AeroViz 0.1.3__py3-none-any.whl → 0.1.3b0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of AeroViz might be problematic. Click here for more details.

Files changed (107) hide show
  1. AeroViz/__init__.py +4 -4
  2. AeroViz/dataProcess/Chemistry/__init__.py +38 -38
  3. AeroViz/dataProcess/Chemistry/_calculate.py +15 -15
  4. AeroViz/dataProcess/Chemistry/_isoropia.py +69 -68
  5. AeroViz/dataProcess/Chemistry/_mass_volume.py +158 -158
  6. AeroViz/dataProcess/Chemistry/_ocec.py +109 -109
  7. AeroViz/dataProcess/Chemistry/_partition.py +19 -18
  8. AeroViz/dataProcess/Chemistry/_teom.py +8 -11
  9. AeroViz/dataProcess/Optical/_IMPROVE.py +40 -39
  10. AeroViz/dataProcess/Optical/__init__.py +35 -35
  11. AeroViz/dataProcess/Optical/_absorption.py +35 -35
  12. AeroViz/dataProcess/Optical/_extinction.py +25 -24
  13. AeroViz/dataProcess/Optical/_mie.py +5 -6
  14. AeroViz/dataProcess/Optical/_mie_sd.py +89 -90
  15. AeroViz/dataProcess/Optical/_scattering.py +16 -16
  16. AeroViz/dataProcess/SizeDistr/__init__.py +37 -37
  17. AeroViz/dataProcess/SizeDistr/__merge.py +159 -158
  18. AeroViz/dataProcess/SizeDistr/_merge.py +155 -154
  19. AeroViz/dataProcess/SizeDistr/_merge_v1.py +162 -161
  20. AeroViz/dataProcess/SizeDistr/_merge_v2.py +153 -152
  21. AeroViz/dataProcess/SizeDistr/_merge_v3.py +326 -326
  22. AeroViz/dataProcess/SizeDistr/_merge_v4.py +272 -274
  23. AeroViz/dataProcess/SizeDistr/_size_distr.py +51 -51
  24. AeroViz/dataProcess/VOC/__init__.py +7 -7
  25. AeroViz/dataProcess/VOC/_potential_par.py +53 -55
  26. AeroViz/dataProcess/__init__.py +4 -4
  27. AeroViz/dataProcess/core/__init__.py +59 -58
  28. AeroViz/plot/__init__.py +6 -1
  29. AeroViz/plot/bar.py +126 -0
  30. AeroViz/plot/box.py +68 -0
  31. AeroViz/plot/distribution/distribution.py +421 -427
  32. AeroViz/plot/meteorology/meteorology.py +240 -292
  33. AeroViz/plot/optical/__init__.py +0 -1
  34. AeroViz/plot/optical/optical.py +230 -230
  35. AeroViz/plot/pie.py +198 -0
  36. AeroViz/plot/regression.py +210 -0
  37. AeroViz/plot/scatter.py +99 -0
  38. AeroViz/plot/templates/__init__.py +0 -3
  39. AeroViz/plot/templates/contour.py +25 -25
  40. AeroViz/plot/templates/corr_matrix.py +86 -93
  41. AeroViz/plot/templates/diurnal_pattern.py +24 -24
  42. AeroViz/plot/templates/koschmieder.py +106 -106
  43. AeroViz/plot/templates/metal_heatmap.py +34 -34
  44. AeroViz/plot/timeseries/timeseries.py +53 -60
  45. AeroViz/plot/utils/__init__.py +2 -1
  46. AeroViz/plot/utils/_color.py +57 -57
  47. AeroViz/plot/utils/_unit.py +48 -48
  48. AeroViz/plot/utils/plt_utils.py +92 -0
  49. AeroViz/plot/utils/sklearn_utils.py +49 -0
  50. AeroViz/plot/violin.py +79 -0
  51. AeroViz/process/__init__.py +15 -15
  52. AeroViz/process/core/DataProc.py +9 -9
  53. AeroViz/process/core/SizeDist.py +81 -81
  54. AeroViz/process/method/PyMieScatt_update.py +488 -488
  55. AeroViz/process/method/mie_theory.py +231 -229
  56. AeroViz/process/method/prop.py +40 -40
  57. AeroViz/process/script/AbstractDistCalc.py +103 -103
  58. AeroViz/process/script/Chemical.py +166 -166
  59. AeroViz/process/script/IMPACT.py +40 -40
  60. AeroViz/process/script/IMPROVE.py +152 -152
  61. AeroViz/process/script/Others.py +45 -45
  62. AeroViz/process/script/PSD.py +26 -26
  63. AeroViz/process/script/PSD_dry.py +69 -70
  64. AeroViz/process/script/retrieve_RI.py +50 -51
  65. AeroViz/rawDataReader/__init__.py +57 -57
  66. AeroViz/rawDataReader/core/__init__.py +328 -326
  67. AeroViz/rawDataReader/script/AE33.py +18 -18
  68. AeroViz/rawDataReader/script/AE43.py +20 -20
  69. AeroViz/rawDataReader/script/APS_3321.py +30 -30
  70. AeroViz/rawDataReader/script/Aurora.py +23 -23
  71. AeroViz/rawDataReader/script/BC1054.py +40 -40
  72. AeroViz/rawDataReader/script/EPA_vertical.py +9 -9
  73. AeroViz/rawDataReader/script/GRIMM.py +21 -21
  74. AeroViz/rawDataReader/script/IGAC_TH.py +67 -67
  75. AeroViz/rawDataReader/script/IGAC_ZM.py +59 -59
  76. AeroViz/rawDataReader/script/MA350.py +39 -39
  77. AeroViz/rawDataReader/script/NEPH.py +74 -74
  78. AeroViz/rawDataReader/script/OCEC_LCRES.py +21 -21
  79. AeroViz/rawDataReader/script/OCEC_RES.py +16 -16
  80. AeroViz/rawDataReader/script/SMPS_TH.py +25 -25
  81. AeroViz/rawDataReader/script/SMPS_aim11.py +32 -32
  82. AeroViz/rawDataReader/script/SMPS_genr.py +31 -31
  83. AeroViz/rawDataReader/script/TEOM.py +28 -28
  84. AeroViz/rawDataReader/script/Table.py +12 -12
  85. AeroViz/rawDataReader/script/VOC_TH.py +16 -16
  86. AeroViz/rawDataReader/script/VOC_ZM.py +28 -28
  87. AeroViz/rawDataReader/script/__init__.py +20 -20
  88. AeroViz/rawDataReader/utils/config.py +161 -161
  89. AeroViz/tools/database.py +65 -65
  90. AeroViz/tools/dataclassifier.py +106 -106
  91. AeroViz/tools/dataprinter.py +51 -51
  92. AeroViz/tools/datareader.py +38 -38
  93. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/METADATA +5 -4
  94. AeroViz-0.1.3b0.dist-info/RECORD +110 -0
  95. AeroViz/config/__init__.py +0 -0
  96. AeroViz/plot/improve/__init__.py +0 -1
  97. AeroViz/plot/improve/improve.py +0 -240
  98. AeroViz/plot/optical/aethalometer.py +0 -77
  99. AeroViz/plot/templates/event_evolution.py +0 -65
  100. AeroViz/plot/templates/regression.py +0 -256
  101. AeroViz/plot/templates/scatter.py +0 -130
  102. AeroViz/plot/templates/templates.py +0 -398
  103. AeroViz/plot/utils/_decorator.py +0 -74
  104. AeroViz-0.1.3.dist-info/RECORD +0 -111
  105. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/LICENSE +0 -0
  106. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/WHEEL +0 -0
  107. {AeroViz-0.1.3.dist-info → AeroViz-0.1.3b0.dist-info}/top_level.txt +0 -0
@@ -69,13 +69,6 @@ def _plot(ax, df, _y, _color, plot_kws):
69
69
  ax.plot(df.index, df[_y], color=_color, **plot_kws)
70
70
 
71
71
 
72
- def combine_legends(axes_list: list[Axes]) -> tuple[list, list]:
73
- return (
74
- [legend for axes in axes_list for legend in axes.get_legend_handles_labels()[0]],
75
- [label for axes in axes_list for label in axes.get_legend_handles_labels()[1]]
76
- )
77
-
78
-
79
72
  @set_figure(fs=8, autolayout=False)
80
73
  def timeseries(df: DataFrame,
81
74
  y: list[str] | str,
@@ -93,59 +86,59 @@ def timeseries(df: DataFrame,
93
86
  **kwargs
94
87
  ) -> tuple[Figure, Axes]:
95
88
  """
96
- Plot the timeseries data with the option of scatterplot, barplot, and lineplot.
97
-
98
- Parameters
99
- -----------
100
- df : DataFrame
101
- The data to plot.
102
- y : list[str] | str
103
- The primary y-axis data columns.
104
- y2 : list[str] | str, optional
105
- The secondary y-axis data columns. Defaults to None.
106
- c : str, optional
107
- The column for color mapping or the color. Defaults to None.
108
- rolling : str | int | None, optional
109
- Rolling window size for smoothing. Defaults to None.
110
- times : tuple[datetime, datetime] | tuple[Timestamp, Timestamp], optional
111
- Time range for the data. Defaults to None.
112
- freq : str, optional
113
- Frequency for x-axis ticks. Defaults to '2MS'.
114
- style : Literal['scatter', 'bar', 'line'] | None, optional
115
- Style of the plot. Defaults to 'scatter'.
116
- ax : Axes | None, optional
117
- Matplotlib Axes object to plot on. Defaults to None.
118
- set_xaxis_visible : bool | None, optional
119
- Whether to set x-axis visibility. Defaults to None.
120
- legend_loc : Literal['best', 'upper right', 'upper left', 'lower left', 'lower right'], optional
121
- Location of the legend. Defaults to 'best'.
122
- legend_ncol : int, optional
123
- Number of columns in the legend. Defaults to 1.
124
- **kwargs : Additional keyword arguments for customization.
125
- fig_kws : dict, optional
126
- Additional keyword arguments for the figure. Defaults to {}.
127
- scatter_kws : dict, optional
128
- Additional keyword arguments for the scatter plot. Defaults to {}.
129
- bar_kws : dict, optional
130
- Additional keyword arguments for the bar plot. Defaults to {}.
131
- ax_plot_kws : dict, optional
132
- Additional keyword arguments for the primary y-axis plot. Defaults to {}.
133
- ax2_plot_kws : dict, optional
134
- Additional keyword arguments for the secondary y-axis plot. Defaults to {}.
135
- cbar_kws : dict, optional
136
- Additional keyword arguments for the colorbar. Defaults to {}.
137
- inset_kws : dict, optional
138
- Additional keyword arguments for the inset axes. Defaults to {}.
139
-
140
- Returns
141
- -------
142
- ax : AxesSubplot
143
- Matplotlib AxesSubplot.
144
-
145
- Example
146
- -------
147
- >>> timeseries(df, y='WS', c='WD', scatter_kws=dict(cmap='hsv'), cbar_kws=dict(ticks=[0, 90, 180, 270, 360]), ylim=[0, None])
148
- """
89
+ Plot the timeseries data with the option of scatterplot, barplot, and lineplot.
90
+
91
+ Parameters
92
+ -----------
93
+ df : DataFrame
94
+ The data to plot.
95
+ y : list[str] | str
96
+ The primary y-axis data columns.
97
+ y2 : list[str] | str, optional
98
+ The secondary y-axis data columns. Defaults to None.
99
+ c : str, optional
100
+ The column for color mapping or the color. Defaults to None.
101
+ rolling : str | int | None, optional
102
+ Rolling window size for smoothing. Defaults to None.
103
+ times : tuple[datetime, datetime] | tuple[Timestamp, Timestamp], optional
104
+ Time range for the data. Defaults to None.
105
+ freq : str, optional
106
+ Frequency for x-axis ticks. Defaults to '2MS'.
107
+ style : Literal['scatter', 'bar', 'line'] | None, optional
108
+ Style of the plot. Defaults to 'scatter'.
109
+ ax : Axes | None, optional
110
+ Matplotlib Axes object to plot on. Defaults to None.
111
+ set_xaxis_visible : bool | None, optional
112
+ Whether to set x-axis visibility. Defaults to None.
113
+ legend_loc : Literal['best', 'upper right', 'upper left', 'lower left', 'lower right'], optional
114
+ Location of the legend. Defaults to 'best'.
115
+ legend_ncol : int, optional
116
+ Number of columns in the legend. Defaults to 1.
117
+ **kwargs : Additional keyword arguments for customization.
118
+ fig_kws : dict, optional
119
+ Additional keyword arguments for the figure. Defaults to {}.
120
+ scatter_kws : dict, optional
121
+ Additional keyword arguments for the scatter plot. Defaults to {}.
122
+ bar_kws : dict, optional
123
+ Additional keyword arguments for the bar plot. Defaults to {}.
124
+ ax_plot_kws : dict, optional
125
+ Additional keyword arguments for the primary y-axis plot. Defaults to {}.
126
+ ax2_plot_kws : dict, optional
127
+ Additional keyword arguments for the secondary y-axis plot. Defaults to {}.
128
+ cbar_kws : dict, optional
129
+ Additional keyword arguments for the colorbar. Defaults to {}.
130
+ inset_kws : dict, optional
131
+ Additional keyword arguments for the inset axes. Defaults to {}.
132
+
133
+ Returns
134
+ -------
135
+ ax : AxesSubplot
136
+ Matplotlib AxesSubplot.
137
+
138
+ Example
139
+ -------
140
+ >>> timeseries(df, y='WS', c='WD', scatter_kws=dict(cmap='hsv'), cbar_kws=dict(ticks=[0, 90, 180, 270, 360]), ylim=[0, None])
141
+ """
149
142
  # Set the time
150
143
 
151
144
  if times is not None:
@@ -1,3 +1,4 @@
1
1
  from ._color import Color
2
- from ._decorator import set_figure
3
2
  from ._unit import Unit
3
+ from .plt_utils import *
4
+ from .sklearn_utils import *
@@ -9,63 +9,63 @@ __all__ = ['Color']
9
9
 
10
10
 
11
11
  class Color:
12
- color_cycle = cycler(color=['b', 'g', 'r', 'c', 'm', 'y', 'k'])
13
-
14
- linecolor = [{'line': '#1a56db', 'edge': '#0F50A6', 'face': '#5983D9'},
15
- {'line': '#046c4e', 'edge': '#1B591F', 'face': '#538C4A'},
16
- {'line': '#c81e1e', 'edge': '#f05252', 'face': '#f98080'}]
17
-
18
- # colors = ['#FF3333', '#33FF33', '#FFFF33', '#5555FF', '#B94FFF', '#AAAAAA', '#748690'] # the last one is "unknown"
19
-
20
- colors1 = ['#A65E58', '#A5BF6B', '#F2BF5E', '#3F83BF', '#B777C2', '#D1CFCB']
21
- colors2 = ['#A65E58', '#A5BF6B', '#F2BF5E', '#3F83BF', '#B777C2', '#D1CFCB', '#96c8e6']
22
- colors3 = ['#A65E58', '#A5BF6B', '#a6710d', '#F2BF5E', '#3F83BF', '#B777C2', '#D1CFCB', '#96c8e6'] # POC SOC
23
-
24
- colors_mutiWater = ['#A65E58', '#c18e8a', '#A5BF6B', '#c5d6a0', '#F2BF5E', '#3F83BF', '#c089ca', '#d3acda',
25
- '#D1CFCB']
26
- colors_mutiWater2 = ['#A65E58', '#96c8e6', '#A5BF6B', '#96c8e6', '#F2BF5E', '#3F83BF', '#c089ca', '#96c8e6',
27
- '#D1CFCB'] # water
28
-
29
- color_choose = {'Clean': ['#1d4a9f', '#84a7e9'],
30
- 'Transition': ['#4a9f1d', '#a7e984'],
31
- 'Event': ['#9f1d4a', '#e984a7']}
32
-
33
- paired = [plt.get_cmap('Paired')(i) for i in range(4)]
34
-
35
- @staticmethod
36
- def getColor(num: int = 6, cmap: str = 'jet_r'):
37
- category_colors = plt.colormaps[cmap](np.linspace(0.1, 0.9, num))
38
- return [plc.to_hex(category_colors[i]) for i in range(num)]
39
-
40
- @staticmethod
41
- def palplot(*args, **kwargs):
42
- sns.palplot(*args, **kwargs)
43
-
44
- @staticmethod
45
- def adjust_opacity(colors: str | list[str], alpha: float):
46
- if isinstance(colors, str):
47
- colors = [colors]
48
-
49
- adjusted_colors = []
50
- for color in colors:
51
- # 將顏色轉換為RGB表示
52
- r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)
53
- # 調整透明度
54
- r_new = int(alpha * r + (1 - alpha) * 255)
55
- g_new = int(alpha * g + (1 - alpha) * 255)
56
- b_new = int(alpha * b + (1 - alpha) * 255)
57
- # 轉換為新的色碼
58
- new_color = '#{:02X}{:02X}{:02X}'.format(r_new, g_new, b_new)
59
- adjusted_colors.append(new_color)
60
- return adjusted_colors
61
-
62
- @staticmethod
63
- def color_maker(obj, cmap='Blues'):
64
- colors = np.nan_to_num(obj, nan=0)
65
- scalar_map = plt.cm.ScalarMappable(cmap=colormaps[cmap]) # create a scalar map for the colorbar
66
- scalar_map.set_array(colors)
67
- return scalar_map, colors
12
+ color_cycle = cycler(color=['b', 'g', 'r', 'c', 'm', 'y', 'k'])
13
+
14
+ linecolor = [{'line': '#1a56db', 'edge': '#0F50A6', 'face': '#5983D9'},
15
+ {'line': '#046c4e', 'edge': '#1B591F', 'face': '#538C4A'},
16
+ {'line': '#c81e1e', 'edge': '#f05252', 'face': '#f98080'}]
17
+
18
+ # colors = ['#FF3333', '#33FF33', '#FFFF33', '#5555FF', '#B94FFF', '#AAAAAA', '#748690'] # the last one is "unknown"
19
+
20
+ colors1 = ['#A65E58', '#A5BF6B', '#F2BF5E', '#3F83BF', '#B777C2', '#D1CFCB']
21
+ colors2 = ['#A65E58', '#A5BF6B', '#F2BF5E', '#3F83BF', '#B777C2', '#D1CFCB', '#96c8e6']
22
+ colors3 = ['#A65E58', '#A5BF6B', '#a6710d', '#F2BF5E', '#3F83BF', '#B777C2', '#D1CFCB', '#96c8e6'] # POC SOC
23
+
24
+ colors_mutiWater = ['#A65E58', '#c18e8a', '#A5BF6B', '#c5d6a0', '#F2BF5E', '#3F83BF', '#c089ca', '#d3acda',
25
+ '#D1CFCB']
26
+ colors_mutiWater2 = ['#A65E58', '#96c8e6', '#A5BF6B', '#96c8e6', '#F2BF5E', '#3F83BF', '#c089ca', '#96c8e6',
27
+ '#D1CFCB'] # water
28
+
29
+ color_choose = {'Clean': ['#1d4a9f', '#84a7e9'],
30
+ 'Transition': ['#4a9f1d', '#a7e984'],
31
+ 'Event': ['#9f1d4a', '#e984a7']}
32
+
33
+ paired = [plt.get_cmap('Paired')(i) for i in range(4)]
34
+
35
+ @staticmethod
36
+ def getColor(num: int = 6, cmap: str = 'jet_r'):
37
+ category_colors = plt.colormaps[cmap](np.linspace(0.1, 0.9, num))
38
+ return [plc.to_hex(category_colors[i]) for i in range(num)]
39
+
40
+ @staticmethod
41
+ def palplot(*args, **kwargs):
42
+ sns.palplot(*args, **kwargs)
43
+
44
+ @staticmethod
45
+ def adjust_opacity(colors: str | list[str], alpha: float):
46
+ if isinstance(colors, str):
47
+ colors = [colors]
48
+
49
+ adjusted_colors = []
50
+ for color in colors:
51
+ # 將顏色轉換為RGB表示
52
+ r, g, b = int(color[1:3], 16), int(color[3:5], 16), int(color[5:7], 16)
53
+ # 調整透明度
54
+ r_new = int(alpha * r + (1 - alpha) * 255)
55
+ g_new = int(alpha * g + (1 - alpha) * 255)
56
+ b_new = int(alpha * b + (1 - alpha) * 255)
57
+ # 轉換為新的色碼
58
+ new_color = '#{:02X}{:02X}{:02X}'.format(r_new, g_new, b_new)
59
+ adjusted_colors.append(new_color)
60
+ return adjusted_colors
61
+
62
+ @staticmethod
63
+ def color_maker(obj, cmap='Blues'):
64
+ colors = np.nan_to_num(obj, nan=0)
65
+ scalar_map = plt.cm.ScalarMappable(cmap=colormaps[cmap]) # create a scalar map for the colorbar
66
+ scalar_map.set_array(colors)
67
+ return scalar_map, colors
68
68
 
69
69
 
70
70
  if __name__ == '__main__':
71
- Color.palplot(Color.colors2)
71
+ Color.palplot(Color.colors2)
@@ -5,51 +5,51 @@ __all__ = ['Unit']
5
5
 
6
6
 
7
7
  class Unit:
8
- file_path = Path(__file__).parent / 'units.json'
9
- data = None
10
-
11
- def __new__(cls, unit: str):
12
- cls.data = cls.load_jsonfile()
13
- try:
14
- value = cls.data[unit]
15
- return r'${}$'.format(value.replace(' ', r'\ '))
16
- except KeyError:
17
- print(f"Attribute '{unit}' not found. Using default value.")
18
- return r'${}$'.format(unit.replace(' ', r'\ ')) if unit is not None else 'None'
19
-
20
- @classmethod
21
- def load_jsonfile(cls):
22
- """ 讀取 JSON 檔中數據并將其變成屬性 """
23
- try:
24
- with open(cls.file_path, 'r', encoding='utf-8') as f:
25
- return json.load(f)
26
-
27
- except FileNotFoundError:
28
- print(f"JSON file '{cls.file_path}' not found.")
29
- except json.JSONDecodeError:
30
- print(f"Invalid JSON format in '{cls.file_path}'.")
31
-
32
- @classmethod
33
- def update_jsonfile(cls, key, value):
34
- """ 更新JSON檔 """
35
- with open(cls.file_path, 'r', encoding='utf-8') as f:
36
- old_data = json.load(f)
37
-
38
- old_data[key] = value
39
-
40
- with open(cls.file_path, 'w', encoding='utf-8') as f:
41
- json.dump(old_data, f, indent=4)
42
-
43
- @classmethod
44
- def del_jsonfile(cls, key):
45
- """ 更新JSON檔 """
46
- with open(cls.file_path, 'r', encoding='utf-8') as f:
47
- old_data = json.load(f)
48
-
49
- if key in old_data:
50
- del old_data[key]
51
-
52
- with open(cls.file_path, 'w', encoding='utf-8') as f:
53
- json.dump(old_data, f, indent=4)
54
- else:
55
- print(f"Key '{key}' not found.")
8
+ file_path = Path(__file__).parent / 'units.json'
9
+ data = None
10
+
11
+ def __new__(cls, unit: str):
12
+ cls.data = cls.load_jsonfile()
13
+ try:
14
+ value = cls.data[unit]
15
+ return r'${}$'.format(value.replace(' ', r'\ '))
16
+ except KeyError:
17
+ print(f"Attribute '{unit}' not found. Using default value.")
18
+ return r'${}$'.format(unit.replace(' ', r'\ ')) if unit is not None else 'None'
19
+
20
+ @classmethod
21
+ def load_jsonfile(cls):
22
+ """ 讀取 JSON 檔中數據并將其變成屬性 """
23
+ try:
24
+ with open(cls.file_path, 'r', encoding='utf-8') as f:
25
+ return json.load(f)
26
+
27
+ except FileNotFoundError:
28
+ print(f"JSON file '{cls.file_path}' not found.")
29
+ except json.JSONDecodeError:
30
+ print(f"Invalid JSON format in '{cls.file_path}'.")
31
+
32
+ @classmethod
33
+ def update_jsonfile(cls, key, value):
34
+ """ 更新JSON檔 """
35
+ with open(cls.file_path, 'r', encoding='utf-8') as f:
36
+ old_data = json.load(f)
37
+
38
+ old_data[key] = value
39
+
40
+ with open(cls.file_path, 'w', encoding='utf-8') as f:
41
+ json.dump(old_data, f, indent=4)
42
+
43
+ @classmethod
44
+ def del_jsonfile(cls, key):
45
+ """ 更新JSON檔 """
46
+ with open(cls.file_path, 'r', encoding='utf-8') as f:
47
+ old_data = json.load(f)
48
+
49
+ if key in old_data:
50
+ del old_data[key]
51
+
52
+ with open(cls.file_path, 'w', encoding='utf-8') as f:
53
+ json.dump(old_data, f, indent=4)
54
+ else:
55
+ print(f"Key '{key}' not found.")
@@ -0,0 +1,92 @@
1
+ from functools import wraps
2
+ from typing import Literal
3
+
4
+ import matplotlib.pyplot as plt
5
+ from matplotlib.pyplot import Axes
6
+
7
+ __all__ = ['set_figure', 'combine_legends', 'auto_label_pct']
8
+
9
+
10
+ def set_figure(func=None,
11
+ *,
12
+ figsize: tuple | None = None,
13
+ fs: int | None = None,
14
+ fw: str = None,
15
+ autolayout: bool = True):
16
+ # For more details please see https://matplotlib.org/stable/users/explain/customizing.html
17
+ def decorator(_func):
18
+ @wraps(_func)
19
+ def wrapper(*args, **kwargs):
20
+ print(f'\tPlot:\033[96m {_func.__name__}\033[0m')
21
+
22
+ plt.rcParams['mathtext.fontset'] = 'custom'
23
+ plt.rcParams['mathtext.rm'] = 'Times New Roman'
24
+ plt.rcParams['mathtext.it'] = 'Times New Roman: italic'
25
+ plt.rcParams['mathtext.bf'] = 'Times New Roman: bold'
26
+ plt.rcParams['mathtext.default'] = 'regular'
27
+
28
+ # The font properties used by `text.Text`.
29
+ # The text, annotate, label, title, ticks, are used to create text
30
+ plt.rcParams['font.family'] = 'Times New Roman'
31
+ plt.rcParams['font.weight'] = fw or 'normal'
32
+ plt.rcParams['font.size'] = fs or 8
33
+
34
+ plt.rcParams['axes.titlesize'] = 'large'
35
+ plt.rcParams['axes.titleweight'] = 'bold'
36
+ plt.rcParams['axes.labelweight'] = 'bold'
37
+
38
+ # color
39
+ plt.rcParams['axes.prop_cycle'] = plt.cycler(color=['b', 'g', 'r', 'c', 'm', 'y', 'k'])
40
+
41
+ plt.rcParams['xtick.labelsize'] = 'medium'
42
+ plt.rcParams['ytick.labelsize'] = 'medium'
43
+
44
+ # matplotlib.font_manager.FontProperties ---> matplotlib.rcParams
45
+ plt.rcParams['legend.loc'] = 'best'
46
+ plt.rcParams['legend.frameon'] = False
47
+ plt.rcParams['legend.fontsize'] = 'small'
48
+ plt.rcParams['legend.title_fontsize'] = 'medium'
49
+ plt.rcParams['legend.handlelength'] = 1.5
50
+ plt.rcParams['legend.labelspacing'] = 0.7
51
+
52
+ plt.rcParams['figure.figsize'] = figsize or (4, 4)
53
+ plt.rcParams['figure.dpi'] = 200
54
+ plt.rcParams['figure.autolayout'] = autolayout
55
+
56
+ if ~autolayout:
57
+ plt.rcParams['figure.subplot.left'] = 0.1
58
+ plt.rcParams['figure.subplot.right'] = 0.875
59
+ plt.rcParams['figure.subplot.top'] = 0.875
60
+ plt.rcParams['figure.subplot.bottom'] = 0.125
61
+
62
+ # plt.rcParams['figure.constrained_layout.use'] = True
63
+
64
+ plt.rcParams['savefig.transparent'] = True
65
+
66
+ return _func(*args, **kwargs)
67
+
68
+ return wrapper
69
+
70
+ if func is None:
71
+ return decorator
72
+
73
+ return decorator(func)
74
+
75
+
76
+ def combine_legends(axes_list: list[Axes]) -> tuple[list, list]:
77
+ return (
78
+ [legend for axes in axes_list for legend in axes.get_legend_handles_labels()[0]],
79
+ [label for axes in axes_list for label in axes.get_legend_handles_labels()[1]]
80
+ )
81
+
82
+
83
+ def auto_label_pct(pct,
84
+ symbol: bool = True,
85
+ include_pct: bool = False,
86
+ ignore: Literal["inner", "outer"] = 'inner',
87
+ value: float = 2):
88
+ if not symbol:
89
+ return ''
90
+ cond = pct <= value if ignore == 'inner' else pct > value
91
+ label = '' if cond else '{:.1f}'.format(pct)
92
+ return '' if label == '' else label + '%' if include_pct else label
@@ -0,0 +1,49 @@
1
+ import numpy as np
2
+ from sklearn.linear_model import LinearRegression
3
+ from tabulate import tabulate
4
+
5
+ __all__ = ['linear_regression_base']
6
+
7
+
8
+ def linear_regression_base(x_array: np.ndarray,
9
+ y_array: np.ndarray,
10
+ columns: str | list[str] | None = None,
11
+ positive: bool = True,
12
+ fit_intercept: bool = True):
13
+ if len(x_array.shape) > 1 and x_array.shape[1] >= 2:
14
+ model = LinearRegression(positive=positive, fit_intercept=fit_intercept).fit(x_array, y_array)
15
+
16
+ coefficients = model.coef_[0].round(3)
17
+ intercept = model.intercept_[0].round(3) if fit_intercept else 'None'
18
+ r_square = model.score(x_array, y_array).__round__(3)
19
+ y_predict = model.predict(x_array)
20
+
21
+ equation = ' + '.join([f'{coeff:.3f} * {col}' for coeff, col in zip(coefficients, columns)])
22
+ equation = equation.replace(' + 0.000 * Const', '') # Remove terms with coefficient 0
23
+
24
+ text = 'y = ' + str(equation) + '\n' + r'$\bf R^2 = $' + str(r_square)
25
+ tab = tabulate([[*coefficients, intercept, r_square]], headers=[*columns, 'intercept', 'R^2'], floatfmt=".3f",
26
+ tablefmt="fancy_grid")
27
+ print('\n' + tab)
28
+
29
+ return text, y_predict, coefficients
30
+
31
+ else:
32
+ x_array = x_array.reshape(-1, 1)
33
+ y_array = y_array.reshape(-1, 1)
34
+
35
+ model = LinearRegression(positive=positive, fit_intercept=fit_intercept).fit(x_array, y_array)
36
+
37
+ slope = model.coef_[0][0].round(3)
38
+ intercept = model.intercept_[0].round(3) if fit_intercept else 'None'
39
+ r_square = model.score(x_array, y_array).__round__(3)
40
+ y_predict = model.predict(x_array)
41
+
42
+ text = np.poly1d([slope, intercept])
43
+ text = 'y = ' + str(text).replace('\n', "") + '\n' + r'$\bf R^2 = $' + str(r_square)
44
+
45
+ tab = tabulate([[slope, intercept, r_square]], headers=['slope', 'intercept', 'R^2'], floatfmt=".3f",
46
+ tablefmt="fancy_grid")
47
+ print('\n' + tab)
48
+
49
+ return text, y_predict, slope
AeroViz/plot/violin.py ADDED
@@ -0,0 +1,79 @@
1
+ import matplotlib.pyplot as plt
2
+ import numpy as np
3
+ import pandas as pd
4
+ from matplotlib.pyplot import Figure, Axes
5
+ from pandas import DataFrame
6
+
7
+ from AeroViz.plot.utils import *
8
+
9
+ __all__ = ['violin']
10
+
11
+
12
+ @set_figure(fw='bold')
13
+ def violin(data_set: DataFrame | dict,
14
+ unit: str,
15
+ ax: Axes | None = None,
16
+ **kwargs
17
+ ) -> tuple[Figure, Axes]:
18
+ """
19
+ Generate a violin plot for multiple data sets.
20
+
21
+ Parameters
22
+ ----------
23
+ data_set : pd.DataFrame or dict
24
+ A mapping from category names to pandas DataFrames containing the data.
25
+ unit : str
26
+ The unit for the data being plotted.
27
+ ax : matplotlib.axes.Axes, optional
28
+ The Axes object to draw the plot onto. If not provided, a new figure will be created.
29
+ **kwargs : dict
30
+ Additional keyword arguments to be passed to the violinplot function.
31
+
32
+ Returns
33
+ -------
34
+ matplotlib.axes.Axes
35
+ The Axes object containing the violin plot.
36
+
37
+ """
38
+ fig, ax = plt.subplots(**kwargs.get('fig_kws', {})) if ax is None else (ax.get_figure(), ax)
39
+
40
+ data = data_set.to_numpy()
41
+
42
+ data = data[~np.isnan(data).any(axis=1)]
43
+
44
+ grps = data.shape[1]
45
+
46
+ width = 0.6
47
+ block = width / 2
48
+ x_position = np.arange(grps)
49
+
50
+ plt.boxplot(data, positions=x_position, widths=0.15,
51
+ showfliers=False, showmeans=True, meanline=False, patch_artist=True,
52
+ capprops=dict(linewidth=0),
53
+ whiskerprops=dict(linewidth=1.5, color='k', alpha=1),
54
+ boxprops=dict(linewidth=1.5, color='k', facecolor='#4778D3', alpha=1),
55
+ meanprops=dict(marker='o', markeredgecolor='black', markerfacecolor='white', markersize=6),
56
+ medianprops=dict(linewidth=1.5, ls='-', color='k', alpha=1))
57
+
58
+ sns.violinplot(data=data, density_norm='area', color='#4778D3', inner=None)
59
+
60
+ for violin, alpha in zip(ax.collections[:], [0.5] * len(ax.collections[:])):
61
+ violin.set_alpha(alpha)
62
+ violin.set_edgecolor(None)
63
+
64
+ plt.scatter(x_position, data.mean(), marker='o', facecolor='white', edgecolor='k', s=10)
65
+
66
+ xlim = kwargs.get('xlim') or (x_position[0] - (width / 2 + block), x_position[-1] + (width / 2 + block))
67
+ ylim = kwargs.get('ylim') or (0, None)
68
+ xlabel = kwargs.get('xlabel') or ''
69
+ ylabel = kwargs.get('ylabel') or Unit(unit)
70
+ xticks = kwargs.get('xticks') or [x.replace('-', '\n') for x in list(data_set.keys())]
71
+
72
+ ax.set(xlim=xlim, ylim=ylim, xlabel=xlabel, ylabel=ylabel, title=kwargs.get('title'))
73
+ ax.set_xticks(x_position, xticks, fontweight='bold', fontsize=12)
74
+
75
+ # fig.savefig(f'Violin_{unit}')
76
+
77
+ plt.show()
78
+
79
+ return fig, ax
@@ -3,29 +3,29 @@ from pathlib import Path
3
3
  from pandas import read_csv, concat
4
4
 
5
5
  from AeroViz.process.script import (ImpactProc, ImproveProc, ChemicalProc, ParticleSizeDistProc,
6
- ExtinctionDistProc, OthersProc)
6
+ ExtinctionDistProc, OthersProc)
7
7
 
8
8
  __all__ = ['DataProcess']
9
9
 
10
10
 
11
11
  class DataProcess:
12
- def __new__(cls, file_path, reset: bool = False, save_file: Path | str = 'All_data.csv'):
13
- file_path = Path(file_path)
12
+ def __new__(cls, file_path, reset: bool = False, save_file: Path | str = 'All_data.csv'):
13
+ file_path = Path(file_path)
14
14
 
15
- print(f'\t\t \033[96m --- Processing Data --- \033[0m')
15
+ print(f'\t\t \033[96m --- Processing Data --- \033[0m')
16
16
 
17
- if file_path.exists() and not reset:
18
- return read_csv(file_path, parse_dates=['Time'], index_col='Time',
19
- na_values=('-', 'E', 'F'), low_memory=False)
17
+ if file_path.exists() and not reset:
18
+ return read_csv(file_path, parse_dates=['Time'], index_col='Time',
19
+ na_values=('-', 'E', 'F'), low_memory=False)
20
20
 
21
- processor = [ImpactProc, ChemicalProc, ImproveProc, ParticleSizeDistProc, ExtinctionDistProc, OthersProc]
22
- reset = [False, False, False, False, False, False]
23
- save_filename = ['IMPACT.csv', 'chemical.csv', 'revised_IMPROVE.csv', 'PSD.csv', 'PESD.csv', 'Others.csv']
21
+ processor = [ImpactProc, ChemicalProc, ImproveProc, ParticleSizeDistProc, ExtinctionDistProc, OthersProc]
22
+ reset = [False, False, False, False, False, False]
23
+ save_filename = ['IMPACT.csv', 'chemical.csv', 'revised_IMPROVE.csv', 'PSD.csv', 'PESD.csv', 'Others.csv']
24
24
 
25
- _df = concat([processor().process_data(reset, save_filename) for processor, reset, save_filename in
26
- zip(processor, reset, save_filename)], axis=1)
25
+ _df = concat([processor().process_data(reset, save_filename) for processor, reset, save_filename in
26
+ zip(processor, reset, save_filename)], axis=1)
27
27
 
28
- # 7. save result
29
- _df.to_csv(file_path)
28
+ # 7. save result
29
+ _df.to_csv(file_path)
30
30
 
31
- return _df
31
+ return _df
@@ -7,13 +7,13 @@ __all__ = ['DataProc']
7
7
 
8
8
 
9
9
  class DataProc(ABC):
10
- def __init__(self):
11
- pass
10
+ def __init__(self):
11
+ pass
12
12
 
13
- @abstractmethod
14
- def process_data(self,
15
- reset: bool = False,
16
- save_filename: str | Path = None
17
- ) -> DataFrame:
18
- """ Implementation of processing data """
19
- pass
13
+ @abstractmethod
14
+ def process_data(self,
15
+ reset: bool = False,
16
+ save_filename: str | Path = None
17
+ ) -> DataFrame:
18
+ """ Implementation of processing data """
19
+ pass