eyeling 1.5.12 → 1.5.14

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (96) hide show
  1. package/README.md +1 -2
  2. package/examples/age.n3 +29 -0
  3. package/examples/backward.n3 +24 -0
  4. package/examples/basic-monadic.n3 +10032 -0
  5. package/examples/cat-koko.n3 +29 -0
  6. package/examples/collect-all-in.n3 +32 -0
  7. package/examples/complex.n3 +142 -0
  8. package/examples/control-system.n3 +77 -0
  9. package/examples/crypto-builtins-tests.n3 +60 -0
  10. package/examples/deep-taxonomy-10.n3 +21 -0
  11. package/examples/deep-taxonomy-100.n3 +111 -0
  12. package/examples/deep-taxonomy-1000.n3 +1011 -0
  13. package/examples/deep-taxonomy-10000.n3 +10011 -0
  14. package/examples/derived-backward-rule-2.n3 +28 -0
  15. package/examples/derived-backward-rule.n3 +32 -0
  16. package/examples/derived-rule.n3 +19 -0
  17. package/examples/dijkstra.n3 +64 -0
  18. package/examples/dog.n3 +21 -0
  19. package/examples/equals.n3 +12 -0
  20. package/examples/existential-rule.n3 +18 -0
  21. package/examples/fibonacci.n3 +34 -0
  22. package/examples/for-all-in.n3 +21 -0
  23. package/examples/french-cities.n3 +32 -0
  24. package/examples/fuse.n3 +13 -0
  25. package/examples/good-cobbler.n3 +18 -0
  26. package/examples/gray-code-counter.n3 +64 -0
  27. package/examples/hanoi.n3 +21 -0
  28. package/examples/liar.n3 +6 -0
  29. package/examples/list-builtins-tests.n3 +84 -0
  30. package/examples/lldm.n3 +133 -0
  31. package/examples/math-builtins-tests.n3 +612 -0
  32. package/examples/monkey.n3 +11 -0
  33. package/examples/output/age.n3 +20 -0
  34. package/examples/output/backward.n3 +18 -0
  35. package/examples/output/basic-monadic.n3 +122 -0
  36. package/examples/output/cat-koko.n3 +125 -0
  37. package/examples/output/collect-all-in.n3 +122 -0
  38. package/examples/output/complex.n3 +57 -0
  39. package/examples/output/control-system.n3 +79 -0
  40. package/examples/output/crypto-builtins-tests.n3 +66 -0
  41. package/examples/output/deep-taxonomy-10.n3 +636 -0
  42. package/examples/output/deep-taxonomy-100.n3 +6036 -0
  43. package/examples/output/deep-taxonomy-1000.n3 +60036 -0
  44. package/examples/output/deep-taxonomy-10000.n3 +600036 -0
  45. package/examples/output/derived-backward-rule-2.n3 +71 -0
  46. package/examples/output/derived-backward-rule.n3 +53 -0
  47. package/examples/output/derived-rule.n3 +52 -0
  48. package/examples/output/dijkstra.n3 +315 -0
  49. package/examples/output/dog.n3 +33 -0
  50. package/examples/output/equals.n3 +18 -0
  51. package/examples/output/existential-rule.n3 +38 -0
  52. package/examples/output/fibonacci.n3 +44 -0
  53. package/examples/output/for-all-in.n3 +30 -0
  54. package/examples/output/french-cities.n3 +507 -0
  55. package/examples/output/fuse.n3 +1 -0
  56. package/examples/output/good-cobbler.n3 +27 -0
  57. package/examples/output/gray-code-counter.n3 +20 -0
  58. package/examples/output/hanoi.n3 +20 -0
  59. package/examples/output/liar.n3 +1 -0
  60. package/examples/output/list-builtins-tests.n3 +148 -0
  61. package/examples/output/lldm.n3 +1000 -0
  62. package/examples/output/math-builtins-tests.n3 +4479 -0
  63. package/examples/output/monkey.n3 +40 -0
  64. package/examples/output/peano.n3 +26 -0
  65. package/examples/output/pi.n3 +20 -0
  66. package/examples/output/polygon.n3 +20 -0
  67. package/examples/output/reordering.n3 +29 -0
  68. package/examples/output/rule-matching.n3 +29 -0
  69. package/examples/output/self-referential.n3 +88 -0
  70. package/examples/output/similar.n3 +18 -0
  71. package/examples/output/skolem.n3 +20 -0
  72. package/examples/output/snaf.n3 +26 -0
  73. package/examples/output/socrates.n3 +24 -0
  74. package/examples/output/string-builtins-tests.n3 +258 -0
  75. package/examples/output/turing.n3 +44 -0
  76. package/examples/output/uri.n3 +46 -0
  77. package/examples/output/witch.n3 +115 -0
  78. package/examples/output/zebra.n3 +114 -0
  79. package/examples/peano.n3 +45 -0
  80. package/examples/pi.n3 +32 -0
  81. package/examples/polygon.n3 +26 -0
  82. package/examples/reordering.n3 +23 -0
  83. package/examples/rule-matching.n3 +15 -0
  84. package/examples/self-referential.n3 +32 -0
  85. package/examples/similar.n3 +28 -0
  86. package/examples/skolem.n3 +15 -0
  87. package/examples/snaf.n3 +18 -0
  88. package/examples/socrates.n3 +19 -0
  89. package/examples/string-builtins-tests.n3 +210 -0
  90. package/examples/test +154 -0
  91. package/examples/turing.n3 +93 -0
  92. package/examples/uri.n3 +17 -0
  93. package/examples/witch.n3 +33 -0
  94. package/examples/zebra.n3 +47 -0
  95. package/package.json +7 -2
  96. package/test/api.test.js +22 -0
@@ -0,0 +1,507 @@
1
+ @prefix : <http://www.agfa.com/w3c/euler/graph.axiom#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :paris :path :orleans .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # :oneway rdfs:subPropertyOf :path .
8
+ # :paris :oneway :orleans .
9
+ # via the schematic forward rule:
10
+ # {
11
+ # ?P rdfs:subPropertyOf ?Q .
12
+ # ?S ?P ?O .
13
+ # } => {
14
+ # ?S ?Q ?O .
15
+ # } .
16
+ # with substitution (on rule variables):
17
+ # ?O = :orleans
18
+ # ?P = :oneway
19
+ # ?Q = :path
20
+ # ?S = :paris
21
+ # Therefore the derived triple above is entailed by the rules and facts.
22
+ # ----------------------------------------------------------------------
23
+
24
+ :paris :path :orleans .
25
+
26
+ # ----------------------------------------------------------------------
27
+ # Proof for derived triple:
28
+ # :paris :path :chartres .
29
+ # It holds because the following instance of the rule body is provable:
30
+ # :oneway rdfs:subPropertyOf :path .
31
+ # :paris :oneway :chartres .
32
+ # via the schematic forward rule:
33
+ # {
34
+ # ?P rdfs:subPropertyOf ?Q .
35
+ # ?S ?P ?O .
36
+ # } => {
37
+ # ?S ?Q ?O .
38
+ # } .
39
+ # with substitution (on rule variables):
40
+ # ?O = :chartres
41
+ # ?P = :oneway
42
+ # ?Q = :path
43
+ # ?S = :paris
44
+ # Therefore the derived triple above is entailed by the rules and facts.
45
+ # ----------------------------------------------------------------------
46
+
47
+ :paris :path :chartres .
48
+
49
+ # ----------------------------------------------------------------------
50
+ # Proof for derived triple:
51
+ # :paris :path :amiens .
52
+ # It holds because the following instance of the rule body is provable:
53
+ # :oneway rdfs:subPropertyOf :path .
54
+ # :paris :oneway :amiens .
55
+ # via the schematic forward rule:
56
+ # {
57
+ # ?P rdfs:subPropertyOf ?Q .
58
+ # ?S ?P ?O .
59
+ # } => {
60
+ # ?S ?Q ?O .
61
+ # } .
62
+ # with substitution (on rule variables):
63
+ # ?O = :amiens
64
+ # ?P = :oneway
65
+ # ?Q = :path
66
+ # ?S = :paris
67
+ # Therefore the derived triple above is entailed by the rules and facts.
68
+ # ----------------------------------------------------------------------
69
+
70
+ :paris :path :amiens .
71
+
72
+ # ----------------------------------------------------------------------
73
+ # Proof for derived triple:
74
+ # :orleans :path :blois .
75
+ # It holds because the following instance of the rule body is provable:
76
+ # :oneway rdfs:subPropertyOf :path .
77
+ # :orleans :oneway :blois .
78
+ # via the schematic forward rule:
79
+ # {
80
+ # ?P rdfs:subPropertyOf ?Q .
81
+ # ?S ?P ?O .
82
+ # } => {
83
+ # ?S ?Q ?O .
84
+ # } .
85
+ # with substitution (on rule variables):
86
+ # ?O = :blois
87
+ # ?P = :oneway
88
+ # ?Q = :path
89
+ # ?S = :orleans
90
+ # Therefore the derived triple above is entailed by the rules and facts.
91
+ # ----------------------------------------------------------------------
92
+
93
+ :orleans :path :blois .
94
+
95
+ # ----------------------------------------------------------------------
96
+ # Proof for derived triple:
97
+ # :orleans :path :bourges .
98
+ # It holds because the following instance of the rule body is provable:
99
+ # :oneway rdfs:subPropertyOf :path .
100
+ # :orleans :oneway :bourges .
101
+ # via the schematic forward rule:
102
+ # {
103
+ # ?P rdfs:subPropertyOf ?Q .
104
+ # ?S ?P ?O .
105
+ # } => {
106
+ # ?S ?Q ?O .
107
+ # } .
108
+ # with substitution (on rule variables):
109
+ # ?O = :bourges
110
+ # ?P = :oneway
111
+ # ?Q = :path
112
+ # ?S = :orleans
113
+ # Therefore the derived triple above is entailed by the rules and facts.
114
+ # ----------------------------------------------------------------------
115
+
116
+ :orleans :path :bourges .
117
+
118
+ # ----------------------------------------------------------------------
119
+ # Proof for derived triple:
120
+ # :blois :path :tours .
121
+ # It holds because the following instance of the rule body is provable:
122
+ # :oneway rdfs:subPropertyOf :path .
123
+ # :blois :oneway :tours .
124
+ # via the schematic forward rule:
125
+ # {
126
+ # ?P rdfs:subPropertyOf ?Q .
127
+ # ?S ?P ?O .
128
+ # } => {
129
+ # ?S ?Q ?O .
130
+ # } .
131
+ # with substitution (on rule variables):
132
+ # ?O = :tours
133
+ # ?P = :oneway
134
+ # ?Q = :path
135
+ # ?S = :blois
136
+ # Therefore the derived triple above is entailed by the rules and facts.
137
+ # ----------------------------------------------------------------------
138
+
139
+ :blois :path :tours .
140
+
141
+ # ----------------------------------------------------------------------
142
+ # Proof for derived triple:
143
+ # :chartres :path :lemans .
144
+ # It holds because the following instance of the rule body is provable:
145
+ # :oneway rdfs:subPropertyOf :path .
146
+ # :chartres :oneway :lemans .
147
+ # via the schematic forward rule:
148
+ # {
149
+ # ?P rdfs:subPropertyOf ?Q .
150
+ # ?S ?P ?O .
151
+ # } => {
152
+ # ?S ?Q ?O .
153
+ # } .
154
+ # with substitution (on rule variables):
155
+ # ?O = :lemans
156
+ # ?P = :oneway
157
+ # ?Q = :path
158
+ # ?S = :chartres
159
+ # Therefore the derived triple above is entailed by the rules and facts.
160
+ # ----------------------------------------------------------------------
161
+
162
+ :chartres :path :lemans .
163
+
164
+ # ----------------------------------------------------------------------
165
+ # Proof for derived triple:
166
+ # :lemans :path :angers .
167
+ # It holds because the following instance of the rule body is provable:
168
+ # :oneway rdfs:subPropertyOf :path .
169
+ # :lemans :oneway :angers .
170
+ # via the schematic forward rule:
171
+ # {
172
+ # ?P rdfs:subPropertyOf ?Q .
173
+ # ?S ?P ?O .
174
+ # } => {
175
+ # ?S ?Q ?O .
176
+ # } .
177
+ # with substitution (on rule variables):
178
+ # ?O = :angers
179
+ # ?P = :oneway
180
+ # ?Q = :path
181
+ # ?S = :lemans
182
+ # Therefore the derived triple above is entailed by the rules and facts.
183
+ # ----------------------------------------------------------------------
184
+
185
+ :lemans :path :angers .
186
+
187
+ # ----------------------------------------------------------------------
188
+ # Proof for derived triple:
189
+ # :lemans :path :tours .
190
+ # It holds because the following instance of the rule body is provable:
191
+ # :oneway rdfs:subPropertyOf :path .
192
+ # :lemans :oneway :tours .
193
+ # via the schematic forward rule:
194
+ # {
195
+ # ?P rdfs:subPropertyOf ?Q .
196
+ # ?S ?P ?O .
197
+ # } => {
198
+ # ?S ?Q ?O .
199
+ # } .
200
+ # with substitution (on rule variables):
201
+ # ?O = :tours
202
+ # ?P = :oneway
203
+ # ?Q = :path
204
+ # ?S = :lemans
205
+ # Therefore the derived triple above is entailed by the rules and facts.
206
+ # ----------------------------------------------------------------------
207
+
208
+ :lemans :path :tours .
209
+
210
+ # ----------------------------------------------------------------------
211
+ # Proof for derived triple:
212
+ # :angers :path :nantes .
213
+ # It holds because the following instance of the rule body is provable:
214
+ # :oneway rdfs:subPropertyOf :path .
215
+ # :angers :oneway :nantes .
216
+ # via the schematic forward rule:
217
+ # {
218
+ # ?P rdfs:subPropertyOf ?Q .
219
+ # ?S ?P ?O .
220
+ # } => {
221
+ # ?S ?Q ?O .
222
+ # } .
223
+ # with substitution (on rule variables):
224
+ # ?O = :nantes
225
+ # ?P = :oneway
226
+ # ?Q = :path
227
+ # ?S = :angers
228
+ # Therefore the derived triple above is entailed by the rules and facts.
229
+ # ----------------------------------------------------------------------
230
+
231
+ :angers :path :nantes .
232
+
233
+ # ----------------------------------------------------------------------
234
+ # Proof for derived triple:
235
+ # :lemans :path :nantes .
236
+ # It holds because the following instance of the rule body is provable:
237
+ # :path a owl:TransitiveProperty .
238
+ # :lemans :path :angers .
239
+ # :angers :path :nantes .
240
+ # via the schematic forward rule:
241
+ # {
242
+ # ?P a owl:TransitiveProperty .
243
+ # ?S ?P ?X .
244
+ # ?X ?P ?O .
245
+ # } => {
246
+ # ?S ?P ?O .
247
+ # } .
248
+ # with substitution (on rule variables):
249
+ # ?O = :nantes
250
+ # ?P = :path
251
+ # ?S = :lemans
252
+ # ?X = :angers
253
+ # Therefore the derived triple above is entailed by the rules and facts.
254
+ # ----------------------------------------------------------------------
255
+
256
+ :lemans :path :nantes .
257
+
258
+ # ----------------------------------------------------------------------
259
+ # Proof for derived triple:
260
+ # :chartres :path :angers .
261
+ # It holds because the following instance of the rule body is provable:
262
+ # :path a owl:TransitiveProperty .
263
+ # :chartres :path :lemans .
264
+ # :lemans :path :angers .
265
+ # via the schematic forward rule:
266
+ # {
267
+ # ?P a owl:TransitiveProperty .
268
+ # ?S ?P ?X .
269
+ # ?X ?P ?O .
270
+ # } => {
271
+ # ?S ?P ?O .
272
+ # } .
273
+ # with substitution (on rule variables):
274
+ # ?O = :angers
275
+ # ?P = :path
276
+ # ?S = :chartres
277
+ # ?X = :lemans
278
+ # Therefore the derived triple above is entailed by the rules and facts.
279
+ # ----------------------------------------------------------------------
280
+
281
+ :chartres :path :angers .
282
+
283
+ # ----------------------------------------------------------------------
284
+ # Proof for derived triple:
285
+ # :chartres :path :tours .
286
+ # It holds because the following instance of the rule body is provable:
287
+ # :path a owl:TransitiveProperty .
288
+ # :chartres :path :lemans .
289
+ # :lemans :path :tours .
290
+ # via the schematic forward rule:
291
+ # {
292
+ # ?P a owl:TransitiveProperty .
293
+ # ?S ?P ?X .
294
+ # ?X ?P ?O .
295
+ # } => {
296
+ # ?S ?P ?O .
297
+ # } .
298
+ # with substitution (on rule variables):
299
+ # ?O = :tours
300
+ # ?P = :path
301
+ # ?S = :chartres
302
+ # ?X = :lemans
303
+ # Therefore the derived triple above is entailed by the rules and facts.
304
+ # ----------------------------------------------------------------------
305
+
306
+ :chartres :path :tours .
307
+
308
+ # ----------------------------------------------------------------------
309
+ # Proof for derived triple:
310
+ # :orleans :path :tours .
311
+ # It holds because the following instance of the rule body is provable:
312
+ # :path a owl:TransitiveProperty .
313
+ # :orleans :path :blois .
314
+ # :blois :path :tours .
315
+ # via the schematic forward rule:
316
+ # {
317
+ # ?P a owl:TransitiveProperty .
318
+ # ?S ?P ?X .
319
+ # ?X ?P ?O .
320
+ # } => {
321
+ # ?S ?P ?O .
322
+ # } .
323
+ # with substitution (on rule variables):
324
+ # ?O = :tours
325
+ # ?P = :path
326
+ # ?S = :orleans
327
+ # ?X = :blois
328
+ # Therefore the derived triple above is entailed by the rules and facts.
329
+ # ----------------------------------------------------------------------
330
+
331
+ :orleans :path :tours .
332
+
333
+ # ----------------------------------------------------------------------
334
+ # Proof for derived triple:
335
+ # :paris :path :lemans .
336
+ # It holds because the following instance of the rule body is provable:
337
+ # :path a owl:TransitiveProperty .
338
+ # :paris :path :chartres .
339
+ # :chartres :path :lemans .
340
+ # via the schematic forward rule:
341
+ # {
342
+ # ?P a owl:TransitiveProperty .
343
+ # ?S ?P ?X .
344
+ # ?X ?P ?O .
345
+ # } => {
346
+ # ?S ?P ?O .
347
+ # } .
348
+ # with substitution (on rule variables):
349
+ # ?O = :lemans
350
+ # ?P = :path
351
+ # ?S = :paris
352
+ # ?X = :chartres
353
+ # Therefore the derived triple above is entailed by the rules and facts.
354
+ # ----------------------------------------------------------------------
355
+
356
+ :paris :path :lemans .
357
+
358
+ # ----------------------------------------------------------------------
359
+ # Proof for derived triple:
360
+ # :paris :path :blois .
361
+ # It holds because the following instance of the rule body is provable:
362
+ # :path a owl:TransitiveProperty .
363
+ # :paris :path :orleans .
364
+ # :orleans :path :blois .
365
+ # via the schematic forward rule:
366
+ # {
367
+ # ?P a owl:TransitiveProperty .
368
+ # ?S ?P ?X .
369
+ # ?X ?P ?O .
370
+ # } => {
371
+ # ?S ?P ?O .
372
+ # } .
373
+ # with substitution (on rule variables):
374
+ # ?O = :blois
375
+ # ?P = :path
376
+ # ?S = :paris
377
+ # ?X = :orleans
378
+ # Therefore the derived triple above is entailed by the rules and facts.
379
+ # ----------------------------------------------------------------------
380
+
381
+ :paris :path :blois .
382
+
383
+ # ----------------------------------------------------------------------
384
+ # Proof for derived triple:
385
+ # :paris :path :bourges .
386
+ # It holds because the following instance of the rule body is provable:
387
+ # :path a owl:TransitiveProperty .
388
+ # :paris :path :orleans .
389
+ # :orleans :path :bourges .
390
+ # via the schematic forward rule:
391
+ # {
392
+ # ?P a owl:TransitiveProperty .
393
+ # ?S ?P ?X .
394
+ # ?X ?P ?O .
395
+ # } => {
396
+ # ?S ?P ?O .
397
+ # } .
398
+ # with substitution (on rule variables):
399
+ # ?O = :bourges
400
+ # ?P = :path
401
+ # ?S = :paris
402
+ # ?X = :orleans
403
+ # Therefore the derived triple above is entailed by the rules and facts.
404
+ # ----------------------------------------------------------------------
405
+
406
+ :paris :path :bourges .
407
+
408
+ # ----------------------------------------------------------------------
409
+ # Proof for derived triple:
410
+ # :paris :path :tours .
411
+ # It holds because the following instance of the rule body is provable:
412
+ # :path a owl:TransitiveProperty .
413
+ # :paris :path :blois .
414
+ # :blois :path :tours .
415
+ # via the schematic forward rule:
416
+ # {
417
+ # ?P a owl:TransitiveProperty .
418
+ # ?S ?P ?X .
419
+ # ?X ?P ?O .
420
+ # } => {
421
+ # ?S ?P ?O .
422
+ # } .
423
+ # with substitution (on rule variables):
424
+ # ?O = :tours
425
+ # ?P = :path
426
+ # ?S = :paris
427
+ # ?X = :blois
428
+ # Therefore the derived triple above is entailed by the rules and facts.
429
+ # ----------------------------------------------------------------------
430
+
431
+ :paris :path :tours .
432
+
433
+ # ----------------------------------------------------------------------
434
+ # Proof for derived triple:
435
+ # :paris :path :angers .
436
+ # It holds because the following instance of the rule body is provable:
437
+ # :path a owl:TransitiveProperty .
438
+ # :paris :path :lemans .
439
+ # :lemans :path :angers .
440
+ # via the schematic forward rule:
441
+ # {
442
+ # ?P a owl:TransitiveProperty .
443
+ # ?S ?P ?X .
444
+ # ?X ?P ?O .
445
+ # } => {
446
+ # ?S ?P ?O .
447
+ # } .
448
+ # with substitution (on rule variables):
449
+ # ?O = :angers
450
+ # ?P = :path
451
+ # ?S = :paris
452
+ # ?X = :lemans
453
+ # Therefore the derived triple above is entailed by the rules and facts.
454
+ # ----------------------------------------------------------------------
455
+
456
+ :paris :path :angers .
457
+
458
+ # ----------------------------------------------------------------------
459
+ # Proof for derived triple:
460
+ # :paris :path :nantes .
461
+ # It holds because the following instance of the rule body is provable:
462
+ # :path a owl:TransitiveProperty .
463
+ # :paris :path :lemans .
464
+ # :lemans :path :nantes .
465
+ # via the schematic forward rule:
466
+ # {
467
+ # ?P a owl:TransitiveProperty .
468
+ # ?S ?P ?X .
469
+ # ?X ?P ?O .
470
+ # } => {
471
+ # ?S ?P ?O .
472
+ # } .
473
+ # with substitution (on rule variables):
474
+ # ?O = :nantes
475
+ # ?P = :path
476
+ # ?S = :paris
477
+ # ?X = :lemans
478
+ # Therefore the derived triple above is entailed by the rules and facts.
479
+ # ----------------------------------------------------------------------
480
+
481
+ :paris :path :nantes .
482
+
483
+ # ----------------------------------------------------------------------
484
+ # Proof for derived triple:
485
+ # :chartres :path :nantes .
486
+ # It holds because the following instance of the rule body is provable:
487
+ # :path a owl:TransitiveProperty .
488
+ # :chartres :path :angers .
489
+ # :angers :path :nantes .
490
+ # via the schematic forward rule:
491
+ # {
492
+ # ?P a owl:TransitiveProperty .
493
+ # ?S ?P ?X .
494
+ # ?X ?P ?O .
495
+ # } => {
496
+ # ?S ?P ?O .
497
+ # } .
498
+ # with substitution (on rule variables):
499
+ # ?O = :nantes
500
+ # ?P = :path
501
+ # ?S = :chartres
502
+ # ?X = :angers
503
+ # Therefore the derived triple above is entailed by the rules and facts.
504
+ # ----------------------------------------------------------------------
505
+
506
+ :chartres :path :nantes .
507
+
@@ -0,0 +1 @@
1
+ # Inference fuse triggered: a { ... } => false. rule fired.
@@ -0,0 +1,27 @@
1
+ @prefix : <https://eyereasoner.github.io/ns#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # :test :is {
6
+ # :joe :is (:good :Cobbler) .
7
+ # } .
8
+ # It holds because the following instance of the rule body is provable:
9
+ # :joe :is (:good :Cobbler) .
10
+ # via the schematic forward rule:
11
+ # {
12
+ # ?X :is (:good ?Y) .
13
+ # } => {
14
+ # :test :is {
15
+ # ?X :is (:good ?Y) .
16
+ # } .
17
+ # } .
18
+ # with substitution (on rule variables):
19
+ # ?X = :joe
20
+ # ?Y = :Cobbler
21
+ # Therefore the derived triple above is entailed by the rules and facts.
22
+ # ----------------------------------------------------------------------
23
+
24
+ :test :is {
25
+ :joe :is (:good :Cobbler) .
26
+ } .
27
+
@@ -0,0 +1,20 @@
1
+ @prefix : <https://eyereasoner.github.io/eye/reasoning#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # ((1 1 1 1 1 1 1 1 1) (0 0 0)) :isgcc ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1)) .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # ((1 1 1 1 1 1 1 1 1) (0 0 0)) :testgcc ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1)) .
8
+ # via the schematic forward rule:
9
+ # {
10
+ # ((1 1 1 1 1 1 1 1 1) (0 0 0)) :testgcc ?Q .
11
+ # } => {
12
+ # ((1 1 1 1 1 1 1 1 1) (0 0 0)) :isgcc ?Q .
13
+ # } .
14
+ # with substitution (on rule variables):
15
+ # ?Q = ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1))
16
+ # Therefore the derived triple above is entailed by the rules and facts.
17
+ # ----------------------------------------------------------------------
18
+
19
+ ((1 1 1 1 1 1 1 1 1) (0 0 0)) :isgcc ((0 0 1) (0 1 1) (0 1 0) (1 1 0) (1 1 1) (1 0 1) (1 0 0) (0 0 0) (0 0 1)) .
20
+
@@ -0,0 +1,20 @@
1
+ @prefix : <https://eyereasoner.github.io/eye/reasoning#> .
2
+
3
+ # ----------------------------------------------------------------------
4
+ # Proof for derived triple:
5
+ # 3 :answer ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right)) .
6
+ # It holds because the following instance of the rule body is provable:
7
+ # (3 :left :right :center) :moves ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right)) .
8
+ # via the schematic forward rule:
9
+ # {
10
+ # (3 :left :right :center) :moves ?M .
11
+ # } => {
12
+ # 3 :answer ?M .
13
+ # } .
14
+ # with substitution (on rule variables):
15
+ # ?M = ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right))
16
+ # Therefore the derived triple above is entailed by the rules and facts.
17
+ # ----------------------------------------------------------------------
18
+
19
+ 3 :answer ((:left :right) (:left :center) (:right :center) (:left :right) (:center :left) (:center :right) (:left :right)) .
20
+
@@ -0,0 +1 @@
1
+ # Inference fuse triggered: a { ... } => false. rule fired.