AeroViz 0.1.3__py3-none-any.whl → 0.1.3b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of AeroViz might be problematic. Click here for more details.

Files changed (107) hide show
  1. AeroViz/__init__.py +4 -4
  2. AeroViz/dataProcess/Chemistry/__init__.py +38 -38
  3. AeroViz/dataProcess/Chemistry/_calculate.py +15 -15
  4. AeroViz/dataProcess/Chemistry/_isoropia.py +69 -68
  5. AeroViz/dataProcess/Chemistry/_mass_volume.py +158 -158
  6. AeroViz/dataProcess/Chemistry/_ocec.py +109 -109
  7. AeroViz/dataProcess/Chemistry/_partition.py +19 -18
  8. AeroViz/dataProcess/Chemistry/_teom.py +8 -11
  9. AeroViz/dataProcess/Optical/_IMPROVE.py +40 -39
  10. AeroViz/dataProcess/Optical/__init__.py +35 -35
  11. AeroViz/dataProcess/Optical/_absorption.py +35 -35
  12. AeroViz/dataProcess/Optical/_extinction.py +25 -24
  13. AeroViz/dataProcess/Optical/_mie.py +5 -6
  14. AeroViz/dataProcess/Optical/_mie_sd.py +89 -90
  15. AeroViz/dataProcess/Optical/_scattering.py +16 -16
  16. AeroViz/dataProcess/SizeDistr/__init__.py +37 -37
  17. AeroViz/dataProcess/SizeDistr/__merge.py +159 -158
  18. AeroViz/dataProcess/SizeDistr/_merge.py +155 -154
  19. AeroViz/dataProcess/SizeDistr/_merge_v1.py +162 -161
  20. AeroViz/dataProcess/SizeDistr/_merge_v2.py +153 -152
  21. AeroViz/dataProcess/SizeDistr/_merge_v3.py +326 -326
  22. AeroViz/dataProcess/SizeDistr/_merge_v4.py +272 -274
  23. AeroViz/dataProcess/SizeDistr/_size_distr.py +51 -51
  24. AeroViz/dataProcess/VOC/__init__.py +7 -7
  25. AeroViz/dataProcess/VOC/_potential_par.py +53 -55
  26. AeroViz/dataProcess/__init__.py +4 -4
  27. AeroViz/dataProcess/core/__init__.py +59 -58
  28. AeroViz/plot/__init__.py +6 -1
  29. AeroViz/plot/bar.py +126 -0
  30. AeroViz/plot/box.py +68 -0
  31. AeroViz/plot/distribution/distribution.py +421 -427
  32. AeroViz/plot/meteorology/meteorology.py +240 -292
  33. AeroViz/plot/optical/__init__.py +0 -1
  34. AeroViz/plot/optical/optical.py +230 -230
  35. AeroViz/plot/pie.py +198 -0
  36. AeroViz/plot/regression.py +210 -0
  37. AeroViz/plot/scatter.py +99 -0
  38. AeroViz/plot/templates/__init__.py +0 -3
  39. AeroViz/plot/templates/contour.py +25 -25
  40. AeroViz/plot/templates/corr_matrix.py +86 -93
  41. AeroViz/plot/templates/diurnal_pattern.py +24 -24
  42. AeroViz/plot/templates/koschmieder.py +106 -106
  43. AeroViz/plot/templates/metal_heatmap.py +34 -34
  44. AeroViz/plot/timeseries/timeseries.py +53 -60
  45. AeroViz/plot/utils/__init__.py +2 -1
  46. AeroViz/plot/utils/_color.py +57 -57
  47. AeroViz/plot/utils/_unit.py +48 -48
  48. AeroViz/plot/utils/plt_utils.py +92 -0
  49. AeroViz/plot/utils/sklearn_utils.py +49 -0
  50. AeroViz/plot/violin.py +79 -0
  51. AeroViz/process/__init__.py +15 -15
  52. AeroViz/process/core/DataProc.py +9 -9
  53. AeroViz/process/core/SizeDist.py +81 -81
  54. AeroViz/process/method/PyMieScatt_update.py +488 -488
  55. AeroViz/process/method/mie_theory.py +231 -229
  56. AeroViz/process/method/prop.py +40 -40
  57. AeroViz/process/script/AbstractDistCalc.py +103 -103
  58. AeroViz/process/script/Chemical.py +166 -166
  59. AeroViz/process/script/IMPACT.py +40 -40
  60. AeroViz/process/script/IMPROVE.py +152 -152
  61. AeroViz/process/script/Others.py +45 -45
  62. AeroViz/process/script/PSD.py +26 -26
  63. AeroViz/process/script/PSD_dry.py +69 -70
  64. AeroViz/process/script/retrieve_RI.py +50 -51
  65. AeroViz/rawDataReader/__init__.py +57 -57
  66. AeroViz/rawDataReader/core/__init__.py +328 -326
  67. AeroViz/rawDataReader/script/AE33.py +18 -18
  68. AeroViz/rawDataReader/script/AE43.py +20 -20
  69. AeroViz/rawDataReader/script/APS_3321.py +30 -30
  70. AeroViz/rawDataReader/script/Aurora.py +23 -23
  71. AeroViz/rawDataReader/script/BC1054.py +40 -40
  72. AeroViz/rawDataReader/script/EPA_vertical.py +9 -9
  73. AeroViz/rawDataReader/script/GRIMM.py +21 -21
  74. AeroViz/rawDataReader/script/IGAC_TH.py +67 -67
  75. AeroViz/rawDataReader/script/IGAC_ZM.py +59 -59
  76. AeroViz/rawDataReader/script/MA350.py +39 -39
  77. AeroViz/rawDataReader/script/NEPH.py +74 -74
  78. AeroViz/rawDataReader/script/OCEC_LCRES.py +21 -21
  79. AeroViz/rawDataReader/script/OCEC_RES.py +16 -16
  80. AeroViz/rawDataReader/script/SMPS_TH.py +25 -25
  81. AeroViz/rawDataReader/script/SMPS_aim11.py +32 -32
  82. AeroViz/rawDataReader/script/SMPS_genr.py +31 -31
  83. AeroViz/rawDataReader/script/TEOM.py +28 -28
  84. AeroViz/rawDataReader/script/Table.py +12 -12
  85. AeroViz/rawDataReader/script/VOC_TH.py +16 -16
  86. AeroViz/rawDataReader/script/VOC_ZM.py +28 -28
  87. AeroViz/rawDataReader/script/__init__.py +20 -20
  88. AeroViz/rawDataReader/utils/config.py +161 -161
  89. AeroViz/tools/database.py +65 -65
  90. AeroViz/tools/dataclassifier.py +106 -106
  91. AeroViz/tools/dataprinter.py +51 -51
  92. AeroViz/tools/datareader.py +38 -38
  93. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/METADATA +5 -4
  94. AeroViz-0.1.3b0.dist-info/RECORD +110 -0
  95. AeroViz/config/__init__.py +0 -0
  96. AeroViz/plot/improve/__init__.py +0 -1
  97. AeroViz/plot/improve/improve.py +0 -240
  98. AeroViz/plot/optical/aethalometer.py +0 -77
  99. AeroViz/plot/templates/event_evolution.py +0 -65
  100. AeroViz/plot/templates/regression.py +0 -256
  101. AeroViz/plot/templates/scatter.py +0 -130
  102. AeroViz/plot/templates/templates.py +0 -398
  103. AeroViz/plot/utils/_decorator.py +0 -74
  104. AeroViz-0.1.3.dist-info/RECORD +0 -111
  105. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/LICENSE +0 -0
  106. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/WHEEL +0 -0
  107. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/top_level.txt +0 -0
@@ -1,169 +1,169 @@
1
1
  # Description: Configuration file for rawDataReader
2
2
 
3
3
  instrument = [
4
- "NEPH",
5
- "Aurora",
6
- "AE33",
7
- "AE43",
8
- "Table",
9
- "EPA_vertical",
10
- "SMPS_NTU(SMPS_3080_3788)",
11
- "SMPS_TH(SMPS_3080_3772)",
12
- "APS_3321",
13
- "TEOM",
14
- "OCEC"
4
+ "NEPH",
5
+ "Aurora",
6
+ "AE33",
7
+ "AE43",
8
+ "Table",
9
+ "EPA_vertical",
10
+ "SMPS_NTU(SMPS_3080_3788)",
11
+ "SMPS_TH(SMPS_3080_3772)",
12
+ "APS_3321",
13
+ "TEOM",
14
+ "OCEC"
15
15
  ]
16
16
 
17
17
  meta = {
18
- "NEPH": {
19
- "pattern": "*.DAT",
20
- "freq": "5min",
21
- "deter_key": {"Scatter Coe. (550 nm)": ["G"]},
22
- },
23
-
24
- "Aurora": {
25
- "pattern": "*.csv",
26
- "freq": "1min",
27
- "deter_key": {"Scatter Coe. (550 nm)": ["G"]},
28
- },
29
-
30
- "Table": {
31
- "pattern": "*.csv",
32
- "freq": "1h",
33
- "deter_key": None,
34
- },
35
-
36
- "EPA_vertical": {
37
- "pattern": "*.csv",
38
- "freq": "1h",
39
- "deter_key": None,
40
- },
41
-
42
- "SMPS_TH": {
43
- "pattern": "*.txt",
44
- "freq": "6min",
45
- "deter_key": {"Bins": ["all"]},
46
- },
47
-
48
- "SMPS_genr": {
49
- "pattern": "*.txt",
50
- "freq": "6min",
51
- "deter_key": {"Bins": ["all"]},
52
- },
53
-
54
- "SMPS_aim11": {
55
- "pattern": "*.csv",
56
- "freq": "6min",
57
- "deter_key": {"Bins": ["all"]},
58
- },
59
-
60
- "GRIMM": {
61
- "pattern": "*.dat",
62
- "freq": "6min",
63
- "deter_key": {"Bins": ["all"]},
64
- },
65
-
66
- "APS_3321": {
67
- "pattern": "*.TXT",
68
- "freq": "6min",
69
- "deter_key": {"Bins": ["all"]},
70
- },
71
-
72
- "AE33": {
73
- "pattern": "[!ST|!CT|!FV]*[!log]_AE33*.dat",
74
- "freq": "1min",
75
- "deter_key": {"BC Mass Conc. (880 nm)": ["BC6"]},
76
- },
77
-
78
- "AE43": {
79
- "pattern": "[!ST|!CT|!FV]*[!log]_AE43*.dat",
80
- "freq": "1min",
81
- "deter_key": {"BC Mass Conc. (880 nm)": ["BC6"]},
82
- },
83
-
84
- "BC1054": {
85
- "pattern": "*.csv",
86
- "freq": "1min",
87
- "deter_key": {"BC Mass Conc. (880 nm)": ["BC6"]},
88
- },
89
-
90
- "MA350": {
91
- "pattern": "*.csv",
92
- "freq": "1min",
93
- "deter_key": {"BC Mass Conc. (880 nm)": ["BC5"]},
94
- },
95
-
96
- "TEOM": {
97
- "pattern": "*.csv",
98
- "freq": "6min",
99
- "deter_key": {
100
- "PM1.0 Mass Conc.": ["PM_Total"],
101
- "PM1.0 NV Mass Conc.": ["PM_NV"],
102
- },
103
- },
104
-
105
- "OCEC_LCRES": {
106
- "pattern": "*LCRes.csv",
107
- "freq": "1h",
108
- "deter_key": {
109
- "Thermal OC/EC": ["Thermal_EC", "Thermal_OC"],
110
- "Thermal OC": ["Thermal_OC"],
111
- "Thermal EC": ["Thermal_EC"],
112
- "Optical OC/EC": ["Optical_EC", "Optical_OC"],
113
- "Optical OC": ["Optical_OC"],
114
- "Optical EC": ["Optical_EC"],
115
- },
116
- },
117
-
118
- "OCEC_RES": {
119
- "pattern": "*[!LC|!Blanks]Res.csv",
120
- "freq": "1h",
121
- "deter_key": None,
122
- },
123
-
124
- "IGAC_TH": {
125
- "pattern": "*.csv",
126
- "freq": "1h",
127
- "deter_key": {
128
- "Na+": ["Na+"],
129
- "NH4+": ["NH4+"],
130
- "K+": ["K+"],
131
- "Mg2+": ["Mg2+"],
132
- "Ca2+": ["Ca2+"],
133
- "Cl-": ["Cl-"],
134
- "NO2-": ["NO2-"],
135
- "NO3-": ["NO3-"],
136
- "SO42-": ["SO42-"],
137
- "Main Salt (NH4+, NO3-, SO42-)": ["NO3-", "SO42-", "NH4+"],
138
- },
139
- },
140
-
141
- "IGAC_ZM": {
142
- "pattern": "*.csv",
143
- "freq": "1h",
144
- "deter_key": {"Na+": ["Na+"],
145
- "NH4+": ["NH4+"],
146
- "K+": ["K+"],
147
- "Mg2+": ["Mg2+"],
148
- "Ca2+": ["Ca2+"],
149
- "Cl-": ["Cl-"],
150
- "NO2-": ["NO2-"],
151
- "NO3-": ["NO3-"],
152
- "SO42-": ["SO42-"],
153
- "Main Salt (NH4+, NO3-, SO42-)": ["NO3-", "SO42-", "NH4+"],
154
- },
155
- },
156
-
157
- "VOC_TH": {
158
- "pattern": "*.csv",
159
- "freq": "1h",
160
- "deter_key": None,
161
- },
162
-
163
- "VOC_ZM": {
164
- "pattern": "*.csv",
165
- "freq": "1h",
166
- "deter_key": None,
167
- },
18
+ "NEPH": {
19
+ "pattern": "*.DAT",
20
+ "freq": "5min",
21
+ "deter_key": {"Scatter Coe. (550 nm)": ["G"]},
22
+ },
23
+
24
+ "Aurora": {
25
+ "pattern": "*.csv",
26
+ "freq": "1min",
27
+ "deter_key": {"Scatter Coe. (550 nm)": ["G"]},
28
+ },
29
+
30
+ "Table": {
31
+ "pattern": "*.csv",
32
+ "freq": "1h",
33
+ "deter_key": None,
34
+ },
35
+
36
+ "EPA_vertical": {
37
+ "pattern": "*.csv",
38
+ "freq": "1h",
39
+ "deter_key": None,
40
+ },
41
+
42
+ "SMPS_TH": {
43
+ "pattern": "*.txt",
44
+ "freq": "6min",
45
+ "deter_key": {"Bins": ["all"]},
46
+ },
47
+
48
+ "SMPS_genr": {
49
+ "pattern": "*.txt",
50
+ "freq": "6min",
51
+ "deter_key": {"Bins": ["all"]},
52
+ },
53
+
54
+ "SMPS_aim11": {
55
+ "pattern": "*.csv",
56
+ "freq": "6min",
57
+ "deter_key": {"Bins": ["all"]},
58
+ },
59
+
60
+ "GRIMM": {
61
+ "pattern": "*.dat",
62
+ "freq": "6min",
63
+ "deter_key": {"Bins": ["all"]},
64
+ },
65
+
66
+ "APS_3321": {
67
+ "pattern": "*.TXT",
68
+ "freq": "6min",
69
+ "deter_key": {"Bins": ["all"]},
70
+ },
71
+
72
+ "AE33": {
73
+ "pattern": "[!ST|!CT|!FV]*[!log]_AE33*.dat",
74
+ "freq": "1min",
75
+ "deter_key": {"BC Mass Conc. (880 nm)": ["BC6"]},
76
+ },
77
+
78
+ "AE43": {
79
+ "pattern": "[!ST|!CT|!FV]*[!log]_AE43*.dat",
80
+ "freq": "1min",
81
+ "deter_key": {"BC Mass Conc. (880 nm)": ["BC6"]},
82
+ },
83
+
84
+ "BC1054": {
85
+ "pattern": "*.csv",
86
+ "freq": "1min",
87
+ "deter_key": {"BC Mass Conc. (880 nm)": ["BC6"]},
88
+ },
89
+
90
+ "MA350": {
91
+ "pattern": "*.csv",
92
+ "freq": "1min",
93
+ "deter_key": {"BC Mass Conc. (880 nm)": ["BC5"]},
94
+ },
95
+
96
+ "TEOM": {
97
+ "pattern": "*.csv",
98
+ "freq": "6min",
99
+ "deter_key": {
100
+ "PM1.0 Mass Conc.": ["PM_Total"],
101
+ "PM1.0 NV Mass Conc.": ["PM_NV"],
102
+ },
103
+ },
104
+
105
+ "OCEC_LCRES": {
106
+ "pattern": "*LCRes.csv",
107
+ "freq": "1h",
108
+ "deter_key": {
109
+ "Thermal OC/EC": ["Thermal_EC", "Thermal_OC"],
110
+ "Thermal OC": ["Thermal_OC"],
111
+ "Thermal EC": ["Thermal_EC"],
112
+ "Optical OC/EC": ["Optical_EC", "Optical_OC"],
113
+ "Optical OC": ["Optical_OC"],
114
+ "Optical EC": ["Optical_EC"],
115
+ },
116
+ },
117
+
118
+ "OCEC_RES": {
119
+ "pattern": "*[!LC|!Blanks]Res.csv",
120
+ "freq": "1h",
121
+ "deter_key": None,
122
+ },
123
+
124
+ "IGAC_TH": {
125
+ "pattern": "*.csv",
126
+ "freq": "1h",
127
+ "deter_key": {
128
+ "Na+": ["Na+"],
129
+ "NH4+": ["NH4+"],
130
+ "K+": ["K+"],
131
+ "Mg2+": ["Mg2+"],
132
+ "Ca2+": ["Ca2+"],
133
+ "Cl-": ["Cl-"],
134
+ "NO2-": ["NO2-"],
135
+ "NO3-": ["NO3-"],
136
+ "SO42-": ["SO42-"],
137
+ "Main Salt (NH4+, NO3-, SO42-)": ["NO3-", "SO42-", "NH4+"],
138
+ },
139
+ },
140
+
141
+ "IGAC_ZM": {
142
+ "pattern": "*.csv",
143
+ "freq": "1h",
144
+ "deter_key": {"Na+": ["Na+"],
145
+ "NH4+": ["NH4+"],
146
+ "K+": ["K+"],
147
+ "Mg2+": ["Mg2+"],
148
+ "Ca2+": ["Ca2+"],
149
+ "Cl-": ["Cl-"],
150
+ "NO2-": ["NO2-"],
151
+ "NO3-": ["NO3-"],
152
+ "SO42-": ["SO42-"],
153
+ "Main Salt (NH4+, NO3-, SO42-)": ["NO3-", "SO42-", "NH4+"],
154
+ },
155
+ },
156
+
157
+ "VOC_TH": {
158
+ "pattern": "*.csv",
159
+ "freq": "1h",
160
+ "deter_key": None,
161
+ },
162
+
163
+ "VOC_ZM": {
164
+ "pattern": "*.csv",
165
+ "freq": "1h",
166
+ "deter_key": None,
167
+ },
168
168
 
169
169
  }
AeroViz/tools/database.py CHANGED
@@ -6,92 +6,92 @@ from pandas import read_csv, DataFrame
6
6
 
7
7
 
8
8
  def load_default_chemical_data():
9
- # The following data is from the chemical composition of real atmospheric particles.
10
- #
11
- # The six main chemical components that comprised PM2.5 are listed in the data.
12
- # Here, we test the radar charts to see if we can clearly identify how the
13
- # chemical components vary between the three pollutant scenarios:
14
- #
15
- # 1) Whole sampling period (Total)
16
- # 2) Clean period (Clean)
17
- # 3) Transition period (Transition)
18
- # 4) Event period (Event)
19
-
20
- data = {
21
- 'Sulfate': [0.01, 0.34, 0.02, 0.71],
22
- 'Nitrate': [0.88, 0.13, 0.34, 0.13],
23
- 'OC': [0.07, 0.95, 0.04, 0.05],
24
- 'EC': [0.20, 0.02, 0.85, 0.19],
25
- 'Soil': [0.20, 0.10, 0.07, 0.01],
26
- 'SS': [0.20, 0.10, 0.07, 0.01]
27
- }
28
-
29
- return DataFrame(data, index=['Total', 'Clean', 'Transition', 'Event'])
9
+ # The following data is from the chemical composition of real atmospheric particles.
10
+ #
11
+ # The six main chemical components that comprised PM2.5 are listed in the data.
12
+ # Here, we test the radar charts to see if we can clearly identify how the
13
+ # chemical components vary between the three pollutant scenarios:
14
+ #
15
+ # 1) Whole sampling period (Total)
16
+ # 2) Clean period (Clean)
17
+ # 3) Transition period (Transition)
18
+ # 4) Event period (Event)
19
+
20
+ data = {
21
+ 'Sulfate': [0.01, 0.34, 0.02, 0.71],
22
+ 'Nitrate': [0.88, 0.13, 0.34, 0.13],
23
+ 'OC': [0.07, 0.95, 0.04, 0.05],
24
+ 'EC': [0.20, 0.02, 0.85, 0.19],
25
+ 'Soil': [0.20, 0.10, 0.07, 0.01],
26
+ 'SS': [0.20, 0.10, 0.07, 0.01]
27
+ }
28
+
29
+ return DataFrame(data, index=['Total', 'Clean', 'Transition', 'Event'])
30
30
 
31
31
 
32
32
  def load_dataset_by_url(dataset_name: Literal["Tunghai", "Taipei"] = "Tunghai") -> DataFrame:
33
- import requests
34
- dataset_uris = {
35
- "Tunghai": "https://raw.githubusercontent.com/alex870521/DataPlot/main/DataPlot/config/default_data.csv"
36
- }
33
+ import requests
34
+ dataset_uris = {
35
+ "Tunghai": "https://raw.githubusercontent.com/alex870521/DataPlot/main/DataPlot/config/default_data.csv"
36
+ }
37
37
 
38
- # Ensure the dataset name is valid
39
- if dataset_name not in dataset_uris:
40
- raise ValueError(f"Dataset {dataset_name} is not supported.")
38
+ # Ensure the dataset name is valid
39
+ if dataset_name not in dataset_uris:
40
+ raise ValueError(f"Dataset {dataset_name} is not supported.")
41
41
 
42
- url = dataset_uris[dataset_name]
42
+ url = dataset_uris[dataset_name]
43
43
 
44
- # Make a request to the URL
45
- response = requests.get(url)
44
+ # Make a request to the URL
45
+ response = requests.get(url)
46
46
 
47
- if response.status_code == 200:
48
- return read_csv(StringIO(response.text), parse_dates=['Time'], index_col='Time')
49
- else:
50
- print(f"Failed to download file: {response.status_code}")
51
- print(response.text) # Print the response text for debugging
52
- return DataFrame() # Return an empty DataFrame in case of failure
47
+ if response.status_code == 200:
48
+ return read_csv(StringIO(response.text), parse_dates=['Time'], index_col='Time')
49
+ else:
50
+ print(f"Failed to download file: {response.status_code}")
51
+ print(response.text) # Print the response text for debugging
52
+ return DataFrame() # Return an empty DataFrame in case of failure
53
53
 
54
54
 
55
55
  def load_dataset_local(dataset_name: Literal["Tunghai", "Taipei", "PNSD"] = "Tunghai") -> DataFrame:
56
- base_dir = Path(__file__).resolve().parent.parent
57
- config_dir = base_dir / 'config'
56
+ base_dir = Path(__file__).resolve().parent.parent
57
+ config_dir = base_dir / 'config'
58
58
 
59
- dataset_paths = {
60
- "Tunghai": config_dir / 'DEFAULT_DATA.csv',
61
- "Taipei": config_dir / 'DEFAULT_DATA.csv',
62
- "PNSD": config_dir / 'DEFAULT_PNSD_DATA.csv'
63
- }
59
+ dataset_paths = {
60
+ "Tunghai": config_dir / 'DEFAULT_DATA.csv',
61
+ "Taipei": config_dir / 'DEFAULT_DATA.csv',
62
+ "PNSD": config_dir / 'DEFAULT_PNSD_DATA.csv'
63
+ }
64
64
 
65
- if dataset_name not in dataset_paths:
66
- raise ValueError(f"Dataset {dataset_name} is not supported.")
65
+ if dataset_name not in dataset_paths:
66
+ raise ValueError(f"Dataset {dataset_name} is not supported.")
67
67
 
68
- file_path = dataset_paths[dataset_name]
68
+ file_path = dataset_paths[dataset_name]
69
69
 
70
- if not file_path.exists():
71
- raise FileNotFoundError(f"The file {file_path} does not exist.")
70
+ if not file_path.exists():
71
+ raise FileNotFoundError(f"The file {file_path} does not exist.")
72
72
 
73
- return read_csv(file_path, parse_dates=['Time'], index_col='Time', na_values=('-', 'E', 'F'), low_memory=False)
73
+ return read_csv(file_path, parse_dates=['Time'], index_col='Time', na_values=('-', 'E', 'F'), low_memory=False)
74
74
 
75
75
 
76
76
  class DataBase:
77
- def __new__(cls, file_path: Path | str = None, load_data: bool = False, load_PSD: bool = False):
78
- print(f'\t\t \033[96m --- Loading Data --- \033[0m')
79
- if file_path is not None:
80
- file_path = Path(file_path)
81
- if file_path.exists():
82
- return read_csv(file_path, parse_dates=['Time'], index_col='Time', na_values=('-', 'E', 'F'),
83
- low_memory=False)
77
+ def __new__(cls, file_path: Path | str = None, load_data: bool = False, load_PSD: bool = False):
78
+ print(f'Loading:\033[96m Default Data\033[0m')
79
+ if file_path is not None:
80
+ file_path = Path(file_path)
81
+ if file_path.exists():
82
+ return read_csv(file_path, parse_dates=['Time'], index_col='Time', na_values=('-', 'E', 'F'),
83
+ low_memory=False)
84
84
 
85
- if load_data ^ load_PSD:
86
- if load_data:
87
- return load_dataset_local("Tunghai")
85
+ if load_data ^ load_PSD:
86
+ if load_data:
87
+ return load_dataset_local("Tunghai")
88
88
 
89
- elif load_PSD:
90
- return load_dataset_local("PNSD")
89
+ elif load_PSD:
90
+ return load_dataset_local("PNSD")
91
91
 
92
- else:
93
- raise ValueError("Exactly one of 'load_data' or 'load_PSD' must be True.")
92
+ else:
93
+ raise ValueError("Exactly one of 'load_data' or 'load_PSD' must be True.")
94
94
 
95
95
 
96
96
  if __name__ == '__main__':
97
- df = DataBase("Tunghai")
97
+ df = DataBase("Tunghai")