eyeling 1.5.12 → 1.5.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. package/README.md +1 -2
  2. package/examples/age.n3 +29 -0
  3. package/examples/backward.n3 +24 -0
  4. package/examples/basic-monadic.n3 +10032 -0
  5. package/examples/cat-koko.n3 +29 -0
  6. package/examples/collect-all-in.n3 +32 -0
  7. package/examples/complex.n3 +142 -0
  8. package/examples/control-system.n3 +77 -0
  9. package/examples/crypto-builtins-tests.n3 +60 -0
  10. package/examples/deep-taxonomy-10.n3 +21 -0
  11. package/examples/deep-taxonomy-100.n3 +111 -0
  12. package/examples/deep-taxonomy-1000.n3 +1011 -0
  13. package/examples/deep-taxonomy-10000.n3 +10011 -0
  14. package/examples/derived-backward-rule-2.n3 +28 -0
  15. package/examples/derived-backward-rule.n3 +32 -0
  16. package/examples/derived-rule.n3 +19 -0
  17. package/examples/dijkstra.n3 +64 -0
  18. package/examples/dog.n3 +21 -0
  19. package/examples/equals.n3 +12 -0
  20. package/examples/existential-rule.n3 +18 -0
  21. package/examples/fibonacci.n3 +34 -0
  22. package/examples/for-all-in.n3 +21 -0
  23. package/examples/french-cities.n3 +32 -0
  24. package/examples/fuse.n3 +13 -0
  25. package/examples/good-cobbler.n3 +18 -0
  26. package/examples/gray-code-counter.n3 +64 -0
  27. package/examples/hanoi.n3 +21 -0
  28. package/examples/liar.n3 +6 -0
  29. package/examples/list-builtins-tests.n3 +84 -0
  30. package/examples/lldm.n3 +133 -0
  31. package/examples/math-builtins-tests.n3 +612 -0
  32. package/examples/monkey.n3 +11 -0
  33. package/examples/output/age.n3 +20 -0
  34. package/examples/output/backward.n3 +18 -0
  35. package/examples/output/basic-monadic.n3 +122 -0
  36. package/examples/output/cat-koko.n3 +125 -0
  37. package/examples/output/collect-all-in.n3 +122 -0
  38. package/examples/output/complex.n3 +57 -0
  39. package/examples/output/control-system.n3 +79 -0
  40. package/examples/output/crypto-builtins-tests.n3 +66 -0
  41. package/examples/output/deep-taxonomy-10.n3 +636 -0
  42. package/examples/output/deep-taxonomy-100.n3 +6036 -0
  43. package/examples/output/deep-taxonomy-1000.n3 +60036 -0
  44. package/examples/output/deep-taxonomy-10000.n3 +600036 -0
  45. package/examples/output/derived-backward-rule-2.n3 +71 -0
  46. package/examples/output/derived-backward-rule.n3 +53 -0
  47. package/examples/output/derived-rule.n3 +52 -0
  48. package/examples/output/dijkstra.n3 +315 -0
  49. package/examples/output/dog.n3 +33 -0
  50. package/examples/output/equals.n3 +18 -0
  51. package/examples/output/existential-rule.n3 +38 -0
  52. package/examples/output/fibonacci.n3 +44 -0
  53. package/examples/output/for-all-in.n3 +30 -0
  54. package/examples/output/french-cities.n3 +507 -0
  55. package/examples/output/fuse.n3 +1 -0
  56. package/examples/output/good-cobbler.n3 +27 -0
  57. package/examples/output/gray-code-counter.n3 +20 -0
  58. package/examples/output/hanoi.n3 +20 -0
  59. package/examples/output/liar.n3 +1 -0
  60. package/examples/output/list-builtins-tests.n3 +148 -0
  61. package/examples/output/lldm.n3 +1000 -0
  62. package/examples/output/math-builtins-tests.n3 +4479 -0
  63. package/examples/output/monkey.n3 +40 -0
  64. package/examples/output/peano.n3 +26 -0
  65. package/examples/output/pi.n3 +20 -0
  66. package/examples/output/polygon.n3 +20 -0
  67. package/examples/output/reordering.n3 +29 -0
  68. package/examples/output/rule-matching.n3 +29 -0
  69. package/examples/output/self-referential.n3 +88 -0
  70. package/examples/output/similar.n3 +18 -0
  71. package/examples/output/skolem.n3 +20 -0
  72. package/examples/output/snaf.n3 +26 -0
  73. package/examples/output/socrates.n3 +24 -0
  74. package/examples/output/string-builtins-tests.n3 +258 -0
  75. package/examples/output/turing.n3 +44 -0
  76. package/examples/output/uri.n3 +46 -0
  77. package/examples/output/witch.n3 +115 -0
  78. package/examples/output/zebra.n3 +114 -0
  79. package/examples/peano.n3 +45 -0
  80. package/examples/pi.n3 +32 -0
  81. package/examples/polygon.n3 +26 -0
  82. package/examples/reordering.n3 +23 -0
  83. package/examples/rule-matching.n3 +15 -0
  84. package/examples/self-referential.n3 +32 -0
  85. package/examples/similar.n3 +28 -0
  86. package/examples/skolem.n3 +15 -0
  87. package/examples/snaf.n3 +18 -0
  88. package/examples/socrates.n3 +19 -0
  89. package/examples/string-builtins-tests.n3 +210 -0
  90. package/examples/test +154 -0
  91. package/examples/turing.n3 +93 -0
  92. package/examples/uri.n3 +17 -0
  93. package/examples/witch.n3 +33 -0
  94. package/examples/zebra.n3 +47 -0
  95. package/package.json +7 -2
  96. package/test/api.test.js +22 -0
@@ -0,0 +1,1000 @@
1
+ @prefix : <http://www.agfa.com/w3c/2002/10/medicad/op/lldmP#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :meas47 :dx12Cm -35 .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :meas47 a :Measurement .
8
+ # :meas47 :p1xCm 10.1 .
9
+ # :meas47 :p2xCm 45.1 .
10
+ # (10.1 45.1) math:difference -35 .
11
+ # via the schematic forward rule:
12
+ # {
13
+ # ?M a :Measurement .
14
+ # ?M :p1xCm ?X .
15
+ # ?M :p2xCm ?Y .
16
+ # (?X ?Y) math:difference ?Z .
17
+ # } => {
18
+ # ?M :dx12Cm ?Z .
19
+ # } .
20
+ # with substitution (on rule variables):
21
+ # ?M = :meas47
22
+ # ?X = 10.1
23
+ # ?Y = 45.1
24
+ # ?Z = -35
25
+ # Therefore the derived triple above is entailed by the rules and facts.
26
+ # ----------------------------------------------------------------------
27
+
28
+ :meas47 :dx12Cm -35 .
29
+
30
+ # ----------------------------------------------------------------------
31
+ # Proof for derived triple:
32
+ # :meas47 :dy12Cm 2.2 .
33
+ # It holds because the following instance of the rule body is provable:
34
+ # :meas47 a :Measurement .
35
+ # :meas47 :p1yCm 7.8 .
36
+ # :meas47 :p2yCm 5.6 .
37
+ # (7.8 5.6) math:difference 2.2 .
38
+ # via the schematic forward rule:
39
+ # {
40
+ # ?M a :Measurement .
41
+ # ?M :p1yCm ?X .
42
+ # ?M :p2yCm ?Y .
43
+ # (?X ?Y) math:difference ?Z .
44
+ # } => {
45
+ # ?M :dy12Cm ?Z .
46
+ # } .
47
+ # with substitution (on rule variables):
48
+ # ?M = :meas47
49
+ # ?X = 7.8
50
+ # ?Y = 5.6
51
+ # ?Z = 2.2
52
+ # Therefore the derived triple above is entailed by the rules and facts.
53
+ # ----------------------------------------------------------------------
54
+
55
+ :meas47 :dy12Cm 2.2 .
56
+
57
+ # ----------------------------------------------------------------------
58
+ # Proof for derived triple:
59
+ # :meas47 :dy13Cm -22 .
60
+ # It holds because the following instance of the rule body is provable:
61
+ # :meas47 a :Measurement .
62
+ # :meas47 :p1yCm 7.8 .
63
+ # :meas47 :p3yCm 29.8 .
64
+ # (7.8 29.8) math:difference -22 .
65
+ # via the schematic forward rule:
66
+ # {
67
+ # ?M a :Measurement .
68
+ # ?M :p1yCm ?X .
69
+ # ?M :p3yCm ?Y .
70
+ # (?X ?Y) math:difference ?Z .
71
+ # } => {
72
+ # ?M :dy13Cm ?Z .
73
+ # } .
74
+ # with substitution (on rule variables):
75
+ # ?M = :meas47
76
+ # ?X = 7.8
77
+ # ?Y = 29.8
78
+ # ?Z = -22
79
+ # Therefore the derived triple above is entailed by the rules and facts.
80
+ # ----------------------------------------------------------------------
81
+
82
+ :meas47 :dy13Cm -22 .
83
+
84
+ # ----------------------------------------------------------------------
85
+ # Proof for derived triple:
86
+ # :meas47 :dy24Cm -22.9 .
87
+ # It holds because the following instance of the rule body is provable:
88
+ # :meas47 a :Measurement .
89
+ # :meas47 :p2yCm 5.6 .
90
+ # :meas47 :p4yCm 28.5 .
91
+ # (5.6 28.5) math:difference -22.9 .
92
+ # via the schematic forward rule:
93
+ # {
94
+ # ?M a :Measurement .
95
+ # ?M :p2yCm ?X .
96
+ # ?M :p4yCm ?Y .
97
+ # (?X ?Y) math:difference ?Z .
98
+ # } => {
99
+ # ?M :dy24Cm ?Z .
100
+ # } .
101
+ # with substitution (on rule variables):
102
+ # ?M = :meas47
103
+ # ?X = 5.6
104
+ # ?Y = 28.5
105
+ # ?Z = -22.9
106
+ # Therefore the derived triple above is entailed by the rules and facts.
107
+ # ----------------------------------------------------------------------
108
+
109
+ :meas47 :dy24Cm -22.9 .
110
+
111
+ # ----------------------------------------------------------------------
112
+ # Proof for derived triple:
113
+ # :meas47 :cL1 -0.06285714285714286 .
114
+ # It holds because the following instance of the rule body is provable:
115
+ # :meas47 a :Measurement .
116
+ # :meas47 :dy12Cm 2.2 .
117
+ # :meas47 :dx12Cm -35 .
118
+ # (2.2 -35) math:quotient -0.06285714285714286 .
119
+ # via the schematic forward rule:
120
+ # {
121
+ # ?M a :Measurement .
122
+ # ?M :dy12Cm ?Y .
123
+ # ?M :dx12Cm ?X .
124
+ # (?Y ?X) math:quotient ?Z .
125
+ # } => {
126
+ # ?M :cL1 ?Z .
127
+ # } .
128
+ # with substitution (on rule variables):
129
+ # ?M = :meas47
130
+ # ?X = -35
131
+ # ?Y = 2.2
132
+ # ?Z = -0.06285714285714286
133
+ # Therefore the derived triple above is entailed by the rules and facts.
134
+ # ----------------------------------------------------------------------
135
+
136
+ :meas47 :cL1 -0.06285714285714286 .
137
+
138
+ # ----------------------------------------------------------------------
139
+ # Proof for derived triple:
140
+ # :meas47 :dL3m -15.909090909090908 .
141
+ # It holds because the following instance of the rule body is provable:
142
+ # :meas47 a :Measurement .
143
+ # :meas47 :cL1 -0.06285714285714286 .
144
+ # (1 -0.06285714285714286) math:quotient -15.909090909090908 .
145
+ # via the schematic forward rule:
146
+ # {
147
+ # ?M a :Measurement .
148
+ # ?M :cL1 ?X .
149
+ # (1 ?X) math:quotient ?Z .
150
+ # } => {
151
+ # ?M :dL3m ?Z .
152
+ # } .
153
+ # with substitution (on rule variables):
154
+ # ?M = :meas47
155
+ # ?X = -0.06285714285714286
156
+ # ?Z = -15.909090909090908
157
+ # Therefore the derived triple above is entailed by the rules and facts.
158
+ # ----------------------------------------------------------------------
159
+
160
+ :meas47 :dL3m -15.909090909090908 .
161
+
162
+ # ----------------------------------------------------------------------
163
+ # Proof for derived triple:
164
+ # :meas47 :cL3 15.909090909090908 .
165
+ # It holds because the following instance of the rule body is provable:
166
+ # :meas47 a :Measurement .
167
+ # :meas47 :dL3m -15.909090909090908 .
168
+ # (0 -15.909090909090908) math:difference 15.909090909090908 .
169
+ # via the schematic forward rule:
170
+ # {
171
+ # ?M a :Measurement .
172
+ # ?M :dL3m ?X .
173
+ # (0 ?X) math:difference ?Z .
174
+ # } => {
175
+ # ?M :cL3 ?Z .
176
+ # } .
177
+ # with substitution (on rule variables):
178
+ # ?M = :meas47
179
+ # ?X = -15.909090909090908
180
+ # ?Z = 15.909090909090908
181
+ # Therefore the derived triple above is entailed by the rules and facts.
182
+ # ----------------------------------------------------------------------
183
+
184
+ :meas47 :cL3 15.909090909090908 .
185
+
186
+ # ----------------------------------------------------------------------
187
+ # Proof for derived triple:
188
+ # :meas47 :pL1x1Cm -0.6348571428571429 .
189
+ # It holds because the following instance of the rule body is provable:
190
+ # :meas47 a :Measurement .
191
+ # :meas47 :cL1 -0.06285714285714286 .
192
+ # :meas47 :p1xCm 10.1 .
193
+ # (-0.06285714285714286 10.1) math:product -0.6348571428571429 .
194
+ # via the schematic forward rule:
195
+ # {
196
+ # ?M a :Measurement .
197
+ # ?M :cL1 ?X .
198
+ # ?M :p1xCm ?Y .
199
+ # (?X ?Y) math:product ?Z .
200
+ # } => {
201
+ # ?M :pL1x1Cm ?Z .
202
+ # } .
203
+ # with substitution (on rule variables):
204
+ # ?M = :meas47
205
+ # ?X = -0.06285714285714286
206
+ # ?Y = 10.1
207
+ # ?Z = -0.6348571428571429
208
+ # Therefore the derived triple above is entailed by the rules and facts.
209
+ # ----------------------------------------------------------------------
210
+
211
+ :meas47 :pL1x1Cm -0.6348571428571429 .
212
+
213
+ # ----------------------------------------------------------------------
214
+ # Proof for derived triple:
215
+ # :meas47 :pL1x2Cm -2.834857142857143 .
216
+ # It holds because the following instance of the rule body is provable:
217
+ # :meas47 a :Measurement .
218
+ # :meas47 :cL1 -0.06285714285714286 .
219
+ # :meas47 :p2xCm 45.1 .
220
+ # (-0.06285714285714286 45.1) math:product -2.834857142857143 .
221
+ # via the schematic forward rule:
222
+ # {
223
+ # ?M a :Measurement .
224
+ # ?M :cL1 ?X .
225
+ # ?M :p2xCm ?Y .
226
+ # (?X ?Y) math:product ?Z .
227
+ # } => {
228
+ # ?M :pL1x2Cm ?Z .
229
+ # } .
230
+ # with substitution (on rule variables):
231
+ # ?M = :meas47
232
+ # ?X = -0.06285714285714286
233
+ # ?Y = 45.1
234
+ # ?Z = -2.834857142857143
235
+ # Therefore the derived triple above is entailed by the rules and facts.
236
+ # ----------------------------------------------------------------------
237
+
238
+ :meas47 :pL1x2Cm -2.834857142857143 .
239
+
240
+ # ----------------------------------------------------------------------
241
+ # Proof for derived triple:
242
+ # :meas47 :pL3x3Cm 57.27272727272727 .
243
+ # It holds because the following instance of the rule body is provable:
244
+ # :meas47 a :Measurement .
245
+ # :meas47 :cL3 15.909090909090908 .
246
+ # :meas47 :p3xCm 3.6 .
247
+ # (15.909090909090908 3.6) math:product 57.27272727272727 .
248
+ # via the schematic forward rule:
249
+ # {
250
+ # ?M a :Measurement .
251
+ # ?M :cL3 ?X .
252
+ # ?M :p3xCm ?Y .
253
+ # (?X ?Y) math:product ?Z .
254
+ # } => {
255
+ # ?M :pL3x3Cm ?Z .
256
+ # } .
257
+ # with substitution (on rule variables):
258
+ # ?M = :meas47
259
+ # ?X = 15.909090909090908
260
+ # ?Y = 3.6
261
+ # ?Z = 57.27272727272727
262
+ # Therefore the derived triple above is entailed by the rules and facts.
263
+ # ----------------------------------------------------------------------
264
+
265
+ :meas47 :pL3x3Cm 57.27272727272727 .
266
+
267
+ # ----------------------------------------------------------------------
268
+ # Proof for derived triple:
269
+ # :meas47 :pL3x4Cm 870.2272727272727 .
270
+ # It holds because the following instance of the rule body is provable:
271
+ # :meas47 a :Measurement .
272
+ # :meas47 :cL3 15.909090909090908 .
273
+ # :meas47 :p4xCm 54.7 .
274
+ # (15.909090909090908 54.7) math:product 870.2272727272727 .
275
+ # via the schematic forward rule:
276
+ # {
277
+ # ?M a :Measurement .
278
+ # ?M :cL3 ?X .
279
+ # ?M :p4xCm ?Y .
280
+ # (?X ?Y) math:product ?Z .
281
+ # } => {
282
+ # ?M :pL3x4Cm ?Z .
283
+ # } .
284
+ # with substitution (on rule variables):
285
+ # ?M = :meas47
286
+ # ?X = 15.909090909090908
287
+ # ?Y = 54.7
288
+ # ?Z = 870.2272727272727
289
+ # Therefore the derived triple above is entailed by the rules and facts.
290
+ # ----------------------------------------------------------------------
291
+
292
+ :meas47 :pL3x4Cm 870.2272727272727 .
293
+
294
+ # ----------------------------------------------------------------------
295
+ # Proof for derived triple:
296
+ # :meas47 :dd13Cm -57.90758441558442 .
297
+ # It holds because the following instance of the rule body is provable:
298
+ # :meas47 a :Measurement .
299
+ # :meas47 :pL1x1Cm -0.6348571428571429 .
300
+ # :meas47 :pL3x3Cm 57.27272727272727 .
301
+ # (-0.6348571428571429 57.27272727272727) math:difference -57.90758441558442 .
302
+ # via the schematic forward rule:
303
+ # {
304
+ # ?M a :Measurement .
305
+ # ?M :pL1x1Cm ?X .
306
+ # ?M :pL3x3Cm ?Y .
307
+ # (?X ?Y) math:difference ?Z .
308
+ # } => {
309
+ # ?M :dd13Cm ?Z .
310
+ # } .
311
+ # with substitution (on rule variables):
312
+ # ?M = :meas47
313
+ # ?X = -0.6348571428571429
314
+ # ?Y = 57.27272727272727
315
+ # ?Z = -57.90758441558442
316
+ # Therefore the derived triple above is entailed by the rules and facts.
317
+ # ----------------------------------------------------------------------
318
+
319
+ :meas47 :dd13Cm -57.90758441558442 .
320
+
321
+ # ----------------------------------------------------------------------
322
+ # Proof for derived triple:
323
+ # :meas47 :ddy13Cm -35.90758441558442 .
324
+ # It holds because the following instance of the rule body is provable:
325
+ # :meas47 a :Measurement .
326
+ # :meas47 :dd13Cm -57.90758441558442 .
327
+ # :meas47 :dy13Cm -22 .
328
+ # (-57.90758441558442 -22) math:difference -35.90758441558442 .
329
+ # via the schematic forward rule:
330
+ # {
331
+ # ?M a :Measurement .
332
+ # ?M :dd13Cm ?X .
333
+ # ?M :dy13Cm ?Y .
334
+ # (?X ?Y) math:difference ?Z .
335
+ # } => {
336
+ # ?M :ddy13Cm ?Z .
337
+ # } .
338
+ # with substitution (on rule variables):
339
+ # ?M = :meas47
340
+ # ?X = -57.90758441558442
341
+ # ?Y = -22
342
+ # ?Z = -35.90758441558442
343
+ # Therefore the derived triple above is entailed by the rules and facts.
344
+ # ----------------------------------------------------------------------
345
+
346
+ :meas47 :ddy13Cm -35.90758441558442 .
347
+
348
+ # ----------------------------------------------------------------------
349
+ # Proof for derived triple:
350
+ # :meas47 :dd24Cm -873.0621298701299 .
351
+ # It holds because the following instance of the rule body is provable:
352
+ # :meas47 a :Measurement .
353
+ # :meas47 :pL1x2Cm -2.834857142857143 .
354
+ # :meas47 :pL3x4Cm 870.2272727272727 .
355
+ # (-2.834857142857143 870.2272727272727) math:difference -873.0621298701299 .
356
+ # via the schematic forward rule:
357
+ # {
358
+ # ?M a :Measurement .
359
+ # ?M :pL1x2Cm ?X .
360
+ # ?M :pL3x4Cm ?Y .
361
+ # (?X ?Y) math:difference ?Z .
362
+ # } => {
363
+ # ?M :dd24Cm ?Z .
364
+ # } .
365
+ # with substitution (on rule variables):
366
+ # ?M = :meas47
367
+ # ?X = -2.834857142857143
368
+ # ?Y = 870.2272727272727
369
+ # ?Z = -873.0621298701299
370
+ # Therefore the derived triple above is entailed by the rules and facts.
371
+ # ----------------------------------------------------------------------
372
+
373
+ :meas47 :dd24Cm -873.0621298701299 .
374
+
375
+ # ----------------------------------------------------------------------
376
+ # Proof for derived triple:
377
+ # :meas47 :ddy24Cm -850.1621298701299 .
378
+ # It holds because the following instance of the rule body is provable:
379
+ # :meas47 a :Measurement .
380
+ # :meas47 :dd24Cm -873.0621298701299 .
381
+ # :meas47 :dy24Cm -22.9 .
382
+ # (-873.0621298701299 -22.9) math:difference -850.1621298701299 .
383
+ # via the schematic forward rule:
384
+ # {
385
+ # ?M a :Measurement .
386
+ # ?M :dd24Cm ?X .
387
+ # ?M :dy24Cm ?Y .
388
+ # (?X ?Y) math:difference ?Z .
389
+ # } => {
390
+ # ?M :ddy24Cm ?Z .
391
+ # } .
392
+ # with substitution (on rule variables):
393
+ # ?M = :meas47
394
+ # ?X = -873.0621298701299
395
+ # ?Y = -22.9
396
+ # ?Z = -850.1621298701299
397
+ # Therefore the derived triple above is entailed by the rules and facts.
398
+ # ----------------------------------------------------------------------
399
+
400
+ :meas47 :ddy24Cm -850.1621298701299 .
401
+
402
+ # ----------------------------------------------------------------------
403
+ # Proof for derived triple:
404
+ # :meas47 :ddL13 -15.97194805194805 .
405
+ # It holds because the following instance of the rule body is provable:
406
+ # :meas47 a :Measurement .
407
+ # :meas47 :cL1 -0.06285714285714286 .
408
+ # :meas47 :cL3 15.909090909090908 .
409
+ # (-0.06285714285714286 15.909090909090908) math:difference -15.97194805194805 .
410
+ # via the schematic forward rule:
411
+ # {
412
+ # ?M a :Measurement .
413
+ # ?M :cL1 ?X .
414
+ # ?M :cL3 ?Y .
415
+ # (?X ?Y) math:difference ?Z .
416
+ # } => {
417
+ # ?M :ddL13 ?Z .
418
+ # } .
419
+ # with substitution (on rule variables):
420
+ # ?M = :meas47
421
+ # ?X = -0.06285714285714286
422
+ # ?Y = 15.909090909090908
423
+ # ?Z = -15.97194805194805
424
+ # Therefore the derived triple above is entailed by the rules and facts.
425
+ # ----------------------------------------------------------------------
426
+
427
+ :meas47 :ddL13 -15.97194805194805 .
428
+
429
+ # ----------------------------------------------------------------------
430
+ # Proof for derived triple:
431
+ # :meas47 :p5xCm 2.248165615039355 .
432
+ # It holds because the following instance of the rule body is provable:
433
+ # :meas47 a :Measurement .
434
+ # :meas47 :ddy13Cm -35.90758441558442 .
435
+ # :meas47 :ddL13 -15.97194805194805 .
436
+ # (-35.90758441558442 -15.97194805194805) math:quotient 2.248165615039355 .
437
+ # via the schematic forward rule:
438
+ # {
439
+ # ?M a :Measurement .
440
+ # ?M :ddy13Cm ?X .
441
+ # ?M :ddL13 ?Y .
442
+ # (?X ?Y) math:quotient ?Z .
443
+ # } => {
444
+ # ?M :p5xCm ?Z .
445
+ # } .
446
+ # with substitution (on rule variables):
447
+ # ?M = :meas47
448
+ # ?X = -35.90758441558442
449
+ # ?Y = -15.97194805194805
450
+ # ?Z = 2.248165615039355
451
+ # Therefore the derived triple above is entailed by the rules and facts.
452
+ # ----------------------------------------------------------------------
453
+
454
+ :meas47 :p5xCm 2.248165615039355 .
455
+
456
+ # ----------------------------------------------------------------------
457
+ # Proof for derived triple:
458
+ # :meas47 :p6xCm 53.22845573407923 .
459
+ # It holds because the following instance of the rule body is provable:
460
+ # :meas47 a :Measurement .
461
+ # :meas47 :ddy24Cm -850.1621298701299 .
462
+ # :meas47 :ddL13 -15.97194805194805 .
463
+ # (-850.1621298701299 -15.97194805194805) math:quotient 53.22845573407923 .
464
+ # via the schematic forward rule:
465
+ # {
466
+ # ?M a :Measurement .
467
+ # ?M :ddy24Cm ?X .
468
+ # ?M :ddL13 ?Y .
469
+ # (?X ?Y) math:quotient ?Z .
470
+ # } => {
471
+ # ?M :p6xCm ?Z .
472
+ # } .
473
+ # with substitution (on rule variables):
474
+ # ?M = :meas47
475
+ # ?X = -850.1621298701299
476
+ # ?Y = -15.97194805194805
477
+ # ?Z = 53.22845573407923
478
+ # Therefore the derived triple above is entailed by the rules and facts.
479
+ # ----------------------------------------------------------------------
480
+
481
+ :meas47 :p6xCm 53.22845573407923 .
482
+
483
+ # ----------------------------------------------------------------------
484
+ # Proof for derived triple:
485
+ # :meas47 :dx51Cm -7.851834384960645 .
486
+ # It holds because the following instance of the rule body is provable:
487
+ # :meas47 a :Measurement .
488
+ # :meas47 :p5xCm 2.248165615039355 .
489
+ # :meas47 :p1xCm 10.1 .
490
+ # (2.248165615039355 10.1) math:difference -7.851834384960645 .
491
+ # via the schematic forward rule:
492
+ # {
493
+ # ?M a :Measurement .
494
+ # ?M :p5xCm ?X .
495
+ # ?M :p1xCm ?Y .
496
+ # (?X ?Y) math:difference ?Z .
497
+ # } => {
498
+ # ?M :dx51Cm ?Z .
499
+ # } .
500
+ # with substitution (on rule variables):
501
+ # ?M = :meas47
502
+ # ?X = 2.248165615039355
503
+ # ?Y = 10.1
504
+ # ?Z = -7.851834384960645
505
+ # Therefore the derived triple above is entailed by the rules and facts.
506
+ # ----------------------------------------------------------------------
507
+
508
+ :meas47 :dx51Cm -7.851834384960645 .
509
+
510
+ # ----------------------------------------------------------------------
511
+ # Proof for derived triple:
512
+ # :meas47 :dx53Cm -1.351834384960645 .
513
+ # It holds because the following instance of the rule body is provable:
514
+ # :meas47 a :Measurement .
515
+ # :meas47 :p5xCm 2.248165615039355 .
516
+ # :meas47 :p3xCm 3.6 .
517
+ # (2.248165615039355 3.6) math:difference -1.351834384960645 .
518
+ # via the schematic forward rule:
519
+ # {
520
+ # ?M a :Measurement .
521
+ # ?M :p5xCm ?X .
522
+ # ?M :p3xCm ?Y .
523
+ # (?X ?Y) math:difference ?Z .
524
+ # } => {
525
+ # ?M :dx53Cm ?Z .
526
+ # } .
527
+ # with substitution (on rule variables):
528
+ # ?M = :meas47
529
+ # ?X = 2.248165615039355
530
+ # ?Y = 3.6
531
+ # ?Z = -1.351834384960645
532
+ # Therefore the derived triple above is entailed by the rules and facts.
533
+ # ----------------------------------------------------------------------
534
+
535
+ :meas47 :dx53Cm -1.351834384960645 .
536
+
537
+ # ----------------------------------------------------------------------
538
+ # Proof for derived triple:
539
+ # :meas47 :dx62Cm 8.128455734079232 .
540
+ # It holds because the following instance of the rule body is provable:
541
+ # :meas47 a :Measurement .
542
+ # :meas47 :p6xCm 53.22845573407923 .
543
+ # :meas47 :p2xCm 45.1 .
544
+ # (53.22845573407923 45.1) math:difference 8.128455734079232 .
545
+ # via the schematic forward rule:
546
+ # {
547
+ # ?M a :Measurement .
548
+ # ?M :p6xCm ?X .
549
+ # ?M :p2xCm ?Y .
550
+ # (?X ?Y) math:difference ?Z .
551
+ # } => {
552
+ # ?M :dx62Cm ?Z .
553
+ # } .
554
+ # with substitution (on rule variables):
555
+ # ?M = :meas47
556
+ # ?X = 53.22845573407923
557
+ # ?Y = 45.1
558
+ # ?Z = 8.128455734079232
559
+ # Therefore the derived triple above is entailed by the rules and facts.
560
+ # ----------------------------------------------------------------------
561
+
562
+ :meas47 :dx62Cm 8.128455734079232 .
563
+
564
+ # ----------------------------------------------------------------------
565
+ # Proof for derived triple:
566
+ # :meas47 :dx64Cm -1.4715442659207696 .
567
+ # It holds because the following instance of the rule body is provable:
568
+ # :meas47 a :Measurement .
569
+ # :meas47 :p6xCm 53.22845573407923 .
570
+ # :meas47 :p4xCm 54.7 .
571
+ # (53.22845573407923 54.7) math:difference -1.4715442659207696 .
572
+ # via the schematic forward rule:
573
+ # {
574
+ # ?M a :Measurement .
575
+ # ?M :p6xCm ?X .
576
+ # ?M :p4xCm ?Y .
577
+ # (?X ?Y) math:difference ?Z .
578
+ # } => {
579
+ # ?M :dx64Cm ?Z .
580
+ # } .
581
+ # with substitution (on rule variables):
582
+ # ?M = :meas47
583
+ # ?X = 53.22845573407923
584
+ # ?Y = 54.7
585
+ # ?Z = -1.4715442659207696
586
+ # Therefore the derived triple above is entailed by the rules and facts.
587
+ # ----------------------------------------------------------------------
588
+
589
+ :meas47 :dx64Cm -1.4715442659207696 .
590
+
591
+ # ----------------------------------------------------------------------
592
+ # Proof for derived triple:
593
+ # :meas47 :pL1dx51Cm 0.4935438756260977 .
594
+ # It holds because the following instance of the rule body is provable:
595
+ # :meas47 a :Measurement .
596
+ # :meas47 :cL1 -0.06285714285714286 .
597
+ # :meas47 :dx51Cm -7.851834384960645 .
598
+ # (-0.06285714285714286 -7.851834384960645) math:product 0.4935438756260977 .
599
+ # via the schematic forward rule:
600
+ # {
601
+ # ?M a :Measurement .
602
+ # ?M :cL1 ?X .
603
+ # ?M :dx51Cm ?Y .
604
+ # (?X ?Y) math:product ?Z .
605
+ # } => {
606
+ # ?M :pL1dx51Cm ?Z .
607
+ # } .
608
+ # with substitution (on rule variables):
609
+ # ?M = :meas47
610
+ # ?X = -0.06285714285714286
611
+ # ?Y = -7.851834384960645
612
+ # ?Z = 0.4935438756260977
613
+ # Therefore the derived triple above is entailed by the rules and facts.
614
+ # ----------------------------------------------------------------------
615
+
616
+ :meas47 :pL1dx51Cm 0.4935438756260977 .
617
+
618
+ # ----------------------------------------------------------------------
619
+ # Proof for derived triple:
620
+ # :meas47 :pL1dx62Cm -0.5109315032849803 .
621
+ # It holds because the following instance of the rule body is provable:
622
+ # :meas47 a :Measurement .
623
+ # :meas47 :cL1 -0.06285714285714286 .
624
+ # :meas47 :dx62Cm 8.128455734079232 .
625
+ # (-0.06285714285714286 8.128455734079232) math:product -0.5109315032849803 .
626
+ # via the schematic forward rule:
627
+ # {
628
+ # ?M a :Measurement .
629
+ # ?M :cL1 ?X .
630
+ # ?M :dx62Cm ?Y .
631
+ # (?X ?Y) math:product ?Z .
632
+ # } => {
633
+ # ?M :pL1dx62Cm ?Z .
634
+ # } .
635
+ # with substitution (on rule variables):
636
+ # ?M = :meas47
637
+ # ?X = -0.06285714285714286
638
+ # ?Y = 8.128455734079232
639
+ # ?Z = -0.5109315032849803
640
+ # Therefore the derived triple above is entailed by the rules and facts.
641
+ # ----------------------------------------------------------------------
642
+
643
+ :meas47 :pL1dx62Cm -0.5109315032849803 .
644
+
645
+ # ----------------------------------------------------------------------
646
+ # Proof for derived triple:
647
+ # :meas47 :p5yCm 8.293543875626098 .
648
+ # It holds because the following instance of the rule body is provable:
649
+ # :meas47 a :Measurement .
650
+ # :meas47 :pL1dx51Cm 0.4935438756260977 .
651
+ # :meas47 :p1yCm 7.8 .
652
+ # (0.4935438756260977 7.8) math:sum 8.293543875626098 .
653
+ # via the schematic forward rule:
654
+ # {
655
+ # ?M a :Measurement .
656
+ # ?M :pL1dx51Cm ?X .
657
+ # ?M :p1yCm ?Y .
658
+ # (?X ?Y) math:sum ?Z .
659
+ # } => {
660
+ # ?M :p5yCm ?Z .
661
+ # } .
662
+ # with substitution (on rule variables):
663
+ # ?M = :meas47
664
+ # ?X = 0.4935438756260977
665
+ # ?Y = 7.8
666
+ # ?Z = 8.293543875626098
667
+ # Therefore the derived triple above is entailed by the rules and facts.
668
+ # ----------------------------------------------------------------------
669
+
670
+ :meas47 :p5yCm 8.293543875626098 .
671
+
672
+ # ----------------------------------------------------------------------
673
+ # Proof for derived triple:
674
+ # :meas47 :p6yCm 5.0890684967150195 .
675
+ # It holds because the following instance of the rule body is provable:
676
+ # :meas47 a :Measurement .
677
+ # :meas47 :pL1dx62Cm -0.5109315032849803 .
678
+ # :meas47 :p2yCm 5.6 .
679
+ # (-0.5109315032849803 5.6) math:sum 5.0890684967150195 .
680
+ # via the schematic forward rule:
681
+ # {
682
+ # ?M a :Measurement .
683
+ # ?M :pL1dx62Cm ?X .
684
+ # ?M :p2yCm ?Y .
685
+ # (?X ?Y) math:sum ?Z .
686
+ # } => {
687
+ # ?M :p6yCm ?Z .
688
+ # } .
689
+ # with substitution (on rule variables):
690
+ # ?M = :meas47
691
+ # ?X = -0.5109315032849803
692
+ # ?Y = 5.6
693
+ # ?Z = 5.0890684967150195
694
+ # Therefore the derived triple above is entailed by the rules and facts.
695
+ # ----------------------------------------------------------------------
696
+
697
+ :meas47 :p6yCm 5.0890684967150195 .
698
+
699
+ # ----------------------------------------------------------------------
700
+ # Proof for derived triple:
701
+ # :meas47 :sdx53Cm2 1.8274562043619251 .
702
+ # It holds because the following instance of the rule body is provable:
703
+ # :meas47 a :Measurement .
704
+ # :meas47 :dx53Cm -1.351834384960645 .
705
+ # (-1.351834384960645 2) math:exponentiation 1.8274562043619251 .
706
+ # via the schematic forward rule:
707
+ # {
708
+ # ?M a :Measurement .
709
+ # ?M :dx53Cm ?X .
710
+ # (?X 2) math:exponentiation ?Z .
711
+ # } => {
712
+ # ?M :sdx53Cm2 ?Z .
713
+ # } .
714
+ # with substitution (on rule variables):
715
+ # ?M = :meas47
716
+ # ?X = -1.351834384960645
717
+ # ?Z = 1.8274562043619251
718
+ # Therefore the derived triple above is entailed by the rules and facts.
719
+ # ----------------------------------------------------------------------
720
+
721
+ :meas47 :sdx53Cm2 1.8274562043619251 .
722
+
723
+ # ----------------------------------------------------------------------
724
+ # Proof for derived triple:
725
+ # :meas47 :sdx64Cm2 2.1654425265642967 .
726
+ # It holds because the following instance of the rule body is provable:
727
+ # :meas47 a :Measurement .
728
+ # :meas47 :dx64Cm -1.4715442659207696 .
729
+ # (-1.4715442659207696 2) math:exponentiation 2.1654425265642967 .
730
+ # via the schematic forward rule:
731
+ # {
732
+ # ?M a :Measurement .
733
+ # ?M :dx64Cm ?X .
734
+ # (?X 2) math:exponentiation ?Z .
735
+ # } => {
736
+ # ?M :sdx64Cm2 ?Z .
737
+ # } .
738
+ # with substitution (on rule variables):
739
+ # ?M = :meas47
740
+ # ?X = -1.4715442659207696
741
+ # ?Z = 2.1654425265642967
742
+ # Therefore the derived triple above is entailed by the rules and facts.
743
+ # ----------------------------------------------------------------------
744
+
745
+ :meas47 :sdx64Cm2 2.1654425265642967 .
746
+
747
+ # ----------------------------------------------------------------------
748
+ # Proof for derived triple:
749
+ # :meas47 :dy53Cm -21.506456124373905 .
750
+ # It holds because the following instance of the rule body is provable:
751
+ # :meas47 a :Measurement .
752
+ # :meas47 :p5yCm 8.293543875626098 .
753
+ # :meas47 :p3yCm 29.8 .
754
+ # (8.293543875626098 29.8) math:difference -21.506456124373905 .
755
+ # via the schematic forward rule:
756
+ # {
757
+ # ?M a :Measurement .
758
+ # ?M :p5yCm ?X .
759
+ # ?M :p3yCm ?Y .
760
+ # (?X ?Y) math:difference ?Z .
761
+ # } => {
762
+ # ?M :dy53Cm ?Z .
763
+ # } .
764
+ # with substitution (on rule variables):
765
+ # ?M = :meas47
766
+ # ?X = 8.293543875626098
767
+ # ?Y = 29.8
768
+ # ?Z = -21.506456124373905
769
+ # Therefore the derived triple above is entailed by the rules and facts.
770
+ # ----------------------------------------------------------------------
771
+
772
+ :meas47 :dy53Cm -21.506456124373905 .
773
+
774
+ # ----------------------------------------------------------------------
775
+ # Proof for derived triple:
776
+ # :meas47 :dy64Cm -23.41093150328498 .
777
+ # It holds because the following instance of the rule body is provable:
778
+ # :meas47 a :Measurement .
779
+ # :meas47 :p6yCm 5.0890684967150195 .
780
+ # :meas47 :p4yCm 28.5 .
781
+ # (5.0890684967150195 28.5) math:difference -23.41093150328498 .
782
+ # via the schematic forward rule:
783
+ # {
784
+ # ?M a :Measurement .
785
+ # ?M :p6yCm ?X .
786
+ # ?M :p4yCm ?Y .
787
+ # (?X ?Y) math:difference ?Z .
788
+ # } => {
789
+ # ?M :dy64Cm ?Z .
790
+ # } .
791
+ # with substitution (on rule variables):
792
+ # ?M = :meas47
793
+ # ?X = 5.0890684967150195
794
+ # ?Y = 28.5
795
+ # ?Z = -23.41093150328498
796
+ # Therefore the derived triple above is entailed by the rules and facts.
797
+ # ----------------------------------------------------------------------
798
+
799
+ :meas47 :dy64Cm -23.41093150328498 .
800
+
801
+ # ----------------------------------------------------------------------
802
+ # Proof for derived triple:
803
+ # :meas47 :sdy53Cm2 462.52765502961984 .
804
+ # It holds because the following instance of the rule body is provable:
805
+ # :meas47 a :Measurement .
806
+ # :meas47 :dy53Cm -21.506456124373905 .
807
+ # (-21.506456124373905 2) math:exponentiation 462.52765502961984 .
808
+ # via the schematic forward rule:
809
+ # {
810
+ # ?M a :Measurement .
811
+ # ?M :dy53Cm ?X .
812
+ # (?X 2) math:exponentiation ?Z .
813
+ # } => {
814
+ # ?M :sdy53Cm2 ?Z .
815
+ # } .
816
+ # with substitution (on rule variables):
817
+ # ?M = :meas47
818
+ # ?X = -21.506456124373905
819
+ # ?Z = 462.52765502961984
820
+ # Therefore the derived triple above is entailed by the rules and facts.
821
+ # ----------------------------------------------------------------------
822
+
823
+ :meas47 :sdy53Cm2 462.52765502961984 .
824
+
825
+ # ----------------------------------------------------------------------
826
+ # Proof for derived triple:
827
+ # :meas47 :sdy64Cm2 548.0717138515012 .
828
+ # It holds because the following instance of the rule body is provable:
829
+ # :meas47 a :Measurement .
830
+ # :meas47 :dy64Cm -23.41093150328498 .
831
+ # (-23.41093150328498 2) math:exponentiation 548.0717138515012 .
832
+ # via the schematic forward rule:
833
+ # {
834
+ # ?M a :Measurement .
835
+ # ?M :dy64Cm ?X .
836
+ # (?X 2) math:exponentiation ?Z .
837
+ # } => {
838
+ # ?M :sdy64Cm2 ?Z .
839
+ # } .
840
+ # with substitution (on rule variables):
841
+ # ?M = :meas47
842
+ # ?X = -23.41093150328498
843
+ # ?Z = 548.0717138515012
844
+ # Therefore the derived triple above is entailed by the rules and facts.
845
+ # ----------------------------------------------------------------------
846
+
847
+ :meas47 :sdy64Cm2 548.0717138515012 .
848
+
849
+ # ----------------------------------------------------------------------
850
+ # Proof for derived triple:
851
+ # :meas47 :ssd53Cm2 464.35511123398175 .
852
+ # It holds because the following instance of the rule body is provable:
853
+ # :meas47 a :Measurement .
854
+ # :meas47 :sdx53Cm2 1.8274562043619251 .
855
+ # :meas47 :sdy53Cm2 462.52765502961984 .
856
+ # (1.8274562043619251 462.52765502961984) math:sum 464.35511123398175 .
857
+ # via the schematic forward rule:
858
+ # {
859
+ # ?M a :Measurement .
860
+ # ?M :sdx53Cm2 ?X .
861
+ # ?M :sdy53Cm2 ?Y .
862
+ # (?X ?Y) math:sum ?Z .
863
+ # } => {
864
+ # ?M :ssd53Cm2 ?Z .
865
+ # } .
866
+ # with substitution (on rule variables):
867
+ # ?M = :meas47
868
+ # ?X = 1.8274562043619251
869
+ # ?Y = 462.52765502961984
870
+ # ?Z = 464.35511123398175
871
+ # Therefore the derived triple above is entailed by the rules and facts.
872
+ # ----------------------------------------------------------------------
873
+
874
+ :meas47 :ssd53Cm2 464.35511123398175 .
875
+
876
+ # ----------------------------------------------------------------------
877
+ # Proof for derived triple:
878
+ # :meas47 :ssd64Cm2 550.2371563780655 .
879
+ # It holds because the following instance of the rule body is provable:
880
+ # :meas47 a :Measurement .
881
+ # :meas47 :sdx64Cm2 2.1654425265642967 .
882
+ # :meas47 :sdy64Cm2 548.0717138515012 .
883
+ # (2.1654425265642967 548.0717138515012) math:sum 550.2371563780655 .
884
+ # via the schematic forward rule:
885
+ # {
886
+ # ?M a :Measurement .
887
+ # ?M :sdx64Cm2 ?X .
888
+ # ?M :sdy64Cm2 ?Y .
889
+ # (?X ?Y) math:sum ?Z .
890
+ # } => {
891
+ # ?M :ssd64Cm2 ?Z .
892
+ # } .
893
+ # with substitution (on rule variables):
894
+ # ?M = :meas47
895
+ # ?X = 2.1654425265642967
896
+ # ?Y = 548.0717138515012
897
+ # ?Z = 550.2371563780655
898
+ # Therefore the derived triple above is entailed by the rules and facts.
899
+ # ----------------------------------------------------------------------
900
+
901
+ :meas47 :ssd64Cm2 550.2371563780655 .
902
+
903
+ # ----------------------------------------------------------------------
904
+ # Proof for derived triple:
905
+ # :meas47 :d53Cm 21.548900464617255 .
906
+ # It holds because the following instance of the rule body is provable:
907
+ # :meas47 a :Measurement .
908
+ # :meas47 :ssd53Cm2 464.35511123398175 .
909
+ # (464.35511123398175 0.5) math:exponentiation 21.548900464617255 .
910
+ # via the schematic forward rule:
911
+ # {
912
+ # ?M a :Measurement .
913
+ # ?M :ssd53Cm2 ?X .
914
+ # (?X 0.5) math:exponentiation ?Z .
915
+ # } => {
916
+ # ?M :d53Cm ?Z .
917
+ # } .
918
+ # with substitution (on rule variables):
919
+ # ?M = :meas47
920
+ # ?X = 464.35511123398175
921
+ # ?Z = 21.548900464617255
922
+ # Therefore the derived triple above is entailed by the rules and facts.
923
+ # ----------------------------------------------------------------------
924
+
925
+ :meas47 :d53Cm 21.548900464617255 .
926
+
927
+ # ----------------------------------------------------------------------
928
+ # Proof for derived triple:
929
+ # :meas47 :d64Cm 23.45713444515475 .
930
+ # It holds because the following instance of the rule body is provable:
931
+ # :meas47 a :Measurement .
932
+ # :meas47 :ssd64Cm2 550.2371563780655 .
933
+ # (550.2371563780655 0.5) math:exponentiation 23.45713444515475 .
934
+ # via the schematic forward rule:
935
+ # {
936
+ # ?M a :Measurement .
937
+ # ?M :ssd64Cm2 ?X .
938
+ # (?X 0.5) math:exponentiation ?Z .
939
+ # } => {
940
+ # ?M :d64Cm ?Z .
941
+ # } .
942
+ # with substitution (on rule variables):
943
+ # ?M = :meas47
944
+ # ?X = 550.2371563780655
945
+ # ?Z = 23.45713444515475
946
+ # Therefore the derived triple above is entailed by the rules and facts.
947
+ # ----------------------------------------------------------------------
948
+
949
+ :meas47 :d64Cm 23.45713444515475 .
950
+
951
+ # ----------------------------------------------------------------------
952
+ # Proof for derived triple:
953
+ # :meas47 :dCm -1.9082339805374957 .
954
+ # It holds because the following instance of the rule body is provable:
955
+ # :meas47 a :Measurement .
956
+ # :meas47 :d53Cm 21.548900464617255 .
957
+ # :meas47 :d64Cm 23.45713444515475 .
958
+ # (21.548900464617255 23.45713444515475) math:difference -1.9082339805374957 .
959
+ # via the schematic forward rule:
960
+ # {
961
+ # ?M a :Measurement .
962
+ # ?M :d53Cm ?X .
963
+ # ?M :d64Cm ?Y .
964
+ # (?X ?Y) math:difference ?Z .
965
+ # } => {
966
+ # ?M :dCm ?Z .
967
+ # } .
968
+ # with substitution (on rule variables):
969
+ # ?M = :meas47
970
+ # ?X = 21.548900464617255
971
+ # ?Y = 23.45713444515475
972
+ # ?Z = -1.9082339805374957
973
+ # Therefore the derived triple above is entailed by the rules and facts.
974
+ # ----------------------------------------------------------------------
975
+
976
+ :meas47 :dCm -1.9082339805374957 .
977
+
978
+ # ----------------------------------------------------------------------
979
+ # Proof for derived triple:
980
+ # :meas47 a :LLDAlarm .
981
+ # It holds because the following instance of the rule body is provable:
982
+ # :meas47 a :Measurement .
983
+ # :meas47 :dCm -1.9082339805374957 .
984
+ # -1.9082339805374957 math:lessThan -1.25 .
985
+ # via the schematic forward rule:
986
+ # {
987
+ # ?M a :Measurement .
988
+ # ?M :dCm ?X .
989
+ # ?X math:lessThan -1.25 .
990
+ # } => {
991
+ # ?M a :LLDAlarm .
992
+ # } .
993
+ # with substitution (on rule variables):
994
+ # ?M = :meas47
995
+ # ?X = -1.9082339805374957
996
+ # Therefore the derived triple above is entailed by the rules and facts.
997
+ # ----------------------------------------------------------------------
998
+
999
+ :meas47 a :LLDAlarm .
1000
+