ObjectNat 1.2.0__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ObjectNat might be problematic. Click here for more details.
- objectnat/__init__.py +9 -13
- objectnat/_api.py +14 -14
- objectnat/_config.py +47 -47
- objectnat/_version.py +1 -1
- objectnat/methods/coverage_zones/__init__.py +3 -3
- objectnat/methods/coverage_zones/graph_coverage.py +98 -108
- objectnat/methods/coverage_zones/radius_voronoi_coverage.py +37 -45
- objectnat/methods/coverage_zones/stepped_coverage.py +126 -142
- objectnat/methods/isochrones/__init__.py +1 -1
- objectnat/methods/isochrones/isochrone_utils.py +167 -167
- objectnat/methods/isochrones/isochrones.py +262 -299
- objectnat/methods/noise/__init__.py +3 -4
- objectnat/methods/noise/noise_init_data.py +10 -10
- objectnat/methods/noise/noise_reduce.py +155 -155
- objectnat/methods/noise/noise_simulation.py +452 -440
- objectnat/methods/noise/noise_simulation_simplified.py +209 -135
- objectnat/methods/point_clustering/__init__.py +1 -1
- objectnat/methods/point_clustering/cluster_points_in_polygons.py +115 -116
- objectnat/methods/provision/__init__.py +1 -1
- objectnat/methods/provision/provision.py +117 -110
- objectnat/methods/provision/provision_exceptions.py +59 -59
- objectnat/methods/provision/provision_model.py +337 -337
- objectnat/methods/utils/__init__.py +1 -1
- objectnat/methods/utils/geom_utils.py +173 -173
- objectnat/methods/utils/graph_utils.py +306 -320
- objectnat/methods/utils/math_utils.py +32 -32
- objectnat/methods/visibility/__init__.py +6 -6
- objectnat/methods/visibility/visibility_analysis.py +470 -511
- {objectnat-1.2.0.dist-info → objectnat-1.2.1.dist-info}/LICENSE.txt +28 -28
- objectnat-1.2.1.dist-info/METADATA +115 -0
- objectnat-1.2.1.dist-info/RECORD +33 -0
- objectnat/methods/noise/noise_exceptions.py +0 -14
- objectnat-1.2.0.dist-info/METADATA +0 -148
- objectnat-1.2.0.dist-info/RECORD +0 -34
- {objectnat-1.2.0.dist-info → objectnat-1.2.1.dist-info}/WHEEL +0 -0
objectnat/__init__.py
CHANGED
|
@@ -1,13 +1,9 @@
|
|
|
1
|
-
"""
|
|
2
|
-
ObjectNat
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
from ._config import config
|
|
12
|
-
from ._api import *
|
|
13
|
-
from ._version import VERSION as __version__
|
|
1
|
+
"""
|
|
2
|
+
ObjectNat is an open-source library created for geospatial analysis created by IDU team.
|
|
3
|
+
|
|
4
|
+
Homepage https://github.com/DDonnyy/ObjectNat.
|
|
5
|
+
"""
|
|
6
|
+
|
|
7
|
+
from ._config import config
|
|
8
|
+
from ._api import *
|
|
9
|
+
from ._version import VERSION as __version__
|
objectnat/_api.py
CHANGED
|
@@ -1,14 +1,14 @@
|
|
|
1
|
-
# pylint: disable=unused-import,wildcard-import,unused-wildcard-import
|
|
2
|
-
|
|
3
|
-
from .methods.coverage_zones import get_graph_coverage, get_radius_coverage, get_stepped_graph_coverage
|
|
4
|
-
from .methods.isochrones import get_accessibility_isochrone_stepped, get_accessibility_isochrones
|
|
5
|
-
from .methods.noise import calculate_simplified_noise_frame, simulate_noise
|
|
6
|
-
from .methods.point_clustering import get_clusters_polygon
|
|
7
|
-
from .methods.provision import clip_provision, get_service_provision, recalculate_links
|
|
8
|
-
from .methods.utils import gdf_to_graph, graph_to_gdf
|
|
9
|
-
from .methods.visibility import (
|
|
10
|
-
calculate_visibility_catchment_area,
|
|
11
|
-
get_visibilities_from_points,
|
|
12
|
-
get_visibility,
|
|
13
|
-
get_visibility_accurate,
|
|
14
|
-
)
|
|
1
|
+
# pylint: disable=unused-import,wildcard-import,unused-wildcard-import
|
|
2
|
+
|
|
3
|
+
from .methods.coverage_zones import get_graph_coverage, get_radius_coverage, get_stepped_graph_coverage
|
|
4
|
+
from .methods.isochrones import get_accessibility_isochrone_stepped, get_accessibility_isochrones
|
|
5
|
+
from .methods.noise import calculate_simplified_noise_frame, simulate_noise
|
|
6
|
+
from .methods.point_clustering import get_clusters_polygon
|
|
7
|
+
from .methods.provision import clip_provision, get_service_provision, recalculate_links
|
|
8
|
+
from .methods.utils import gdf_to_graph, graph_to_gdf
|
|
9
|
+
from .methods.visibility import (
|
|
10
|
+
calculate_visibility_catchment_area,
|
|
11
|
+
get_visibilities_from_points,
|
|
12
|
+
get_visibility,
|
|
13
|
+
get_visibility_accurate,
|
|
14
|
+
)
|
objectnat/_config.py
CHANGED
|
@@ -1,47 +1,47 @@
|
|
|
1
|
-
import sys
|
|
2
|
-
from typing import Literal
|
|
3
|
-
|
|
4
|
-
from loguru import logger
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
class Config:
|
|
8
|
-
"""
|
|
9
|
-
A configuration class to manage global settings for the application, such as Overpass API URL,
|
|
10
|
-
timeouts, and logging options.
|
|
11
|
-
|
|
12
|
-
Attributes
|
|
13
|
-
----------
|
|
14
|
-
enable_tqdm_bar : bool
|
|
15
|
-
Enables or disables progress bars (via tqdm). Defaults to True.
|
|
16
|
-
logger : Logger
|
|
17
|
-
Logging instance to handle application logging.
|
|
18
|
-
|
|
19
|
-
Methods
|
|
20
|
-
-------
|
|
21
|
-
change_logger_lvl(lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"])
|
|
22
|
-
Changes the logging level to the specified value.
|
|
23
|
-
set_enable_tqdm(enable: bool)
|
|
24
|
-
Enables or disables progress bars in the application.
|
|
25
|
-
"""
|
|
26
|
-
|
|
27
|
-
def __init__(
|
|
28
|
-
self,
|
|
29
|
-
enable_tqdm_bar=True,
|
|
30
|
-
):
|
|
31
|
-
self.enable_tqdm_bar = enable_tqdm_bar
|
|
32
|
-
self.logger = logger
|
|
33
|
-
self.pandarallel_use_file_system = False
|
|
34
|
-
|
|
35
|
-
def change_logger_lvl(self, lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"]):
|
|
36
|
-
self.logger.remove()
|
|
37
|
-
self.logger.add(sys.stderr, level=lvl)
|
|
38
|
-
|
|
39
|
-
def set_enable_tqdm(self, enable: bool):
|
|
40
|
-
self.enable_tqdm_bar = enable
|
|
41
|
-
|
|
42
|
-
def set_pandarallel_use_file_system(self, enable: bool):
|
|
43
|
-
self.pandarallel_use_file_system = enable
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
config = Config()
|
|
47
|
-
config.change_logger_lvl("INFO")
|
|
1
|
+
import sys
|
|
2
|
+
from typing import Literal
|
|
3
|
+
|
|
4
|
+
from loguru import logger
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class Config:
|
|
8
|
+
"""
|
|
9
|
+
A configuration class to manage global settings for the application, such as Overpass API URL,
|
|
10
|
+
timeouts, and logging options.
|
|
11
|
+
|
|
12
|
+
Attributes
|
|
13
|
+
----------
|
|
14
|
+
enable_tqdm_bar : bool
|
|
15
|
+
Enables or disables progress bars (via tqdm). Defaults to True.
|
|
16
|
+
logger : Logger
|
|
17
|
+
Logging instance to handle application logging.
|
|
18
|
+
|
|
19
|
+
Methods
|
|
20
|
+
-------
|
|
21
|
+
change_logger_lvl(lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"])
|
|
22
|
+
Changes the logging level to the specified value.
|
|
23
|
+
set_enable_tqdm(enable: bool)
|
|
24
|
+
Enables or disables progress bars in the application.
|
|
25
|
+
"""
|
|
26
|
+
|
|
27
|
+
def __init__(
|
|
28
|
+
self,
|
|
29
|
+
enable_tqdm_bar=True,
|
|
30
|
+
):
|
|
31
|
+
self.enable_tqdm_bar = enable_tqdm_bar
|
|
32
|
+
self.logger = logger
|
|
33
|
+
self.pandarallel_use_file_system = False
|
|
34
|
+
|
|
35
|
+
def change_logger_lvl(self, lvl: Literal["TRACE", "DEBUG", "INFO", "WARN", "ERROR"]):
|
|
36
|
+
self.logger.remove()
|
|
37
|
+
self.logger.add(sys.stderr, level=lvl)
|
|
38
|
+
|
|
39
|
+
def set_enable_tqdm(self, enable: bool):
|
|
40
|
+
self.enable_tqdm_bar = enable
|
|
41
|
+
|
|
42
|
+
def set_pandarallel_use_file_system(self, enable: bool):
|
|
43
|
+
self.pandarallel_use_file_system = enable
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
config = Config()
|
|
47
|
+
config.change_logger_lvl("INFO")
|
objectnat/_version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
VERSION = "1.2.
|
|
1
|
+
VERSION = "1.2.1"
|
|
@@ -1,3 +1,3 @@
|
|
|
1
|
-
from .graph_coverage import get_graph_coverage
|
|
2
|
-
from .radius_voronoi_coverage import get_radius_coverage
|
|
3
|
-
from .stepped_coverage import get_stepped_graph_coverage
|
|
1
|
+
from .graph_coverage import get_graph_coverage
|
|
2
|
+
from .radius_voronoi_coverage import get_radius_coverage
|
|
3
|
+
from .stepped_coverage import get_stepped_graph_coverage
|
|
@@ -1,108 +1,98 @@
|
|
|
1
|
-
from typing import Literal
|
|
2
|
-
|
|
3
|
-
import geopandas as gpd
|
|
4
|
-
import networkx as nx
|
|
5
|
-
import pandas as pd
|
|
6
|
-
from pyproj.exceptions import CRSError
|
|
7
|
-
from shapely import Point, concave_hull
|
|
8
|
-
|
|
9
|
-
from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, reverse_graph
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
def get_graph_coverage(
|
|
13
|
-
gdf_to: gpd.GeoDataFrame,
|
|
14
|
-
nx_graph: nx.Graph,
|
|
15
|
-
weight_type: Literal["time_min", "length_meter"],
|
|
16
|
-
weight_value_cutoff: float = None,
|
|
17
|
-
zone: gpd.GeoDataFrame = None,
|
|
18
|
-
):
|
|
19
|
-
"""
|
|
20
|
-
Calculate coverage zones from source points through a graph network using Dijkstra's algorithm
|
|
21
|
-
and Voronoi diagrams.
|
|
22
|
-
|
|
23
|
-
The function works by:
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
Parameters
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
zone_coverages = voronois.sjoin(graph_nodes_gdf).dissolve(by="node_to").reset_index().drop(columns=["node"])
|
|
100
|
-
zone_coverages = zone_coverages.merge(
|
|
101
|
-
points.drop(columns="geometry"), left_on="node_to", right_on="nearest_node", how="inner"
|
|
102
|
-
).reset_index(drop=True)
|
|
103
|
-
zone_coverages.drop(columns=["node_to", "nearest_node"], inplace=True)
|
|
104
|
-
if zone is None:
|
|
105
|
-
zone = concave_hull(graph_nodes_gdf[~graph_nodes_gdf["node_to"].isna()].union_all(), ratio=0.5)
|
|
106
|
-
else:
|
|
107
|
-
zone = zone.to_crs(local_crs)
|
|
108
|
-
return zone_coverages.clip(zone).to_crs(original_crs)
|
|
1
|
+
from typing import Literal
|
|
2
|
+
|
|
3
|
+
import geopandas as gpd
|
|
4
|
+
import networkx as nx
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from pyproj.exceptions import CRSError
|
|
7
|
+
from shapely import Point, concave_hull
|
|
8
|
+
|
|
9
|
+
from objectnat.methods.utils.graph_utils import get_closest_nodes_from_gdf, reverse_graph
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def get_graph_coverage(
|
|
13
|
+
gdf_to: gpd.GeoDataFrame,
|
|
14
|
+
nx_graph: nx.Graph,
|
|
15
|
+
weight_type: Literal["time_min", "length_meter"],
|
|
16
|
+
weight_value_cutoff: float = None,
|
|
17
|
+
zone: gpd.GeoDataFrame = None,
|
|
18
|
+
):
|
|
19
|
+
"""
|
|
20
|
+
Calculate coverage zones from source points through a graph network using Dijkstra's algorithm
|
|
21
|
+
and Voronoi diagrams.
|
|
22
|
+
|
|
23
|
+
The function works by:
|
|
24
|
+
1. Finding nearest graph nodes for each input point
|
|
25
|
+
2. Calculating all reachable nodes within cutoff distance using Dijkstra
|
|
26
|
+
3. Creating Voronoi polygons around graph nodes
|
|
27
|
+
4. Combining reachability information with Voronoi cells
|
|
28
|
+
5. Clipping results to specified zone boundary
|
|
29
|
+
|
|
30
|
+
Parameters:
|
|
31
|
+
gdf_to (gpd.GeoDataFrame):
|
|
32
|
+
Source points to which coverage is calculated.
|
|
33
|
+
nx_graph (nx.Graph):
|
|
34
|
+
NetworkX graph representing the transportation network.
|
|
35
|
+
weight_type (Literal["time_min", "length_meter"]):
|
|
36
|
+
Edge attribute to use as weight for path calculations.
|
|
37
|
+
weight_value_cutoff (float):
|
|
38
|
+
Maximum weight value for path calculations (e.g., max travel time/distance).
|
|
39
|
+
zone (gpd.GeoDataFrame):
|
|
40
|
+
Boundary polygon to clip the resulting coverage zones. If None, concave hull of reachable nodes will be used.
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
(gpd.GeoDataFrame):
|
|
44
|
+
GeoDataFrame with coverage zones polygons, each associated with its source point, returns in the same CRS
|
|
45
|
+
as original gdf_from.
|
|
46
|
+
|
|
47
|
+
Notes:
|
|
48
|
+
- The graph must have a valid CRS attribute in its graph properties
|
|
49
|
+
- MultiGraph/MultiDiGraph inputs will be converted to simple Graph/DiGraph
|
|
50
|
+
"""
|
|
51
|
+
original_crs = gdf_to.crs
|
|
52
|
+
try:
|
|
53
|
+
local_crs = nx_graph.graph["crs"]
|
|
54
|
+
except KeyError as exc:
|
|
55
|
+
raise ValueError("Graph does not have crs attribute") from exc
|
|
56
|
+
|
|
57
|
+
try:
|
|
58
|
+
points = gdf_to.copy()
|
|
59
|
+
points.to_crs(local_crs, inplace=True)
|
|
60
|
+
except CRSError as e:
|
|
61
|
+
raise CRSError(f"Graph crs ({local_crs}) has invalid format.") from e
|
|
62
|
+
|
|
63
|
+
nx_graph, reversed_graph = reverse_graph(nx_graph, weight_type)
|
|
64
|
+
|
|
65
|
+
points.geometry = points.representative_point()
|
|
66
|
+
|
|
67
|
+
_, nearest_nodes = get_closest_nodes_from_gdf(points, nx_graph)
|
|
68
|
+
|
|
69
|
+
points["nearest_node"] = nearest_nodes
|
|
70
|
+
|
|
71
|
+
nearest_paths = nx.multi_source_dijkstra_path(
|
|
72
|
+
reversed_graph, nearest_nodes, weight=weight_type, cutoff=weight_value_cutoff
|
|
73
|
+
)
|
|
74
|
+
reachable_nodes = list(nearest_paths.keys())
|
|
75
|
+
graph_points = pd.DataFrame(
|
|
76
|
+
data=[{"node": node, "geometry": Point(data["x"], data["y"])} for node, data in nx_graph.nodes(data=True)]
|
|
77
|
+
).set_index("node")
|
|
78
|
+
nearest_nodes = pd.DataFrame(
|
|
79
|
+
data=[path[0] for path in nearest_paths.values()], index=reachable_nodes, columns=["node_to"]
|
|
80
|
+
)
|
|
81
|
+
graph_nodes_gdf = gpd.GeoDataFrame(
|
|
82
|
+
graph_points.merge(nearest_nodes, left_index=True, right_index=True, how="left"),
|
|
83
|
+
geometry="geometry",
|
|
84
|
+
crs=local_crs,
|
|
85
|
+
)
|
|
86
|
+
graph_nodes_gdf["node_to"] = graph_nodes_gdf["node_to"].fillna("non_reachable")
|
|
87
|
+
voronois = gpd.GeoDataFrame(geometry=graph_nodes_gdf.voronoi_polygons(), crs=local_crs)
|
|
88
|
+
graph_nodes_gdf = graph_nodes_gdf[graph_nodes_gdf["node_to"] != "non_reachable"]
|
|
89
|
+
zone_coverages = voronois.sjoin(graph_nodes_gdf).dissolve(by="node_to").reset_index().drop(columns=["node"])
|
|
90
|
+
zone_coverages = zone_coverages.merge(
|
|
91
|
+
points.drop(columns="geometry"), left_on="node_to", right_on="nearest_node", how="inner"
|
|
92
|
+
).reset_index(drop=True)
|
|
93
|
+
zone_coverages.drop(columns=["node_to", "nearest_node"], inplace=True)
|
|
94
|
+
if zone is None:
|
|
95
|
+
zone = concave_hull(graph_nodes_gdf[~graph_nodes_gdf["node_to"].isna()].union_all(), ratio=0.5)
|
|
96
|
+
else:
|
|
97
|
+
zone = zone.to_crs(local_crs)
|
|
98
|
+
return zone_coverages.clip(zone).to_crs(original_crs)
|
|
@@ -1,45 +1,37 @@
|
|
|
1
|
-
import geopandas as gpd
|
|
2
|
-
import numpy as np
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
def get_radius_coverage(gdf_from: gpd.GeoDataFrame, radius: float, resolution: int = 32):
|
|
6
|
-
"""
|
|
7
|
-
Calculate radius-based coverage zones using Voronoi polygons.
|
|
8
|
-
|
|
9
|
-
Parameters
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
"""
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
coverage_polys
|
|
38
|
-
coverage_polys = coverage_polys.sjoin(gdf_from)
|
|
39
|
-
coverage_polys["area"] = coverage_polys.area
|
|
40
|
-
coverage_polys["buffer"] = np.pow(coverage_polys["area"], 1 / 3)
|
|
41
|
-
coverage_polys.geometry = coverage_polys.buffer(-coverage_polys["buffer"], resolution=1, join_style="mitre").buffer(
|
|
42
|
-
coverage_polys["buffer"] * 0.9, resolution=resolution
|
|
43
|
-
)
|
|
44
|
-
coverage_polys.drop(columns=["buffer", "area"], inplace=True)
|
|
45
|
-
return coverage_polys.to_crs(original_crs)
|
|
1
|
+
import geopandas as gpd
|
|
2
|
+
import numpy as np
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
def get_radius_coverage(gdf_from: gpd.GeoDataFrame, radius: float, resolution: int = 32):
|
|
6
|
+
"""
|
|
7
|
+
Calculate radius-based coverage zones using Voronoi polygons.
|
|
8
|
+
|
|
9
|
+
Parameters:
|
|
10
|
+
gdf_from (gpd.GeoDataFrame):
|
|
11
|
+
Source points for which coverage zones are calculated.
|
|
12
|
+
radius (float):
|
|
13
|
+
Maximum coverage radius in meters.
|
|
14
|
+
resolution (int):
|
|
15
|
+
Number of segments used to approximate quarter-circle in buffer (default=32).
|
|
16
|
+
|
|
17
|
+
Returns:
|
|
18
|
+
(gpd.GeoDataFrame):
|
|
19
|
+
GeoDataFrame with smoothed coverage zone polygons in the same CRS as original gdf_from.
|
|
20
|
+
|
|
21
|
+
Notes:
|
|
22
|
+
- Automatically converts to local UTM CRS for accurate distance measurements
|
|
23
|
+
- Final zones are slightly contracted then expanded for smoothing effect
|
|
24
|
+
"""
|
|
25
|
+
original_crs = gdf_from.crs
|
|
26
|
+
local_crs = gdf_from.estimate_utm_crs()
|
|
27
|
+
gdf_from = gdf_from.to_crs(local_crs)
|
|
28
|
+
bounds = gdf_from.buffer(radius).union_all()
|
|
29
|
+
coverage_polys = gpd.GeoDataFrame(geometry=gdf_from.voronoi_polygons().clip(bounds, keep_geom_type=True))
|
|
30
|
+
coverage_polys = coverage_polys.sjoin(gdf_from)
|
|
31
|
+
coverage_polys["area"] = coverage_polys.area
|
|
32
|
+
coverage_polys["buffer"] = np.pow(coverage_polys["area"], 1 / 3)
|
|
33
|
+
coverage_polys.geometry = coverage_polys.buffer(-coverage_polys["buffer"], resolution=1, join_style="mitre").buffer(
|
|
34
|
+
coverage_polys["buffer"] * 0.9, resolution=resolution
|
|
35
|
+
)
|
|
36
|
+
coverage_polys.drop(columns=["buffer", "area"], inplace=True)
|
|
37
|
+
return coverage_polys.to_crs(original_crs)
|