AeroViz 0.1.3__py3-none-any.whl → 0.1.3b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of AeroViz might be problematic. Click here for more details.

Files changed (107) hide show
  1. AeroViz/__init__.py +4 -4
  2. AeroViz/dataProcess/Chemistry/__init__.py +38 -38
  3. AeroViz/dataProcess/Chemistry/_calculate.py +15 -15
  4. AeroViz/dataProcess/Chemistry/_isoropia.py +69 -68
  5. AeroViz/dataProcess/Chemistry/_mass_volume.py +158 -158
  6. AeroViz/dataProcess/Chemistry/_ocec.py +109 -109
  7. AeroViz/dataProcess/Chemistry/_partition.py +19 -18
  8. AeroViz/dataProcess/Chemistry/_teom.py +8 -11
  9. AeroViz/dataProcess/Optical/_IMPROVE.py +40 -39
  10. AeroViz/dataProcess/Optical/__init__.py +35 -35
  11. AeroViz/dataProcess/Optical/_absorption.py +35 -35
  12. AeroViz/dataProcess/Optical/_extinction.py +25 -24
  13. AeroViz/dataProcess/Optical/_mie.py +5 -6
  14. AeroViz/dataProcess/Optical/_mie_sd.py +89 -90
  15. AeroViz/dataProcess/Optical/_scattering.py +16 -16
  16. AeroViz/dataProcess/SizeDistr/__init__.py +37 -37
  17. AeroViz/dataProcess/SizeDistr/__merge.py +159 -158
  18. AeroViz/dataProcess/SizeDistr/_merge.py +155 -154
  19. AeroViz/dataProcess/SizeDistr/_merge_v1.py +162 -161
  20. AeroViz/dataProcess/SizeDistr/_merge_v2.py +153 -152
  21. AeroViz/dataProcess/SizeDistr/_merge_v3.py +326 -326
  22. AeroViz/dataProcess/SizeDistr/_merge_v4.py +272 -274
  23. AeroViz/dataProcess/SizeDistr/_size_distr.py +51 -51
  24. AeroViz/dataProcess/VOC/__init__.py +7 -7
  25. AeroViz/dataProcess/VOC/_potential_par.py +53 -55
  26. AeroViz/dataProcess/__init__.py +4 -4
  27. AeroViz/dataProcess/core/__init__.py +59 -58
  28. AeroViz/plot/__init__.py +6 -1
  29. AeroViz/plot/bar.py +126 -0
  30. AeroViz/plot/box.py +68 -0
  31. AeroViz/plot/distribution/distribution.py +421 -427
  32. AeroViz/plot/meteorology/meteorology.py +240 -292
  33. AeroViz/plot/optical/__init__.py +0 -1
  34. AeroViz/plot/optical/optical.py +230 -230
  35. AeroViz/plot/pie.py +198 -0
  36. AeroViz/plot/regression.py +210 -0
  37. AeroViz/plot/scatter.py +99 -0
  38. AeroViz/plot/templates/__init__.py +0 -3
  39. AeroViz/plot/templates/contour.py +25 -25
  40. AeroViz/plot/templates/corr_matrix.py +86 -93
  41. AeroViz/plot/templates/diurnal_pattern.py +24 -24
  42. AeroViz/plot/templates/koschmieder.py +106 -106
  43. AeroViz/plot/templates/metal_heatmap.py +34 -34
  44. AeroViz/plot/timeseries/timeseries.py +53 -60
  45. AeroViz/plot/utils/__init__.py +2 -1
  46. AeroViz/plot/utils/_color.py +57 -57
  47. AeroViz/plot/utils/_unit.py +48 -48
  48. AeroViz/plot/utils/plt_utils.py +92 -0
  49. AeroViz/plot/utils/sklearn_utils.py +49 -0
  50. AeroViz/plot/violin.py +79 -0
  51. AeroViz/process/__init__.py +15 -15
  52. AeroViz/process/core/DataProc.py +9 -9
  53. AeroViz/process/core/SizeDist.py +81 -81
  54. AeroViz/process/method/PyMieScatt_update.py +488 -488
  55. AeroViz/process/method/mie_theory.py +231 -229
  56. AeroViz/process/method/prop.py +40 -40
  57. AeroViz/process/script/AbstractDistCalc.py +103 -103
  58. AeroViz/process/script/Chemical.py +166 -166
  59. AeroViz/process/script/IMPACT.py +40 -40
  60. AeroViz/process/script/IMPROVE.py +152 -152
  61. AeroViz/process/script/Others.py +45 -45
  62. AeroViz/process/script/PSD.py +26 -26
  63. AeroViz/process/script/PSD_dry.py +69 -70
  64. AeroViz/process/script/retrieve_RI.py +50 -51
  65. AeroViz/rawDataReader/__init__.py +57 -57
  66. AeroViz/rawDataReader/core/__init__.py +328 -326
  67. AeroViz/rawDataReader/script/AE33.py +18 -18
  68. AeroViz/rawDataReader/script/AE43.py +20 -20
  69. AeroViz/rawDataReader/script/APS_3321.py +30 -30
  70. AeroViz/rawDataReader/script/Aurora.py +23 -23
  71. AeroViz/rawDataReader/script/BC1054.py +40 -40
  72. AeroViz/rawDataReader/script/EPA_vertical.py +9 -9
  73. AeroViz/rawDataReader/script/GRIMM.py +21 -21
  74. AeroViz/rawDataReader/script/IGAC_TH.py +67 -67
  75. AeroViz/rawDataReader/script/IGAC_ZM.py +59 -59
  76. AeroViz/rawDataReader/script/MA350.py +39 -39
  77. AeroViz/rawDataReader/script/NEPH.py +74 -74
  78. AeroViz/rawDataReader/script/OCEC_LCRES.py +21 -21
  79. AeroViz/rawDataReader/script/OCEC_RES.py +16 -16
  80. AeroViz/rawDataReader/script/SMPS_TH.py +25 -25
  81. AeroViz/rawDataReader/script/SMPS_aim11.py +32 -32
  82. AeroViz/rawDataReader/script/SMPS_genr.py +31 -31
  83. AeroViz/rawDataReader/script/TEOM.py +28 -28
  84. AeroViz/rawDataReader/script/Table.py +12 -12
  85. AeroViz/rawDataReader/script/VOC_TH.py +16 -16
  86. AeroViz/rawDataReader/script/VOC_ZM.py +28 -28
  87. AeroViz/rawDataReader/script/__init__.py +20 -20
  88. AeroViz/rawDataReader/utils/config.py +161 -161
  89. AeroViz/tools/database.py +65 -65
  90. AeroViz/tools/dataclassifier.py +106 -106
  91. AeroViz/tools/dataprinter.py +51 -51
  92. AeroViz/tools/datareader.py +38 -38
  93. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/METADATA +5 -4
  94. AeroViz-0.1.3b0.dist-info/RECORD +110 -0
  95. AeroViz/config/__init__.py +0 -0
  96. AeroViz/plot/improve/__init__.py +0 -1
  97. AeroViz/plot/improve/improve.py +0 -240
  98. AeroViz/plot/optical/aethalometer.py +0 -77
  99. AeroViz/plot/templates/event_evolution.py +0 -65
  100. AeroViz/plot/templates/regression.py +0 -256
  101. AeroViz/plot/templates/scatter.py +0 -130
  102. AeroViz/plot/templates/templates.py +0 -398
  103. AeroViz/plot/utils/_decorator.py +0 -74
  104. AeroViz-0.1.3.dist-info/RECORD +0 -111
  105. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/LICENSE +0 -0
  106. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/WHEEL +0 -0
  107. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/top_level.txt +0 -0
@@ -1,34 +1,35 @@
1
- from AeroViz.dataProcess.core import _union_index
2
-
3
1
  from datetime import datetime as dtm
2
+
3
+ import numpy as np
4
4
  from pandas import DataFrame, to_datetime
5
5
  # from scipy.interpolate import interp1d
6
6
  from scipy.interpolate import UnivariateSpline as unvpline, interp1d
7
- import numpy as np
7
+
8
+ from AeroViz.dataProcess.core import _union_index
8
9
 
9
10
  __all__ = ['_merge_SMPS_APS']
10
11
 
11
12
 
12
13
  def __test_plot(smpsx, smps, apsx, aps, mergex, merge, mergeox, mergeo, _sh):
13
- from matplotlib.pyplot import subplots, close, show, rcParams
14
+ from matplotlib.pyplot import subplots, close, show
14
15
 
15
- ## parameter
16
- # '''
17
- ## plot
18
- fig, ax = subplots()
16
+ ## parameter
17
+ # '''
18
+ ## plot
19
+ fig, ax = subplots()
19
20
 
20
- ax.plot(smpsx, smps, c='#ff794c', label='smps', marker='o', lw=2)
21
- ax.plot(apsx, aps, c='#4c79ff', label='aps', marker='o', lw=2)
22
- ax.plot(mergex, merge, c='#79796a', label='merge')
23
- # ax.plot(mergeox,mergeo,c='#111111',label='mergeo',marker='o',lw=.75)
21
+ ax.plot(smpsx, smps, c='#ff794c', label='smps', marker='o', lw=2)
22
+ ax.plot(apsx, aps, c='#4c79ff', label='aps', marker='o', lw=2)
23
+ ax.plot(mergex, merge, c='#79796a', label='merge')
24
+ # ax.plot(mergeox,mergeo,c='#111111',label='mergeo',marker='o',lw=.75)
24
25
 
25
- ax.set(xscale='log', yscale='log', )
26
+ ax.set(xscale='log', yscale='log', )
26
27
 
27
- ax.legend(framealpha=0, )
28
- ax.set_title((_sh ** 2)[0], fontsize=13)
28
+ ax.legend(framealpha=0, )
29
+ ax.set_title((_sh ** 2)[0], fontsize=13)
29
30
 
30
- show()
31
- close()
31
+ show()
32
+ close()
32
33
 
33
34
 
34
35
  # '''
@@ -38,78 +39,78 @@ def __test_plot(smpsx, smps, apsx, aps, mergex, merge, mergeox, mergeo, _sh):
38
39
  ## Create a fitting func. by smps data
39
40
  ## return : shift factor
40
41
  def _overlap_fitting(_smps_ori, _aps_ori, _smps_lb, _aps_hb):
41
- print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92moverlap range fitting\033[0m")
42
+ print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92moverlap range fitting\033[0m")
42
43
 
43
- ## overlap fitting
44
- ## parmeter
45
- _dt_indx = _smps_ori.index
44
+ ## overlap fitting
45
+ ## parmeter
46
+ _dt_indx = _smps_ori.index
46
47
 
47
- ## overlap diameter data
48
- _aps = _aps_ori[_aps_ori.keys()[_aps_ori.keys() < _aps_hb]].copy()
49
- _smps = _smps_ori[_smps_ori.keys()[_smps_ori.keys() > _smps_lb]].copy()
48
+ ## overlap diameter data
49
+ _aps = _aps_ori[_aps_ori.keys()[_aps_ori.keys() < _aps_hb]].copy()
50
+ _smps = _smps_ori[_smps_ori.keys()[_smps_ori.keys() > _smps_lb]].copy()
50
51
 
51
- ## use SMPS data apply power law fitting
52
- ## y = Ax^B, A = e**coefa, B = coefb, x = logx, y = logy
53
- ## ref : http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
54
- ## power law fit to SMPS num conc at upper bins to log curve
52
+ ## use SMPS data apply power law fitting
53
+ ## y = Ax^B, A = e**coefa, B = coefb, x = logx, y = logy
54
+ ## ref : http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
55
+ ## power law fit to SMPS num conc at upper bins to log curve
55
56
 
56
- ## coefficient A, B
57
- _smps_qc_cond = ((_smps != 0) & np.isfinite(_smps))
58
- _smps_qc = _smps.where(_smps_qc_cond)
57
+ ## coefficient A, B
58
+ _smps_qc_cond = ((_smps != 0) & np.isfinite(_smps))
59
+ _smps_qc = _smps.where(_smps_qc_cond)
59
60
 
60
- _size = _smps_qc_cond.sum(axis=1)
61
- _size = _size.where(_size != 0.).copy()
61
+ _size = _smps_qc_cond.sum(axis=1)
62
+ _size = _size.where(_size != 0.).copy()
62
63
 
63
- _logx, _logy = np.log(_smps_qc.keys()._data.astype(float)), np.log(_smps_qc)
64
- _x, _y, _xy, _xx = _logx.sum(), _logy.sum(axis=1), (_logx * _logy).sum(axis=1), (_logx ** 2).sum()
64
+ _logx, _logy = np.log(_smps_qc.keys()._data.astype(float)), np.log(_smps_qc)
65
+ _x, _y, _xy, _xx = _logx.sum(), _logy.sum(axis=1), (_logx * _logy).sum(axis=1), (_logx ** 2).sum()
65
66
 
66
- _coeB = ((_size * _xy - _x * _y) / (_size * _xx - _x ** 2.))
67
- _coeA = np.exp((_y - _coeB * _x) / _size).values.reshape(-1, 1)
68
- _coeB = _coeB.values.reshape(-1, 1)
67
+ _coeB = ((_size * _xy - _x * _y) / (_size * _xx - _x ** 2.))
68
+ _coeA = np.exp((_y - _coeB * _x) / _size).values.reshape(-1, 1)
69
+ _coeB = _coeB.values.reshape(-1, 1)
69
70
 
70
- ## rebuild shift smps data by coe. A, B
71
- ## x_shift = (y_ori/A)**(1/B)
72
- _aps_shift_x = (_aps / _coeA) ** (1 / _coeB)
73
- _aps_shift_x = _aps_shift_x.where(np.isfinite(_aps_shift_x))
71
+ ## rebuild shift smps data by coe. A, B
72
+ ## x_shift = (y_ori/A)**(1/B)
73
+ _aps_shift_x = (_aps / _coeA) ** (1 / _coeB)
74
+ _aps_shift_x = _aps_shift_x.where(np.isfinite(_aps_shift_x))
74
75
 
75
- ## the least squares of diameter
76
- ## the shift factor which the cklosest to 1
77
- _shift_factor = (_aps_shift_x.keys()._data.astype(float) / _aps_shift_x)
78
- _shift_factor.columns = range(len(_aps_shift_x.keys()))
76
+ ## the least squares of diameter
77
+ ## the shift factor which the cklosest to 1
78
+ _shift_factor = (_aps_shift_x.keys()._data.astype(float) / _aps_shift_x)
79
+ _shift_factor.columns = range(len(_aps_shift_x.keys()))
79
80
 
80
- _dropna_idx = _shift_factor.dropna(how='all').index.copy()
81
+ _dropna_idx = _shift_factor.dropna(how='all').index.copy()
81
82
 
82
- ## use the target function to get the similar aps and smps bin
83
- ## S2 = sum( (smps_fit_line(dia) - aps(dia*shift_factor) )**2 )
84
- ## assumption : the same diameter between smps and aps should get the same conc.
83
+ ## use the target function to get the similar aps and smps bin
84
+ ## S2 = sum( (smps_fit_line(dia) - aps(dia*shift_factor) )**2 )
85
+ ## assumption : the same diameter between smps and aps should get the same conc.
85
86
 
86
- ## be sure they art in log value
87
- _S2 = DataFrame(index=_aps_shift_x.index)
88
- _dia_table = DataFrame(np.full(_aps_shift_x.shape, _aps_shift_x.keys()),
89
- columns=_aps_shift_x.keys(), index=_aps_shift_x.index)
90
- for _idx, _factor in _shift_factor.items():
91
- _smps_fit_df = _coeA * (_dia_table / _factor.to_frame().values) ** _coeB
92
- _S2[_idx] = ((_smps_fit_df - _aps) ** 2).sum(axis=1)
87
+ ## be sure they art in log value
88
+ _S2 = DataFrame(index=_aps_shift_x.index)
89
+ _dia_table = DataFrame(np.full(_aps_shift_x.shape, _aps_shift_x.keys()),
90
+ columns=_aps_shift_x.keys(), index=_aps_shift_x.index)
91
+ for _idx, _factor in _shift_factor.items():
92
+ _smps_fit_df = _coeA * (_dia_table / _factor.to_frame().values) ** _coeB
93
+ _S2[_idx] = ((_smps_fit_df - _aps) ** 2).sum(axis=1)
93
94
 
94
- _least_squ_idx = _S2.idxmin(axis=1).loc[_dropna_idx]
95
+ _least_squ_idx = _S2.idxmin(axis=1).loc[_dropna_idx]
95
96
 
96
- _shift_factor_out = DataFrame(_shift_factor.loc[_dropna_idx].values[range(len(_dropna_idx)), _least_squ_idx.values],
97
- index=_dropna_idx).reindex(_dt_indx)
97
+ _shift_factor_out = DataFrame(_shift_factor.loc[_dropna_idx].values[range(len(_dropna_idx)), _least_squ_idx.values],
98
+ index=_dropna_idx).reindex(_dt_indx)
98
99
 
99
- return _shift_factor_out, (DataFrame(_coeA, index=_dt_indx), DataFrame(_coeB, index=_dt_indx))
100
+ return _shift_factor_out, (DataFrame(_coeA, index=_dt_indx), DataFrame(_coeB, index=_dt_indx))
100
101
 
101
102
 
102
103
  ## Remove big shift data ()
103
104
  ## Return : aps, smps, shift (without big shift data)
104
105
  def _shift_data_process(_shift):
105
- print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mshift-data quality control\033[0m")
106
+ print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mshift-data quality control\033[0m")
106
107
 
107
- _rho = _shift ** 2
108
- _shift = _shift.mask((~np.isfinite(_shift)) | (_rho > 2.6) | (_rho < 0.3))
108
+ _rho = _shift ** 2
109
+ _shift = _shift.mask((~np.isfinite(_shift)) | (_rho > 2.6) | (_rho < 0.3))
109
110
 
110
- _qc_index = _shift.mask((_rho < 0.6) | (_shift.isna())).dropna().index
111
+ _qc_index = _shift.mask((_rho < 0.6) | (_shift.isna())).dropna().index
111
112
 
112
- return _qc_index, _shift
113
+ return _qc_index, _shift
113
114
 
114
115
 
115
116
  # return _smps.loc[~_big_shift], _aps.loc[~_big_shift], _shift[~_big_shift].reshape(-1,1)
@@ -119,136 +120,136 @@ def _shift_data_process(_shift):
119
120
  ## shift all smps bin and remove the aps bin which smaller than the latest old smps bin
120
121
  ## Return : merge bins, merge data, density
121
122
  def _merge_data(_smps_ori, _aps_ori, _shift_ori, _shift_mode, _smps_lb, _aps_hb, _coe):
122
- print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mcreate merge data\033[0m")
123
+ print(f"\t\t{dtm.now().strftime('%m/%d %X')} : \033[92mcreate merge data\033[0m")
123
124
 
124
- _ori_idx = _smps_ori.index
125
- _merge_idx = _smps_ori.loc[_aps_ori.dropna(how='all').index].dropna(how='all').index
125
+ _ori_idx = _smps_ori.index
126
+ _merge_idx = _smps_ori.loc[_aps_ori.dropna(how='all').index].dropna(how='all').index
126
127
 
127
- _uni_idx, _count = np.unique(np.hstack((_smps_ori.dropna(how='all').index, _aps_ori.dropna(how='all').index,
128
- _shift_ori.dropna(how='all').index)), return_counts=True)
128
+ _uni_idx, _count = np.unique(np.hstack((_smps_ori.dropna(how='all').index, _aps_ori.dropna(how='all').index,
129
+ _shift_ori.dropna(how='all').index)), return_counts=True)
129
130
 
130
- _merge_idx = to_datetime(np.unique(_uni_idx[_count == 3]))
131
+ _merge_idx = to_datetime(np.unique(_uni_idx[_count == 3]))
131
132
 
132
- _smps, _aps, _shift = _smps_ori.loc[_merge_idx], _aps_ori.loc[_merge_idx], _shift_ori.loc[_merge_idx].values
133
+ _smps, _aps, _shift = _smps_ori.loc[_merge_idx], _aps_ori.loc[_merge_idx], _shift_ori.loc[_merge_idx].values
133
134
 
134
- ## parameter
135
- _coeA, _coeB = _coe[0].loc[_merge_idx], _coe[1].loc[_merge_idx]
136
- _smps_key, _aps_key = _smps.keys()._data.astype(float), _aps.keys()._data.astype(float)
135
+ ## parameter
136
+ _coeA, _coeB = _coe[0].loc[_merge_idx], _coe[1].loc[_merge_idx]
137
+ _smps_key, _aps_key = _smps.keys()._data.astype(float), _aps.keys()._data.astype(float)
137
138
 
138
- _test = 1000
139
+ _test = 1000
139
140
 
140
- # _cntr = (_smps_lb+_aps_hb)/2
141
- _cntr = _test
142
- _bin_lb = _smps_key[-1]
141
+ # _cntr = (_smps_lb+_aps_hb)/2
142
+ _cntr = _test
143
+ _bin_lb = _smps_key[-1]
143
144
 
144
- ## make shift bins
145
- _smps_bin = np.full(_smps.shape, _smps_key)
146
- _aps_bin = np.full(_aps.shape, _aps_key)
147
- # _std_bin = _smps_key.tolist()+_aps_key[_aps_key>_smps_key[-1]].tolist()
148
- _std_bin = np.geomspace(_smps_key[0], _aps_key[-1], 230)
149
- _std_bin_merge = _std_bin[(_std_bin < _cntr) & (_std_bin > _bin_lb)]
150
- _std_bin_inte1 = _std_bin[_std_bin <= _bin_lb]
151
- _std_bin_inte2 = _std_bin[_std_bin >= _cntr]
145
+ ## make shift bins
146
+ _smps_bin = np.full(_smps.shape, _smps_key)
147
+ _aps_bin = np.full(_aps.shape, _aps_key)
148
+ # _std_bin = _smps_key.tolist()+_aps_key[_aps_key>_smps_key[-1]].tolist()
149
+ _std_bin = np.geomspace(_smps_key[0], _aps_key[-1], 230)
150
+ _std_bin_merge = _std_bin[(_std_bin < _cntr) & (_std_bin > _bin_lb)]
151
+ _std_bin_inte1 = _std_bin[_std_bin <= _bin_lb]
152
+ _std_bin_inte2 = _std_bin[_std_bin >= _cntr]
152
153
 
153
- if _shift_mode == 'mobility':
154
- _aps_bin /= _shift
154
+ if _shift_mode == 'mobility':
155
+ _aps_bin /= _shift
155
156
 
156
- elif _shift_mode == 'aerodynamic':
157
- _smps_bin *= _shift
157
+ elif _shift_mode == 'aerodynamic':
158
+ _smps_bin *= _shift
158
159
 
159
- ## merge
160
- _merge_lst = []
161
- for _bin_smps, _bin_aps, _dt_smps, _dt_aps, _sh in zip(_smps_bin, _aps_bin, _smps.values, _aps.values, _shift):
162
- ## remove
160
+ ## merge
161
+ _merge_lst = []
162
+ for _bin_smps, _bin_aps, _dt_smps, _dt_aps, _sh in zip(_smps_bin, _aps_bin, _smps.values, _aps.values, _shift):
163
+ ## remove
163
164
 
164
- ## keep complete smps bins and data
165
- ## remove the aps bin data lower than smps bin
166
- _condi = _bin_aps >= _bin_smps[-1]
165
+ ## keep complete smps bins and data
166
+ ## remove the aps bin data lower than smps bin
167
+ _condi = _bin_aps >= _bin_smps[-1]
167
168
 
168
- _merge_bin = np.hstack((_bin_smps, _bin_aps[_condi]))
169
- _merge_dt = np.hstack((_dt_smps, _dt_aps[_condi]))
169
+ _merge_bin = np.hstack((_bin_smps, _bin_aps[_condi]))
170
+ _merge_dt = np.hstack((_dt_smps, _dt_aps[_condi]))
170
171
 
171
- # _merge_fit_loc = (_merge_bin<_aps_hb)&(_merge_bin>_smps_lb)
172
- _merge_fit_loc = (_merge_bin < 1500) & (_merge_bin > _smps_lb)
172
+ # _merge_fit_loc = (_merge_bin<_aps_hb)&(_merge_bin>_smps_lb)
173
+ _merge_fit_loc = (_merge_bin < 1500) & (_merge_bin > _smps_lb)
173
174
 
174
- ## coeA and coeB
175
- _unvpl_fc = unvpline(np.log(_merge_bin[_merge_fit_loc]), np.log(_merge_dt[_merge_fit_loc]), s=50)
176
- # _unvpl_fc = unvpline(_merge_bin[_merge_fit_loc],_merge_dt[_merge_fit_loc],s=150)
177
- # _inte_log_fc = interp1d(n.log10(_merge_bin[_merge_fit_loc]),n.log10(_merge_dt[_merge_fit_loc]),
178
- # kind='linear',fill_value='extrapolate')
179
- _inte_fc = interp1d(_merge_bin, _merge_dt, kind='linear', fill_value='extrapolate')
175
+ ## coeA and coeB
176
+ _unvpl_fc = unvpline(np.log(_merge_bin[_merge_fit_loc]), np.log(_merge_dt[_merge_fit_loc]), s=50)
177
+ # _unvpl_fc = unvpline(_merge_bin[_merge_fit_loc],_merge_dt[_merge_fit_loc],s=150)
178
+ # _inte_log_fc = interp1d(n.log10(_merge_bin[_merge_fit_loc]),n.log10(_merge_dt[_merge_fit_loc]),
179
+ # kind='linear',fill_value='extrapolate')
180
+ _inte_fc = interp1d(_merge_bin, _merge_dt, kind='linear', fill_value='extrapolate')
180
181
 
181
- __merge = np.exp(_unvpl_fc(np.log(_std_bin_merge)))
182
- # __merge = _unvpl_fc(_std_bin_merge)
182
+ __merge = np.exp(_unvpl_fc(np.log(_std_bin_merge)))
183
+ # __merge = _unvpl_fc(_std_bin_merge)
183
184
 
184
- _merge_dt_fit = np.hstack((_inte_fc(_std_bin_inte1), __merge, _inte_fc(_std_bin_inte2)))
185
- # _merge_dt_fit = __merge
186
- # __test_plot(_bin_smps,_dt_smps,_bin_aps,_dt_aps,_std_bin,_merge_dt_fit,_merge_bin,_merge_dt,_sh)
185
+ _merge_dt_fit = np.hstack((_inte_fc(_std_bin_inte1), __merge, _inte_fc(_std_bin_inte2)))
186
+ # _merge_dt_fit = __merge
187
+ # __test_plot(_bin_smps,_dt_smps,_bin_aps,_dt_aps,_std_bin,_merge_dt_fit,_merge_bin,_merge_dt,_sh)
187
188
 
188
- _merge_lst.append(_merge_dt_fit)
189
+ _merge_lst.append(_merge_dt_fit)
189
190
 
190
- _df_merge = DataFrame(_merge_lst, columns=_std_bin, index=_merge_idx)
191
- _df_merge = _df_merge.mask(_df_merge < 0)
191
+ _df_merge = DataFrame(_merge_lst, columns=_std_bin, index=_merge_idx)
192
+ _df_merge = _df_merge.mask(_df_merge < 0)
192
193
 
193
- ## process output df
194
- ## average, align with index
195
- def _out_df(*_df_arg, **_df_kwarg):
196
- _df = DataFrame(*_df_arg, **_df_kwarg).reindex(_ori_idx)
197
- _df.index.name = 'time'
198
- return _df
194
+ ## process output df
195
+ ## average, align with index
196
+ def _out_df(*_df_arg, **_df_kwarg):
197
+ _df = DataFrame(*_df_arg, **_df_kwarg).reindex(_ori_idx)
198
+ _df.index.name = 'time'
199
+ return _df
199
200
 
200
- return _out_df(_df_merge), _out_df(_shift_ori ** 2)
201
+ return _out_df(_df_merge), _out_df(_shift_ori ** 2)
201
202
 
202
203
 
203
204
  ## aps_fit_highbound : the diameter I choose randomly
204
205
  def _merge_SMPS_APS(df_smps, df_aps, aps_unit, shift_mode, smps_overlap_lowbound, aps_fit_highbound):
205
- df_smps, df_aps = _union_index(df_smps, df_aps)
206
+ df_smps, df_aps = _union_index(df_smps, df_aps)
206
207
 
207
- # print(f'\nMerge data :')
208
- # print(f' APS fittint higher diameter : {aps_fit_highbound:4d} nm')
209
- # print(f' SMPS overlap lower diameter : {smps_overlap_lowbound:4d} nm')
210
- # print(f' Average time : {self.data_freq:>4s}\n')
208
+ # print(f'\nMerge data :')
209
+ # print(f' APS fittint higher diameter : {aps_fit_highbound:4d} nm')
210
+ # print(f' SMPS overlap lower diameter : {smps_overlap_lowbound:4d} nm')
211
+ # print(f' Average time : {self.data_freq:>4s}\n')
211
212
 
212
- ## get data, remove 'total' and 'mode'
213
- ## set to the same units
214
- smps, aps = df_smps, df_aps
215
- smps.columns = smps.keys().to_numpy(float)
216
- aps.columns = aps.keys().to_numpy(float)
213
+ ## get data, remove 'total' and 'mode'
214
+ ## set to the same units
215
+ smps, aps = df_smps, df_aps
216
+ smps.columns = smps.keys().to_numpy(float)
217
+ aps.columns = aps.keys().to_numpy(float)
217
218
 
218
- if aps_unit == 'um':
219
- aps.columns = aps.keys() * 1e3
219
+ if aps_unit == 'um':
220
+ aps.columns = aps.keys() * 1e3
220
221
 
221
- ## shift infomation, calculate by powerlaw fitting
222
- shift, coe = _overlap_fitting(smps, aps, smps_overlap_lowbound, aps_fit_highbound)
222
+ ## shift infomation, calculate by powerlaw fitting
223
+ shift, coe = _overlap_fitting(smps, aps, smps_overlap_lowbound, aps_fit_highbound)
223
224
 
224
- ## process data by shift infomation, and average data
225
- qc_cond, shift = _shift_data_process(shift)
225
+ ## process data by shift infomation, and average data
226
+ qc_cond, shift = _shift_data_process(shift)
226
227
 
227
- ## merge aps and smps..
228
- merge_data, density = _merge_data(smps, aps, shift, shift_mode, smps_overlap_lowbound, aps_fit_highbound, coe)
229
- density.columns = ['density']
228
+ ## merge aps and smps..
229
+ merge_data, density = _merge_data(smps, aps, shift, shift_mode, smps_overlap_lowbound, aps_fit_highbound, coe)
230
+ density.columns = ['density']
230
231
 
231
- ## add total and mode
232
- # merge_total = merge_data.sum(axis=1,min_count=1).copy()
233
- # merge_mode = merge_data.idxmax(axis=1).astype(float).copy()
232
+ ## add total and mode
233
+ # merge_total = merge_data.sum(axis=1,min_count=1).copy()
234
+ # merge_mode = merge_data.idxmax(axis=1).astype(float).copy()
234
235
 
235
- # merge_data['total'] = merge_total
236
- # merge_data['mode'] = merge_mode
236
+ # merge_data['total'] = merge_total
237
+ # merge_data['mode'] = merge_mode
237
238
 
238
- ## out
239
- out_dic = {
240
- 'data_all': merge_data,
241
- 'data_qc': merge_data.loc[qc_cond],
242
- 'density_all': density,
243
- 'density_qc': density.loc[qc_cond],
244
- }
239
+ ## out
240
+ out_dic = {
241
+ 'data_all': merge_data,
242
+ 'data_qc': merge_data.loc[qc_cond],
243
+ 'density_all': density,
244
+ 'density_qc': density.loc[qc_cond],
245
+ }
245
246
 
246
- ## process data
247
+ ## process data
247
248
 
248
- for _nam, _df in out_dic.items():
249
- out_dic[_nam] = _df.reindex(df_aps.index).copy()
249
+ for _nam, _df in out_dic.items():
250
+ out_dic[_nam] = _df.reindex(df_aps.index).copy()
250
251
 
251
- # merge_data = merge_data.reindex(df_aps.index)
252
- # density = density.reindex(df_aps.index)
252
+ # merge_data = merge_data.reindex(df_aps.index)
253
+ # density = density.reindex(df_aps.index)
253
254
 
254
- return out_dic
255
+ return out_dic