agentic-team-templates 0.19.1 → 0.20.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. package/package.json +1 -1
  2. package/src/index.js +20 -0
  3. package/src/index.test.js +4 -0
  4. package/templates/business/project-manager/.cursor/rules/overview.md +94 -0
  5. package/templates/business/project-manager/.cursor/rules/reporting.md +259 -0
  6. package/templates/business/project-manager/.cursor/rules/risk-management.md +255 -0
  7. package/templates/business/project-manager/.cursor/rules/scheduling.md +251 -0
  8. package/templates/business/project-manager/.cursor/rules/scope-management.md +227 -0
  9. package/templates/business/project-manager/.cursor/rules/stakeholder-management.md +254 -0
  10. package/templates/business/project-manager/CLAUDE.md +540 -0
  11. package/templates/business/supply-chain/.cursor/rules/cost-modeling.md +380 -0
  12. package/templates/business/supply-chain/.cursor/rules/demand-forecasting.md +285 -0
  13. package/templates/business/supply-chain/.cursor/rules/inventory-management.md +200 -0
  14. package/templates/business/supply-chain/.cursor/rules/logistics.md +296 -0
  15. package/templates/business/supply-chain/.cursor/rules/overview.md +102 -0
  16. package/templates/business/supply-chain/.cursor/rules/supplier-evaluation.md +298 -0
  17. package/templates/business/supply-chain/CLAUDE.md +590 -0
  18. package/templates/professional/executive-assistant/.cursor/rules/calendar.md +120 -0
  19. package/templates/professional/executive-assistant/.cursor/rules/confidentiality.md +81 -0
  20. package/templates/professional/executive-assistant/.cursor/rules/email.md +77 -0
  21. package/templates/professional/executive-assistant/.cursor/rules/meetings.md +107 -0
  22. package/templates/professional/executive-assistant/.cursor/rules/overview.md +96 -0
  23. package/templates/professional/executive-assistant/.cursor/rules/prioritization.md +105 -0
  24. package/templates/professional/executive-assistant/.cursor/rules/stakeholder-management.md +90 -0
  25. package/templates/professional/executive-assistant/.cursor/rules/travel.md +115 -0
  26. package/templates/professional/executive-assistant/CLAUDE.md +620 -0
  27. package/templates/professional/grant-writer/.cursor/rules/budgets.md +106 -0
  28. package/templates/professional/grant-writer/.cursor/rules/compliance.md +99 -0
  29. package/templates/professional/grant-writer/.cursor/rules/funding-research.md +80 -0
  30. package/templates/professional/grant-writer/.cursor/rules/narrative.md +135 -0
  31. package/templates/professional/grant-writer/.cursor/rules/overview.md +63 -0
  32. package/templates/professional/grant-writer/.cursor/rules/post-award.md +105 -0
  33. package/templates/professional/grant-writer/.cursor/rules/review-criteria.md +120 -0
  34. package/templates/professional/grant-writer/.cursor/rules/sustainability.md +110 -0
  35. package/templates/professional/grant-writer/CLAUDE.md +577 -0
@@ -0,0 +1,380 @@
1
+ # Cost Modeling
2
+
3
+ Guidelines for total cost analysis, landed cost calculation, and make-vs-buy decisions.
4
+
5
+ ## Core Principle
6
+
7
+ **Unit price is never the full cost.** Every sourcing, manufacturing, and logistics decision must be evaluated on total cost of ownership. Hidden costs in quality, risk, inventory carrying, and administration often exceed the visible price difference between options.
8
+
9
+ ## Total Cost of Ownership (TCO)
10
+
11
+ ### TCO Framework
12
+
13
+ ```text
14
+ TCO = Direct Costs + Indirect Costs + Hidden Costs
15
+
16
+ Direct Costs:
17
+ ├── Purchase price (unit cost x volume)
18
+ ├── Transportation and freight
19
+ ├── Customs duties and taxes
20
+ └── Packaging
21
+
22
+ Indirect Costs:
23
+ ├── Ordering and procurement costs
24
+ ├── Receiving and inspection costs
25
+ ├── Inventory carrying costs (15-30% of value/year)
26
+ ├── Quality costs (rework, scrap, returns)
27
+ └── Administration and management overhead
28
+
29
+ Hidden Costs:
30
+ ├── Risk costs (disruption, single-source premium)
31
+ ├── Currency fluctuation exposure
32
+ ├── Opportunity cost of tied-up capital
33
+ ├── Compliance and regulatory costs
34
+ └── Supplier management overhead
35
+ ```
36
+
37
+ ### Inventory Carrying Cost Components
38
+
39
+ ```text
40
+ Carrying Cost = 15-30% of average inventory value per year
41
+
42
+ Breakdown:
43
+ ├── Cost of capital: 8-15% (weighted average cost of capital)
44
+ ├── Storage and handling: 3-5%
45
+ ├── Insurance: 1-2%
46
+ ├── Obsolescence risk: 2-5%
47
+ ├── Damage and shrinkage: 1-3%
48
+ └── Taxes: 0-2%
49
+
50
+ Example:
51
+ Average inventory value: $1,000,000
52
+ Carrying cost rate: 25%
53
+ Annual carrying cost: $250,000
54
+
55
+ Reducing inventory by $200K saves $50K/year in carrying costs.
56
+ ```
57
+
58
+ ### TCO Comparison Template
59
+
60
+ ```markdown
61
+ ## TCO Analysis: [Item/Category]
62
+ ### Analysis Period: [Annual]
63
+
64
+ | Cost Element | Option A (Domestic) | Option B (Offshore) | Option C (Nearshore) |
65
+ |-------------|--------------------|--------------------|---------------------|
66
+ | **Direct Costs** | | | |
67
+ | Unit price | $10.00 | $7.00 | $8.50 |
68
+ | Annual volume | 100,000 | 100,000 | 100,000 |
69
+ | Subtotal | $1,000,000 | $700,000 | $850,000 |
70
+ | | | | |
71
+ | **Logistics** | | | |
72
+ | Freight per unit | $0.20 | $1.50 | $0.80 |
73
+ | Customs duties | $0.00 | $0.70 | $0.25 |
74
+ | Insurance | $0.02 | $0.10 | $0.05 |
75
+ | Subtotal | $22,000 | $230,000 | $110,000 |
76
+ | | | | |
77
+ | **Inventory** | | | |
78
+ | Pipeline inventory (days) | 5 | 45 | 15 |
79
+ | Safety stock (days) | 7 | 21 | 10 |
80
+ | Carrying cost | $8,200 | $45,100 | $17,100 |
81
+ | | | | |
82
+ | **Quality** | | | |
83
+ | Defect rate | 0.2% | 1.5% | 0.5% |
84
+ | Quality cost/unit | $0.05 | $0.40 | $0.12 |
85
+ | Subtotal | $5,000 | $40,000 | $12,000 |
86
+ | | | | |
87
+ | **Administration** | | | |
88
+ | Procurement overhead | $5,000 | $25,000 | $15,000 |
89
+ | Travel for audits | $2,000 | $20,000 | $8,000 |
90
+ | | | | |
91
+ | **Risk Premium** | | | |
92
+ | Disruption risk | $5,000 | $35,000 | $15,000 |
93
+ | Currency risk | $0 | $15,000 | $5,000 |
94
+ | | | | |
95
+ | **Total TCO** | **$1,047,200** | **$1,110,100** | **$1,032,100** |
96
+ | **TCO per unit** | **$10.47** | **$11.10** | **$10.32** |
97
+
98
+ ### Recommendation
99
+ Option C (Nearshore) has lowest TCO despite not having lowest unit price.
100
+ Option B saves $3/unit on price but adds $4.10/unit in logistics, quality, and risk costs.
101
+ ```
102
+
103
+ ## Landed Cost Calculation
104
+
105
+ ### Formula
106
+
107
+ ```text
108
+ Landed Cost = Product Cost
109
+ + International Freight
110
+ + Insurance (typically 0.3-0.5% of CIF value)
111
+ + Customs Duties (value x duty rate based on HS code)
112
+ + Customs Brokerage Fees (flat per entry)
113
+ + Domestic Transportation
114
+ + Handling and Warehousing
115
+ + Regulatory Compliance Costs
116
+ ```
117
+
118
+ ### Duty Calculation
119
+
120
+ ```text
121
+ Duty = Customs Value x Duty Rate
122
+
123
+ Customs Value (CIF basis for most countries):
124
+ = Product Cost + Freight to Port + Insurance
125
+
126
+ Example:
127
+ Product cost: $50,000
128
+ Ocean freight: $3,000
129
+ Insurance: $265
130
+ CIF value: $53,265
131
+ Duty rate (HS 8471.30): 0% (computers)
132
+
133
+ vs.
134
+
135
+ Product cost: $50,000
136
+ Ocean freight: $3,000
137
+ Insurance: $265
138
+ CIF value: $53,265
139
+ Duty rate (HS 6204.62): 16.6% (women's trousers)
140
+ Duty: $8,842
141
+ ```
142
+
143
+ ### Free Trade Agreement Impact
144
+
145
+ | Agreement | Countries | Typical Savings |
146
+ |-----------|-----------|-----------------|
147
+ | USMCA | US, Mexico, Canada | 0-25% duty elimination |
148
+ | EU FTAs | EU + partner countries | Variable |
149
+ | CPTPP | 11 Pacific Rim nations | 0-15% duty reduction |
150
+ | RCEP | 15 Asia-Pacific nations | Variable |
151
+
152
+ ```text
153
+ Requirements for FTA Duty Preference:
154
+ ├── Product qualifies under rules of origin
155
+ ├── Certificate of origin obtained from supplier
156
+ ├── Goods shipped directly (no transshipment to non-member)
157
+ ├── Documentation retained for audit (5-7 years)
158
+ └── Country-specific requirements met
159
+ ```
160
+
161
+ ## Make-vs-Buy Analysis
162
+
163
+ ### Decision Framework
164
+
165
+ ```text
166
+ Strategic Importance
167
+ Low High
168
+ Complexity High Outsource Strategic
169
+ (Find expert) Insource
170
+ (Core competency)
171
+ Low Outsource Consider
172
+ (Commodity) Both
173
+ (Case by case)
174
+ ```
175
+
176
+ ### Cost Comparison Template
177
+
178
+ ```markdown
179
+ ## Make vs Buy: [Component/Process]
180
+
181
+ ### Make (In-House)
182
+ | Cost Element | Annual Cost |
183
+ |-------------|------------|
184
+ | Direct materials | $X |
185
+ | Direct labor | $X |
186
+ | Equipment depreciation | $X |
187
+ | Facility allocation | $X |
188
+ | Utilities | $X |
189
+ | Quality/inspection | $X |
190
+ | Overhead allocation | $X |
191
+ | **Total Make Cost** | **$X** |
192
+ | **Per Unit** | **$X** |
193
+
194
+ ### Buy (Outsource)
195
+ | Cost Element | Annual Cost |
196
+ |-------------|------------|
197
+ | Purchase price | $X |
198
+ | Freight | $X |
199
+ | Incoming inspection | $X |
200
+ | Inventory carrying | $X |
201
+ | Supplier management | $X |
202
+ | Quality risk | $X |
203
+ | **Total Buy Cost** | **$X** |
204
+ | **Per Unit** | **$X** |
205
+
206
+ ### Non-Financial Factors
207
+ | Factor | Make | Buy |
208
+ |--------|------|-----|
209
+ | Lead time | [X days] | [Y days] |
210
+ | Quality control | Direct | Indirect |
211
+ | Flexibility | [Assessment] | [Assessment] |
212
+ | IP protection | High | Medium-Low |
213
+ | Scalability | Capital-limited | Supplier-limited |
214
+ | Focus | Diverts resources | Frees resources |
215
+
216
+ ### Recommendation
217
+ [Make/Buy] because [rationale including both cost and strategic factors]
218
+ ```
219
+
220
+ ## Cost Breakdown Structure
221
+
222
+ ### Product Cost Decomposition
223
+
224
+ ```text
225
+ Total Product Cost
226
+ ├── Raw Materials (40-60% typical)
227
+ │ ├── Primary materials
228
+ │ ├── Secondary materials
229
+ │ └── Packaging materials
230
+ ├── Direct Labor (10-25% typical)
231
+ │ ├── Production labor
232
+ │ ├── Assembly labor
233
+ │ └── Quality inspection
234
+ ├── Manufacturing Overhead (15-25% typical)
235
+ │ ├── Equipment depreciation
236
+ │ ├── Facility costs
237
+ │ ├── Utilities
238
+ │ ├── Maintenance
239
+ │ └── Indirect labor
240
+ ├── SGA (5-15% typical)
241
+ │ ├── Sales and marketing
242
+ │ ├── Administration
243
+ │ └── R&D allocation
244
+ └── Profit Margin (5-15% typical)
245
+ ```
246
+
247
+ ### Should-Cost Modeling
248
+
249
+ ```text
250
+ Purpose: Estimate what a product SHOULD cost based on component analysis.
251
+ Use: Validate supplier quotes, negotiate from an informed position.
252
+
253
+ Steps:
254
+ 1. Decompose product into raw materials
255
+ 2. Price each material at market rates
256
+ 3. Estimate labor based on process times and local rates
257
+ 4. Apply overhead using industry benchmarks
258
+ 5. Add reasonable margin
259
+ 6. Compare to supplier quote
260
+
261
+ If quote significantly exceeds should-cost:
262
+ ├── Supplier is overpricing → Negotiate
263
+ ├── Your model is missing something → Investigate
264
+ └── Supplier has inefficiency → Discuss improvement
265
+ ```
266
+
267
+ ## Target Costing
268
+
269
+ ### Process
270
+
271
+ ```text
272
+ Step 1: Determine market price (what customers will pay)
273
+ Step 2: Subtract required margin
274
+ Step 3: Result = target cost (maximum allowable cost)
275
+ Step 4: Design product to meet target cost
276
+ Step 5: If current cost > target, identify cost reduction opportunities
277
+
278
+ Market Price: $100
279
+ Required Margin (20%): -$20
280
+ Target Cost: $80
281
+ Current Estimated Cost: $92
282
+ Gap to Close: $12 (15% reduction needed)
283
+
284
+ Cost Reduction Actions:
285
+ ├── Material substitution: -$4
286
+ ├── Design simplification: -$3
287
+ ├── Process improvement: -$3
288
+ ├── Supplier negotiation: -$2
289
+ └── Total reduction: $12 ✓
290
+ ```
291
+
292
+ ## Financial Impact Analysis
293
+
294
+ ### Net Present Value for Supply Chain Investments
295
+
296
+ ```text
297
+ NPV = -Initial Investment + SUM(Annual Savings / (1 + r)^t)
298
+
299
+ Example: Warehouse Automation
300
+ Investment: $500,000
301
+ Annual labor savings: $150,000
302
+ Annual error reduction: $30,000
303
+ Discount rate: 10%
304
+ Horizon: 5 years
305
+
306
+ NPV = -500,000 + 180,000/(1.1)^1 + 180,000/(1.1)^2 + ... + 180,000/(1.1)^5
307
+ NPV = -500,000 + 682,344
308
+ NPV = $182,344 (positive = invest)
309
+
310
+ Payback period: $500,000 / $180,000 = 2.8 years
311
+ ```
312
+
313
+ ### Cost Savings Tracking
314
+
315
+ ```markdown
316
+ ## Cost Savings Report: [Quarter/Year]
317
+
318
+ ### By Category
319
+ | Category | Target | Actual | Variance |
320
+ |----------|--------|--------|----------|
321
+ | Procurement savings | $200K | $185K | -$15K |
322
+ | Freight optimization | $75K | $92K | +$17K |
323
+ | Inventory reduction | $50K | $45K | -$5K |
324
+ | Process improvement | $30K | $38K | +$8K |
325
+ | **Total** | **$355K** | **$360K** | **+$5K** |
326
+
327
+ ### Savings Classification
328
+ - Hard savings (P&L impact): $280K
329
+ - Soft savings (cost avoidance): $60K
330
+ - Productivity gains (time savings): $20K
331
+ ```
332
+
333
+ ## Common Pitfalls
334
+
335
+ ### 1. Comparing Unit Prices Instead of TCO
336
+
337
+ ```markdown
338
+ Wrong: "Supplier A is $2 cheaper per unit, switch immediately"
339
+ Right: "Supplier A is $2 cheaper per unit but requires 4x more safety stock
340
+ and has 3x the defect rate. TCO analysis shows they are 8% MORE expensive."
341
+ ```
342
+
343
+ ### 2. Ignoring the Cost of Tied-Up Capital
344
+
345
+ ```markdown
346
+ Wrong: "Buy 6 months of inventory to get the volume discount"
347
+ Right: "Volume discount saves $20K but carrying cost on extra inventory is $35K.
348
+ Net cost increase of $15K."
349
+ ```
350
+
351
+ ### 3. Double-Counting Cost Savings
352
+
353
+ ```markdown
354
+ Wrong: Count same savings in both procurement and operations budgets
355
+ Right: Define clear ownership of each savings initiative; avoid overlap
356
+ ```
357
+
358
+ ### 4. Assuming Current Costs are the Baseline
359
+
360
+ ```markdown
361
+ Wrong: "We saved 5% vs last year's price"
362
+ Right: "We saved 5% vs last year, but market prices dropped 8%.
363
+ We actually underperformed the market by 3%."
364
+ ```
365
+
366
+ ### 5. Excluding Risk from Cost Models
367
+
368
+ ```markdown
369
+ Wrong: Compare options based on expected cost only
370
+ Right: Include risk-adjusted costs. A disruption probability of 5% with $500K impact
371
+ adds $25K expected annual cost to the option.
372
+ ```
373
+
374
+ ### 6. Static Models for Dynamic Decisions
375
+
376
+ ```markdown
377
+ Wrong: Run cost model once and treat it as permanent truth
378
+ Right: Update models quarterly with current rates, volumes, and market conditions.
379
+ Decisions made on stale data are unreliable.
380
+ ```
@@ -0,0 +1,285 @@
1
+ # Demand Forecasting
2
+
3
+ Guidelines for accurate demand planning using statistical, causal, and collaborative methods.
4
+
5
+ ## Core Principle
6
+
7
+ **All forecasts are wrong; the goal is to be less wrong and to plan for the uncertainty.** A good forecasting process combines quantitative methods with market intelligence and measures accuracy rigorously.
8
+
9
+ ## Time Series Methods
10
+
11
+ ### Simple Moving Average
12
+
13
+ ```text
14
+ Forecast = (Sum of last N periods) / N
15
+
16
+ Best for: Stable demand with no trend or seasonality
17
+ Typical N: 3-6 months for monthly data
18
+
19
+ Example (3-month moving average):
20
+ Jan: 100, Feb: 110, Mar: 105
21
+ April forecast = (100 + 110 + 105) / 3 = 105
22
+ ```
23
+
24
+ ### Weighted Moving Average
25
+
26
+ ```text
27
+ Forecast = (W1 x D1 + W2 x D2 + ... + Wn x Dn) / (W1 + W2 + ... + Wn)
28
+
29
+ Assign higher weights to more recent periods.
30
+
31
+ Example:
32
+ Weights: Current month 3, Previous 2, Two months ago 1
33
+ Jan: 100 (w=1), Feb: 110 (w=2), Mar: 105 (w=3)
34
+ April forecast = (100x1 + 110x2 + 105x3) / 6 = 106.7
35
+ ```
36
+
37
+ ### Exponential Smoothing
38
+
39
+ ```text
40
+ Simple Exponential Smoothing:
41
+ F(t+1) = alpha x A(t) + (1 - alpha) x F(t)
42
+
43
+ alpha (smoothing constant): 0.1-0.3 for stable demand, 0.4-0.6 for volatile
44
+
45
+ Holt's Method (trend):
46
+ Level: L(t) = alpha x A(t) + (1 - alpha) x (L(t-1) + T(t-1))
47
+ Trend: T(t) = beta x (L(t) - L(t-1)) + (1 - beta) x T(t-1)
48
+ Forecast: F(t+m) = L(t) + m x T(t)
49
+
50
+ Holt-Winters (trend + seasonality):
51
+ Adds seasonal component S(t) with gamma parameter
52
+ Best for data with both trend and seasonal patterns
53
+ ```
54
+
55
+ ### Method Selection Guide
56
+
57
+ | Pattern | Recommended Method |
58
+ |---------|-------------------|
59
+ | Flat, stable | Simple moving average or simple exponential smoothing |
60
+ | Upward/downward trend | Holt's double exponential smoothing |
61
+ | Trend + seasonality | Holt-Winters or ARIMA with seasonal component |
62
+ | Complex patterns | ARIMA, Prophet, or machine learning |
63
+ | New product (no history) | Analogous product comparison or judgment |
64
+
65
+ ## Causal Models
66
+
67
+ ### Regression-Based Forecasting
68
+
69
+ ```text
70
+ Demand = f(Price, Promotions, Season, Economic Indicators, ...)
71
+
72
+ Example:
73
+ Demand = 5000 - 200(Price) + 1500(Promo) + 300(Season_Q4)
74
+
75
+ Use when:
76
+ - External factors clearly drive demand
77
+ - Sufficient historical data with variable changes
78
+ - Need to model "what if" scenarios
79
+ ```
80
+
81
+ ### Common Causal Variables
82
+
83
+ | Variable | Impact Direction | Data Source |
84
+ |----------|-----------------|-------------|
85
+ | Price changes | Inverse (usually) | Internal pricing |
86
+ | Promotions | Positive (temporary) | Marketing calendar |
87
+ | Competitor actions | Variable | Market intelligence |
88
+ | Economic indicators | Directional | Government data |
89
+ | Weather | Product-specific | Weather services |
90
+ | Calendar events | Seasonal spikes | Fixed calendar |
91
+
92
+ ## Collaborative Forecasting
93
+
94
+ ### CPFR Process
95
+
96
+ ```text
97
+ Step 1: Statistical Baseline
98
+ Generate automated forecast from historical data
99
+
100
+ Step 2: Sales Input
101
+ Account managers adjust for known opportunities/risks
102
+
103
+ Step 3: Marketing Input
104
+ Add promotional lifts, new product launches, campaigns
105
+
106
+ Step 4: Finance Overlay
107
+ Align with revenue targets and budget constraints
108
+
109
+ Step 5: Supply Chain Adjustment
110
+ Adjust for capacity constraints and lead times
111
+
112
+ Step 6: Consensus Review
113
+ Executive sign-off on final demand plan
114
+ ```
115
+
116
+ ### Best Practices for Forecast Collaboration
117
+
118
+ ```markdown
119
+ Do:
120
+ - Start with a statistical baseline; adjust with intelligence
121
+ - Track who makes adjustments and whether they improve accuracy
122
+ - Keep adjustment reasons documented
123
+ - Review forecast value add (did human adjustments help or hurt?)
124
+
125
+ Don't:
126
+ - Let politics override data
127
+ - Accept "stretch targets" as forecasts
128
+ - Ignore statistical signals in favor of gut feel
129
+ - Adjust forecasts without documented rationale
130
+ ```
131
+
132
+ ## Forecast Accuracy Metrics
133
+
134
+ ### Key Formulas
135
+
136
+ ```text
137
+ MAPE (Mean Absolute Percentage Error):
138
+ MAPE = (1/n) x SUM(|Actual - Forecast| / Actual) x 100
139
+ Lower is better. <10% is excellent, 10-20% is good.
140
+
141
+ Weighted MAPE (for product mix):
142
+ wMAPE = SUM(|Actual - Forecast|) / SUM(Actual) x 100
143
+ Better for products with varying volumes.
144
+
145
+ Bias (Tracking Signal):
146
+ Bias = SUM(Actual - Forecast) / SUM(|Actual - Forecast|)
147
+ Range: -1 to +1
148
+ Near 0 = balanced. Positive = under-forecasting. Negative = over-forecasting.
149
+
150
+ MAD (Mean Absolute Deviation):
151
+ MAD = (1/n) x SUM(|Actual - Forecast|)
152
+ Useful for safety stock calculations.
153
+ ```
154
+
155
+ ### Accuracy Reporting Template
156
+
157
+ ```markdown
158
+ ## Forecast Accuracy Report: [Month/Quarter]
159
+
160
+ ### Summary
161
+ | Metric | This Period | Last Period | Trend |
162
+ |--------|------------|------------|-------|
163
+ | MAPE | 15% | 18% | Improving |
164
+ | Bias | +0.05 | +0.12 | Improving |
165
+ | Items within 20% accuracy | 78% | 72% | Improving |
166
+
167
+ ### By Product Category
168
+ | Category | MAPE | Bias | Volume |
169
+ |----------|------|------|--------|
170
+ | Category A | 8% | -0.02 | 50K |
171
+ | Category B | 22% | +0.15 | 20K |
172
+ | Category C | 35% | +0.30 | 5K |
173
+
174
+ ### Root Causes of Error
175
+ 1. [Cause 1]: Unplanned promotion in Category B
176
+ 2. [Cause 2]: Supplier delay shifted demand to next period
177
+ 3. [Cause 3]: New product launch exceeded expectations
178
+
179
+ ### Actions
180
+ - [ ] Improve promotion calendar integration
181
+ - [ ] Add supplier delay adjustment to model
182
+ ```
183
+
184
+ ## Demand Sensing
185
+
186
+ ### Near-Term Signal Integration
187
+
188
+ | Signal | Latency | Adjustment Window | Method |
189
+ |--------|---------|-------------------|--------|
190
+ | POS/sell-through data | Daily | 1-7 days | Proportional adjustment |
191
+ | Order pipeline | Real-time | 1-14 days | Direct input |
192
+ | Web traffic/search | Daily | 7-21 days | Correlation model |
193
+ | Weather forecast | 3-10 days | Product-specific | Regression adjustment |
194
+ | Social media trends | Variable | 7-30 days | Sentiment scoring |
195
+ | Economic releases | Monthly | 30-90 days | Index adjustment |
196
+
197
+ ### Demand Sensing vs Traditional Forecasting
198
+
199
+ ```text
200
+ Traditional Forecasting:
201
+ Monthly buckets → Updated monthly → 1-18 month horizon → Statistical models
202
+
203
+ Demand Sensing:
204
+ Daily/weekly buckets → Updated daily → 1-6 week horizon → Real-time signals
205
+
206
+ Use both: Traditional for planning horizon, Sensing for execution horizon
207
+ ```
208
+
209
+ ## New Product Forecasting
210
+
211
+ ### Methods When No History Exists
212
+
213
+ | Method | Description | Accuracy |
214
+ |--------|-------------|----------|
215
+ | Analogous products | Base on similar past launches | Medium |
216
+ | Market sizing | TAM → SAM → SOM approach | Low-Medium |
217
+ | Test market | Pilot in limited geography | Medium-High |
218
+ | Pre-orders/waitlist | Measure actual interest | High |
219
+ | Expert judgment | Delphi method with stakeholders | Low-Medium |
220
+
221
+ ### New Product Forecast Template
222
+
223
+ ```markdown
224
+ ## New Product Forecast: [Product Name]
225
+
226
+ ### Analogous Products
227
+ | Product | Launch Year | Y1 Sales | Similarity Score |
228
+ |---------|-------------|----------|-----------------|
229
+ | [Product A] | 2023 | 50K | High |
230
+ | [Product B] | 2024 | 30K | Medium |
231
+
232
+ ### Market Sizing
233
+ - TAM: [Total addressable market]
234
+ - SAM: [Serviceable addressable market]
235
+ - SOM: [Serviceable obtainable market]
236
+ - Year 1 Target: [Conservative estimate]
237
+
238
+ ### Assumptions
239
+ 1. [Assumption 1]
240
+ 2. [Assumption 2]
241
+
242
+ ### Scenarios
243
+ | Scenario | Y1 Units | Confidence |
244
+ |----------|----------|------------|
245
+ | Pessimistic | [X] | 90% we beat this |
246
+ | Base | [Y] | 50% probability |
247
+ | Optimistic | [Z] | 10% we reach this |
248
+ ```
249
+
250
+ ## Common Pitfalls
251
+
252
+ ### 1. Forecasting at the Wrong Level
253
+
254
+ ```markdown
255
+ Wrong: Forecast total demand, then allocate to SKUs
256
+ Right: Forecast at the level decisions are made (SKU-location for replenishment)
257
+ ```
258
+
259
+ ### 2. Not Separating Base Demand from Events
260
+
261
+ ```markdown
262
+ Wrong: Include promotional spikes in base demand history
263
+ Right: Decompose history into base demand + promotional lift + one-time events
264
+ ```
265
+
266
+ ### 3. Confusing Forecasts with Targets
267
+
268
+ ```markdown
269
+ Wrong: "Sales target is $10M so forecast $10M"
270
+ Right: "Statistical forecast is $8M; achieving $10M requires these additional actions..."
271
+ ```
272
+
273
+ ### 4. Ignoring Forecast Uncertainty
274
+
275
+ ```markdown
276
+ Wrong: "Forecast is 1,000 units" (point estimate only)
277
+ Right: "Forecast is 1,000 units +/- 200 (80% confidence interval)"
278
+ ```
279
+
280
+ ### 5. Over-Fitting Models to Historical Noise
281
+
282
+ ```markdown
283
+ Wrong: Complex model that perfectly fits history but fails on new data
284
+ Right: Simple model validated with holdout data; prioritize out-of-sample accuracy
285
+ ```