eyeling 1.5.12 → 1.5.14
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +1 -2
- package/examples/age.n3 +29 -0
- package/examples/backward.n3 +24 -0
- package/examples/basic-monadic.n3 +10032 -0
- package/examples/cat-koko.n3 +29 -0
- package/examples/collect-all-in.n3 +32 -0
- package/examples/complex.n3 +142 -0
- package/examples/control-system.n3 +77 -0
- package/examples/crypto-builtins-tests.n3 +60 -0
- package/examples/deep-taxonomy-10.n3 +21 -0
- package/examples/deep-taxonomy-100.n3 +111 -0
- package/examples/deep-taxonomy-1000.n3 +1011 -0
- package/examples/deep-taxonomy-10000.n3 +10011 -0
- package/examples/derived-backward-rule-2.n3 +28 -0
- package/examples/derived-backward-rule.n3 +32 -0
- package/examples/derived-rule.n3 +19 -0
- package/examples/dijkstra.n3 +64 -0
- package/examples/dog.n3 +21 -0
- package/examples/equals.n3 +12 -0
- package/examples/existential-rule.n3 +18 -0
- package/examples/fibonacci.n3 +34 -0
- package/examples/for-all-in.n3 +21 -0
- package/examples/french-cities.n3 +32 -0
- package/examples/fuse.n3 +13 -0
- package/examples/good-cobbler.n3 +18 -0
- package/examples/gray-code-counter.n3 +64 -0
- package/examples/hanoi.n3 +21 -0
- package/examples/liar.n3 +6 -0
- package/examples/list-builtins-tests.n3 +84 -0
- package/examples/lldm.n3 +133 -0
- package/examples/math-builtins-tests.n3 +612 -0
- package/examples/monkey.n3 +11 -0
- package/examples/output/age.n3 +20 -0
- package/examples/output/backward.n3 +18 -0
- package/examples/output/basic-monadic.n3 +122 -0
- package/examples/output/cat-koko.n3 +125 -0
- package/examples/output/collect-all-in.n3 +122 -0
- package/examples/output/complex.n3 +57 -0
- package/examples/output/control-system.n3 +79 -0
- package/examples/output/crypto-builtins-tests.n3 +66 -0
- package/examples/output/deep-taxonomy-10.n3 +636 -0
- package/examples/output/deep-taxonomy-100.n3 +6036 -0
- package/examples/output/deep-taxonomy-1000.n3 +60036 -0
- package/examples/output/deep-taxonomy-10000.n3 +600036 -0
- package/examples/output/derived-backward-rule-2.n3 +71 -0
- package/examples/output/derived-backward-rule.n3 +53 -0
- package/examples/output/derived-rule.n3 +52 -0
- package/examples/output/dijkstra.n3 +315 -0
- package/examples/output/dog.n3 +33 -0
- package/examples/output/equals.n3 +18 -0
- package/examples/output/existential-rule.n3 +38 -0
- package/examples/output/fibonacci.n3 +44 -0
- package/examples/output/for-all-in.n3 +30 -0
- package/examples/output/french-cities.n3 +507 -0
- package/examples/output/fuse.n3 +1 -0
- package/examples/output/good-cobbler.n3 +27 -0
- package/examples/output/gray-code-counter.n3 +20 -0
- package/examples/output/hanoi.n3 +20 -0
- package/examples/output/liar.n3 +1 -0
- package/examples/output/list-builtins-tests.n3 +148 -0
- package/examples/output/lldm.n3 +1000 -0
- package/examples/output/math-builtins-tests.n3 +4479 -0
- package/examples/output/monkey.n3 +40 -0
- package/examples/output/peano.n3 +26 -0
- package/examples/output/pi.n3 +20 -0
- package/examples/output/polygon.n3 +20 -0
- package/examples/output/reordering.n3 +29 -0
- package/examples/output/rule-matching.n3 +29 -0
- package/examples/output/self-referential.n3 +88 -0
- package/examples/output/similar.n3 +18 -0
- package/examples/output/skolem.n3 +20 -0
- package/examples/output/snaf.n3 +26 -0
- package/examples/output/socrates.n3 +24 -0
- package/examples/output/string-builtins-tests.n3 +258 -0
- package/examples/output/turing.n3 +44 -0
- package/examples/output/uri.n3 +46 -0
- package/examples/output/witch.n3 +115 -0
- package/examples/output/zebra.n3 +114 -0
- package/examples/peano.n3 +45 -0
- package/examples/pi.n3 +32 -0
- package/examples/polygon.n3 +26 -0
- package/examples/reordering.n3 +23 -0
- package/examples/rule-matching.n3 +15 -0
- package/examples/self-referential.n3 +32 -0
- package/examples/similar.n3 +28 -0
- package/examples/skolem.n3 +15 -0
- package/examples/snaf.n3 +18 -0
- package/examples/socrates.n3 +19 -0
- package/examples/string-builtins-tests.n3 +210 -0
- package/examples/test +154 -0
- package/examples/turing.n3 +93 -0
- package/examples/uri.n3 +17 -0
- package/examples/witch.n3 +33 -0
- package/examples/zebra.n3 +47 -0
- package/package.json +7 -2
- package/test/api.test.js +22 -0
|
@@ -0,0 +1,636 @@
|
|
|
1
|
+
@prefix : <http://eulersharp.sourceforge.net/2009/12dtb/test#> .
|
|
2
|
+
|
|
3
|
+
# ----------------------------------------------------------------------
|
|
4
|
+
# Proof for derived triple:
|
|
5
|
+
# :ind a :N1 .
|
|
6
|
+
# It holds because the following instance of the rule body is provable:
|
|
7
|
+
# :ind a :N0 .
|
|
8
|
+
# via the schematic forward rule:
|
|
9
|
+
# {
|
|
10
|
+
# ?X a :N0 .
|
|
11
|
+
# } => {
|
|
12
|
+
# ?X a :N1 .
|
|
13
|
+
# ?X a :I1 .
|
|
14
|
+
# ?X a :J1 .
|
|
15
|
+
# } .
|
|
16
|
+
# with substitution (on rule variables):
|
|
17
|
+
# ?X = :ind
|
|
18
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
19
|
+
# ----------------------------------------------------------------------
|
|
20
|
+
|
|
21
|
+
:ind a :N1 .
|
|
22
|
+
|
|
23
|
+
# ----------------------------------------------------------------------
|
|
24
|
+
# Proof for derived triple:
|
|
25
|
+
# :ind a :I1 .
|
|
26
|
+
# It holds because the following instance of the rule body is provable:
|
|
27
|
+
# :ind a :N0 .
|
|
28
|
+
# via the schematic forward rule:
|
|
29
|
+
# {
|
|
30
|
+
# ?X a :N0 .
|
|
31
|
+
# } => {
|
|
32
|
+
# ?X a :N1 .
|
|
33
|
+
# ?X a :I1 .
|
|
34
|
+
# ?X a :J1 .
|
|
35
|
+
# } .
|
|
36
|
+
# with substitution (on rule variables):
|
|
37
|
+
# ?X = :ind
|
|
38
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
39
|
+
# ----------------------------------------------------------------------
|
|
40
|
+
|
|
41
|
+
:ind a :I1 .
|
|
42
|
+
|
|
43
|
+
# ----------------------------------------------------------------------
|
|
44
|
+
# Proof for derived triple:
|
|
45
|
+
# :ind a :J1 .
|
|
46
|
+
# It holds because the following instance of the rule body is provable:
|
|
47
|
+
# :ind a :N0 .
|
|
48
|
+
# via the schematic forward rule:
|
|
49
|
+
# {
|
|
50
|
+
# ?X a :N0 .
|
|
51
|
+
# } => {
|
|
52
|
+
# ?X a :N1 .
|
|
53
|
+
# ?X a :I1 .
|
|
54
|
+
# ?X a :J1 .
|
|
55
|
+
# } .
|
|
56
|
+
# with substitution (on rule variables):
|
|
57
|
+
# ?X = :ind
|
|
58
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
59
|
+
# ----------------------------------------------------------------------
|
|
60
|
+
|
|
61
|
+
:ind a :J1 .
|
|
62
|
+
|
|
63
|
+
# ----------------------------------------------------------------------
|
|
64
|
+
# Proof for derived triple:
|
|
65
|
+
# :ind a :N2 .
|
|
66
|
+
# It holds because the following instance of the rule body is provable:
|
|
67
|
+
# :ind a :N1 .
|
|
68
|
+
# via the schematic forward rule:
|
|
69
|
+
# {
|
|
70
|
+
# ?X a :N1 .
|
|
71
|
+
# } => {
|
|
72
|
+
# ?X a :N2 .
|
|
73
|
+
# ?X a :I2 .
|
|
74
|
+
# ?X a :J2 .
|
|
75
|
+
# } .
|
|
76
|
+
# with substitution (on rule variables):
|
|
77
|
+
# ?X = :ind
|
|
78
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
79
|
+
# ----------------------------------------------------------------------
|
|
80
|
+
|
|
81
|
+
:ind a :N2 .
|
|
82
|
+
|
|
83
|
+
# ----------------------------------------------------------------------
|
|
84
|
+
# Proof for derived triple:
|
|
85
|
+
# :ind a :I2 .
|
|
86
|
+
# It holds because the following instance of the rule body is provable:
|
|
87
|
+
# :ind a :N1 .
|
|
88
|
+
# via the schematic forward rule:
|
|
89
|
+
# {
|
|
90
|
+
# ?X a :N1 .
|
|
91
|
+
# } => {
|
|
92
|
+
# ?X a :N2 .
|
|
93
|
+
# ?X a :I2 .
|
|
94
|
+
# ?X a :J2 .
|
|
95
|
+
# } .
|
|
96
|
+
# with substitution (on rule variables):
|
|
97
|
+
# ?X = :ind
|
|
98
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
99
|
+
# ----------------------------------------------------------------------
|
|
100
|
+
|
|
101
|
+
:ind a :I2 .
|
|
102
|
+
|
|
103
|
+
# ----------------------------------------------------------------------
|
|
104
|
+
# Proof for derived triple:
|
|
105
|
+
# :ind a :J2 .
|
|
106
|
+
# It holds because the following instance of the rule body is provable:
|
|
107
|
+
# :ind a :N1 .
|
|
108
|
+
# via the schematic forward rule:
|
|
109
|
+
# {
|
|
110
|
+
# ?X a :N1 .
|
|
111
|
+
# } => {
|
|
112
|
+
# ?X a :N2 .
|
|
113
|
+
# ?X a :I2 .
|
|
114
|
+
# ?X a :J2 .
|
|
115
|
+
# } .
|
|
116
|
+
# with substitution (on rule variables):
|
|
117
|
+
# ?X = :ind
|
|
118
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
119
|
+
# ----------------------------------------------------------------------
|
|
120
|
+
|
|
121
|
+
:ind a :J2 .
|
|
122
|
+
|
|
123
|
+
# ----------------------------------------------------------------------
|
|
124
|
+
# Proof for derived triple:
|
|
125
|
+
# :ind a :N3 .
|
|
126
|
+
# It holds because the following instance of the rule body is provable:
|
|
127
|
+
# :ind a :N2 .
|
|
128
|
+
# via the schematic forward rule:
|
|
129
|
+
# {
|
|
130
|
+
# ?X a :N2 .
|
|
131
|
+
# } => {
|
|
132
|
+
# ?X a :N3 .
|
|
133
|
+
# ?X a :I3 .
|
|
134
|
+
# ?X a :J3 .
|
|
135
|
+
# } .
|
|
136
|
+
# with substitution (on rule variables):
|
|
137
|
+
# ?X = :ind
|
|
138
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
139
|
+
# ----------------------------------------------------------------------
|
|
140
|
+
|
|
141
|
+
:ind a :N3 .
|
|
142
|
+
|
|
143
|
+
# ----------------------------------------------------------------------
|
|
144
|
+
# Proof for derived triple:
|
|
145
|
+
# :ind a :I3 .
|
|
146
|
+
# It holds because the following instance of the rule body is provable:
|
|
147
|
+
# :ind a :N2 .
|
|
148
|
+
# via the schematic forward rule:
|
|
149
|
+
# {
|
|
150
|
+
# ?X a :N2 .
|
|
151
|
+
# } => {
|
|
152
|
+
# ?X a :N3 .
|
|
153
|
+
# ?X a :I3 .
|
|
154
|
+
# ?X a :J3 .
|
|
155
|
+
# } .
|
|
156
|
+
# with substitution (on rule variables):
|
|
157
|
+
# ?X = :ind
|
|
158
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
159
|
+
# ----------------------------------------------------------------------
|
|
160
|
+
|
|
161
|
+
:ind a :I3 .
|
|
162
|
+
|
|
163
|
+
# ----------------------------------------------------------------------
|
|
164
|
+
# Proof for derived triple:
|
|
165
|
+
# :ind a :J3 .
|
|
166
|
+
# It holds because the following instance of the rule body is provable:
|
|
167
|
+
# :ind a :N2 .
|
|
168
|
+
# via the schematic forward rule:
|
|
169
|
+
# {
|
|
170
|
+
# ?X a :N2 .
|
|
171
|
+
# } => {
|
|
172
|
+
# ?X a :N3 .
|
|
173
|
+
# ?X a :I3 .
|
|
174
|
+
# ?X a :J3 .
|
|
175
|
+
# } .
|
|
176
|
+
# with substitution (on rule variables):
|
|
177
|
+
# ?X = :ind
|
|
178
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
179
|
+
# ----------------------------------------------------------------------
|
|
180
|
+
|
|
181
|
+
:ind a :J3 .
|
|
182
|
+
|
|
183
|
+
# ----------------------------------------------------------------------
|
|
184
|
+
# Proof for derived triple:
|
|
185
|
+
# :ind a :N4 .
|
|
186
|
+
# It holds because the following instance of the rule body is provable:
|
|
187
|
+
# :ind a :N3 .
|
|
188
|
+
# via the schematic forward rule:
|
|
189
|
+
# {
|
|
190
|
+
# ?X a :N3 .
|
|
191
|
+
# } => {
|
|
192
|
+
# ?X a :N4 .
|
|
193
|
+
# ?X a :I4 .
|
|
194
|
+
# ?X a :J4 .
|
|
195
|
+
# } .
|
|
196
|
+
# with substitution (on rule variables):
|
|
197
|
+
# ?X = :ind
|
|
198
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
199
|
+
# ----------------------------------------------------------------------
|
|
200
|
+
|
|
201
|
+
:ind a :N4 .
|
|
202
|
+
|
|
203
|
+
# ----------------------------------------------------------------------
|
|
204
|
+
# Proof for derived triple:
|
|
205
|
+
# :ind a :I4 .
|
|
206
|
+
# It holds because the following instance of the rule body is provable:
|
|
207
|
+
# :ind a :N3 .
|
|
208
|
+
# via the schematic forward rule:
|
|
209
|
+
# {
|
|
210
|
+
# ?X a :N3 .
|
|
211
|
+
# } => {
|
|
212
|
+
# ?X a :N4 .
|
|
213
|
+
# ?X a :I4 .
|
|
214
|
+
# ?X a :J4 .
|
|
215
|
+
# } .
|
|
216
|
+
# with substitution (on rule variables):
|
|
217
|
+
# ?X = :ind
|
|
218
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
219
|
+
# ----------------------------------------------------------------------
|
|
220
|
+
|
|
221
|
+
:ind a :I4 .
|
|
222
|
+
|
|
223
|
+
# ----------------------------------------------------------------------
|
|
224
|
+
# Proof for derived triple:
|
|
225
|
+
# :ind a :J4 .
|
|
226
|
+
# It holds because the following instance of the rule body is provable:
|
|
227
|
+
# :ind a :N3 .
|
|
228
|
+
# via the schematic forward rule:
|
|
229
|
+
# {
|
|
230
|
+
# ?X a :N3 .
|
|
231
|
+
# } => {
|
|
232
|
+
# ?X a :N4 .
|
|
233
|
+
# ?X a :I4 .
|
|
234
|
+
# ?X a :J4 .
|
|
235
|
+
# } .
|
|
236
|
+
# with substitution (on rule variables):
|
|
237
|
+
# ?X = :ind
|
|
238
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
239
|
+
# ----------------------------------------------------------------------
|
|
240
|
+
|
|
241
|
+
:ind a :J4 .
|
|
242
|
+
|
|
243
|
+
# ----------------------------------------------------------------------
|
|
244
|
+
# Proof for derived triple:
|
|
245
|
+
# :ind a :N5 .
|
|
246
|
+
# It holds because the following instance of the rule body is provable:
|
|
247
|
+
# :ind a :N4 .
|
|
248
|
+
# via the schematic forward rule:
|
|
249
|
+
# {
|
|
250
|
+
# ?X a :N4 .
|
|
251
|
+
# } => {
|
|
252
|
+
# ?X a :N5 .
|
|
253
|
+
# ?X a :I5 .
|
|
254
|
+
# ?X a :J5 .
|
|
255
|
+
# } .
|
|
256
|
+
# with substitution (on rule variables):
|
|
257
|
+
# ?X = :ind
|
|
258
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
259
|
+
# ----------------------------------------------------------------------
|
|
260
|
+
|
|
261
|
+
:ind a :N5 .
|
|
262
|
+
|
|
263
|
+
# ----------------------------------------------------------------------
|
|
264
|
+
# Proof for derived triple:
|
|
265
|
+
# :ind a :I5 .
|
|
266
|
+
# It holds because the following instance of the rule body is provable:
|
|
267
|
+
# :ind a :N4 .
|
|
268
|
+
# via the schematic forward rule:
|
|
269
|
+
# {
|
|
270
|
+
# ?X a :N4 .
|
|
271
|
+
# } => {
|
|
272
|
+
# ?X a :N5 .
|
|
273
|
+
# ?X a :I5 .
|
|
274
|
+
# ?X a :J5 .
|
|
275
|
+
# } .
|
|
276
|
+
# with substitution (on rule variables):
|
|
277
|
+
# ?X = :ind
|
|
278
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
279
|
+
# ----------------------------------------------------------------------
|
|
280
|
+
|
|
281
|
+
:ind a :I5 .
|
|
282
|
+
|
|
283
|
+
# ----------------------------------------------------------------------
|
|
284
|
+
# Proof for derived triple:
|
|
285
|
+
# :ind a :J5 .
|
|
286
|
+
# It holds because the following instance of the rule body is provable:
|
|
287
|
+
# :ind a :N4 .
|
|
288
|
+
# via the schematic forward rule:
|
|
289
|
+
# {
|
|
290
|
+
# ?X a :N4 .
|
|
291
|
+
# } => {
|
|
292
|
+
# ?X a :N5 .
|
|
293
|
+
# ?X a :I5 .
|
|
294
|
+
# ?X a :J5 .
|
|
295
|
+
# } .
|
|
296
|
+
# with substitution (on rule variables):
|
|
297
|
+
# ?X = :ind
|
|
298
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
299
|
+
# ----------------------------------------------------------------------
|
|
300
|
+
|
|
301
|
+
:ind a :J5 .
|
|
302
|
+
|
|
303
|
+
# ----------------------------------------------------------------------
|
|
304
|
+
# Proof for derived triple:
|
|
305
|
+
# :ind a :N6 .
|
|
306
|
+
# It holds because the following instance of the rule body is provable:
|
|
307
|
+
# :ind a :N5 .
|
|
308
|
+
# via the schematic forward rule:
|
|
309
|
+
# {
|
|
310
|
+
# ?X a :N5 .
|
|
311
|
+
# } => {
|
|
312
|
+
# ?X a :N6 .
|
|
313
|
+
# ?X a :I6 .
|
|
314
|
+
# ?X a :J6 .
|
|
315
|
+
# } .
|
|
316
|
+
# with substitution (on rule variables):
|
|
317
|
+
# ?X = :ind
|
|
318
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
319
|
+
# ----------------------------------------------------------------------
|
|
320
|
+
|
|
321
|
+
:ind a :N6 .
|
|
322
|
+
|
|
323
|
+
# ----------------------------------------------------------------------
|
|
324
|
+
# Proof for derived triple:
|
|
325
|
+
# :ind a :I6 .
|
|
326
|
+
# It holds because the following instance of the rule body is provable:
|
|
327
|
+
# :ind a :N5 .
|
|
328
|
+
# via the schematic forward rule:
|
|
329
|
+
# {
|
|
330
|
+
# ?X a :N5 .
|
|
331
|
+
# } => {
|
|
332
|
+
# ?X a :N6 .
|
|
333
|
+
# ?X a :I6 .
|
|
334
|
+
# ?X a :J6 .
|
|
335
|
+
# } .
|
|
336
|
+
# with substitution (on rule variables):
|
|
337
|
+
# ?X = :ind
|
|
338
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
339
|
+
# ----------------------------------------------------------------------
|
|
340
|
+
|
|
341
|
+
:ind a :I6 .
|
|
342
|
+
|
|
343
|
+
# ----------------------------------------------------------------------
|
|
344
|
+
# Proof for derived triple:
|
|
345
|
+
# :ind a :J6 .
|
|
346
|
+
# It holds because the following instance of the rule body is provable:
|
|
347
|
+
# :ind a :N5 .
|
|
348
|
+
# via the schematic forward rule:
|
|
349
|
+
# {
|
|
350
|
+
# ?X a :N5 .
|
|
351
|
+
# } => {
|
|
352
|
+
# ?X a :N6 .
|
|
353
|
+
# ?X a :I6 .
|
|
354
|
+
# ?X a :J6 .
|
|
355
|
+
# } .
|
|
356
|
+
# with substitution (on rule variables):
|
|
357
|
+
# ?X = :ind
|
|
358
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
359
|
+
# ----------------------------------------------------------------------
|
|
360
|
+
|
|
361
|
+
:ind a :J6 .
|
|
362
|
+
|
|
363
|
+
# ----------------------------------------------------------------------
|
|
364
|
+
# Proof for derived triple:
|
|
365
|
+
# :ind a :N7 .
|
|
366
|
+
# It holds because the following instance of the rule body is provable:
|
|
367
|
+
# :ind a :N6 .
|
|
368
|
+
# via the schematic forward rule:
|
|
369
|
+
# {
|
|
370
|
+
# ?X a :N6 .
|
|
371
|
+
# } => {
|
|
372
|
+
# ?X a :N7 .
|
|
373
|
+
# ?X a :I7 .
|
|
374
|
+
# ?X a :J7 .
|
|
375
|
+
# } .
|
|
376
|
+
# with substitution (on rule variables):
|
|
377
|
+
# ?X = :ind
|
|
378
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
379
|
+
# ----------------------------------------------------------------------
|
|
380
|
+
|
|
381
|
+
:ind a :N7 .
|
|
382
|
+
|
|
383
|
+
# ----------------------------------------------------------------------
|
|
384
|
+
# Proof for derived triple:
|
|
385
|
+
# :ind a :I7 .
|
|
386
|
+
# It holds because the following instance of the rule body is provable:
|
|
387
|
+
# :ind a :N6 .
|
|
388
|
+
# via the schematic forward rule:
|
|
389
|
+
# {
|
|
390
|
+
# ?X a :N6 .
|
|
391
|
+
# } => {
|
|
392
|
+
# ?X a :N7 .
|
|
393
|
+
# ?X a :I7 .
|
|
394
|
+
# ?X a :J7 .
|
|
395
|
+
# } .
|
|
396
|
+
# with substitution (on rule variables):
|
|
397
|
+
# ?X = :ind
|
|
398
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
399
|
+
# ----------------------------------------------------------------------
|
|
400
|
+
|
|
401
|
+
:ind a :I7 .
|
|
402
|
+
|
|
403
|
+
# ----------------------------------------------------------------------
|
|
404
|
+
# Proof for derived triple:
|
|
405
|
+
# :ind a :J7 .
|
|
406
|
+
# It holds because the following instance of the rule body is provable:
|
|
407
|
+
# :ind a :N6 .
|
|
408
|
+
# via the schematic forward rule:
|
|
409
|
+
# {
|
|
410
|
+
# ?X a :N6 .
|
|
411
|
+
# } => {
|
|
412
|
+
# ?X a :N7 .
|
|
413
|
+
# ?X a :I7 .
|
|
414
|
+
# ?X a :J7 .
|
|
415
|
+
# } .
|
|
416
|
+
# with substitution (on rule variables):
|
|
417
|
+
# ?X = :ind
|
|
418
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
419
|
+
# ----------------------------------------------------------------------
|
|
420
|
+
|
|
421
|
+
:ind a :J7 .
|
|
422
|
+
|
|
423
|
+
# ----------------------------------------------------------------------
|
|
424
|
+
# Proof for derived triple:
|
|
425
|
+
# :ind a :N8 .
|
|
426
|
+
# It holds because the following instance of the rule body is provable:
|
|
427
|
+
# :ind a :N7 .
|
|
428
|
+
# via the schematic forward rule:
|
|
429
|
+
# {
|
|
430
|
+
# ?X a :N7 .
|
|
431
|
+
# } => {
|
|
432
|
+
# ?X a :N8 .
|
|
433
|
+
# ?X a :I8 .
|
|
434
|
+
# ?X a :J8 .
|
|
435
|
+
# } .
|
|
436
|
+
# with substitution (on rule variables):
|
|
437
|
+
# ?X = :ind
|
|
438
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
439
|
+
# ----------------------------------------------------------------------
|
|
440
|
+
|
|
441
|
+
:ind a :N8 .
|
|
442
|
+
|
|
443
|
+
# ----------------------------------------------------------------------
|
|
444
|
+
# Proof for derived triple:
|
|
445
|
+
# :ind a :I8 .
|
|
446
|
+
# It holds because the following instance of the rule body is provable:
|
|
447
|
+
# :ind a :N7 .
|
|
448
|
+
# via the schematic forward rule:
|
|
449
|
+
# {
|
|
450
|
+
# ?X a :N7 .
|
|
451
|
+
# } => {
|
|
452
|
+
# ?X a :N8 .
|
|
453
|
+
# ?X a :I8 .
|
|
454
|
+
# ?X a :J8 .
|
|
455
|
+
# } .
|
|
456
|
+
# with substitution (on rule variables):
|
|
457
|
+
# ?X = :ind
|
|
458
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
459
|
+
# ----------------------------------------------------------------------
|
|
460
|
+
|
|
461
|
+
:ind a :I8 .
|
|
462
|
+
|
|
463
|
+
# ----------------------------------------------------------------------
|
|
464
|
+
# Proof for derived triple:
|
|
465
|
+
# :ind a :J8 .
|
|
466
|
+
# It holds because the following instance of the rule body is provable:
|
|
467
|
+
# :ind a :N7 .
|
|
468
|
+
# via the schematic forward rule:
|
|
469
|
+
# {
|
|
470
|
+
# ?X a :N7 .
|
|
471
|
+
# } => {
|
|
472
|
+
# ?X a :N8 .
|
|
473
|
+
# ?X a :I8 .
|
|
474
|
+
# ?X a :J8 .
|
|
475
|
+
# } .
|
|
476
|
+
# with substitution (on rule variables):
|
|
477
|
+
# ?X = :ind
|
|
478
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
479
|
+
# ----------------------------------------------------------------------
|
|
480
|
+
|
|
481
|
+
:ind a :J8 .
|
|
482
|
+
|
|
483
|
+
# ----------------------------------------------------------------------
|
|
484
|
+
# Proof for derived triple:
|
|
485
|
+
# :ind a :N9 .
|
|
486
|
+
# It holds because the following instance of the rule body is provable:
|
|
487
|
+
# :ind a :N8 .
|
|
488
|
+
# via the schematic forward rule:
|
|
489
|
+
# {
|
|
490
|
+
# ?X a :N8 .
|
|
491
|
+
# } => {
|
|
492
|
+
# ?X a :N9 .
|
|
493
|
+
# ?X a :I9 .
|
|
494
|
+
# ?X a :J9 .
|
|
495
|
+
# } .
|
|
496
|
+
# with substitution (on rule variables):
|
|
497
|
+
# ?X = :ind
|
|
498
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
499
|
+
# ----------------------------------------------------------------------
|
|
500
|
+
|
|
501
|
+
:ind a :N9 .
|
|
502
|
+
|
|
503
|
+
# ----------------------------------------------------------------------
|
|
504
|
+
# Proof for derived triple:
|
|
505
|
+
# :ind a :I9 .
|
|
506
|
+
# It holds because the following instance of the rule body is provable:
|
|
507
|
+
# :ind a :N8 .
|
|
508
|
+
# via the schematic forward rule:
|
|
509
|
+
# {
|
|
510
|
+
# ?X a :N8 .
|
|
511
|
+
# } => {
|
|
512
|
+
# ?X a :N9 .
|
|
513
|
+
# ?X a :I9 .
|
|
514
|
+
# ?X a :J9 .
|
|
515
|
+
# } .
|
|
516
|
+
# with substitution (on rule variables):
|
|
517
|
+
# ?X = :ind
|
|
518
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
519
|
+
# ----------------------------------------------------------------------
|
|
520
|
+
|
|
521
|
+
:ind a :I9 .
|
|
522
|
+
|
|
523
|
+
# ----------------------------------------------------------------------
|
|
524
|
+
# Proof for derived triple:
|
|
525
|
+
# :ind a :J9 .
|
|
526
|
+
# It holds because the following instance of the rule body is provable:
|
|
527
|
+
# :ind a :N8 .
|
|
528
|
+
# via the schematic forward rule:
|
|
529
|
+
# {
|
|
530
|
+
# ?X a :N8 .
|
|
531
|
+
# } => {
|
|
532
|
+
# ?X a :N9 .
|
|
533
|
+
# ?X a :I9 .
|
|
534
|
+
# ?X a :J9 .
|
|
535
|
+
# } .
|
|
536
|
+
# with substitution (on rule variables):
|
|
537
|
+
# ?X = :ind
|
|
538
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
539
|
+
# ----------------------------------------------------------------------
|
|
540
|
+
|
|
541
|
+
:ind a :J9 .
|
|
542
|
+
|
|
543
|
+
# ----------------------------------------------------------------------
|
|
544
|
+
# Proof for derived triple:
|
|
545
|
+
# :ind a :N10 .
|
|
546
|
+
# It holds because the following instance of the rule body is provable:
|
|
547
|
+
# :ind a :N9 .
|
|
548
|
+
# via the schematic forward rule:
|
|
549
|
+
# {
|
|
550
|
+
# ?X a :N9 .
|
|
551
|
+
# } => {
|
|
552
|
+
# ?X a :N10 .
|
|
553
|
+
# ?X a :I10 .
|
|
554
|
+
# ?X a :J10 .
|
|
555
|
+
# } .
|
|
556
|
+
# with substitution (on rule variables):
|
|
557
|
+
# ?X = :ind
|
|
558
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
559
|
+
# ----------------------------------------------------------------------
|
|
560
|
+
|
|
561
|
+
:ind a :N10 .
|
|
562
|
+
|
|
563
|
+
# ----------------------------------------------------------------------
|
|
564
|
+
# Proof for derived triple:
|
|
565
|
+
# :ind a :I10 .
|
|
566
|
+
# It holds because the following instance of the rule body is provable:
|
|
567
|
+
# :ind a :N9 .
|
|
568
|
+
# via the schematic forward rule:
|
|
569
|
+
# {
|
|
570
|
+
# ?X a :N9 .
|
|
571
|
+
# } => {
|
|
572
|
+
# ?X a :N10 .
|
|
573
|
+
# ?X a :I10 .
|
|
574
|
+
# ?X a :J10 .
|
|
575
|
+
# } .
|
|
576
|
+
# with substitution (on rule variables):
|
|
577
|
+
# ?X = :ind
|
|
578
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
579
|
+
# ----------------------------------------------------------------------
|
|
580
|
+
|
|
581
|
+
:ind a :I10 .
|
|
582
|
+
|
|
583
|
+
# ----------------------------------------------------------------------
|
|
584
|
+
# Proof for derived triple:
|
|
585
|
+
# :ind a :J10 .
|
|
586
|
+
# It holds because the following instance of the rule body is provable:
|
|
587
|
+
# :ind a :N9 .
|
|
588
|
+
# via the schematic forward rule:
|
|
589
|
+
# {
|
|
590
|
+
# ?X a :N9 .
|
|
591
|
+
# } => {
|
|
592
|
+
# ?X a :N10 .
|
|
593
|
+
# ?X a :I10 .
|
|
594
|
+
# ?X a :J10 .
|
|
595
|
+
# } .
|
|
596
|
+
# with substitution (on rule variables):
|
|
597
|
+
# ?X = :ind
|
|
598
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
599
|
+
# ----------------------------------------------------------------------
|
|
600
|
+
|
|
601
|
+
:ind a :J10 .
|
|
602
|
+
|
|
603
|
+
# ----------------------------------------------------------------------
|
|
604
|
+
# Proof for derived triple:
|
|
605
|
+
# :ind a :A2 .
|
|
606
|
+
# It holds because the following instance of the rule body is provable:
|
|
607
|
+
# :ind a :N10 .
|
|
608
|
+
# via the schematic forward rule:
|
|
609
|
+
# {
|
|
610
|
+
# ?X a :N10 .
|
|
611
|
+
# } => {
|
|
612
|
+
# ?X a :A2 .
|
|
613
|
+
# } .
|
|
614
|
+
# with substitution (on rule variables):
|
|
615
|
+
# ?X = :ind
|
|
616
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
617
|
+
# ----------------------------------------------------------------------
|
|
618
|
+
|
|
619
|
+
:ind a :A2 .
|
|
620
|
+
|
|
621
|
+
# ----------------------------------------------------------------------
|
|
622
|
+
# Proof for derived triple:
|
|
623
|
+
# :test :is true .
|
|
624
|
+
# It holds because the following instance of the rule body is provable:
|
|
625
|
+
# :ind a :A2 .
|
|
626
|
+
# via the schematic forward rule:
|
|
627
|
+
# {
|
|
628
|
+
# :ind a :A2 .
|
|
629
|
+
# } => {
|
|
630
|
+
# :test :is true .
|
|
631
|
+
# } .
|
|
632
|
+
# Therefore the derived triple above is entailed by the rules and facts.
|
|
633
|
+
# ----------------------------------------------------------------------
|
|
634
|
+
|
|
635
|
+
:test :is true .
|
|
636
|
+
|