AeroViz 0.1.3__py3-none-any.whl → 0.1.3b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of AeroViz might be problematic. Click here for more details.
- AeroViz/__init__.py +4 -4
- AeroViz/dataProcess/Chemistry/__init__.py +38 -38
- AeroViz/dataProcess/Chemistry/_calculate.py +15 -15
- AeroViz/dataProcess/Chemistry/_isoropia.py +69 -68
- AeroViz/dataProcess/Chemistry/_mass_volume.py +158 -158
- AeroViz/dataProcess/Chemistry/_ocec.py +109 -109
- AeroViz/dataProcess/Chemistry/_partition.py +19 -18
- AeroViz/dataProcess/Chemistry/_teom.py +8 -11
- AeroViz/dataProcess/Optical/_IMPROVE.py +40 -39
- AeroViz/dataProcess/Optical/__init__.py +35 -35
- AeroViz/dataProcess/Optical/_absorption.py +35 -35
- AeroViz/dataProcess/Optical/_extinction.py +25 -24
- AeroViz/dataProcess/Optical/_mie.py +5 -6
- AeroViz/dataProcess/Optical/_mie_sd.py +89 -90
- AeroViz/dataProcess/Optical/_scattering.py +16 -16
- AeroViz/dataProcess/SizeDistr/__init__.py +37 -37
- AeroViz/dataProcess/SizeDistr/__merge.py +159 -158
- AeroViz/dataProcess/SizeDistr/_merge.py +155 -154
- AeroViz/dataProcess/SizeDistr/_merge_v1.py +162 -161
- AeroViz/dataProcess/SizeDistr/_merge_v2.py +153 -152
- AeroViz/dataProcess/SizeDistr/_merge_v3.py +326 -326
- AeroViz/dataProcess/SizeDistr/_merge_v4.py +272 -274
- AeroViz/dataProcess/SizeDistr/_size_distr.py +51 -51
- AeroViz/dataProcess/VOC/__init__.py +7 -7
- AeroViz/dataProcess/VOC/_potential_par.py +53 -55
- AeroViz/dataProcess/__init__.py +4 -4
- AeroViz/dataProcess/core/__init__.py +59 -58
- AeroViz/plot/__init__.py +6 -1
- AeroViz/plot/bar.py +126 -0
- AeroViz/plot/box.py +68 -0
- AeroViz/plot/distribution/distribution.py +421 -427
- AeroViz/plot/meteorology/meteorology.py +240 -292
- AeroViz/plot/optical/__init__.py +0 -1
- AeroViz/plot/optical/optical.py +230 -230
- AeroViz/plot/pie.py +198 -0
- AeroViz/plot/regression.py +210 -0
- AeroViz/plot/scatter.py +99 -0
- AeroViz/plot/templates/__init__.py +0 -3
- AeroViz/plot/templates/contour.py +25 -25
- AeroViz/plot/templates/corr_matrix.py +86 -93
- AeroViz/plot/templates/diurnal_pattern.py +24 -24
- AeroViz/plot/templates/koschmieder.py +106 -106
- AeroViz/plot/templates/metal_heatmap.py +34 -34
- AeroViz/plot/timeseries/timeseries.py +53 -60
- AeroViz/plot/utils/__init__.py +2 -1
- AeroViz/plot/utils/_color.py +57 -57
- AeroViz/plot/utils/_unit.py +48 -48
- AeroViz/plot/utils/plt_utils.py +92 -0
- AeroViz/plot/utils/sklearn_utils.py +49 -0
- AeroViz/plot/violin.py +79 -0
- AeroViz/process/__init__.py +15 -15
- AeroViz/process/core/DataProc.py +9 -9
- AeroViz/process/core/SizeDist.py +81 -81
- AeroViz/process/method/PyMieScatt_update.py +488 -488
- AeroViz/process/method/mie_theory.py +231 -229
- AeroViz/process/method/prop.py +40 -40
- AeroViz/process/script/AbstractDistCalc.py +103 -103
- AeroViz/process/script/Chemical.py +166 -166
- AeroViz/process/script/IMPACT.py +40 -40
- AeroViz/process/script/IMPROVE.py +152 -152
- AeroViz/process/script/Others.py +45 -45
- AeroViz/process/script/PSD.py +26 -26
- AeroViz/process/script/PSD_dry.py +69 -70
- AeroViz/process/script/retrieve_RI.py +50 -51
- AeroViz/rawDataReader/__init__.py +57 -57
- AeroViz/rawDataReader/core/__init__.py +328 -326
- AeroViz/rawDataReader/script/AE33.py +18 -18
- AeroViz/rawDataReader/script/AE43.py +20 -20
- AeroViz/rawDataReader/script/APS_3321.py +30 -30
- AeroViz/rawDataReader/script/Aurora.py +23 -23
- AeroViz/rawDataReader/script/BC1054.py +40 -40
- AeroViz/rawDataReader/script/EPA_vertical.py +9 -9
- AeroViz/rawDataReader/script/GRIMM.py +21 -21
- AeroViz/rawDataReader/script/IGAC_TH.py +67 -67
- AeroViz/rawDataReader/script/IGAC_ZM.py +59 -59
- AeroViz/rawDataReader/script/MA350.py +39 -39
- AeroViz/rawDataReader/script/NEPH.py +74 -74
- AeroViz/rawDataReader/script/OCEC_LCRES.py +21 -21
- AeroViz/rawDataReader/script/OCEC_RES.py +16 -16
- AeroViz/rawDataReader/script/SMPS_TH.py +25 -25
- AeroViz/rawDataReader/script/SMPS_aim11.py +32 -32
- AeroViz/rawDataReader/script/SMPS_genr.py +31 -31
- AeroViz/rawDataReader/script/TEOM.py +28 -28
- AeroViz/rawDataReader/script/Table.py +12 -12
- AeroViz/rawDataReader/script/VOC_TH.py +16 -16
- AeroViz/rawDataReader/script/VOC_ZM.py +28 -28
- AeroViz/rawDataReader/script/__init__.py +20 -20
- AeroViz/rawDataReader/utils/config.py +161 -161
- AeroViz/tools/database.py +65 -65
- AeroViz/tools/dataclassifier.py +106 -106
- AeroViz/tools/dataprinter.py +51 -51
- AeroViz/tools/datareader.py +38 -38
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/METADATA +5 -4
- AeroViz-0.1.3b0.dist-info/RECORD +110 -0
- AeroViz/config/__init__.py +0 -0
- AeroViz/plot/improve/__init__.py +0 -1
- AeroViz/plot/improve/improve.py +0 -240
- AeroViz/plot/optical/aethalometer.py +0 -77
- AeroViz/plot/templates/event_evolution.py +0 -65
- AeroViz/plot/templates/regression.py +0 -256
- AeroViz/plot/templates/scatter.py +0 -130
- AeroViz/plot/templates/templates.py +0 -398
- AeroViz/plot/utils/_decorator.py +0 -74
- AeroViz-0.1.3.dist-info/RECORD +0 -111
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/LICENSE +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/WHEEL +0 -0
- {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/top_level.txt +0 -0
|
@@ -2,79 +2,79 @@ __all__ = ['_basic']
|
|
|
2
2
|
|
|
3
3
|
|
|
4
4
|
def _geometric_prop(_dp, _prop):
|
|
5
|
-
|
|
5
|
+
import numpy as n
|
|
6
6
|
|
|
7
|
-
|
|
8
|
-
|
|
7
|
+
_prop_t = _prop.sum(axis=1)
|
|
8
|
+
_prop_t = _prop_t.where(_prop_t > 0).copy()
|
|
9
9
|
|
|
10
|
-
|
|
11
|
-
|
|
10
|
+
_dp = n.log(_dp)
|
|
11
|
+
_gmd = (((_prop * _dp).sum(axis=1)) / _prop_t.copy())
|
|
12
12
|
|
|
13
|
-
|
|
14
|
-
|
|
13
|
+
_dp_mesh, _gmd_mesh = n.meshgrid(_dp, _gmd)
|
|
14
|
+
_gsd = ((((_dp_mesh - _gmd_mesh) ** 2) * _prop).sum(axis=1) / _prop_t.copy()) ** .5
|
|
15
15
|
|
|
16
|
-
|
|
16
|
+
return _prop_t, _gmd.apply(n.exp), _gsd.apply(n.exp)
|
|
17
17
|
|
|
18
18
|
|
|
19
19
|
def _basic(df, hybrid, unit, bin_rg, input_type):
|
|
20
|
-
|
|
21
|
-
|
|
20
|
+
import numpy as n
|
|
21
|
+
from pandas import DataFrame
|
|
22
22
|
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
23
|
+
## get number conc. data and total, mode
|
|
24
|
+
dN = df
|
|
25
|
+
dN.columns = dN.keys().to_numpy(float)
|
|
26
26
|
|
|
27
|
-
|
|
28
|
-
|
|
27
|
+
dN_ky = dN.keys()[(dN.keys() >= bin_rg[0]) & (dN.keys() <= bin_rg[-1])]
|
|
28
|
+
dN = dN[dN_ky].copy()
|
|
29
29
|
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
30
|
+
out_dic = {}
|
|
31
|
+
## diameter
|
|
32
|
+
dp = dN.keys().to_numpy()
|
|
33
|
+
if hybrid:
|
|
34
|
+
dlog_dp = n.diff(n.log10(dp)).mean()
|
|
35
|
+
else:
|
|
36
|
+
dlog_dp = n.ones(dp.size)
|
|
37
|
+
dlog_dp[:hybrid] = n.diff(n.log10(dp[:hybrid])).mean()
|
|
38
|
+
dlog_dp[hybrid:] = n.diff(n.log10(dp[hybrid:])).mean()
|
|
39
39
|
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
40
|
+
## calculate normalize and non-normalize data
|
|
41
|
+
if input_type == 'norm':
|
|
42
|
+
out_dic['number'] = (dN * dlog_dp).copy()
|
|
43
|
+
out_dic['number_norm'] = dN.copy()
|
|
44
|
+
else:
|
|
45
|
+
out_dic['number'] = dN.copy()
|
|
46
|
+
out_dic['number_norm'] = (dN / dlog_dp).copy()
|
|
47
47
|
|
|
48
|
-
|
|
49
|
-
|
|
48
|
+
out_dic['surface'] = out_dic['number'] * n.pi * dp ** 2
|
|
49
|
+
out_dic['volume'] = out_dic['number'] * n.pi * (dp ** 3) / 6
|
|
50
50
|
|
|
51
|
-
|
|
52
|
-
|
|
51
|
+
out_dic['surface_norm'] = out_dic['number_norm'] * n.pi * dp ** 2
|
|
52
|
+
out_dic['volume_norm'] = out_dic['number_norm'] * n.pi * (dp ** 3) / 6
|
|
53
53
|
|
|
54
|
-
|
|
55
|
-
|
|
54
|
+
## size range mode process
|
|
55
|
+
df_oth = DataFrame(index=dN.index)
|
|
56
56
|
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
57
|
+
bound = n.array([(dp.min(), dp.max() + 1), (10, 25), (25, 100), (100, 1e3), (1e3, 2.5e3), ])
|
|
58
|
+
if unit == 'um':
|
|
59
|
+
bound[1:] /= 1e3
|
|
60
60
|
|
|
61
|
-
|
|
61
|
+
for _tp_nam, _tp_dt in zip(['num', 'surf', 'vol'], [out_dic['number'], out_dic['surface'], out_dic['volume']]):
|
|
62
62
|
|
|
63
|
-
|
|
63
|
+
for _md_nam, _range in zip(['all', 'Nucleation', 'Aitken', 'Accumulation', 'Coarse'], bound):
|
|
64
64
|
|
|
65
|
-
|
|
66
|
-
|
|
65
|
+
_dia = dp[(dp >= _range[0]) & (dp < _range[-1])]
|
|
66
|
+
if ~_dia.any(): continue
|
|
67
67
|
|
|
68
|
-
|
|
68
|
+
_dt = _tp_dt[_dia].copy()
|
|
69
69
|
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
70
|
+
df_oth[f'total_{_tp_nam}_{_md_nam}'], df_oth[f'GMD_{_tp_nam}_{_md_nam}'], df_oth[
|
|
71
|
+
f'GSD_{_tp_nam}_{_md_nam}'] = _geometric_prop(_dia, _dt)
|
|
72
|
+
df_oth[f'mode_{_tp_nam}_{_md_nam}'] = _dt.idxmax(axis=1)
|
|
73
73
|
|
|
74
|
-
|
|
75
|
-
|
|
74
|
+
## out
|
|
75
|
+
out_dic['other'] = df_oth
|
|
76
76
|
|
|
77
|
-
|
|
77
|
+
return out_dic
|
|
78
78
|
|
|
79
79
|
# old 20230113
|
|
80
80
|
|
|
@@ -2,18 +2,18 @@ from ..core import _writter, _run_process
|
|
|
2
2
|
|
|
3
3
|
__all__ = [
|
|
4
4
|
|
|
5
|
-
|
|
5
|
+
'VOC',
|
|
6
6
|
|
|
7
7
|
]
|
|
8
8
|
|
|
9
9
|
|
|
10
10
|
class VOC(_writter):
|
|
11
11
|
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
12
|
+
## Reconstruction
|
|
13
|
+
@_run_process('VOC - basic', 'voc_basic')
|
|
14
|
+
def VOC_basic(self, _df_voc):
|
|
15
|
+
from ._potential_par import _basic
|
|
16
16
|
|
|
17
|
-
|
|
17
|
+
out = _basic(_df_voc)
|
|
18
18
|
|
|
19
|
-
|
|
19
|
+
return self, out
|
|
@@ -1,76 +1,74 @@
|
|
|
1
|
-
from datetime import datetime as dtm
|
|
2
|
-
from pandas import DataFrame, to_datetime, read_json
|
|
3
|
-
from pathlib import Path
|
|
4
1
|
import pickle as pkl
|
|
2
|
+
from pathlib import Path
|
|
5
3
|
|
|
6
|
-
import
|
|
4
|
+
from pandas import DataFrame, read_json
|
|
7
5
|
|
|
8
6
|
|
|
9
7
|
def _basic(_df_voc):
|
|
10
|
-
|
|
11
|
-
|
|
8
|
+
## parameter
|
|
9
|
+
_keys = _df_voc.keys()
|
|
12
10
|
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
11
|
+
with (Path(__file__).parent / 'voc_par.pkl').open('rb') as f:
|
|
12
|
+
_par = pkl.load(f)
|
|
13
|
+
_MW, _MIR, _SOAP, _KOH = _par.loc['MW', _keys], _par.loc['MIR', _keys], _par.loc['SOAP', _keys], _par.loc[
|
|
14
|
+
'KOH', _keys]
|
|
17
15
|
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
16
|
+
with (Path(__file__).parent / 'voc_par.json').open('r', encoding='utf-8', errors='ignore') as f:
|
|
17
|
+
_parr = read_json(f)
|
|
18
|
+
_MW, _MIR, _SOAP, _KOH = _par.loc['MW', _keys], _par.loc['MIR', _keys], _par.loc['SOAP', _keys], _par.loc[
|
|
19
|
+
'KOH', _keys]
|
|
22
20
|
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
21
|
+
_voc_clasfy = {
|
|
22
|
+
'alkane_total': ['Isopentane', 'n-Butane', '2-Methylhexane', 'Cyclopentane', '3-Methylpentane',
|
|
23
|
+
'2,3-Dimethylbutane',
|
|
24
|
+
'2-Methylheptane', 'n-Nonane', 'Methylcyclohexane', '2,4-Dimethylpentane', '2-Methylpentane',
|
|
25
|
+
'n-Decane',
|
|
26
|
+
'n-Heptane', 'Cyclohexane', 'n-Octane', 'Isobutane', '2,2-Dimethylbutane',
|
|
27
|
+
'Methylcyclopentane', 'n-Hexane',
|
|
28
|
+
'2,3,4-Trimethylpentane', '3-Methylhexane', 'n-Undecane', '3-Methylheptane', 'Hexane',
|
|
29
|
+
'2,2,4-Trimethylpentane', 'n-Pentane', 'Ethane', 'Propane'],
|
|
32
30
|
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
|
|
31
|
+
'alkane_total': ['Isoprene', '1-Butene', 'cis-2-Butene', 'Propene', '1.3-Butadiene',
|
|
32
|
+
't-2-Butene', 'cis-2-Pentene', 'Propylene', 'isoprene', '1-Pentene',
|
|
33
|
+
'Ethylene', 't-2-Pentene', '1-Octene'],
|
|
36
34
|
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
35
|
+
'aromatic_total': ['o-Ethyltoluene', '1,3,5-Trimethylbenzene', 'Ethylbenzene', 'm,p-Xylene', 'n-Propylbenzene',
|
|
36
|
+
'Benzene', 'Toluene', '1.2.4-TMB', 'Styrene', 'p-Ethyltoluene', 'o-Xylene',
|
|
37
|
+
'm-Diethylbenzene',
|
|
38
|
+
'1.2.3-TMB', 'Isopropylbenzene', 'm-Ethyltoluene', '2-Ethyltoluene', '1.3.5-TMB',
|
|
39
|
+
'Iso-Propylbenzene',
|
|
40
|
+
'3.4-Ethyltoluene', 'p-Diethylbenzene', '1,2,4-Trimethylbenzene', 'm.p-Xylene',
|
|
41
|
+
'1,2,3-Trimethylbenzene'],
|
|
44
42
|
|
|
45
|
-
|
|
43
|
+
'alkyne_total': ['Acetylene'],
|
|
46
44
|
|
|
47
|
-
|
|
45
|
+
'OVOC': ['Acetaldehyde', 'Ethanol', 'Acetone', 'IPA', 'Ethyl Acetate', 'Butyl Acetate'],
|
|
48
46
|
|
|
49
|
-
|
|
50
|
-
|
|
47
|
+
'ClVOC': ['VCM', 'TCE', 'PCE', '1.4-DCB', '1.2-DCB'],
|
|
48
|
+
}
|
|
51
49
|
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
50
|
+
_df_MW = (_df_voc * _MW).copy()
|
|
51
|
+
_df_dic = {
|
|
52
|
+
'Conc': _df_voc.copy(),
|
|
53
|
+
'OFP': _df_MW / 48 * _MIR,
|
|
54
|
+
'SOAP': _df_MW / 24.5 * _SOAP / 100 * 0.054,
|
|
55
|
+
'LOH': _df_MW / 24.5 / _MW * 0.602 * _KOH,
|
|
56
|
+
}
|
|
59
57
|
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
58
|
+
## calculate
|
|
59
|
+
_out = {}
|
|
60
|
+
for _nam, _df in _df_dic.items():
|
|
63
61
|
|
|
64
|
-
|
|
62
|
+
_df_out = DataFrame(index=_df_voc.index)
|
|
65
63
|
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
64
|
+
for _voc_nam, _voc_lst in _voc_clasfy.items():
|
|
65
|
+
_lst = list(set(_keys) & set(_voc_lst))
|
|
66
|
+
if len(_lst) == 0: continue
|
|
69
67
|
|
|
70
|
-
|
|
68
|
+
_df_out[_voc_nam] = _df[_lst].sum(axis=1, min_count=1)
|
|
71
69
|
|
|
72
|
-
|
|
70
|
+
_df_out['Total'] = _df.sum(axis=1, min_count=1)
|
|
73
71
|
|
|
74
|
-
|
|
72
|
+
_out[_nam] = _df_out
|
|
75
73
|
|
|
76
|
-
|
|
74
|
+
return _out
|
AeroViz/dataProcess/__init__.py
CHANGED
|
@@ -1,92 +1,93 @@
|
|
|
1
|
-
from pandas import DatetimeIndex, DataFrame, concat
|
|
2
|
-
from pathlib import Path
|
|
3
1
|
import pickle as pkl
|
|
4
2
|
from datetime import datetime as dtm
|
|
3
|
+
from pathlib import Path
|
|
4
|
+
|
|
5
|
+
from pandas import concat
|
|
5
6
|
|
|
6
7
|
|
|
7
8
|
class _writter:
|
|
8
9
|
|
|
9
|
-
|
|
10
|
+
def __init__(self, path_out=None, excel=True, csv=False):
|
|
10
11
|
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
12
|
+
self.path_out = Path(path_out) if path_out is not None else path_out
|
|
13
|
+
self.excel = excel
|
|
14
|
+
self.csv = csv
|
|
14
15
|
|
|
15
|
-
|
|
16
|
+
def _pre_process(self, _out):
|
|
16
17
|
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
18
|
+
if type(_out) == dict:
|
|
19
|
+
for _ky, _df in _out.items():
|
|
20
|
+
_df.index.name = 'time'
|
|
21
|
+
else:
|
|
22
|
+
_out.index.name = 'time'
|
|
22
23
|
|
|
23
|
-
|
|
24
|
+
return _out
|
|
24
25
|
|
|
25
|
-
|
|
26
|
+
def _save_out(self, _nam, _out):
|
|
26
27
|
|
|
27
|
-
|
|
28
|
-
|
|
28
|
+
_check = True
|
|
29
|
+
while _check:
|
|
29
30
|
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
31
|
+
try:
|
|
32
|
+
if self.path_out is not None:
|
|
33
|
+
self.path_out.mkdir(exist_ok=True, parents=True)
|
|
34
|
+
with (self.path_out / f'{_nam}.pkl').open('wb') as f:
|
|
35
|
+
pkl.dump(_out, f, protocol=pkl.HIGHEST_PROTOCOL)
|
|
35
36
|
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
37
|
+
if self.excel:
|
|
38
|
+
from pandas import ExcelWriter
|
|
39
|
+
with ExcelWriter(self.path_out / f'{_nam}.xlsx') as f:
|
|
40
|
+
if type(_out) == dict:
|
|
41
|
+
for _key, _val in _out.items():
|
|
42
|
+
_val.to_excel(f, sheet_name=f'{_key}')
|
|
43
|
+
else:
|
|
44
|
+
_out.to_excel(f, sheet_name=f'{_nam}')
|
|
44
45
|
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
46
|
+
if self.csv:
|
|
47
|
+
if type(_out) == dict:
|
|
48
|
+
_path_out = self.path_out / _nam
|
|
49
|
+
_path_out.mkdir(exist_ok=True, parents=True)
|
|
49
50
|
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
51
|
+
for _key, _val in _out.items():
|
|
52
|
+
_val.to_csv(_path_out / f'{_key}.csv')
|
|
53
|
+
else:
|
|
54
|
+
_out.to_csv(self.path_out / f'{_nam}.csv')
|
|
54
55
|
|
|
55
|
-
|
|
56
|
+
_check = False
|
|
56
57
|
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
58
|
+
except PermissionError as _err:
|
|
59
|
+
print('\n', _err)
|
|
60
|
+
input('\t\t\33[41m Please Close The File And Press "Enter" \33[0m\n')
|
|
60
61
|
|
|
61
62
|
|
|
62
63
|
def _run_process(*_ini_set):
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
64
|
+
def _decorator(_prcs_fc):
|
|
65
|
+
def _wrap(*arg, **kwarg):
|
|
66
|
+
_fc_name, _nam = _ini_set
|
|
66
67
|
|
|
67
|
-
|
|
68
|
-
|
|
68
|
+
if kwarg.get('nam') is not None:
|
|
69
|
+
_nam = kwarg.pop('nam')
|
|
69
70
|
|
|
70
|
-
|
|
71
|
+
print(f"\n\t{dtm.now().strftime('%m/%d %X')} : Process \033[92m{_fc_name}\033[0m -> {_nam}")
|
|
71
72
|
|
|
72
|
-
|
|
73
|
-
|
|
73
|
+
_class, _out = _prcs_fc(*arg, **kwarg)
|
|
74
|
+
_out = _class._pre_process(_out)
|
|
74
75
|
|
|
75
|
-
|
|
76
|
+
_class._save_out(_nam, _out)
|
|
76
77
|
|
|
77
|
-
|
|
78
|
+
return _out
|
|
78
79
|
|
|
79
|
-
|
|
80
|
+
return _wrap
|
|
80
81
|
|
|
81
|
-
|
|
82
|
+
return _decorator
|
|
82
83
|
|
|
83
84
|
|
|
84
85
|
def _union_index(*_df_arg):
|
|
85
|
-
|
|
86
|
+
_idx = concat(_df_arg, axis=1).index
|
|
86
87
|
|
|
87
|
-
|
|
88
|
+
# _idx = DatetimeIndex([])
|
|
88
89
|
|
|
89
|
-
|
|
90
|
-
|
|
90
|
+
# for _df in _df_arg:
|
|
91
|
+
# _idx = _idx.union(DataFrame(_df).index)
|
|
91
92
|
|
|
92
|
-
|
|
93
|
+
return [_df.reindex(_idx) if _df is not None else None for _df in _df_arg]
|
AeroViz/plot/__init__.py
CHANGED
|
@@ -1,7 +1,12 @@
|
|
|
1
1
|
from . import distribution
|
|
2
|
-
from . import improve
|
|
3
2
|
from . import meteorology
|
|
4
3
|
from . import optical
|
|
5
4
|
from . import timeseries
|
|
5
|
+
from .bar import bar
|
|
6
|
+
from .box import box
|
|
7
|
+
from .pie import pie, donuts
|
|
8
|
+
from .regression import linear_regression, multiple_linear_regression
|
|
9
|
+
from .scatter import scatter
|
|
6
10
|
from .templates import *
|
|
7
11
|
from .utils import *
|
|
12
|
+
from .violin import violin
|
AeroViz/plot/bar.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
1
|
+
from typing import Literal
|
|
2
|
+
|
|
3
|
+
import matplotlib.pyplot as plt
|
|
4
|
+
import numpy as np
|
|
5
|
+
import pandas as pd
|
|
6
|
+
from matplotlib.pyplot import Figure, Axes
|
|
7
|
+
from pandas import DataFrame
|
|
8
|
+
|
|
9
|
+
from AeroViz.plot.utils import *
|
|
10
|
+
|
|
11
|
+
__all__ = ['bar']
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
@set_figure(fw='bold')
|
|
15
|
+
def bar(data_set: DataFrame | dict,
|
|
16
|
+
data_std: DataFrame | None,
|
|
17
|
+
labels: list[str],
|
|
18
|
+
unit: str,
|
|
19
|
+
style: Literal["stacked", "dispersed"] = "dispersed",
|
|
20
|
+
orientation: Literal["va", "ha"] = 'va',
|
|
21
|
+
ax: Axes | None = None,
|
|
22
|
+
symbol=True,
|
|
23
|
+
**kwargs
|
|
24
|
+
) -> tuple[Figure, Axes]:
|
|
25
|
+
"""
|
|
26
|
+
Parameters
|
|
27
|
+
----------
|
|
28
|
+
data_set : pd.DataFrame or dict
|
|
29
|
+
A mapping from category names to a list of species mean or a DataFrame with columns as categories and values as means.
|
|
30
|
+
data_std : pd.DataFrame or None
|
|
31
|
+
A DataFrame with standard deviations corresponding to data_set, or None if standard deviations are not provided.
|
|
32
|
+
labels : list of str
|
|
33
|
+
The species names.
|
|
34
|
+
unit : str
|
|
35
|
+
The unit for the values.
|
|
36
|
+
style : {'stacked', 'dispersed'}, default 'dispersed'
|
|
37
|
+
Whether to display the bars stacked or dispersed.
|
|
38
|
+
orientation : {'va', 'ha'}, default 'va'
|
|
39
|
+
The orientation of the bars, 'va' for vertical and 'ha' for horizontal.
|
|
40
|
+
ax : plt.Axes or None, default None
|
|
41
|
+
The Axes object to plot on. If None, a new figure and Axes are created.
|
|
42
|
+
symbol : bool, default True
|
|
43
|
+
Whether to display values for each bar.
|
|
44
|
+
kwargs : dict
|
|
45
|
+
Additional keyword arguments passed to the barplot function.
|
|
46
|
+
|
|
47
|
+
Returns
|
|
48
|
+
-------
|
|
49
|
+
matplotlib.Axes
|
|
50
|
+
The Axes object containing the plot.
|
|
51
|
+
|
|
52
|
+
"""
|
|
53
|
+
# data process
|
|
54
|
+
data = data_set.values
|
|
55
|
+
|
|
56
|
+
if data_std is None:
|
|
57
|
+
data_std = np.zeros(data.shape)
|
|
58
|
+
else:
|
|
59
|
+
data_std = data_std.values
|
|
60
|
+
|
|
61
|
+
groups, species = data.shape
|
|
62
|
+
groups_arr = np.arange(groups)
|
|
63
|
+
species_arr = np.arange(species)
|
|
64
|
+
|
|
65
|
+
total = np.array([data.sum(axis=1), ] * species).T
|
|
66
|
+
|
|
67
|
+
pct_data = data / total * 100
|
|
68
|
+
data_cum = pct_data.cumsum(axis=1)
|
|
69
|
+
|
|
70
|
+
# figure info
|
|
71
|
+
category_names = kwargs.get('ticks') or list(data_set.index)
|
|
72
|
+
title = kwargs.get('title', '')
|
|
73
|
+
colors = kwargs.get('colors') or (Color.colors1 if species == 6 else Color.getColor(num=species))
|
|
74
|
+
|
|
75
|
+
fig, ax = plt.subplots(**kwargs.get('fig_kws', {})) if ax is None else (ax.get_figure(), ax)
|
|
76
|
+
|
|
77
|
+
if style == "stacked":
|
|
78
|
+
for i in range(species):
|
|
79
|
+
widths = pct_data[:, i]
|
|
80
|
+
starts = data_cum[:, i] - pct_data[:, i]
|
|
81
|
+
|
|
82
|
+
if orientation == 'va':
|
|
83
|
+
_ = ax.bar(groups_arr, widths, bottom=starts, width=0.7, color=colors[i], label=labels[i],
|
|
84
|
+
edgecolor=None, capsize=None)
|
|
85
|
+
else:
|
|
86
|
+
_ = ax.barh(groups_arr, widths, left=starts, height=0.7, color=colors[i], label=labels[i],
|
|
87
|
+
edgecolor=None, capsize=None)
|
|
88
|
+
if symbol:
|
|
89
|
+
ax.bar_label(_, fmt=auto_label_pct, label_type='center', padding=0, fontsize=8, weight='bold')
|
|
90
|
+
|
|
91
|
+
if style == "dispersed":
|
|
92
|
+
width = 0.1
|
|
93
|
+
block = width / 4
|
|
94
|
+
|
|
95
|
+
for i in range(species):
|
|
96
|
+
val = data[:, i]
|
|
97
|
+
std = (0,) * groups, data_std[:, i]
|
|
98
|
+
if orientation == 'va':
|
|
99
|
+
_ = ax.bar(groups_arr + (i + 1) * (width + block), val, yerr=std, width=width, color=colors[i],
|
|
100
|
+
edgecolor=None, capsize=None)
|
|
101
|
+
else:
|
|
102
|
+
_ = ax.barh(groups_arr + (i + 1) * (width + block), val, xerr=std, height=width, color=colors[i],
|
|
103
|
+
edgecolor=None, capsize=None)
|
|
104
|
+
if symbol:
|
|
105
|
+
ax.bar_label(_, fmt=auto_label_pct, label_type='center', padding=0, fontsize=8, weight='bold')
|
|
106
|
+
|
|
107
|
+
if orientation == 'va':
|
|
108
|
+
xticks = groups_arr + (species / 2 + 0.5) * (width + block) if style == "dispersed" else groups_arr
|
|
109
|
+
ax.set_xticks(xticks, category_names, weight='bold')
|
|
110
|
+
ax.set_ylabel(Unit(unit) if style == "dispersed" else '$Contribution (\\%)$')
|
|
111
|
+
ax.set_ylim(0, None if style == "dispersed" else 100)
|
|
112
|
+
ax.legend(labels, bbox_to_anchor=(1, 1), loc='upper left', prop={'size': 8})
|
|
113
|
+
|
|
114
|
+
if orientation == 'ha':
|
|
115
|
+
ax.invert_yaxis()
|
|
116
|
+
yticks = groups_arr + 3.5 * (width + block) if style == "dispersed" else groups_arr
|
|
117
|
+
ax.set_yticks(yticks, category_names, weight='bold')
|
|
118
|
+
ax.set_xlabel(Unit(unit) if style == "dispersed" else '$Contribution (\\%)$')
|
|
119
|
+
ax.set_xlim(0, None if style == "dispersed" else 100)
|
|
120
|
+
ax.legend(labels, bbox_to_anchor=(1, 1), loc='upper left', prop={'size': 8})
|
|
121
|
+
|
|
122
|
+
# fig.savefig(f"Barplot_{title}")
|
|
123
|
+
|
|
124
|
+
plt.show()
|
|
125
|
+
|
|
126
|
+
return fig, ax
|
AeroViz/plot/box.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
import matplotlib.pyplot as plt
|
|
2
|
+
import numpy as np
|
|
3
|
+
import pandas as pd
|
|
4
|
+
from matplotlib.pyplot import Figure, Axes
|
|
5
|
+
|
|
6
|
+
from AeroViz.plot.utils import *
|
|
7
|
+
|
|
8
|
+
__all__ = ['box']
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@set_figure
|
|
12
|
+
def box(df: pd.DataFrame,
|
|
13
|
+
x: str,
|
|
14
|
+
y: str,
|
|
15
|
+
x_bins: list | np.ndarray = None,
|
|
16
|
+
add_scatter: bool = True,
|
|
17
|
+
ax: Axes | None = None,
|
|
18
|
+
**kwargs) -> tuple[Figure, Axes]:
|
|
19
|
+
fig, ax = plt.subplots(**kwargs.get('fig_kws', {})) if ax is None else (ax.get_figure(), ax)
|
|
20
|
+
|
|
21
|
+
df = df.dropna(subset=[x, y]).copy()
|
|
22
|
+
x_data, y_data = df[x].to_numpy(), df[y].to_numpy()
|
|
23
|
+
|
|
24
|
+
bins = np.array(x_bins)
|
|
25
|
+
bins = np.round(bins)
|
|
26
|
+
wid = (bins + (bins[1] - bins[0]) / 2)[0:-1]
|
|
27
|
+
|
|
28
|
+
df[x + '_bin'] = pd.cut(x=x_data, bins=bins, labels=wid)
|
|
29
|
+
|
|
30
|
+
group = x + '_bin'
|
|
31
|
+
column = y
|
|
32
|
+
grouped = df.groupby(group, observed=False)
|
|
33
|
+
|
|
34
|
+
names, vals = [], []
|
|
35
|
+
|
|
36
|
+
for i, (name, subdf) in enumerate(grouped):
|
|
37
|
+
names.append('{:.0f}'.format(name))
|
|
38
|
+
vals.append(subdf[column].dropna().values)
|
|
39
|
+
|
|
40
|
+
plt.boxplot(vals, labels=names, positions=wid, widths=(bins[1] - bins[0]) / 3,
|
|
41
|
+
showfliers=False, showmeans=True, meanline=True, patch_artist=True,
|
|
42
|
+
boxprops=dict(facecolor='#f2c872', alpha=.7),
|
|
43
|
+
meanprops=dict(color='#000000', ls='none'),
|
|
44
|
+
medianprops=dict(ls='-', color='#000000'))
|
|
45
|
+
|
|
46
|
+
ax.set(xlim=kwargs.get('xlim', (x_data.min(), x_data.max())),
|
|
47
|
+
ylim=kwargs.get('ylim', (y_data.min(), y_data.max())),
|
|
48
|
+
xlabel=kwargs.get('xlabel', Unit(x)),
|
|
49
|
+
ylabel=kwargs.get('ylabel', Unit(y)),
|
|
50
|
+
title=kwargs.get('title', ''))
|
|
51
|
+
|
|
52
|
+
ax.set_xticks(bins, labels=bins.astype(int))
|
|
53
|
+
|
|
54
|
+
if add_scatter:
|
|
55
|
+
for i, (name, subdf) in enumerate(grouped):
|
|
56
|
+
jitter = np.random.normal(0, 0.5, len(subdf))
|
|
57
|
+
ax.scatter([name] * len(subdf) + jitter, subdf[column], s=10, c='gray', alpha=0.5)
|
|
58
|
+
|
|
59
|
+
plt.show()
|
|
60
|
+
|
|
61
|
+
return fig, ax
|
|
62
|
+
|
|
63
|
+
|
|
64
|
+
if __name__ == '__main__':
|
|
65
|
+
from AeroViz import DataBase
|
|
66
|
+
|
|
67
|
+
df = DataBase(load_data=True)
|
|
68
|
+
box(df, x='PM25', y='Extinction', x_bins=np.arange(0, 120, 10))
|