhdyPtdSBEVbd-sQ4RJ3PWXg,7214
5
+ autogluon/tabular/configs/config_helper.py,sha256=8dnkDaEVfLLXc1ucc-bo-aHR5xS8u1fkQ6qqavpX3qs,21252
6
+ autogluon/tabular/configs/feature_generator_presets.py,sha256=TTkEDesQcjbrM_0tURA-25-Xrj2Au8qAg05qFqyDvz0,1253
7
+ autogluon/tabular/configs/hyperparameter_configs.py,sha256=bx5cqQbfZV2a0b3eeuZ45sIbqJDEc1fKQRWOrM9Ag30,7709
8
8
  autogluon/tabular/configs/pipeline_presets.py,sha256=ccrT3C56pYHW8x8VB_Q9zAu_eCxlgNQpt7TXpVUzDfE,4761
9
- autogluon/tabular/configs/presets_configs.py,sha256=BLjbPPK-qOFOEE3J1JWIccUDH7YVGAk3FsYM-oiOrKM,9037
9
+ autogluon/tabular/configs/presets_configs.py,sha256=XLHf3XF8z_0wG-e0qyrls4nefSzl8kspUjEc7AoeiIs,9383
10
10
  autogluon/tabular/configs/zeroshot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
11
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=6yd84vPqOk-6sLCoM_e_PlphrR2NZUjliS7L1SMKMug,29777
12
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=taIRKDMIkNzBBaAH_o04bW7UjIIz6N4_p-oZmyoU65s,9119
13
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py,sha256=sA9p7cpAe6lmIKIjcbjQF-rTWP8e7CAh2smoeQHd98I,20201
14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py,sha256=Ecuf9lqNL8bMFw6PaJFJdVupu5UDroodNzY8NFB_sT4,12079
11
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py,sha256=szLmbZFNertGziQrbVeFHE3FeNvCcVDDVoVL4fW80_Q,30603
12
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py,sha256=4v--QoUMaqjL1cMN-Ex3qR97_mea-KGAbVTDB3UkGyc,9119
13
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py,sha256=kYmt40JcGN7PgeZfkMnl_Oxtu9JRmoRWFwNUJQcHqgg,29776
14
+ autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py,sha256=FtHaQY5kn2JkPyZSUTWaWNemJlezeEXud0_XiTbmk58,17141
15
15
  autogluon/tabular/experimental/__init__.py,sha256=PpkdMSv_pPZted1XRIuzcFWKjM-66VMUukTnCcoiW0s,100
16
- autogluon/tabular/experimental/_scikit_mixin.py,sha256=cKeCmtURAXZnhQGrkCBw5rmACCQF7biAWTT3qX8bM2Q,2281
17
- autogluon/tabular/experimental/_tabular_classifier.py,sha256=7lGoFdvkHiZS3VpcXo97q4ENV9qyIVDExlWkm0wzL3s,2527
18
- autogluon/tabular/experimental/_tabular_regressor.py,sha256=EzEDL-19T5QUVNmLkSHNzzGwYrUxyqlNpIDPMgtV6Gg,1932
19
- autogluon/tabular/experimental/plot_leaderboard.py,sha256=BN_kB-zmOZNUYWyI7z9pF67GCV20zo8yV51HKKj1SCY,9481
16
+ autogluon/tabular/experimental/_scikit_mixin.py,sha256=tmFKLqQ6ZNKz1ukrhUxiaytoQ9GCxbQ8xMRqgUFTc3M,2335
17
+ autogluon/tabular/experimental/_tabular_classifier.py,sha256=vf7CIf3qoOCmYB7GsPCKfegp9dLTJiITsW58AhLaMuc,2557
18
+ autogluon/tabular/experimental/_tabular_regressor.py,sha256=xOpruwjDDA3PsvtseVjNhTrt3TC3VHBlZnPm8ili_M8,1962
19
+ autogluon/tabular/experimental/plot_leaderboard.py,sha256=0Imhv7lDg_ACBGG-MKoQ-zROWi7HFWZcDHHrOM1f2wQ,10200
20
20
  autogluon/tabular/learner/__init__.py,sha256=Hhmk5WpKQHohVmI-veOaKMelKJpIdzeXrmw_DPn3DTU,63
21
- autogluon/tabular/learner/abstract_learner.py,sha256=0kf0huvg0nphe-lrdKtNTzdIFr14jzJPsfZDRBkKo3g,55253
22
- autogluon/tabular/learner/default_learner.py,sha256=IehXrkY22Cxua97jG598m08ojgRmMrVaw0RzPgaw_YM,24842
23
- autogluon/tabular/models/__init__.py,sha256=3ni4OkD6fbb3IqEHIVLm6hAtjFdwl8mjsZR-Q8rwHRA,1372
21
+ autogluon/tabular/learner/abstract_learner.py,sha256=wDAtuqwKzwNfJ2SOH7rJW_EDPLz0iNBt0G4Y-ekP9Nc,57008
22
+ autogluon/tabular/learner/default_learner.py,sha256=DCh4beW0Tf_aJ7eo2lqeFLcWfnvB3TIgKy26VkqgkO8,25571
23
+ autogluon/tabular/models/__init__.py,sha256=IQY9semC_XA2gkIsFuq6ZBwDtt2kIweQOqYexSOQRVQ,1372
24
24
  autogluon/tabular/models/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
- autogluon/tabular/models/_utils/rapids_utils.py,sha256=9A2Y10Owva6zhcLkBVQ_T4tOAMDp1idSMzDWhl_QyBI,1083
25
+ autogluon/tabular/models/_utils/rapids_utils.py,sha256=x8cqJlN0XT9JyHRSQNBc9h5x8jyIX4pd8XBTkE53ivU,1105
26
26
  autogluon/tabular/models/_utils/torch_utils.py,sha256=dxs_KMMAOmNkRNjYf_hrzqaHIfkqn1xoKRKqCFbQ1Rk,537
27
27
  autogluon/tabular/models/abstract/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
28
- autogluon/tabular/models/abstract/abstract_torch_model.py,sha256=U1FB_qHZruYKCilN2kCTUdgfs-brDbauMnC7r93RTi8,5630
28
+ autogluon/tabular/models/abstract/abstract_torch_model.py,sha256=SC5WOEUNJDFnWwJQ9KDjRqQAPZjCYEhaczWaLuGVqR0,5632
29
29
  autogluon/tabular/models/automm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
30
- autogluon/tabular/models/automm/automm_model.py,sha256=MoydDuPEd5atbUPlVDzWLTKLB7EchcPdSVVncxA9jEM,11355
31
- autogluon/tabular/models/automm/ft_transformer.py,sha256=X-IEi5uKme7SoRcHnPjGTByzrjCB85I7RpB0hS36TLQ,3897
30
+ autogluon/tabular/models/automm/automm_model.py,sha256=k-nUF9u5RS6futD7V2-NPasGUxlxkvueCqb0-re6okI,11463
31
+ autogluon/tabular/models/automm/ft_transformer.py,sha256=KuLNyJIN-cGy4oZ73OrumX6I6VPG0qixJchmt3IKNXQ,3957
32
32
  autogluon/tabular/models/catboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
33
- autogluon/tabular/models/catboost/callbacks.py,sha256=QvyiynQoxjvfYaYwGNSF5N3gc_wqI9mi1nQiawL0EJ4,7194
34
- autogluon/tabular/models/catboost/catboost_model.py,sha256=r2TcevNIlQVAXZLrzMF5vDmY_TfQfd31QlAGjL8WEtI,18061
35
- autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=UiW0SUb3hFueW5qYtQn6Sbk7Wg7BWN4jqKWeFtbMvgU,3919
36
- autogluon/tabular/models/catboost/catboost_utils.py,sha256=zJMIsbgyW_JH0eULhUeu_TWR0Qfmf34CnED7c7NvXBw,3899
33
+ autogluon/tabular/models/catboost/callbacks.py,sha256=djAHIIGd6sO-YTa2gExg_cgHVW7RLeahNHx8W7En060,7190
34
+ autogluon/tabular/models/catboost/catboost_model.py,sha256=UxSEMYMgog10-UT8HHnHZkJMuw66RUWEn0viNx5pgSc,19096
35
+ autogluon/tabular/models/catboost/catboost_softclass_utils.py,sha256=dqEud2Sw0GVr_GAfV1S6SQvrQTVofA4ER-EQU2v5P_c,3965
36
+ autogluon/tabular/models/catboost/catboost_utils.py,sha256=f1fi8VJSImSvwq_-1WEBKsSU7swch4Z_tbPzLzrhPrk,3929
37
37
  autogluon/tabular/models/catboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
38
38
  autogluon/tabular/models/catboost/hyperparameters/parameters.py,sha256=Hxi4mPTc2ML9GdpW0TalkDgtsYJLwpEcd-LiyLOsmlA,956
39
39
  autogluon/tabular/models/catboost/hyperparameters/searchspaces.py,sha256=Oe86ixuvd1xJCdSHs2Oh5Ifx0501YJBsdyL2l9Z4nxM,1458
40
40
  autogluon/tabular/models/ebm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
- autogluon/tabular/models/ebm/ebm_model.py,sha256=PyocCEPxByB-E5gRCZitI5gsP6DVYlxmRx8bbZ31guA,8524
41
+ autogluon/tabular/models/ebm/ebm_model.py,sha256=STv3AR9Mv-u5H1DLhcLUJGyol2X2NjiDouctIal1SBs,8443
42
42
  autogluon/tabular/models/ebm/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
- autogluon/tabular/models/ebm/hyperparameters/parameters.py,sha256=IbDv3Ufx8CGHvejqSbAggZKlMq5X9k0Ggclm_DCoiII,1080
44
- autogluon/tabular/models/ebm/hyperparameters/searchspaces.py,sha256=G6zgHERKt_KJlVfZ06tFKw2aOUuM7DdDyCm0s5RBXoc,2191
43
+ autogluon/tabular/models/ebm/hyperparameters/parameters.py,sha256=1MHQV4I7FFRZt7A9RtdPD1E1VUCCpo4tV9rg5WMqRwE,1081
44
+ autogluon/tabular/models/ebm/hyperparameters/searchspaces.py,sha256=PU8Ssg9yCJf9hkDR10YGb7P9RDeiA-3TG4eUv0ZtYfg,2192
45
45
  autogluon/tabular/models/fastainn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
- autogluon/tabular/models/fastainn/callbacks.py,sha256=3WvOEwqd1YAVInooKsFOTzAkCLeIXjEelsglYwfofq0,4788
46
+ autogluon/tabular/models/fastainn/callbacks.py,sha256=0OFpo26UtqxuM6XlffTcfdJ40Q_twTDKnL1cDzLZwJ4,4923
47
47
  autogluon/tabular/models/fastainn/fastai_helpers.py,sha256=gGYzyrAFl8hi8GnsemZNLGZn5xr7cyJXdFl08PIlza4,1393
48
48
  autogluon/tabular/models/fastainn/imports_helper.py,sha256=ICxA8ty47-oZu0Q9AjKCQe8uVi340Iu0NFruxvJPrbA,330
49
- autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=d89GKvSRBgOy9EqcDI83MK5sqPRxP6JJ3BmPLmKnB0o,1808
50
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=YnQqZSHEUCa4-EU2C_rrjo698jtJLbEIYgP3RtQ0xv4,29783
49
+ autogluon/tabular/models/fastainn/quantile_helpers.py,sha256=Q3mkw8AQFD--6I9MRS0PNHXPE3gzuDh5HyKyOgWBHdg,1934
50
+ autogluon/tabular/models/fastainn/tabular_nn_fastai.py,sha256=bAmmuGaMZBiXMVSJMSmFpPQz8qhG13_vXDUWqtx9wIU,30541
51
51
  autogluon/tabular/models/fastainn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
52
  autogluon/tabular/models/fastainn/hyperparameters/parameters.py,sha256=DkQwAZZ7CuODKoljr-yrkx-uFxBSPRxkKuvPdwO-UhQ,2069
53
- autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=5qdknZDrHtdPdrhSqjamYQrCxvupXvlN3bVGEPgs48E,1660
53
+ autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py,sha256=RGtsOCNT6FzbEh2Y4hOtITfk_Yys0TQUZESLSFMTQN4,1781
54
54
  autogluon/tabular/models/fasttext/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
55
- autogluon/tabular/models/fasttext/fasttext_model.py,sha256=Tiwe9qxWlJ7Z_HGsLApPP4bTyvUgJbbYNXk7ni7CP1o,7203
55
+ autogluon/tabular/models/fasttext/fasttext_model.py,sha256=fQ4qBWUMaJ7aP_60T2ZukGZcAYwLDKTuiX1U7276mIU,7233
56
56
  autogluon/tabular/models/fasttext/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
57
  autogluon/tabular/models/fasttext/hyperparameters/parameters.py,sha256=DbkLlHlxRh1uGWJ_sUYNrweSJj4yjlOBH_H2COyaWL8,1234
58
58
  autogluon/tabular/models/image_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
59
- autogluon/tabular/models/image_prediction/image_predictor.py,sha256=ZDW9vMEZtI5KOE2MDxGB9XDytpUum0DsjrfWEb4PE1Y,5620
59
+ autogluon/tabular/models/image_prediction/image_predictor.py,sha256=BJ9tIw93hXpEl02vxniEUOLQkSNtZf3s3FH21r8hk7c,5681
60
60
  autogluon/tabular/models/imodels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
61
  autogluon/tabular/models/imodels/imodels_models.py,sha256=89uQwbRAtqcUvPwYsKnER8SUMIbwkGZUd9spoG_mP10,4878
62
62
  autogluon/tabular/models/knn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
63
  autogluon/tabular/models/knn/_knn_loo_variants.py,sha256=-n2znYS7OBA0bZvtei6JZiEMRWp4GX-Qp64uheaHyhQ,4562
64
- autogluon/tabular/models/knn/knn_model.py,sha256=I7wPRy38oD03f_3KN7Q_CyoJJucDPrPQyJqjgovmx8Q,14061
64
+ autogluon/tabular/models/knn/knn_model.py,sha256=CYhnnmpONHX8pftCXLu65sfdjzRXCmwq0UtDavN5s1Y,14397
65
65
  autogluon/tabular/models/knn/knn_rapids_model.py,sha256=0FFApNZFH8nyrDqlBSUV7jO-2fLe0-h_UHp1GsyQJ8E,1550
66
66
  autogluon/tabular/models/knn/knn_utils.py,sha256=XU1cxVXp1BAoQnja2_KmSIn9_q9gZkjAya7-9b0uStk,7455
67
67
  autogluon/tabular/models/lgb/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
- autogluon/tabular/models/lgb/callbacks.py,sha256=KJB1KmebA88qHT206KSfvm5NamGuv5lRzy7O9dOwW-M,12243
69
- autogluon/tabular/models/lgb/lgb_model.py,sha256=DIZLucYXZF7kBGy54oddiPiZhmEBQvQC0P9B0FtP3l8,28897
70
- autogluon/tabular/models/lgb/lgb_utils.py,sha256=na5qrOBZwCUxXCFGfjjQrEQ0yQE8LEOO_-8_6WnSPcI,7422
68
+ autogluon/tabular/models/lgb/callbacks.py,sha256=nB8XwpVkxxvaEPYqn6d5lTZvoiNPGyT-CB2DBltTgyk,12767
69
+ autogluon/tabular/models/lgb/lgb_model.py,sha256=urEY6_VG9Mma47J97mtrNfVbyrMYVBPxpuHMk3MD3bA,32160
70
+ autogluon/tabular/models/lgb/lgb_utils.py,sha256=5u8oCN-zZXtdNkophKRN1gbQZoTnRG2hLf0pTAY3aqc,7494
71
71
  autogluon/tabular/models/lgb/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
72
72
  autogluon/tabular/models/lgb/hyperparameters/parameters.py,sha256=LLEQ-Ns3HElWBsFJx3ogRV7L6qw_nXlcl7EyO0C0fVQ,1336
73
- autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=tvNNR7niWz_B-PndYQXb6vVNABxSfBYRHj6ZVQJ1x2E,1930
73
+ autogluon/tabular/models/lgb/hyperparameters/searchspaces.py,sha256=2WtcCbHimUxY8NMUouHpTkhwVy5V6g4cANmYmFxifGU,1952
74
74
  autogluon/tabular/models/lr/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
- autogluon/tabular/models/lr/lr_model.py,sha256=2A6e8Itw-PgjOLjVXeo8bJwFQuVSGYwJNVxhHxFQXlw,15732
75
+ autogluon/tabular/models/lr/lr_model.py,sha256=vq48nX6ZwVmwfRqEFm5D4ljukKD6Q-8Q8hy8Ysaw5Vs,16213
76
76
  autogluon/tabular/models/lr/lr_preprocessing_utils.py,sha256=tgb75V6zHfMJh8m9GDs5404ItdfwNakqykTk0qjBtFE,1045
77
- autogluon/tabular/models/lr/lr_rapids_model.py,sha256=XIB1KCPPfBZMxTRC3Wc1Dsl5NTMQSM_m8Uc2igyTLX8,3939
77
+ autogluon/tabular/models/lr/lr_rapids_model.py,sha256=1oEYMre0KBjq16XcLjjEO4XO4t4uJTBvZ41bvFbhRbY,4034
78
78
  autogluon/tabular/models/lr/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
79
79
  autogluon/tabular/models/lr/hyperparameters/parameters.py,sha256=Hr5YC13zjbt3CfCbzGj8iXUIuDn-Q7FvDT2uSuiSVlM,1414
80
- autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=Igywc-B6qJ9EBLdasrDhW-Ot5FGirIzbXLwv5HRe5Xo,276
80
+ autogluon/tabular/models/lr/hyperparameters/searchspaces.py,sha256=2kYNJdcDWqEb-GNvjH47RttZmO6bbKGxqJcosX_WZz4,307
81
81
  autogluon/tabular/models/mitra/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
82
- autogluon/tabular/models/mitra/mitra_model.py,sha256=SLPsu1nYw62IVEYwT6WQyRhTT40sTPL07OELncSVwa0,14864
83
- autogluon/tabular/models/mitra/sklearn_interface.py,sha256=vyg8kkmYKzEJRWiehEqEsgZeOCV20tnZAZaaaJkwDuA,17739
84
- autogluon/tabular/models/mitra/_internal/__init__.py,sha256=dN2dz1pGMgQTFiSf9oYbyq23iJUxV8QNlOX3qw3KUO4,35
85
- autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=Exu_Sx6-K-D5peDQ_TibsjZpqAALs2-9IXfq8hu1mwU,40
86
- autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=CeaD96EcDX69LdcLTYGlFmYLdBNINEJXRMWmJ6LbhTg,6038
87
- autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=CVna6KOwmF-rIxcyH3mHm63jvM1C6RdFbRLgUGEXDn0,677
88
- autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=hlyhgXHvHZKgYK1z3DHSHxEsuCHOE7Y2AdokjOG8SWs,3930
89
- autogluon/tabular/models/mitra/_internal/core/__init__.py,sha256=hgy4uzJfTQFt9hVlbSrOZU9LSUbLM-uZUnG04f1CUcs,31
90
- autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=xYkJUXiGzLvpWcj6a_wRJUK7f_zgjd1BLA8nH6Hc884,2605
91
- autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=hv0t7zvyZ-DgA5PbKpbX_ayq8tEvuW_nJhbudMDqkDk,2243
92
- autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=UgGO6lduVZTKZmYAmE207o2Dqs4e3_hyzaoSOQ0iK6A,3412
93
- autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=2lzdAxDOYZNq76pmK-FjCOX5MX6cqUSMjqVu8BX9jfY,2238
94
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=fai0VnDm0mNjJzx8e1JXdB77PKQsmfbtn8zybD9_qD0,4394
95
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=PcP2W33LakUlo1x1V-aGwFt1KYTkJN2n_rsdhCFYfhs,18379
96
- autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=u4ZTvTQNIHqqxilkVqTmYShI2jFMCOyMdv1GRExvtj0,42
97
- autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=o2F7ODs_eUnV947lCQTx9RugrANidCdiwnZWtdVNJnE,2300
98
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=AYxyQ1NJZ3pAp6ny-Y_hqw_4VtyW5X1AABchf7pVsSM,4340
99
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=0uvfyiKrzipde4ZcCDwTE1E3zHelE8xbuNvCeL38J5c,2033
100
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=zx2pWrpDaGSSawPaj7ieRjFOtct_Fyh8LYjo_YtlNG0,13821
101
- autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=K0vh5pyrntXp-o7gWNgQ0ZvDbxgeQuRgb6u8ecdjFhA,45
102
- autogluon/tabular/models/mitra/_internal/models/base.py,sha256=PKpMPT5OT9JFnmYPnhzFUeZPwdNM1e-k97_gW8GZq0Y,468
103
- autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=74O6cGWhUyHxg4-wiQwy4sPeDYQze2ekI9H5mLUtSLg,6223
104
- autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=o_S572-nKrhwxmEFaDSTvTLE7KztOvQmARRrc7CIeCY,25783
105
- autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=0mhykAqjMmcEc8Y2od_DMPMk8f66LZHWM7qFdUrPddU,34
106
- autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=UnXzYfhmfT_tNAofKtLkKpwB9b6HVf9cpI4mKvoBuNM,340
82
+ autogluon/tabular/models/mitra/mitra_model.py,sha256=b01EYW_tZjPTV2qOGyw5nAwYfH3WBOqxG78OB8m5ZTs,14893
83
+ autogluon/tabular/models/mitra/sklearn_interface.py,sha256=QR0bqoOcnGP6bgewcGRW3p6CvRkkWuVyrhfenZqN8q8,17663
84
+ autogluon/tabular/models/mitra/_internal/__init__.py,sha256=_3G5Q2aZd6WKuun2RJmD_Nvl_H79QoS-RRfTCx_DH_Q,34
85
+ autogluon/tabular/models/mitra/_internal/config/__init__.py,sha256=CVRuZcfqj8fz_uD0EwHLqhwM8EyTasDeEekELWDikRQ,39
86
+ autogluon/tabular/models/mitra/_internal/config/config_pretrain.py,sha256=SJSBFyv2KnJZlnp0dKbAazaP9UPVuAJUjPkTqivhuxw,5967
87
+ autogluon/tabular/models/mitra/_internal/config/config_run.py,sha256=iyKEUGUovLNv7zvreRNCrlo53pGyNe0DJEyjYwp_upU,561
88
+ autogluon/tabular/models/mitra/_internal/config/enums.py,sha256=wr3q2OiBgg5jy6vHy0Xw7fEoJ7wcoSsPbK3C6YfEvsM,3931
89
+ autogluon/tabular/models/mitra/_internal/core/__init__.py,sha256=ktAxn2cuGWqMrO9O5W7KvehXT56RKdY5saA6rf1Q1Ko,30
90
+ autogluon/tabular/models/mitra/_internal/core/callbacks.py,sha256=NxpMRIeNtbkVvJQ04ZT-u58c07VxmLzMLvA6Oz5EJUc,2579
91
+ autogluon/tabular/models/mitra/_internal/core/get_loss.py,sha256=l2mlPlmiKcpr1Un_noDAFnxQY1TkBcITE7WNZi2qk-U,2242
92
+ autogluon/tabular/models/mitra/_internal/core/get_optimizer.py,sha256=XoyhUU8ybv49ZJgaVVoyu4ClpENiKwpHSdsSu-PhyI4,3283
93
+ autogluon/tabular/models/mitra/_internal/core/get_scheduler.py,sha256=H4qmEGo2DOB4qMiA883lrG60MRKQDmGfyBEH_FuZFLw,2058
94
+ autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py,sha256=2n7V_HtHkBWkJSWZ_-A32gVRbwQHaKpCgfBMGH-W7eI,4438
95
+ autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py,sha256=mBemZDwYaWU_bNQWXxx06huyvPF6FBieLku0tnJHqac,19071
96
+ autogluon/tabular/models/mitra/_internal/data/__init__.py,sha256=8CN9-FbLfxmDRiRrLcspJatWk7nfF7ESo-skTb4l_c0,41
97
+ autogluon/tabular/models/mitra/_internal/data/collator.py,sha256=mg9Vd_AumX7i6JstxTVlauHuSGoKuuYSvKAjXxjRb1I,2398
98
+ autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py,sha256=VSDLobBHUYHJnikPFmFrVXk293tlECneYVKYyCtiHoE,4256
99
+ autogluon/tabular/models/mitra/_internal/data/dataset_split.py,sha256=E4VnBGgIh6B78TFDR6OfVE-0NVmrmyJXQ3iRu-HKkMo,2039
100
+ autogluon/tabular/models/mitra/_internal/data/preprocessor.py,sha256=qbwp-d1x0pp3padOX0wGBPExm7I2PvQAlRyXRT50NgY,14486
101
+ autogluon/tabular/models/mitra/_internal/models/__init__.py,sha256=gy6DQpnM4LHnfnccDmhlF37PYqi1reCz9lRjvJ8RErI,44
102
+ autogluon/tabular/models/mitra/_internal/models/base.py,sha256=v3re9JV6u_HpaL7OjfWLShlSq7JSHIsIg_c6HolPMDI,422
103
+ autogluon/tabular/models/mitra/_internal/models/embedding.py,sha256=QsYeY4in_S_MZxgr6foFF33mANT9-1uxhNSwttWBgVw,6174
104
+ autogluon/tabular/models/mitra/_internal/models/tab2d.py,sha256=u5chSh3SmM2JynOoygFGHC2ZPqC9UxEBrpP4xyrsuXE,26211
105
+ autogluon/tabular/models/mitra/_internal/utils/__init__.py,sha256=FCUlkLrUryXNM0fpdiQIJruxZ1b2SozI4IrO9_biiFU,33
106
+ autogluon/tabular/models/mitra/_internal/utils/set_seed.py,sha256=JILm6NXzvtpjDfO7P1lTWpQeQ0gt8p7_3EvurPd1_FA,343
107
107
  autogluon/tabular/models/realmlp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
108
- autogluon/tabular/models/realmlp/realmlp_model.py,sha256=eOUp7fA9Tvx7z9E62JDJwFG0XFH1nh6btaKkNu0sA9c,14754
108
+ autogluon/tabular/models/realmlp/realmlp_model.py,sha256=8TDqnlimO8FXx9v1jY2VcarE-p6wQ6PrcEd_ehsLDec,14996
109
109
  autogluon/tabular/models/rf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
110
- autogluon/tabular/models/rf/rf_model.py,sha256=auvNHx0qD9Pz8rS6yNIuG9cHzFNquv8fOVS7FWZNIAw,21721
111
- autogluon/tabular/models/rf/rf_quantile.py,sha256=2S8FE8po9lMnZaeKuVkzOUFOcdil46ZbFqm49OuvNZY,36460
110
+ autogluon/tabular/models/rf/rf_model.py,sha256=JP00WglovZs23I1kJZlRvCOe1s0ptsQekqSXU64zvu0,22185
111
+ autogluon/tabular/models/rf/rf_quantile.py,sha256=i4bpemg0tidReThVarSIzDg8Qha8aC_xzDxnylUowiI,36479
112
112
  autogluon/tabular/models/rf/rf_rapids_model.py,sha256=3s-8M11dzCl_2Lu5iB3H8YjHLgyP_SElrm_4w_HfmqY,2028
113
113
  autogluon/tabular/models/rf/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
114
114
  autogluon/tabular/models/rf/compilers/native.py,sha256=HhaqQRkVuf9UEEJPsHcdYCmuWBMYtyqRwwB_N2qxG2M,1313
115
- autogluon/tabular/models/rf/compilers/onnx.py,sha256=pvaZWdl2JJaE2pFU0mFugzhnybePqe0x1-5oLOvogA0,4318
115
+ autogluon/tabular/models/rf/compilers/onnx.py,sha256=BZj8rR_c1X1FQwFhzypAzZ48FG_v5labxiILwoWZZM4,4315
116
116
  autogluon/tabular/models/tabdpt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
117
- autogluon/tabular/models/tabdpt/tabdpt_model.py,sha256=tIlwRzH3U7MO0zvTgxBO5wN4Rj0MUW5BDKsTRRZJGgA,9285
117
+ autogluon/tabular/models/tabdpt/tabdpt_model.py,sha256=o6V06yCy_AO1mv7Co4cw2nUKu36HQoeLR8992LHFThg,9240
118
118
  autogluon/tabular/models/tabicl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
119
- autogluon/tabular/models/tabicl/tabicl_model.py,sha256=56qooz9s5wrk_kLybRFeQ7HQG9rhNsOgDxQr_1zfpyk,6933
119
+ autogluon/tabular/models/tabicl/tabicl_model.py,sha256=jF4f10FKyyKB9oWwhkdfs2JuJ-6x4vYVQSQCP_i_aso,7005
120
120
  autogluon/tabular/models/tabm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
121
- autogluon/tabular/models/tabm/_tabm_internal.py,sha256=fRQ-s5PN94kWqf3LRDen7su_fd-d332YKxdms30FoZM,21066
122
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=XssNMaUM0E0G8Grzl_VkVsLt2FcMf3I4cplfvQdVum0,30156
123
- autogluon/tabular/models/tabm/tabm_model.py,sha256=lj_DsMhBlIUozFGt4fE9QyUX2oN17ehuuimztRKUWHk,10952
124
- autogluon/tabular/models/tabm/tabm_reference.py,sha256=byyP6lcJjA4THbP1VDTgJkj62zyz2S3mEvxWB-kFROw,21944
121
+ autogluon/tabular/models/tabm/_tabm_internal.py,sha256=XAOkT8JfvV9RdO800DZAP5bx8IkVZ3Px42K9mMU7gys,21100
122
+ autogluon/tabular/models/tabm/rtdl_num_embeddings.py,sha256=1e1NOuOH5LRUqpUa7AF7tgXX79z6Rt_tikLJBeC0lrE,29479
123
+ autogluon/tabular/models/tabm/tabm_model.py,sha256=tB8URDo5vUuK8Xvvosji2-0AaIdTHv0Y6MsuQW51eNA,10959
124
+ autogluon/tabular/models/tabm/tabm_reference.py,sha256=3wG9c7D8YmnJdnI4ZSeIRQPasExI4EuUO8LWyJVOzz4,21550
125
125
  autogluon/tabular/models/tabpfnmix/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
126
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=NAuV3rJia-UNnFwiFU5tkz6vzZ2lokQ_12vUJ3E6wAA,16498
126
+ autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py,sha256=EVrZK_Pln8rpIIw7uqWTbZvXdM1GCZ8clgS-ViDZ4RE,16882
127
127
  autogluon/tabular/models/tabpfnmix/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
128
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=_WIO_YQBUCfprKYLHxUNEICPb5XWZw4zbw00DuiTk_s,3426
129
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=J6JvrK6L6y3s-Ah6sHQdjSK0mwAMP-Wy3RRBwzB0AoA,3196
128
+ autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py,sha256=GNERt30KWELLIt9fMnPMvgHACKKkZ2QivD88HlX1Ky0,3606
129
+ autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py,sha256=MZRJDIcbH2Sbjk8m7Ob-4XzSIhyi93F6LR76FuFgRI4,3375
130
130
  autogluon/tabular/models/tabpfnmix/_internal/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
131
131
  autogluon/tabular/models/tabpfnmix/_internal/config/config_run.py,sha256=dnyEBOIS3QX4_JsjepLMxsK8Qv-CTsE1gEIG-0v1YCU,232
132
132
  autogluon/tabular/models/tabpfnmix/_internal/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
133
- autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py,sha256=fEEzFNMrcvRq1TEtuLgkZhkEXOfRfwD_ZpfMzPEy2tY,3166
134
- autogluon/tabular/models/tabpfnmix/_internal/core/collator.py,sha256=xbW3ZBjgP9GLb85n3yfrsntcwleN3g-PbGdt8PrXqyg,1845
135
- autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py,sha256=9mJpD9AWjCGVoXrQrWQL13ozrWMFFzN1nNt52cgfVJE,1356
136
- autogluon/tabular/models/tabpfnmix/_internal/core/enums.py,sha256=0oxJQhY13LagE6KmUoXrbJHylw6TGR33sn8WvD9UQag,82
137
- autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py,sha256=l-3e30Krmnfqd3umjWjYwpgCldG7r5VAv0ixSYi5_ck,186
138
- autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py,sha256=GnmTgWatvGJzT-OUwINWRyLGcLLtLX1ad30Nyz-ftSs,935
139
- autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py,sha256=uPml-q8-WNeRFtKYQpFjHSdexqiwvPszXWe4LGSiZoE,547
140
- autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py,sha256=ybMU_qzOufsKZTqkegAcIfG3jQnOySsm8T51ZWiJZeU,12686
141
- autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py,sha256=PcKdY0HvZ_2vXfnADTtkYqg10HYQOml5gA79rwxEumU,1336
133
+ autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py,sha256=oPkNBKFA2W5WEEvY8NuQ7y3E6mXCTgdLftlXvCJpAZ0,3132
134
+ autogluon/tabular/models/tabpfnmix/_internal/core/collator.py,sha256=8z1F6vazu4O3FhYhumN1ukvIjcQaNPf9kNFCsuWt8Fc,1800
135
+ autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py,sha256=UVXqZr4ZXbwJLJ07yIcrb6s25QKCCTWv2I7qhFOscsg,1335
136
+ autogluon/tabular/models/tabpfnmix/_internal/core/enums.py,sha256=TcTM1cZaMC311Yhb6RG4qi7QchskX-7OOVyNn-KjqFg,80
137
+ autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py,sha256=JMRiC3TDiwgH4-tB-hIeVNcXEsyRn5RAyIEvZmJm7C4,185
138
+ autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py,sha256=LeSzpVyR_MUQm5fa5qhEkjr6SCDenlSMGTv8HWFeB8k,810
139
+ autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py,sha256=-AHg9mckBNtpj1MlyGIL1T8k0FBo2HVqy6lZYRoZvH4,418
140
+ autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py,sha256=satC5Mb-nohPHV58zh_JVvXbodpKV2_7RCzWytUM4tY,12815
141
+ autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py,sha256=5e_xSaoUbgBgE26QoPRNGRKnBSxHKUNyPF2dL3xHzfI,1327
142
142
  autogluon/tabular/models/tabpfnmix/_internal/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
143
- autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py,sha256=N39h92TTSECERPLm8K67MpKJaOyCJ7KWuGJCrbyovU0,4260
144
- autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py,sha256=s0_RlchLwm0fU0yW-MLlrYKnkuepkhnrYA-e2F34mB0,5275
143
+ autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py,sha256=BO_FTt1oQISaaXSod4M7Wk6u-tCmBTxl2k7zDv0n1MQ,4168
144
+ autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py,sha256=UoIazi4sh_V2YPb1-ZLLJY3rPuKROa3cexv955eELuE,5203
145
145
  autogluon/tabular/models/tabpfnmix/_internal/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
146
146
  autogluon/tabular/models/tabpfnmix/_internal/models/foundation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
147
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py,sha256=ukRFhBCKFk8OjR-mPNk_hd3sSAVs-v7-Zyn_mQZAN-A,3560
148
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py,sha256=bhNpGIA5BKqIVX-kDW4bZLgsOB_A8iNsnpgoyyBLR98,5383
147
+ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py,sha256=oqgrOKinv6rumeRx-qL7Mcs747J4MCLRmsCZDIIfRqU,3430
148
+ autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py,sha256=g1Tg3amD00ihKxm8vNtBekkK5RjwPjtXgag8lOIbwfM,5394
149
149
  autogluon/tabular/models/tabpfnmix/_internal/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
150
- autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=1tRPHyViSSLJ7BkQJi6wai-PwXJ56od86Dy1WWKWZq4,1743
150
+ autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py,sha256=sUKEGtg04zqGQy6C74EW0Fdo8Wtg_jETeJPoPxFTWWo,1739
151
151
  autogluon/tabular/models/tabpfnv2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
152
- autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py,sha256=dOIojZiaFtEn2Ag9AkQmZe4s-TQjcLghiZh_Vk4aims,17055
153
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py,sha256=dfbxNiwP-qLWOt2aKNx4zSbdPpDoC7a_TIjiHK_sr44,18219
154
- autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py,sha256=yE5XAhGxKEFV0JcelZ_JTQZIWGlVEVUQ9a-lxcH_Esc,585
155
- autogluon/tabular/models/tabpfnv2/rfpfn/configs.py,sha256=lzBY9kKOeBZACVrtRDPHF4ATs9g1rxyNnIs2CMjE20c,1175
156
- autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py,sha256=uvHsfvnnMdg4tP3_7zAilktkw7nr65LaqfVKXabXAow,6785
157
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py,sha256=-KQNm_HYWem6HWUsdbnIX4lKe-eW0PQAXZUny2kqego,55582
158
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py,sha256=FRJSelTtDaKnpsKKHphjy2rJrFX302miSdHZ0YqHxCQ,28045
159
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py,sha256=jv2ZHsGwcO4Inhxtol_tig3NoXZQR649dhmW_Kv69QY,29607
160
- autogluon/tabular/models/tabpfnv2/rfpfn/utils.py,sha256=vjMQsNaZZcW1BBf0hduSCtrNCtSd467xfkhsbHspUog,3489
152
+ autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py,sha256=rzw1y_RgjkY1oVcZnThM_dJXAcD0RUpXC6JFqs8enQc,16632
161
153
  autogluon/tabular/models/tabprep/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
154
  autogluon/tabular/models/tabprep/prep_lgb_model.py,sha256=mSCWVoFIE-1ROf5v43Y3njfg5ZpXhTOUR3EnGmyTtL4,931
163
- autogluon/tabular/models/tabprep/prep_mixin.py,sha256=ekrqtbkZ4KbAKke42Uj_E527jyI2RPfe07ycA4Rv1Og,10009
155
+ autogluon/tabular/models/tabprep/prep_mixin.py,sha256=FHBSjRS_Lqw2zTDR-YzyYye98NSoAjykdihzTNlE7wQ,9997
164
156
  autogluon/tabular/models/tabular_nn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
165
157
  autogluon/tabular/models/tabular_nn/compilers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
166
158
  autogluon/tabular/models/tabular_nn/compilers/native.py,sha256=W8d8cqBj7U-KVhfGK3hdtGj8JJm3lXr_SecU0615Gbs,1330
167
- autogluon/tabular/models/tabular_nn/compilers/onnx.py,sha256=3mj9_5p6YMOuKbYk7FBQ2Ijhm1kGzfqq6cyyKLUKLOo,14804
159
+ autogluon/tabular/models/tabular_nn/compilers/onnx.py,sha256=D9AE8aq1J8Ac3d3EExiKk-MpP2B44pVlFhoRtPolslY,15143
168
160
  autogluon/tabular/models/tabular_nn/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
169
161
  autogluon/tabular/models/tabular_nn/hyperparameters/parameters.py,sha256=kGvfuDZa9wDCCTEeytVLKhOAeR0pCcoVNJcWjketmBI,6375
170
162
  autogluon/tabular/models/tabular_nn/hyperparameters/searchspaces.py,sha256=pT9cJ3MaWPnaQwAf47Yz6f0-L9qDBknahERbggAp52U,2810
171
163
  autogluon/tabular/models/tabular_nn/torch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
172
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=mKegEc28W6aczYHoECx6LFiUDgkTnKpsmx6IuN5mFSQ,43001
173
- autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=RdnQGZSrvY1iuJB4JTANniH3Dorw-DP0Em_JK3_h7RM,13497
174
- autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=Qc3PwXTD8A7PgXi6EGuaBCrN3jsFAXDLCW7i6tE5wYI,11338
164
+ autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py,sha256=b31PDXcLwKWJyc5vQ_fiRVcyH5GO1E4OK72nDXa8JoU,44413
165
+ autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py,sha256=zhSKCRtlAnpbP-ivTlodgfaQQstjNtr_21mBYf4ltw0,13561
166
+ autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py,sha256=_1QJupgSXQr7AK652xjnvGrZ0cQnzSah5SBBXzZoKLA,11571
175
167
  autogluon/tabular/models/tabular_nn/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
176
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=2B5SrSN5nlCUGSsn2hrZNM5m4FswDKRxs_08CVB42js,35759
177
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=_-0WJrDW_7ZSwP2Iy20yUBRp6ay9MFLfQrndWnzrxlQ,5755
178
- autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=tttzR5EtYcFa6sIrUG9wyegdYmYE5DPK_CiLF1-L3c8,2875
168
+ autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py,sha256=4ijBWSyGyJVwWXk2BbJvwK9QxIV5mNpZVM3vSmwjMMU,35988
169
+ autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py,sha256=F8HXYFFblaOJRPPlpeCeA4f8g50WgtBKMQQ2AV-CUmM,5966
170
+ autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py,sha256=sabTOdT1Zz1kvlDfIFjVEkcbAtSTb8ZOePzUGi0D064,3017
179
171
  autogluon/tabular/models/text_prediction/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
180
172
  autogluon/tabular/models/text_prediction/text_prediction_v1_model.py,sha256=PBN7F98qgEAO6U76rV_hxZfAmKr_XpVKjElOdBvfX8c,1090
181
173
  autogluon/tabular/models/xgboost/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
182
- autogluon/tabular/models/xgboost/callbacks.py,sha256=PuRQUg3AEjgvFa-dpstRFoEVM9jHDe5W4XYSdDPRqoE,7009
183
- autogluon/tabular/models/xgboost/xgboost_model.py,sha256=svUb6xyP4Gy2Kc5UsEifbDWNWXZKI08nhcdYTYVffoA,15779
174
+ autogluon/tabular/models/xgboost/callbacks.py,sha256=T4v3n9hPyu7GnPlTQmDLy8WS5goY6wDqw70C6vf5qDM,7091
175
+ autogluon/tabular/models/xgboost/xgboost_model.py,sha256=8jKIvIlSlM1XYEH8OBXPOX-kzEKIfulHpEFkAwPMtyI,16359
184
176
  autogluon/tabular/models/xgboost/xgboost_utils.py,sha256=FVqZ8h4JAe_pifSvNx83cLZHwsuzTXylrrcan07AoNo,5757
185
177
  autogluon/tabular/models/xgboost/hyperparameters/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
186
178
  autogluon/tabular/models/xgboost/hyperparameters/parameters.py,sha256=ay6bVVpiPzftbtz6TTS76w7j4vjDjzHFpuf2Bjf6Zu4,1673
187
179
  autogluon/tabular/models/xgboost/hyperparameters/searchspaces.py,sha256=lFwI34pcRtlVQkxmsdZsSaPry8t_WSMBhig4soMK54k,2140
188
180
  autogluon/tabular/models/xt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
189
- autogluon/tabular/models/xt/xt_model.py,sha256=qOHJ5h1lHI7uYJfbl0BWm-29R3MNp2WeZB9ptcq5Xis,1003
181
+ autogluon/tabular/models/xt/xt_model.py,sha256=x3m5HehGWukAfTRnoMff0BVqTpfa5yQAf2igOa7JE84,1004
190
182
  autogluon/tabular/predictor/__init__.py,sha256=zCMgjxQlWpDWnr1l1xjBCiK3rWC3N3RoD8UXBnazT74,107
191
- autogluon/tabular/predictor/interpretable_predictor.py,sha256=5UeKgnMFsfY65tiO3kxfHBPr03lyswLrgdtjPhI0Y7Q,6934
192
- autogluon/tabular/predictor/predictor.py,sha256=jkCoQNfZtAzvJURvUdujA7tWFyCcaClsA1SWKyrdZ60,362819
193
- autogluon/tabular/registry/__init__.py,sha256=vZpzX4Xve7bfA9crt5LxjgQv9PPfxbi1E1U6Im0Y_xU,93
194
- autogluon/tabular/registry/_ag_model_registry.py,sha256=MKIum1LWnHtGyIhvJZp1V41CbwP0AWQIpsLWWFcr4U4,1704
195
- autogluon/tabular/registry/_model_registry.py,sha256=Rl8Q7BLzaif4hxNxJF20xGE02vrWwh2ZuUaTmA-UJnE,6824
183
+ autogluon/tabular/predictor/interpretable_predictor.py,sha256=4ajYLTQQX2oSH3CVXhl8lsrmKS3a7QxouiabS_raGsE,6956
184
+ autogluon/tabular/predictor/predictor.py,sha256=HE9Zwq7hxCPjTlh2PvRGhWGBSpJaI9ekgLClleR6IBI,366729
185
+ autogluon/tabular/registry/__init__.py,sha256=81TaV2bi2bksdPSounqr72Vl8iZzygiXt6akX3LnIxg,93
186
+ autogluon/tabular/registry/_ag_model_registry.py,sha256=SDx1ng0-tY8a7eMgu96eJzba85mItjbDjRsGzT22We0,1718
187
+ autogluon/tabular/registry/_model_registry.py,sha256=QMvF53KEkrowYa2VhYDzILC5NBO8LWELXO0GLtGSS-c,6825
196
188
  autogluon/tabular/testing/__init__.py,sha256=XrEGLmMdmRT6QHNR13M9wna57LO4O3Q4tt27Ca8omAc,79
197
- autogluon/tabular/testing/fit_helper.py,sha256=BuG0jUK4KGguXi7xXFhvBPKjdiUihSbvbchWXsAeIbU,22463
198
- autogluon/tabular/testing/generate_datasets.py,sha256=nvcAmI-tOh5fwx_ZTx2aRa1n7CsXb96wbR-xqNy1C5w,3884
199
- autogluon/tabular/testing/model_fit_helper.py,sha256=ZjWpw2nyeFnsrccmkfQtx3qbA8HJx282XX2rwdS-LIs,3808
189
+ autogluon/tabular/testing/fit_helper.py,sha256=QAs7lnKI4u2G6RaO9lK-bgcpB1TDZTykzpN4oxdY73s,24159
190
+ autogluon/tabular/testing/generate_datasets.py,sha256=2seBFvE-RjXiqvLZ1NdDOYGcIJUrNL6-Xx7uT45FN5U,3884
191
+ autogluon/tabular/testing/model_fit_helper.py,sha256=FwADHMRwJuZj3kOnGTOJDdaWUbYtVyKJ3On57K6JnRw,3878
200
192
  autogluon/tabular/trainer/__init__.py,sha256=PW_PGL-tWoQzx3ES2S53bQEZOtsRWTYiM9QdOqsk0dI,38
201
- autogluon/tabular/trainer/abstract_trainer.py,sha256=2gThCJ9kVLJ9s6Xjoj2w7iCziC075ry3osG5zqCEYO4,234536
202
- autogluon/tabular/trainer/auto_trainer.py,sha256=uyz1Q_MqvcstcGFUmYaUdjcGGWp_1VnhiNq60GWIJEY,8895
193
+ autogluon/tabular/trainer/abstract_trainer.py,sha256=V8okB5CBBzW66YmZSW55H2RKJTs8FrorD4N9IYfI_h4,240790
194
+ autogluon/tabular/trainer/auto_trainer.py,sha256=QoIxgjC8T0QYyur8fHfhqv6XKfNBOhemdec8H9XzZYY,9095
203
195
  autogluon/tabular/trainer/model_presets/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
204
- autogluon/tabular/trainer/model_presets/presets.py,sha256=hoWADaOG576Q_XLV1nY_ju1OWi7EJwHay4jjljqt_E0,16546
205
- autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=MnFC2GJc6RmDBNAGbsO2XMfo3PjR8cUrZoilWW8gTYQ,3295
196
+ autogluon/tabular/trainer/model_presets/presets.py,sha256=l39rkoRxqVm7XXGVsOWWQJ-gVYn0WEzjHtmBX_TRY70,16793
197
+ autogluon/tabular/trainer/model_presets/presets_distill.py,sha256=gakcDThDcvQcmfqBLpqrV1wgu2CK19hnyzRCy4XckZg,3391
206
198
  autogluon/tabular/tuning/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
207
199
  autogluon/tabular/tuning/feature_pruner.py,sha256=9iNku8gVbYEkjuKlyITPJDicsNkoraaQOlINQq9iZlQ,6877
208
- autogluon_tabular-1.5.1b20260105.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
209
- autogluon_tabular-1.5.1b20260105.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
210
- autogluon_tabular-1.5.1b20260105.dist-info/METADATA,sha256=zTSvvJqtMZeUWOobSuKKAZfWxeLtMqvNBfZViBTtlJI,17054
211
- autogluon_tabular-1.5.1b20260105.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
212
- autogluon_tabular-1.5.1b20260105.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
213
- autogluon_tabular-1.5.1b20260105.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
214
- autogluon_tabular-1.5.1b20260105.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
215
- autogluon_tabular-1.5.1b20260105.dist-info/RECORD,,
200
+ autogluon_tabular-1.5.1b20260117.dist-info/licenses/LICENSE,sha256=CeipvOyAZxBGUsFoaFqwkx54aPnIKEtm9a5u2uXxEws,10142
201
+ autogluon_tabular-1.5.1b20260117.dist-info/licenses/NOTICE,sha256=7nPQuj8Kp-uXsU0S5so3-2dNU5EctS5hDXvvzzehd7E,114
202
+ autogluon_tabular-1.5.1b20260117.dist-info/METADATA,sha256=WbJos2ifPrtd9jCb52oNnL0PApaLGtH19QqlbajtoBg,17060
203
+ autogluon_tabular-1.5.1b20260117.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
204
+ autogluon_tabular-1.5.1b20260117.dist-info/namespace_packages.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
205
+ autogluon_tabular-1.5.1b20260117.dist-info/top_level.txt,sha256=giERA4R78OkJf2ijn5slgjURlhRPzfLr7waIcGkzYAo,10
206
+ autogluon_tabular-1.5.1b20260117.dist-info/zip-safe,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
207
+ autogluon_tabular-1.5.1b20260117.dist-info/RECORD,,
@@ -1,20 +0,0 @@
1
- from .configs import TabPFNRFConfig
2
- from .sklearn_based_decision_tree_tabpfn import (
3
- DecisionTreeTabPFNClassifier,
4
- DecisionTreeTabPFNRegressor,
5
- )
6
- from .sklearn_based_random_forest_tabpfn import (
7
- RandomForestTabPFNClassifier,
8
- RandomForestTabPFNRegressor,
9
- )
10
-
11
- # Backward compatibility for imports
12
- # These classes were previously in CamelCase files but are now imported from snake_case files
13
-
14
- __all__ = [
15
- "DecisionTreeTabPFNClassifier",
16
- "DecisionTreeTabPFNRegressor",
17
- "RandomForestTabPFNClassifier",
18
- "RandomForestTabPFNRegressor",
19
- "TabPFNRFConfig",
20
- ]
@@ -1,40 +0,0 @@
1
- # Copyright (c) Prior Labs GmbH 2025.
2
- # Licensed under the Apache License, Version 2.0
3
-
4
- from __future__ import annotations
5
-
6
- from dataclasses import dataclass
7
- from typing import Literal
8
-
9
-
10
- @dataclass
11
- class TabPFNRFConfig:
12
- min_samples_split: int = 1000
13
- min_samples_leaf: int = 5
14
- max_depth: int = 5
15
- splitter: Literal["best", "random"] = "best"
16
- n_estimators: int = 16
17
- max_features: Literal["sqrt", "auto"] = "sqrt"
18
- criterion: Literal[
19
- "gini",
20
- "entropy",
21
- "log_loss",
22
- "squared_error",
23
- "friedman_mse",
24
- "poisson",
25
- ] = "gini"
26
- preprocess_X: bool = False
27
- preprocess_X_once: bool = False
28
- adaptive_tree: bool = True
29
- fit_nodes: bool = True
30
- adaptive_tree_overwrite_metric: Literal["logloss", "roc"] = None
31
- adaptive_tree_test_size: float = 0.2
32
- adaptive_tree_min_train_samples: int = 100
33
- adaptive_tree_min_valid_samples_fraction_of_train: int = 0.2
34
- adaptive_tree_max_train_samples: int = 5000
35
- adaptive_tree_skip_class_missing: bool = True
36
- max_predict_time: float = -1
37
-
38
- bootstrap: bool = True
39
- rf_average_logits: bool = False
40
- dt_average_logits: bool = True