ObjectNat 1.2.0__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ObjectNat might be problematic. Click here for more details.

Files changed (35) hide show
  1. objectnat/__init__.py +9 -13
  2. objectnat/_api.py +14 -14
  3. objectnat/_config.py +47 -47
  4. objectnat/_version.py +1 -1
  5. objectnat/methods/coverage_zones/__init__.py +3 -3
  6. objectnat/methods/coverage_zones/graph_coverage.py +98 -108
  7. objectnat/methods/coverage_zones/radius_voronoi_coverage.py +37 -45
  8. objectnat/methods/coverage_zones/stepped_coverage.py +126 -142
  9. objectnat/methods/isochrones/__init__.py +1 -1
  10. objectnat/methods/isochrones/isochrone_utils.py +167 -167
  11. objectnat/methods/isochrones/isochrones.py +262 -299
  12. objectnat/methods/noise/__init__.py +3 -4
  13. objectnat/methods/noise/noise_init_data.py +10 -10
  14. objectnat/methods/noise/noise_reduce.py +155 -155
  15. objectnat/methods/noise/noise_simulation.py +452 -440
  16. objectnat/methods/noise/noise_simulation_simplified.py +209 -135
  17. objectnat/methods/point_clustering/__init__.py +1 -1
  18. objectnat/methods/point_clustering/cluster_points_in_polygons.py +115 -116
  19. objectnat/methods/provision/__init__.py +1 -1
  20. objectnat/methods/provision/provision.py +117 -110
  21. objectnat/methods/provision/provision_exceptions.py +59 -59
  22. objectnat/methods/provision/provision_model.py +337 -337
  23. objectnat/methods/utils/__init__.py +1 -1
  24. objectnat/methods/utils/geom_utils.py +173 -173
  25. objectnat/methods/utils/graph_utils.py +306 -320
  26. objectnat/methods/utils/math_utils.py +32 -32
  27. objectnat/methods/visibility/__init__.py +6 -6
  28. objectnat/methods/visibility/visibility_analysis.py +470 -511
  29. {objectnat-1.2.0.dist-info → objectnat-1.2.1.dist-info}/LICENSE.txt +28 -28
  30. objectnat-1.2.1.dist-info/METADATA +115 -0
  31. objectnat-1.2.1.dist-info/RECORD +33 -0
  32. objectnat/methods/noise/noise_exceptions.py +0 -14
  33. objectnat-1.2.0.dist-info/METADATA +0 -148
  34. objectnat-1.2.0.dist-info/RECORD +0 -34
  35. {objectnat-1.2.0.dist-info → objectnat-1.2.1.dist-info}/WHEEL +0 -0
@@ -1,28 +1,28 @@
1
- BSD 3-Clause License
2
-
3
- Copyright (c) 2023, iduprojects
4
-
5
- Redistribution and use in source and binary forms, with or without
6
- modification, are permitted provided that the following conditions are met:
7
-
8
- 1. Redistributions of source code must retain the above copyright notice, this
9
- list of conditions and the following disclaimer.
10
-
11
- 2. Redistributions in binary form must reproduce the above copyright notice,
12
- this list of conditions and the following disclaimer in the documentation
13
- and/or other materials provided with the distribution.
14
-
15
- 3. Neither the name of the copyright holder nor the names of its
16
- contributors may be used to endorse or promote products derived from
17
- this software without specific prior written permission.
18
-
19
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
23
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2023, iduprojects
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions are met:
7
+
8
+ 1. Redistributions of source code must retain the above copyright notice, this
9
+ list of conditions and the following disclaimer.
10
+
11
+ 2. Redistributions in binary form must reproduce the above copyright notice,
12
+ this list of conditions and the following disclaimer in the documentation
13
+ and/or other materials provided with the distribution.
14
+
15
+ 3. Neither the name of the copyright holder nor the names of its
16
+ contributors may be used to endorse or promote products derived from
17
+ this software without specific prior written permission.
18
+
19
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
23
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
26
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
27
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@@ -0,0 +1,115 @@
1
+ Metadata-Version: 2.1
2
+ Name: ObjectNat
3
+ Version: 1.2.1
4
+ Summary: ObjectNat is an open-source library created for geospatial analysis created by IDU team
5
+ License: BSD-3-Clause
6
+ Author: DDonnyy
7
+ Author-email: 63115678+DDonnyy@users.noreply.github.com
8
+ Requires-Python: >=3.10,<3.13
9
+ Classifier: License :: OSI Approved :: BSD License
10
+ Classifier: Programming Language :: Python :: 3
11
+ Classifier: Programming Language :: Python :: 3.10
12
+ Classifier: Programming Language :: Python :: 3.11
13
+ Classifier: Programming Language :: Python :: 3.12
14
+ Requires-Dist: geopandas (>=1.0.1,<2.0.0)
15
+ Requires-Dist: loguru (>=0.7.3,<0.8.0)
16
+ Requires-Dist: networkx (>=3.4.2,<4.0.0)
17
+ Requires-Dist: numpy (>=2.1.3,<3.0.0)
18
+ Requires-Dist: pandarallel (>=1.6.5,<2.0.0)
19
+ Requires-Dist: pandas (>=2.2.0,<3.0.0)
20
+ Requires-Dist: scikit-learn (>=1.4.0,<2.0.0)
21
+ Requires-Dist: tqdm (>=4.66.2,<5.0.0)
22
+ Description-Content-Type: text/markdown
23
+
24
+ # ObjectNat
25
+
26
+ [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
27
+ [![PyPI version](https://img.shields.io/pypi/v/objectnat.svg)](https://pypi.org/project/objectnat/)
28
+ [![CI](https://github.com/DDonnyy/ObjectNat/actions/workflows/ci_pipeline.yml/badge.svg)](https://github.com/DDonnyy/ObjecNat/actions/workflows/ci_pipeline.yml)
29
+ [![codecov](https://codecov.io/gh/DDonnyy/ObjectNat/graph/badge.svg?token=K6JFSJ02GU)](https://codecov.io/gh/DDonnyy/ObjectNat)
30
+ [![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](https://opensource.org/licenses/MIT)
31
+
32
+ - [РИДМИ (Russian)](README_ru.md)
33
+ <p align="center">
34
+ <img src="https://github.com/user-attachments/assets/ed0f226e-1728-4659-9e21-b4d499e703cd" alt="logo" width="400">
35
+ </p>
36
+
37
+ #### **ObjectNat** is an open-source library created for geospatial analysis created by **IDU team**
38
+
39
+ ---
40
+
41
+ ## Features and How to Use
42
+
43
+ Each feature is accompanied by a Jupyter notebook example and full documentation.
44
+
45
+ 1. **[Isochrones and Transport Accessibility](./examples/isochrone_generator.ipynb)**
46
+ Analyze areas reachable within a given time along a transport network.
47
+ 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/isochrones.html)
48
+
49
+ 2. **[Coverage Zones](./examples/coverage_zones.ipynb)**
50
+ Build zones of reachability for each point using routing or simple radius.
51
+ 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/coverage.html)
52
+
53
+ 3. **[Service Provision Analysis](./examples/calculate_provision.ipynb)**
54
+ Evaluate service availability and model demand-supply balance.
55
+ 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/provision.html)
56
+
57
+ 4. **[Visibility Analysis](./examples/visibility_analysis.ipynb)**
58
+ Estimate visibility to nearby buildings from selected points.
59
+ 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/visibility.html)
60
+
61
+ 5. **[Noise Simulation](./examples/noise_simulation.ipynb)**
62
+ Simulate noise propagation considering obstacles and environment.
63
+ 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/noise.html)
64
+ 🔗 [Detailed theory in the Wiki](https://github.com/DDonnyy/ObjectNat/wiki/Noise-simulation)
65
+
66
+ 6. **[Point Clusterization](./examples/point_clusterization.ipynb)**
67
+ Group nearby points into clusters and analyze service composition.
68
+ 📄 [See documentation](https://ddonnyy.github.io/ObjectNat/latest/usage/clustering.html)
69
+
70
+ ---
71
+
72
+ ## City graphs
73
+
74
+ To ensure optimal performance of ObjectNat's geospatial analysis functions, it's recommended to utilize urban graphs sourced from the [IduEdu](https://github.com/DDonnyy/IduEdu) library.
75
+ **IduEdu** is an open-source Python library designed for the creation and manipulation of complex city networks derived from OpenStreetMap data.
76
+
77
+ **IduEdu** can be installed with ``pip``:
78
+ ```
79
+ pip install IduEdu
80
+ ```
81
+ ---
82
+
83
+ ## Installation
84
+
85
+ **ObjectNat** can be installed with ``pip``:
86
+
87
+ ```
88
+ pip install ObjectNat
89
+ ```
90
+
91
+ ---
92
+
93
+ ### Configuration changes
94
+
95
+ ```python
96
+ from objectnat import config
97
+
98
+ config.change_logger_lvl('INFO') # To mute all debug msgs
99
+ config.set_enable_tqdm(False) # To mute all tqdm's progress bars
100
+ ```
101
+
102
+ ---
103
+
104
+ ## Contacts
105
+
106
+ - [NCCR](https://actcognitive.org/) - National Center for Cognitive Research
107
+ - [IDU](https://idu.itmo.ru/) - Institute of Design and Urban Studies
108
+ - [Natalya Chichkova](https://t.me/nancy_nat) - project manager
109
+ - [Danila Oleynikov (Donny)](https://t.me/ddonny_dd) - lead software engineer
110
+
111
+ ---
112
+
113
+ ## Publications
114
+
115
+ _Coming soon._
@@ -0,0 +1,33 @@
1
+ objectnat/__init__.py,sha256=VZ0TaIuB73EOl5Tin4Cs6-TCEOgBImCNYozwHD3bI_g,248
2
+ objectnat/_api.py,sha256=tor-BVRvbVeqGUrFlNc3pVJ_N3gpyDgMpxQfHgV5Y1U,725
3
+ objectnat/_config.py,sha256=bt9wohg8Hjwxril5PzotO5fjaIcown9vHq6kvXa3tzo,1353
4
+ objectnat/_version.py,sha256=1ZlkgkmphZGnGYOHAq5WqbnpVdTi39MMaQJd1wOEceI,19
5
+ objectnat/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ objectnat/methods/coverage_zones/__init__.py,sha256=iebp-RbU60GRjIosd0Yvypz8-XNCme7f1Aah2nqynig,164
7
+ objectnat/methods/coverage_zones/graph_coverage.py,sha256=e4seTrhOTqEZ8DhE9xiH_fe-TwPNZXH3ujEq87CuEA0,4190
8
+ objectnat/methods/coverage_zones/radius_voronoi_coverage.py,sha256=A-O6WhgpJTizIHGiJ9JuP882iHbNejh0EW10H493kDM,1631
9
+ objectnat/methods/coverage_zones/stepped_coverage.py,sha256=e-zNE0JP4Q1Crb-JEbIZc0dYFzZXle2LjTxJPGS-7XE,5659
10
+ objectnat/methods/isochrones/__init__.py,sha256=inpyVZ4Mfz53k8HxW1zz3XFAqOE1xOQfpnfsS2f-a58,91
11
+ objectnat/methods/isochrones/isochrone_utils.py,sha256=84OLlj0tbnJAg7H_k0Il3wRHzdFhlMNU4G3w8z1_x6c,7037
12
+ objectnat/methods/isochrones/isochrones.py,sha256=VgpwubX7VEFStXyXM0B58cpFoCn3AboVekIU8GtXWls,11573
13
+ objectnat/methods/noise/__init__.py,sha256=fXlEuZ1z9Pw7cP4YRcbLaQnEgJIRkFdr2dTe2ypMhgg,189
14
+ objectnat/methods/noise/noise_init_data.py,sha256=jMFOqi5T7FYqcKjYg8AOIr_VNYbRZQks9wGULYNaMlw,513
15
+ objectnat/methods/noise/noise_reduce.py,sha256=KuVYLF5-hQGDqki6KU4BtgEufQ8tkOZvBWjFFjgw4m4,7040
16
+ objectnat/methods/noise/noise_simulation.py,sha256=-2pTzV-nShJfhgPg4AejKlMSvlTlnQDBCngLPZhFX8w,22389
17
+ objectnat/methods/noise/noise_simulation_simplified.py,sha256=igj4hI3rPDdKYgabq0aH0Evhy2jg-uTstLSqFjx2VSw,11094
18
+ objectnat/methods/point_clustering/__init__.py,sha256=SLRcjLZ_NyQvKBu5SHZTt7snCWpa0n7HlJqxlACJMyM,62
19
+ objectnat/methods/point_clustering/cluster_points_in_polygons.py,sha256=reY5ekJrAJUdWwVMvvZBp5T34H4K2V4mt3rQuyoUYPQ,5193
20
+ objectnat/methods/provision/__init__.py,sha256=a8h_Md3rBnmXK0o-MuaYiTIMRFMFu0bRZJ7ZP0P2hDQ,81
21
+ objectnat/methods/provision/provision.py,sha256=4NpZiUBllflt1woIOXAf1zh7MAB5Q6DegN67fXpJHu0,4947
22
+ objectnat/methods/provision/provision_exceptions.py,sha256=ofZOEv0jIZRNBgfrwqphkIHUWaGDo2WOa-hf7EuCM1g,1746
23
+ objectnat/methods/provision/provision_model.py,sha256=texAsht4DeBHveJpp6FEvsA4nE13kbf6iYXZD-xK7mw,14866
24
+ objectnat/methods/utils/__init__.py,sha256=1jhuPYwWwlNALtiO6n5IF-5z85nLKX4aC-ZaI85LEMM,53
25
+ objectnat/methods/utils/geom_utils.py,sha256=lCuMayV1iu8WJVVtwbswxfvl4B4dwxAqRcFfF1jd98M,6558
26
+ objectnat/methods/utils/graph_utils.py,sha256=aOtFZbuPAiGhkglMJBi9xcsb8XBbVFW7535DrhjWx1w,12667
27
+ objectnat/methods/utils/math_utils.py,sha256=Gcoi7MOmoWlu0ao5465GLtnP2eW4ZXKsGU9NyvUDR6E,871
28
+ objectnat/methods/visibility/__init__.py,sha256=vgrN4OTnap4fYfqm5GgNi787TZ85GbS9LbGfTIyTg-I,167
29
+ objectnat/methods/visibility/visibility_analysis.py,sha256=nXcDQ9zewpM4FFSXuYophUNsh6wiHSIHjM88vV6Iv_U,20843
30
+ objectnat-1.2.1.dist-info/LICENSE.txt,sha256=gI3AMqmBc4AdVW3_l1YV4pBBhle1fvAqiK62uA543uI,1526
31
+ objectnat-1.2.1.dist-info/METADATA,sha256=8s9EHELAA7LodH5DMtuKTF1JN3NyyBbWINlzqzKDCtw,4510
32
+ objectnat-1.2.1.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
33
+ objectnat-1.2.1.dist-info/RECORD,,
@@ -1,14 +0,0 @@
1
- class InvalidStepError(ValueError):
2
- def __init__(self, source_noise_db, target_noise_db, db_sim_step, div_, *args):
3
- if args:
4
- self.message = args[0]
5
- else:
6
- self.message = (
7
- f"The difference between `source_noise_db`({source_noise_db}) and `target_noise_db`({target_noise_db})"
8
- f" is not divisible by the step size ({db_sim_step}, remainder = {div_})"
9
- )
10
-
11
- def __str__(self):
12
- if self.message:
13
- return self.message
14
- return "The difference between `source_noise_db` and `target_noise_db` is not divisible by the step size"
@@ -1,148 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: ObjectNat
3
- Version: 1.2.0
4
- Summary: ObjectNat is an open-source library created for geospatial analysis created by IDU team
5
- License: BSD-3-Clause
6
- Author: DDonnyy
7
- Author-email: 63115678+DDonnyy@users.noreply.github.com
8
- Requires-Python: >=3.10,<3.13
9
- Classifier: License :: OSI Approved :: BSD License
10
- Classifier: Programming Language :: Python :: 3
11
- Classifier: Programming Language :: Python :: 3.10
12
- Classifier: Programming Language :: Python :: 3.11
13
- Classifier: Programming Language :: Python :: 3.12
14
- Requires-Dist: geopandas (>=1.0.1,<2.0.0)
15
- Requires-Dist: loguru (>=0.7.3,<0.8.0)
16
- Requires-Dist: networkx (>=3.4.2,<4.0.0)
17
- Requires-Dist: numpy (>=2.1.3,<3.0.0)
18
- Requires-Dist: pandarallel (>=1.6.5,<2.0.0)
19
- Requires-Dist: pandas (>=2.2.0,<3.0.0)
20
- Requires-Dist: scikit-learn (>=1.4.0,<2.0.0)
21
- Requires-Dist: tqdm (>=4.66.2,<5.0.0)
22
- Description-Content-Type: text/markdown
23
-
24
- # ObjectNat
25
-
26
- [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
27
- [![PyPI version](https://img.shields.io/pypi/v/objectnat.svg)](https://pypi.org/project/objectnat/)
28
- [![CI](https://github.com/DDonnyy/ObjectNat/actions/workflows/ci_pipeline.yml/badge.svg)](https://github.com/DDonnyy/ObjecNat/actions/workflows/ci_pipeline.yml)
29
- [![codecov](https://codecov.io/gh/DDonnyy/ObjectNat/graph/badge.svg?token=K6JFSJ02GU)](https://codecov.io/gh/DDonnyy/ObjectNat)
30
- [![License](https://img.shields.io/badge/license-BSD--3--Clause-blue.svg)](https://opensource.org/licenses/MIT)
31
-
32
- - [РИДМИ (Russian)](README_ru.md)
33
- <p align="center">
34
- <img src="https://github.com/user-attachments/assets/ed0f226e-1728-4659-9e21-b4d499e703cd" alt="logo" width="400">
35
- </p>
36
-
37
- #### **ObjectNat** is an open-source library created for geospatial analysis created by **IDU team**
38
-
39
- ## Features and how to use
40
-
41
- 1. **[Isochrones and Transport Accessibility](./examples/isochrone_generator.ipynb)** — Isochrones represent areas reachable from a starting point within a given time limit along a transport network. This function enables analysis of transport accessibility using pedestrian, automobile, public transport graphs, or their combination.
42
-
43
- The library offers multiple isochrone generation methods:
44
- - **Baseline isochrones**: show a single area reachable within a specified time.
45
- - **Stepped isochrones**: show accessibility ranges divided into time intervals (e.g., 5, 10, 15 minutes).
46
-
47
- <p align="center">
48
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/isochrone_ways_15_min.png" alt="isochrone_ways_15_min" width="300">
49
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/isochrone_radius_15_min.png" alt="isochrone_radius_15_min" width="300">
50
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/isochrone_3points_radius_8_min.png" alt="isochrone_3points_radius_8_min" width="300">
51
- </p>
52
- <p align="center">
53
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/stepped_isochrone_ways_15_min.png" alt="stepped_isochrone_ways_15_min" width="300">
54
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/stepped_isochrone_radius_15_min.png" alt="stepped_isochrone_radius_15_min" width="300">
55
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/stepped_isochrone_separate_15_min.png" alt="stepped_isochrone_separate_15_min" width="300">
56
- </p>
57
-
58
- 2. **[Coverage Zones](./examples/coverage_zones.ipynb)** — Function for generating **coverage zones** from a set of source points using a transport network. It calculates the area each point can reach based on **travel time** or **distance**, then builds polygons via **Voronoi diagrams** and clips them to a custom boundary if provided.
59
-
60
- <p align="center">
61
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/coverage_zones_time_10min.png" alt="coverage_zones_time_10min" width="350">
62
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/coverage_zones_distance_600m.png" alt="coverage_zones_distance_600m" width="350">
63
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/coverage_zones_radius_distance_800m.png" alt="coverage_zones_distance_radius_voronoi" width="350">
64
- </p>
65
- <p align="center">
66
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/stepped_coverage_zones_separate.png" alt="stepped_coverage_zones_separate" width="350">
67
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/stepped_coverage_zones_voronoi.png" alt="stepped_coverage_zones_voronoi" width="350">
68
- </p>
69
-
70
- 3. **[Service Provision Analysis](./examples/calculate_provision.ipynb)** — Function for evaluating the provision of residential buildings and their population with services (e.g., schools, clinics)
71
- that have limited **capacity** and a defined **accessibility threshold** (in minutes or distance). The function models **demand-supply balance**, estimating how well services meet the needs of nearby buildings within the allowed time.
72
-
73
- The library also supports:
74
- - **Recalculation** of existing provision results using a new time threshold.
75
- - **Clipping** of provision results to a custom analysis area (e.g., administrative boundaries).
76
-
77
- <p align="center">
78
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/service_provision_initial.png" alt="service_provision_initial" width="300">
79
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/service_provision_recalculated.png" alt="service_provision_recalculated" width="300">
80
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/service_provision_clipped.png" alt="service_provision_clipped" width="300">
81
- </p>
82
-
83
- 4. **[Visibility Analysis](./examples/visibility_analysis.ipynb)** — Function for estimating visibility from a given point or multiple points to nearby buildings within a certain distance.
84
- This can be used to assess visual accessibility in urban environments.
85
- The library also includes a **catchment area calculator** for large-scale visibility analysis based on a dense grid of observer points (recommended: ~1000 points spaced 10–20 meters apart).
86
- Points can be generated using a road network and distributed along edges.
87
-
88
- The module includes:
89
- - A **fast approximate method** for large datasets.
90
- - A **accurate method** for detailed local analysis.
91
-
92
- <p align="center">
93
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/visibility_comparison_methods.png" alt="visibility_comparison_methods" height="250">
94
- <img src="https://github.com/user-attachments/assets/b5b0d4b3-a02f-4ade-8772-475703cd6435" alt="visibility-catchment-area" height="250">
95
- </p>
96
-
97
- 5. **[Noise Simulation](./examples/noise_simulation.ipynb)** — Simulates noise propagation from a set of source points, taking into account **obstacles**, **vegetation**, and **environmental factors**.
98
-
99
- 🔗 **[See detailed explanation in the Wiki](https://github.com/DDonnyy/ObjectNat/wiki/Noise-simulation)**
100
-
101
- <p align="center">
102
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/noise_simulation_1point.png" alt="noise_simulation_1point" width="400">
103
- </p>
104
-
105
-
106
- 6. **[Point Clusterization](./examples/point_clusterization.ipynb)** — Function to generate **cluster polygons** from a set of input points based on:
107
- - Minimum **distance** between points.
108
- - Minimum **number of points** per cluster.
109
-
110
- Additionally, the function can calculate the **relative ratio** of different service types within each cluster, enabling spatial analysis of service composition.
111
-
112
- <p align="center">
113
- <img src="https://raw.githubusercontent.com/DDonnyy/ObjectNat/assets/building_clusters.png" alt="building_clusters" width="400">
114
- </p>
115
-
116
- ## City graphs
117
-
118
- To ensure optimal performance of ObjectNat's geospatial analysis functions, it's recommended to utilize urban graphs sourced from the [IduEdu](https://github.com/DDonnyy/IduEdu) library.
119
- **IduEdu** is an open-source Python library designed for the creation and manipulation of complex city networks derived from OpenStreetMap data.
120
-
121
- **IduEdu** can be installed with ``pip``:
122
- ```
123
- pip install IduEdu
124
- ```
125
- ## Installation
126
-
127
- **ObjectNat** can be installed with ``pip``:
128
-
129
- ```
130
- pip install ObjectNat
131
- ```
132
- ### Configuration changes
133
-
134
- ```python
135
- from objectnat import config
136
-
137
- config.change_logger_lvl('INFO') # To mute all debug msgs
138
- config.set_enable_tqdm(False) # To mute all tqdm's progress bars
139
- ```
140
- ## Contacts
141
-
142
- - [NCCR](https://actcognitive.org/) - National Center for Cognitive Research
143
- - [IDU](https://idu.itmo.ru/) - Institute of Design and Urban Studies
144
- - [Natalya Chichkova](https://t.me/nancy_nat) - project manager
145
- - [Danila Oleynikov (Donny)](https://t.me/ddonny_dd) - lead software engineer
146
-
147
- ## Publications
148
-
@@ -1,34 +0,0 @@
1
- objectnat/__init__.py,sha256=OnDvrLPLEeYIE_9qOVYgMc-PkRzIqShtGxirguEXiRU,260
2
- objectnat/_api.py,sha256=0R1nypAQUcbQ9YSLw_MUgUWoNl8c1zMZteV8wGzdkvc,711
3
- objectnat/_config.py,sha256=fGPsMZqA8FVBBOINxRiTFkOOZsNLyablM5G0tdKeQB4,1306
4
- objectnat/_version.py,sha256=viNrPDalxthAcGDGV3QUhm0tvEB8vd-Uh-27v9_MV7c,18
5
- objectnat/methods/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
- objectnat/methods/coverage_zones/__init__.py,sha256=3uTDC1xf3zgQRqSQR4URp__HjZ8eVUtjK8r3mGq-zuQ,161
7
- objectnat/methods/coverage_zones/graph_coverage.py,sha256=iYI2huF9jLPPlISeh7R05ZaaWZ7s8ZBPGIk1WUeM-EI,4355
8
- objectnat/methods/coverage_zones/radius_voronoi_coverage.py,sha256=H4_lvSc770TO6-xq6EzgWuUf00N5vYCMO3X6UJhZYAQ,1735
9
- objectnat/methods/coverage_zones/stepped_coverage.py,sha256=dgNDHh2nG2zXcLHOIJZyZGVgcKnoxtu5iP1_aHdOYNM,5951
10
- objectnat/methods/isochrones/__init__.py,sha256=bDfUZPbS3_PuTEB2QcRTYjvyJtUvjbDhAw6QJvD_ih4,90
11
- objectnat/methods/isochrones/isochrone_utils.py,sha256=dJwvoGXUypwU2_oF-rdxNZm90gOi-RUp_0WM1C2HaPU,6870
12
- objectnat/methods/isochrones/isochrones.py,sha256=TceEQ8xJ-KZR29fAZ1v9gLl42iN2vvDmoOIi1VkvQd4,12625
13
- objectnat/methods/noise/__init__.py,sha256=Z5hdRiiv7tDgRAyrhwrTWkonI5dyLU3vfxHl-qdzw9A,233
14
- objectnat/methods/noise/noise_exceptions.py,sha256=nTav5kp6RNpi0kxD9cMULTApOuvAu9wEiX28fkLAnOc,634
15
- objectnat/methods/noise/noise_init_data.py,sha256=Vp-R_yH7CgYqZEtbGAdr1iiIbgauReniLQ_a2TcszhY,503
16
- objectnat/methods/noise/noise_reduce.py,sha256=B85ifAN_mHiBKJso-cZiSkj7588w2sA-ugGvEal4CBw,6885
17
- objectnat/methods/noise/noise_simulation.py,sha256=1hONZuYobyI9mVzkjVXost8XzEsZS8un2v7VTQobXQk,21680
18
- objectnat/methods/noise/noise_simulation_simplified.py,sha256=_2wZ3nb-w-77aZiida0dOTGS4Yuq4PnRKmXi9xQEhYU,6135
19
- objectnat/methods/point_clustering/__init__.py,sha256=pX2qDUCvs9LJI36mr65vbdRml6AE8hIYYxIJLdQZQxs,61
20
- objectnat/methods/point_clustering/cluster_points_in_polygons.py,sha256=kwiZHY3TCUCE-nN5IdhCwDESWJvSCZUfrUJU3yC1csc,5042
21
- objectnat/methods/provision/__init__.py,sha256=0Uy66n2xH0Y45JyhIYHEVfC2rig6bMYp6PV2KkNhbK8,80
22
- objectnat/methods/provision/provision.py,sha256=g00mN6RGFZcLg0PIMgywnO3TWiFqx3sTYqTeG3Kl33s,4749
23
- objectnat/methods/provision/provision_exceptions.py,sha256=lznEmlmZDzGIOtapZVqZDMutIi5eGbFuVCYeVa7VZWk,1687
24
- objectnat/methods/provision/provision_model.py,sha256=_IKS3pe_i7gLcA56baB0g3mH77T9pPP_4FzjuK_FZ5Y,14529
25
- objectnat/methods/utils/__init__.py,sha256=sGXy4KUOe5I0UYztnB4rIl2HNd-oqnqRYrBsiU-dpNY,52
26
- objectnat/methods/utils/geom_utils.py,sha256=PdUjQDZ8drJ1ZFCFabDJnD6oFvgHeAQrsbeivuDOdcI,6385
27
- objectnat/methods/utils/graph_utils.py,sha256=oIKG7XqVRkXE-QQaReXxClU8aHSKoAdwj_3g-ectUgo,12487
28
- objectnat/methods/utils/math_utils.py,sha256=Vc8U15LtFOwgIt1YSOSKWYOIiW_1XLuMGOa6ejBpEUk,839
29
- objectnat/methods/visibility/__init__.py,sha256=Mx1kaoV-yfQUxlMkgNF4AhjSweFEJMEx3NBis5OM3mA,161
30
- objectnat/methods/visibility/visibility_analysis.py,sha256=J-GtggH12DoZaquZuDR7edDsXtCqxI3qKSRpT2ULPGs,21251
31
- objectnat-1.2.0.dist-info/LICENSE.txt,sha256=yPEioMfTd7JAQgAU6J13inS1BSjwd82HFlRSoIb4My8,1498
32
- objectnat-1.2.0.dist-info/METADATA,sha256=SerHhzYYX6o31ph9Yqm7MxxozcQ4Yxhcmzt9kKyvbI0,8881
33
- objectnat-1.2.0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
34
- objectnat-1.2.0.dist-info/RECORD,,