autogluon.tabular 1.5.1b20260105__py3-none-any.whl → 1.5.1b20260117__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of autogluon.tabular might be problematic. Click here for more details.
- autogluon/tabular/__init__.py +1 -0
- autogluon/tabular/configs/config_helper.py +18 -6
- autogluon/tabular/configs/feature_generator_presets.py +3 -1
- autogluon/tabular/configs/hyperparameter_configs.py +42 -9
- autogluon/tabular/configs/presets_configs.py +38 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2023.py +84 -14
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_2025.py +48 -48
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_cpu_2025_12_18.py +774 -1
- autogluon/tabular/configs/zeroshot/zeroshot_portfolio_gpu_2025_12_18.py +421 -1
- autogluon/tabular/experimental/_scikit_mixin.py +6 -2
- autogluon/tabular/experimental/_tabular_classifier.py +3 -1
- autogluon/tabular/experimental/_tabular_regressor.py +3 -1
- autogluon/tabular/experimental/plot_leaderboard.py +73 -19
- autogluon/tabular/learner/abstract_learner.py +160 -42
- autogluon/tabular/learner/default_learner.py +78 -22
- autogluon/tabular/models/__init__.py +2 -2
- autogluon/tabular/models/_utils/rapids_utils.py +3 -1
- autogluon/tabular/models/abstract/abstract_torch_model.py +2 -0
- autogluon/tabular/models/automm/automm_model.py +12 -3
- autogluon/tabular/models/automm/ft_transformer.py +5 -1
- autogluon/tabular/models/catboost/callbacks.py +2 -2
- autogluon/tabular/models/catboost/catboost_model.py +93 -29
- autogluon/tabular/models/catboost/catboost_softclass_utils.py +4 -1
- autogluon/tabular/models/catboost/catboost_utils.py +3 -1
- autogluon/tabular/models/ebm/ebm_model.py +8 -13
- autogluon/tabular/models/ebm/hyperparameters/parameters.py +1 -0
- autogluon/tabular/models/ebm/hyperparameters/searchspaces.py +1 -0
- autogluon/tabular/models/fastainn/callbacks.py +20 -3
- autogluon/tabular/models/fastainn/hyperparameters/searchspaces.py +11 -1
- autogluon/tabular/models/fastainn/quantile_helpers.py +10 -2
- autogluon/tabular/models/fastainn/tabular_nn_fastai.py +65 -18
- autogluon/tabular/models/fasttext/fasttext_model.py +3 -1
- autogluon/tabular/models/image_prediction/image_predictor.py +7 -2
- autogluon/tabular/models/knn/knn_model.py +41 -8
- autogluon/tabular/models/lgb/callbacks.py +32 -9
- autogluon/tabular/models/lgb/hyperparameters/searchspaces.py +3 -1
- autogluon/tabular/models/lgb/lgb_model.py +150 -34
- autogluon/tabular/models/lgb/lgb_utils.py +12 -4
- autogluon/tabular/models/lr/hyperparameters/searchspaces.py +5 -1
- autogluon/tabular/models/lr/lr_model.py +40 -10
- autogluon/tabular/models/lr/lr_rapids_model.py +22 -13
- autogluon/tabular/models/mitra/_internal/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/config/config_pretrain.py +36 -40
- autogluon/tabular/models/mitra/_internal/config/config_run.py +2 -14
- autogluon/tabular/models/mitra/_internal/config/enums.py +27 -26
- autogluon/tabular/models/mitra/_internal/core/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/core/callbacks.py +14 -21
- autogluon/tabular/models/mitra/_internal/core/get_loss.py +10 -12
- autogluon/tabular/models/mitra/_internal/core/get_optimizer.py +17 -32
- autogluon/tabular/models/mitra/_internal/core/get_scheduler.py +12 -27
- autogluon/tabular/models/mitra/_internal/core/prediction_metrics.py +16 -21
- autogluon/tabular/models/mitra/_internal/core/trainer_finetune.py +130 -111
- autogluon/tabular/models/mitra/_internal/data/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/data/collator.py +30 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_finetune.py +18 -26
- autogluon/tabular/models/mitra/_internal/data/dataset_split.py +10 -7
- autogluon/tabular/models/mitra/_internal/data/preprocessor.py +70 -100
- autogluon/tabular/models/mitra/_internal/models/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/models/base.py +7 -10
- autogluon/tabular/models/mitra/_internal/models/embedding.py +46 -56
- autogluon/tabular/models/mitra/_internal/models/tab2d.py +140 -120
- autogluon/tabular/models/mitra/_internal/utils/__init__.py +1 -1
- autogluon/tabular/models/mitra/_internal/utils/set_seed.py +3 -1
- autogluon/tabular/models/mitra/mitra_model.py +16 -11
- autogluon/tabular/models/mitra/sklearn_interface.py +178 -162
- autogluon/tabular/models/realmlp/realmlp_model.py +28 -15
- autogluon/tabular/models/rf/compilers/onnx.py +1 -1
- autogluon/tabular/models/rf/rf_model.py +45 -12
- autogluon/tabular/models/rf/rf_quantile.py +4 -2
- autogluon/tabular/models/tabdpt/tabdpt_model.py +8 -17
- autogluon/tabular/models/tabicl/tabicl_model.py +8 -1
- autogluon/tabular/models/tabm/_tabm_internal.py +6 -4
- autogluon/tabular/models/tabm/rtdl_num_embeddings.py +80 -127
- autogluon/tabular/models/tabm/tabm_model.py +8 -4
- autogluon/tabular/models/tabm/tabm_reference.py +53 -85
- autogluon/tabular/models/tabpfnmix/_internal/core/callbacks.py +7 -16
- autogluon/tabular/models/tabpfnmix/_internal/core/collator.py +16 -24
- autogluon/tabular/models/tabpfnmix/_internal/core/dataset_split.py +5 -7
- autogluon/tabular/models/tabpfnmix/_internal/core/enums.py +0 -2
- autogluon/tabular/models/tabpfnmix/_internal/core/get_loss.py +0 -1
- autogluon/tabular/models/tabpfnmix/_internal/core/get_optimizer.py +7 -18
- autogluon/tabular/models/tabpfnmix/_internal/core/get_scheduler.py +3 -14
- autogluon/tabular/models/tabpfnmix/_internal/core/trainer_finetune.py +79 -64
- autogluon/tabular/models/tabpfnmix/_internal/core/y_transformer.py +3 -5
- autogluon/tabular/models/tabpfnmix/_internal/data/dataset_finetune.py +17 -30
- autogluon/tabular/models/tabpfnmix/_internal/data/preprocessor.py +15 -35
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/embedding.py +21 -38
- autogluon/tabular/models/tabpfnmix/_internal/models/foundation/foundation_transformer.py +33 -51
- autogluon/tabular/models/tabpfnmix/_internal/results/prediction_metrics.py +4 -4
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_classifier.py +32 -12
- autogluon/tabular/models/tabpfnmix/_internal/tabpfnmix_regressor.py +32 -13
- autogluon/tabular/models/tabpfnmix/tabpfnmix_model.py +55 -19
- autogluon/tabular/models/tabpfnv2/tabpfnv2_5_model.py +21 -48
- autogluon/tabular/models/tabprep/prep_mixin.py +34 -26
- autogluon/tabular/models/tabular_nn/compilers/onnx.py +36 -8
- autogluon/tabular/models/tabular_nn/torch/tabular_nn_torch.py +130 -36
- autogluon/tabular/models/tabular_nn/torch/tabular_torch_dataset.py +8 -4
- autogluon/tabular/models/tabular_nn/torch/torch_network_modules.py +26 -5
- autogluon/tabular/models/tabular_nn/utils/categorical_encoders.py +41 -24
- autogluon/tabular/models/tabular_nn/utils/data_preprocessor.py +33 -8
- autogluon/tabular/models/tabular_nn/utils/nn_architecture_utils.py +21 -6
- autogluon/tabular/models/xgboost/callbacks.py +9 -3
- autogluon/tabular/models/xgboost/xgboost_model.py +59 -11
- autogluon/tabular/models/xt/xt_model.py +1 -0
- autogluon/tabular/predictor/interpretable_predictor.py +3 -1
- autogluon/tabular/predictor/predictor.py +409 -128
- autogluon/tabular/registry/__init__.py +1 -1
- autogluon/tabular/registry/_ag_model_registry.py +4 -5
- autogluon/tabular/registry/_model_registry.py +1 -0
- autogluon/tabular/testing/fit_helper.py +55 -15
- autogluon/tabular/testing/generate_datasets.py +1 -1
- autogluon/tabular/testing/model_fit_helper.py +10 -4
- autogluon/tabular/trainer/abstract_trainer.py +644 -230
- autogluon/tabular/trainer/auto_trainer.py +19 -8
- autogluon/tabular/trainer/model_presets/presets.py +33 -9
- autogluon/tabular/trainer/model_presets/presets_distill.py +16 -2
- autogluon/tabular/version.py +1 -1
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/METADATA +27 -27
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/RECORD +127 -135
- autogluon/tabular/models/tabpfnv2/rfpfn/__init__.py +0 -20
- autogluon/tabular/models/tabpfnv2/rfpfn/configs.py +0 -40
- autogluon/tabular/models/tabpfnv2/rfpfn/scoring_utils.py +0 -201
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_decision_tree_tabpfn.py +0 -1464
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_based_random_forest_tabpfn.py +0 -747
- autogluon/tabular/models/tabpfnv2/rfpfn/sklearn_compat.py +0 -863
- autogluon/tabular/models/tabpfnv2/rfpfn/utils.py +0 -106
- autogluon/tabular/models/tabpfnv2/tabpfnv2_model.py +0 -466
- /autogluon.tabular-1.5.1b20260105-py3.11-nspkg.pth → /autogluon.tabular-1.5.1b20260117-py3.11-nspkg.pth +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/WHEEL +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/LICENSE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/licenses/NOTICE +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/namespace_packages.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/top_level.txt +0 -0
- {autogluon_tabular-1.5.1b20260105.dist-info → autogluon_tabular-1.5.1b20260117.dist-info}/zip-safe +0 -0
|
@@ -2,12 +2,12 @@
|
|
|
2
2
|
hyperparameter_portfolio_zeroshot_2025_small = {
|
|
3
3
|
"REALTABPFN-V2": [
|
|
4
4
|
{
|
|
5
|
-
"ag_args": {
|
|
5
|
+
"ag_args": {"priority": -1},
|
|
6
6
|
},
|
|
7
7
|
],
|
|
8
8
|
"GBM": [
|
|
9
9
|
{
|
|
10
|
-
"ag_args": {
|
|
10
|
+
"ag_args": {"name_suffix": "_r33", "priority": -2},
|
|
11
11
|
"bagging_fraction": 0.9625293420216,
|
|
12
12
|
"bagging_freq": 1,
|
|
13
13
|
"cat_l2": 0.1236875455555,
|
|
@@ -23,7 +23,7 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
23
23
|
"num_leaves": 68,
|
|
24
24
|
},
|
|
25
25
|
{
|
|
26
|
-
"ag_args": {
|
|
26
|
+
"ag_args": {"name_suffix": "_r21", "priority": -16},
|
|
27
27
|
"bagging_fraction": 0.7218730663234,
|
|
28
28
|
"bagging_freq": 1,
|
|
29
29
|
"cat_l2": 0.0296205152578,
|
|
@@ -39,7 +39,7 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
39
39
|
"num_leaves": 30,
|
|
40
40
|
},
|
|
41
41
|
{
|
|
42
|
-
"ag_args": {
|
|
42
|
+
"ag_args": {"name_suffix": "_r11", "priority": -19},
|
|
43
43
|
"bagging_fraction": 0.775784726514,
|
|
44
44
|
"bagging_freq": 1,
|
|
45
45
|
"cat_l2": 0.3888471449178,
|
|
@@ -57,15 +57,15 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
57
57
|
],
|
|
58
58
|
"CAT": [
|
|
59
59
|
{
|
|
60
|
-
"ag_args": {
|
|
60
|
+
"ag_args": {"priority": -5},
|
|
61
61
|
},
|
|
62
62
|
{
|
|
63
|
-
"ag_args": {
|
|
64
|
-
"boosting_type":
|
|
65
|
-
"bootstrap_type":
|
|
63
|
+
"ag_args": {"name_suffix": "_r51", "priority": -10},
|
|
64
|
+
"boosting_type": "Plain",
|
|
65
|
+
"bootstrap_type": "Bernoulli",
|
|
66
66
|
"colsample_bylevel": 0.8771035272558,
|
|
67
67
|
"depth": 7,
|
|
68
|
-
"grow_policy":
|
|
68
|
+
"grow_policy": "SymmetricTree",
|
|
69
69
|
"l2_leaf_reg": 2.0107286863021,
|
|
70
70
|
"leaf_estimation_iterations": 2,
|
|
71
71
|
"learning_rate": 0.0058424016622,
|
|
@@ -76,12 +76,12 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
76
76
|
"subsample": 0.809527841437,
|
|
77
77
|
},
|
|
78
78
|
{
|
|
79
|
-
"ag_args": {
|
|
80
|
-
"boosting_type":
|
|
81
|
-
"bootstrap_type":
|
|
79
|
+
"ag_args": {"name_suffix": "_r10", "priority": -12},
|
|
80
|
+
"boosting_type": "Plain",
|
|
81
|
+
"bootstrap_type": "Bernoulli",
|
|
82
82
|
"colsample_bylevel": 0.8994502668431,
|
|
83
83
|
"depth": 6,
|
|
84
|
-
"grow_policy":
|
|
84
|
+
"grow_policy": "Depthwise",
|
|
85
85
|
"l2_leaf_reg": 1.8187025215896,
|
|
86
86
|
"leaf_estimation_iterations": 7,
|
|
87
87
|
"learning_rate": 0.005177304142,
|
|
@@ -92,12 +92,12 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
92
92
|
"subsample": 0.8705228845742,
|
|
93
93
|
},
|
|
94
94
|
{
|
|
95
|
-
"ag_args": {
|
|
96
|
-
"boosting_type":
|
|
97
|
-
"bootstrap_type":
|
|
95
|
+
"ag_args": {"name_suffix": "_r24", "priority": -15},
|
|
96
|
+
"boosting_type": "Plain",
|
|
97
|
+
"bootstrap_type": "Bernoulli",
|
|
98
98
|
"colsample_bylevel": 0.8597809376276,
|
|
99
99
|
"depth": 8,
|
|
100
|
-
"grow_policy":
|
|
100
|
+
"grow_policy": "Depthwise",
|
|
101
101
|
"l2_leaf_reg": 0.3628261923976,
|
|
102
102
|
"leaf_estimation_iterations": 5,
|
|
103
103
|
"learning_rate": 0.016851077771,
|
|
@@ -108,12 +108,12 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
108
108
|
"subsample": 0.8120271122061,
|
|
109
109
|
},
|
|
110
110
|
{
|
|
111
|
-
"ag_args": {
|
|
112
|
-
"boosting_type":
|
|
113
|
-
"bootstrap_type":
|
|
111
|
+
"ag_args": {"name_suffix": "_r91", "priority": -17},
|
|
112
|
+
"boosting_type": "Plain",
|
|
113
|
+
"bootstrap_type": "Bernoulli",
|
|
114
114
|
"colsample_bylevel": 0.8959275863514,
|
|
115
115
|
"depth": 4,
|
|
116
|
-
"grow_policy":
|
|
116
|
+
"grow_policy": "SymmetricTree",
|
|
117
117
|
"l2_leaf_reg": 0.0026915894253,
|
|
118
118
|
"leaf_estimation_iterations": 12,
|
|
119
119
|
"learning_rate": 0.0475233791203,
|
|
@@ -126,10 +126,10 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
126
126
|
],
|
|
127
127
|
"TABM": [
|
|
128
128
|
{
|
|
129
|
-
"ag_args": {
|
|
129
|
+
"ag_args": {"name_suffix": "_r184", "priority": -6},
|
|
130
130
|
"amp": False,
|
|
131
|
-
"arch_type":
|
|
132
|
-
"batch_size":
|
|
131
|
+
"arch_type": "tabm-mini",
|
|
132
|
+
"batch_size": "auto",
|
|
133
133
|
"d_block": 864,
|
|
134
134
|
"d_embedding": 24,
|
|
135
135
|
"dropout": 0.0,
|
|
@@ -137,17 +137,17 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
137
137
|
"lr": 0.0019256819924656217,
|
|
138
138
|
"n_blocks": 3,
|
|
139
139
|
"num_emb_n_bins": 3,
|
|
140
|
-
"num_emb_type":
|
|
140
|
+
"num_emb_type": "pwl",
|
|
141
141
|
"patience": 16,
|
|
142
142
|
"share_training_batches": False,
|
|
143
143
|
"tabm_k": 32,
|
|
144
144
|
"weight_decay": 0.0,
|
|
145
145
|
},
|
|
146
146
|
{
|
|
147
|
-
"ag_args": {
|
|
147
|
+
"ag_args": {"name_suffix": "_r69", "priority": -7},
|
|
148
148
|
"amp": False,
|
|
149
|
-
"arch_type":
|
|
150
|
-
"batch_size":
|
|
149
|
+
"arch_type": "tabm-mini",
|
|
150
|
+
"batch_size": "auto",
|
|
151
151
|
"d_block": 848,
|
|
152
152
|
"d_embedding": 28,
|
|
153
153
|
"dropout": 0.40215621636031007,
|
|
@@ -155,17 +155,17 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
155
155
|
"lr": 0.0010413640454559532,
|
|
156
156
|
"n_blocks": 3,
|
|
157
157
|
"num_emb_n_bins": 18,
|
|
158
|
-
"num_emb_type":
|
|
158
|
+
"num_emb_type": "pwl",
|
|
159
159
|
"patience": 16,
|
|
160
160
|
"share_training_batches": False,
|
|
161
161
|
"tabm_k": 32,
|
|
162
162
|
"weight_decay": 0.0,
|
|
163
163
|
},
|
|
164
164
|
{
|
|
165
|
-
"ag_args": {
|
|
165
|
+
"ag_args": {"name_suffix": "_r52", "priority": -11},
|
|
166
166
|
"amp": False,
|
|
167
|
-
"arch_type":
|
|
168
|
-
"batch_size":
|
|
167
|
+
"arch_type": "tabm-mini",
|
|
168
|
+
"batch_size": "auto",
|
|
169
169
|
"d_block": 1024,
|
|
170
170
|
"d_embedding": 32,
|
|
171
171
|
"dropout": 0.0,
|
|
@@ -173,20 +173,20 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
173
173
|
"lr": 0.0006297851297842611,
|
|
174
174
|
"n_blocks": 4,
|
|
175
175
|
"num_emb_n_bins": 22,
|
|
176
|
-
"num_emb_type":
|
|
176
|
+
"num_emb_type": "pwl",
|
|
177
177
|
"patience": 16,
|
|
178
178
|
"share_training_batches": False,
|
|
179
179
|
"tabm_k": 32,
|
|
180
180
|
"weight_decay": 0.06900108498839816,
|
|
181
181
|
},
|
|
182
182
|
{
|
|
183
|
-
"ag_args": {
|
|
183
|
+
"ag_args": {"priority": -13},
|
|
184
184
|
},
|
|
185
185
|
{
|
|
186
|
-
"ag_args": {
|
|
186
|
+
"ag_args": {"name_suffix": "_r191", "priority": -14},
|
|
187
187
|
"amp": False,
|
|
188
|
-
"arch_type":
|
|
189
|
-
"batch_size":
|
|
188
|
+
"arch_type": "tabm-mini",
|
|
189
|
+
"batch_size": "auto",
|
|
190
190
|
"d_block": 864,
|
|
191
191
|
"d_embedding": 8,
|
|
192
192
|
"dropout": 0.45321529282058803,
|
|
@@ -194,17 +194,17 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
194
194
|
"lr": 0.0003781238075322413,
|
|
195
195
|
"n_blocks": 4,
|
|
196
196
|
"num_emb_n_bins": 27,
|
|
197
|
-
"num_emb_type":
|
|
197
|
+
"num_emb_type": "pwl",
|
|
198
198
|
"patience": 16,
|
|
199
199
|
"share_training_batches": False,
|
|
200
200
|
"tabm_k": 32,
|
|
201
201
|
"weight_decay": 0.01766851962579851,
|
|
202
202
|
},
|
|
203
203
|
{
|
|
204
|
-
"ag_args": {
|
|
204
|
+
"ag_args": {"name_suffix": "_r49", "priority": -20},
|
|
205
205
|
"amp": False,
|
|
206
|
-
"arch_type":
|
|
207
|
-
"batch_size":
|
|
206
|
+
"arch_type": "tabm-mini",
|
|
207
|
+
"batch_size": "auto",
|
|
208
208
|
"d_block": 640,
|
|
209
209
|
"d_embedding": 28,
|
|
210
210
|
"dropout": 0.15296207419190627,
|
|
@@ -212,7 +212,7 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
212
212
|
"lr": 0.002277678490593717,
|
|
213
213
|
"n_blocks": 3,
|
|
214
214
|
"num_emb_n_bins": 48,
|
|
215
|
-
"num_emb_type":
|
|
215
|
+
"num_emb_type": "pwl",
|
|
216
216
|
"patience": 16,
|
|
217
217
|
"share_training_batches": False,
|
|
218
218
|
"tabm_k": 32,
|
|
@@ -221,16 +221,16 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
221
221
|
],
|
|
222
222
|
"TABICL": [
|
|
223
223
|
{
|
|
224
|
-
"ag_args": {
|
|
224
|
+
"ag_args": {"priority": -8},
|
|
225
225
|
},
|
|
226
226
|
],
|
|
227
227
|
"XGB": [
|
|
228
228
|
{
|
|
229
|
-
"ag_args": {
|
|
229
|
+
"ag_args": {"name_suffix": "_r171", "priority": -9},
|
|
230
230
|
"colsample_bylevel": 0.9213705632288,
|
|
231
231
|
"colsample_bynode": 0.6443385965381,
|
|
232
232
|
"enable_categorical": True,
|
|
233
|
-
"grow_policy":
|
|
233
|
+
"grow_policy": "lossguide",
|
|
234
234
|
"learning_rate": 0.0068171645251,
|
|
235
235
|
"max_cat_to_onehot": 8,
|
|
236
236
|
"max_depth": 6,
|
|
@@ -241,11 +241,11 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
241
241
|
"subsample": 0.9656290596647,
|
|
242
242
|
},
|
|
243
243
|
{
|
|
244
|
-
"ag_args": {
|
|
244
|
+
"ag_args": {"name_suffix": "_r40", "priority": -18},
|
|
245
245
|
"colsample_bylevel": 0.6377491713202,
|
|
246
246
|
"colsample_bynode": 0.9237625621103,
|
|
247
247
|
"enable_categorical": True,
|
|
248
|
-
"grow_policy":
|
|
248
|
+
"grow_policy": "lossguide",
|
|
249
249
|
"learning_rate": 0.0112462621131,
|
|
250
250
|
"max_cat_to_onehot": 33,
|
|
251
251
|
"max_depth": 10,
|
|
@@ -262,7 +262,7 @@ hyperparameter_portfolio_zeroshot_2025_small = {
|
|
|
262
262
|
"fine_tune": True,
|
|
263
263
|
"fine_tune_steps": 50,
|
|
264
264
|
"ag.num_gpus": 1,
|
|
265
|
-
"ag_args": {
|
|
265
|
+
"ag_args": {"priority": -21},
|
|
266
266
|
},
|
|
267
267
|
],
|
|
268
268
|
}
|