ObjectNat 1.2.0__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ObjectNat might be problematic. Click here for more details.
- objectnat/__init__.py +9 -13
- objectnat/_api.py +14 -14
- objectnat/_config.py +47 -47
- objectnat/_version.py +1 -1
- objectnat/methods/coverage_zones/__init__.py +3 -3
- objectnat/methods/coverage_zones/graph_coverage.py +98 -108
- objectnat/methods/coverage_zones/radius_voronoi_coverage.py +37 -45
- objectnat/methods/coverage_zones/stepped_coverage.py +126 -142
- objectnat/methods/isochrones/__init__.py +1 -1
- objectnat/methods/isochrones/isochrone_utils.py +167 -167
- objectnat/methods/isochrones/isochrones.py +262 -299
- objectnat/methods/noise/__init__.py +3 -4
- objectnat/methods/noise/noise_init_data.py +10 -10
- objectnat/methods/noise/noise_reduce.py +155 -155
- objectnat/methods/noise/noise_simulation.py +452 -440
- objectnat/methods/noise/noise_simulation_simplified.py +209 -135
- objectnat/methods/point_clustering/__init__.py +1 -1
- objectnat/methods/point_clustering/cluster_points_in_polygons.py +115 -116
- objectnat/methods/provision/__init__.py +1 -1
- objectnat/methods/provision/provision.py +117 -110
- objectnat/methods/provision/provision_exceptions.py +59 -59
- objectnat/methods/provision/provision_model.py +337 -337
- objectnat/methods/utils/__init__.py +1 -1
- objectnat/methods/utils/geom_utils.py +173 -173
- objectnat/methods/utils/graph_utils.py +306 -320
- objectnat/methods/utils/math_utils.py +32 -32
- objectnat/methods/visibility/__init__.py +6 -6
- objectnat/methods/visibility/visibility_analysis.py +470 -511
- {objectnat-1.2.0.dist-info → objectnat-1.2.1.dist-info}/LICENSE.txt +28 -28
- objectnat-1.2.1.dist-info/METADATA +115 -0
- objectnat-1.2.1.dist-info/RECORD +33 -0
- objectnat/methods/noise/noise_exceptions.py +0 -14
- objectnat-1.2.0.dist-info/METADATA +0 -148
- objectnat-1.2.0.dist-info/RECORD +0 -34
- {objectnat-1.2.0.dist-info → objectnat-1.2.1.dist-info}/WHEEL +0 -0
|
@@ -1,32 +1,32 @@
|
|
|
1
|
-
import numpy as np
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
def min_max_normalization(data, new_min=0, new_max=1):
|
|
5
|
-
"""
|
|
6
|
-
Min-max normalization for a given array of data.
|
|
7
|
-
|
|
8
|
-
Parameters
|
|
9
|
-
----------
|
|
10
|
-
data: numpy.ndarray
|
|
11
|
-
Input data to be normalized.
|
|
12
|
-
new_min: float, optional
|
|
13
|
-
New minimum value for normalization. Defaults to 0.
|
|
14
|
-
new_max: float, optional
|
|
15
|
-
New maximum value for normalization. Defaults to 1.
|
|
16
|
-
|
|
17
|
-
Returns
|
|
18
|
-
-------
|
|
19
|
-
numpy.ndarray
|
|
20
|
-
Normalized data.
|
|
21
|
-
|
|
22
|
-
Examples
|
|
23
|
-
--------
|
|
24
|
-
>>> import numpy as np
|
|
25
|
-
>>> data = np.array([1, 2, 3, 4, 5])
|
|
26
|
-
>>> normalized_data = min_max_normalization(data, new_min=0, new_max=1)
|
|
27
|
-
"""
|
|
28
|
-
|
|
29
|
-
min_value = np.min(data)
|
|
30
|
-
max_value = np.max(data)
|
|
31
|
-
normalized_data = (data - min_value) / (max_value - min_value) * (new_max - new_min) + new_min
|
|
32
|
-
return normalized_data
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def min_max_normalization(data, new_min=0, new_max=1):
|
|
5
|
+
"""
|
|
6
|
+
Min-max normalization for a given array of data.
|
|
7
|
+
|
|
8
|
+
Parameters
|
|
9
|
+
----------
|
|
10
|
+
data: numpy.ndarray
|
|
11
|
+
Input data to be normalized.
|
|
12
|
+
new_min: float, optional
|
|
13
|
+
New minimum value for normalization. Defaults to 0.
|
|
14
|
+
new_max: float, optional
|
|
15
|
+
New maximum value for normalization. Defaults to 1.
|
|
16
|
+
|
|
17
|
+
Returns
|
|
18
|
+
-------
|
|
19
|
+
numpy.ndarray
|
|
20
|
+
Normalized data.
|
|
21
|
+
|
|
22
|
+
Examples
|
|
23
|
+
--------
|
|
24
|
+
>>> import numpy as np
|
|
25
|
+
>>> data = np.array([1, 2, 3, 4, 5])
|
|
26
|
+
>>> normalized_data = min_max_normalization(data, new_min=0, new_max=1)
|
|
27
|
+
"""
|
|
28
|
+
|
|
29
|
+
min_value = np.min(data)
|
|
30
|
+
max_value = np.max(data)
|
|
31
|
+
normalized_data = (data - min_value) / (max_value - min_value) * (new_max - new_min) + new_min
|
|
32
|
+
return normalized_data
|
|
@@ -1,6 +1,6 @@
|
|
|
1
|
-
from .visibility_analysis import (
|
|
2
|
-
calculate_visibility_catchment_area,
|
|
3
|
-
get_visibilities_from_points,
|
|
4
|
-
get_visibility,
|
|
5
|
-
get_visibility_accurate,
|
|
6
|
-
)
|
|
1
|
+
from .visibility_analysis import (
|
|
2
|
+
calculate_visibility_catchment_area,
|
|
3
|
+
get_visibilities_from_points,
|
|
4
|
+
get_visibility,
|
|
5
|
+
get_visibility_accurate,
|
|
6
|
+
)
|