@lobehub/lobehub 2.0.0-next.205 → 2.0.0-next.207

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/locales/ar/components.json +4 -0
  4. package/locales/ar/models.json +25 -126
  5. package/locales/bg-BG/components.json +4 -0
  6. package/locales/bg-BG/models.json +2 -2
  7. package/locales/de-DE/components.json +4 -0
  8. package/locales/de-DE/models.json +21 -120
  9. package/locales/en-US/components.json +4 -0
  10. package/locales/es-ES/components.json +4 -0
  11. package/locales/es-ES/models.json +24 -180
  12. package/locales/fa-IR/components.json +4 -0
  13. package/locales/fa-IR/models.json +2 -2
  14. package/locales/fr-FR/components.json +4 -0
  15. package/locales/fr-FR/models.json +2 -108
  16. package/locales/it-IT/components.json +4 -0
  17. package/locales/it-IT/models.json +22 -51
  18. package/locales/ja-JP/components.json +4 -0
  19. package/locales/ja-JP/models.json +16 -133
  20. package/locales/ko-KR/components.json +4 -0
  21. package/locales/ko-KR/models.json +26 -148
  22. package/locales/nl-NL/components.json +4 -0
  23. package/locales/nl-NL/models.json +2 -2
  24. package/locales/pl-PL/components.json +4 -0
  25. package/locales/pl-PL/models.json +2 -2
  26. package/locales/pt-BR/components.json +4 -0
  27. package/locales/pt-BR/models.json +49 -125
  28. package/locales/ru-RU/components.json +4 -0
  29. package/locales/ru-RU/models.json +17 -96
  30. package/locales/tr-TR/components.json +4 -0
  31. package/locales/tr-TR/models.json +28 -57
  32. package/locales/vi-VN/components.json +4 -0
  33. package/locales/vi-VN/models.json +1 -92
  34. package/locales/zh-CN/components.json +4 -0
  35. package/locales/zh-CN/models.json +31 -165
  36. package/locales/zh-TW/components.json +4 -0
  37. package/locales/zh-TW/models.json +2 -2
  38. package/package.json +1 -1
  39. package/packages/utils/src/object.test.ts +10 -2
  40. package/src/app/[variants]/(main)/chat/profile/features/EditorCanvas/index.tsx +4 -2
  41. package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +1 -1
  42. package/src/features/ModelSwitchPanel/index.tsx +393 -42
  43. package/src/locales/default/components.ts +4 -0
  44. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  45. package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +34 -11
  46. package/src/store/aiInfra/slices/aiProvider/action.ts +9 -1
  47. package/src/store/aiInfra/slices/aiProvider/initialState.ts +6 -1
  48. package/src/store/aiInfra/slices/aiProvider/selectors.ts +17 -3
@@ -299,97 +299,6 @@
299
299
  "codestral-latest.description": "Codestral là mô hình lập trình tiên tiến nhất của chúng tôi; phiên bản v2 (tháng 1 năm 2025) nhắm đến các tác vụ tần suất cao, độ trễ thấp như FIM, sửa mã và sinh bài kiểm tra.",
300
300
  "codestral.description": "Codestral là mô hình lập trình đầu tiên của Mistral AI, cung cấp hỗ trợ sinh mã mạnh mẽ.",
301
301
  "codex-mini-latest.description": "codex-mini-latest là một mô hình o4-mini được tinh chỉnh dành cho Codex CLI. Đối với việc sử dụng API trực tiếp, chúng tôi khuyến nghị bắt đầu với gpt-4.1.",
302
- "cogito-2.1:671b.description": "Cogito v2.1 671B là một mô hình ngôn ngữ mã nguồn mở của Mỹ, miễn phí cho mục đích thương mại, có hiệu suất sánh ngang với các mô hình hàng đầu, hiệu quả suy luận theo token cao hơn, hỗ trợ ngữ cảnh dài 128k và khả năng tổng thể mạnh mẽ.",
303
- "cogview-4.description": "CogView-4 là mô hình chuyển văn bản thành hình ảnh mã nguồn mở đầu tiên của Zhipu có khả năng tạo ký tự tiếng Trung. Mô hình cải thiện khả năng hiểu ngữ nghĩa, chất lượng hình ảnh và hiển thị văn bản tiếng Trung/Anh, hỗ trợ lời nhắc song ngữ với độ dài tùy ý và có thể tạo hình ảnh ở bất kỳ độ phân giải nào trong phạm vi cho phép.",
304
- "cohere-command-r-plus.description": "Command R+ là một mô hình tiên tiến được tối ưu hóa cho RAG, được xây dựng để xử lý khối lượng công việc doanh nghiệp.",
305
- "cohere-command-r.description": "Command R là một mô hình sinh văn bản có khả năng mở rộng, được thiết kế cho RAG và sử dụng công cụ, cho phép triển khai AI ở cấp độ sản xuất.",
306
- "cohere/Cohere-command-r-plus.description": "Command R+ là một mô hình tiên tiến được tối ưu hóa cho RAG, được xây dựng để xử lý khối lượng công việc doanh nghiệp.",
307
- "cohere/Cohere-command-r.description": "Command R là một mô hình sinh văn bản có khả năng mở rộng, được thiết kế cho RAG và sử dụng công cụ, cho phép triển khai AI ở cấp độ sản xuất.",
308
- "cohere/command-a.description": "Command A là mô hình mạnh nhất của Cohere cho đến nay, vượt trội trong việc sử dụng công cụ, tác tử, RAG và các trường hợp đa ngôn ngữ. Mô hình có độ dài ngữ cảnh 256K, chạy chỉ với hai GPU và đạt thông lượng cao hơn 150% so với Command R+ 08-2024.",
309
- "cohere/command-r-plus.description": "Command R+ là mô hình LLM mới nhất của Cohere, được tối ưu hóa cho trò chuyện và ngữ cảnh dài, hướng đến hiệu suất vượt trội để các công ty có thể vượt qua giai đoạn nguyên mẫu và đi vào sản xuất.",
310
- "cohere/command-r.description": "Command R được tối ưu hóa cho các tác vụ trò chuyện và ngữ cảnh dài, được định vị là mô hình “có thể mở rộng” cân bằng giữa hiệu suất cao và độ chính xác, giúp doanh nghiệp vượt qua giai đoạn nguyên mẫu và triển khai thực tế.",
311
- "cohere/embed-v4.0.description": "Một mô hình phân loại hoặc chuyển đổi văn bản, hình ảnh hoặc nội dung hỗn hợp thành các vector nhúng (embedding).",
312
- "comfyui/flux-dev.description": "FLUX.1 Dev là mô hình chuyển văn bản thành hình ảnh chất lượng cao (10–50 bước), lý tưởng cho các sản phẩm sáng tạo và nghệ thuật cao cấp.",
313
- "comfyui/flux-kontext-dev.description": "FLUX.1 Kontext-dev là mô hình chỉnh sửa hình ảnh hỗ trợ chỉnh sửa theo hướng dẫn văn bản, bao gồm chỉnh sửa cục bộ và chuyển đổi phong cách.",
314
- "comfyui/flux-krea-dev.description": "FLUX.1 Krea-dev là mô hình chuyển văn bản thành hình ảnh được tăng cường an toàn, đồng phát triển với Krea, tích hợp bộ lọc an toàn sẵn có.",
315
- "comfyui/flux-schnell.description": "FLUX.1 Schnell là mô hình chuyển văn bản thành hình ảnh siêu nhanh, tạo hình ảnh chất lượng cao chỉ trong 1–4 bước, lý tưởng cho sử dụng thời gian thực và tạo mẫu nhanh.",
316
- "comfyui/stable-diffusion-15.description": "Stable Diffusion 1.5 là mô hình chuyển văn bản thành hình ảnh cổ điển với độ phân giải 512x512, lý tưởng cho tạo mẫu nhanh và thử nghiệm sáng tạo.",
317
- "comfyui/stable-diffusion-35-inclclip.description": "Stable Diffusion 3.5 tích hợp sẵn bộ mã hóa CLIP/T5, không cần tệp mã hóa bên ngoài, phù hợp với các mô hình như sd3.5_medium_incl_clips với mức sử dụng tài nguyên thấp hơn.",
318
- "comfyui/stable-diffusion-35.description": "Stable Diffusion 3.5 là mô hình chuyển văn bản thành hình ảnh thế hệ mới với các biến thể Large và Medium. Mô hình yêu cầu tệp mã hóa CLIP bên ngoài và mang lại chất lượng hình ảnh xuất sắc cùng khả năng tuân thủ lời nhắc cao.",
319
- "comfyui/stable-diffusion-custom-refiner.description": "Mô hình SDXL chuyển hình ảnh thành hình ảnh tùy chỉnh. Sử dụng tên tệp model là custom_sd_lobe.safetensors; nếu có VAE, sử dụng custom_sd_vae_lobe.safetensors. Đặt các tệp model vào thư mục yêu cầu của Comfy.",
320
- "comfyui/stable-diffusion-custom.description": "Mô hình SD chuyển văn bản thành hình ảnh tùy chỉnh. Sử dụng tên tệp model là custom_sd_lobe.safetensors; nếu có VAE, sử dụng custom_sd_vae_lobe.safetensors. Đặt các tệp model vào thư mục yêu cầu của Comfy.",
321
- "comfyui/stable-diffusion-refiner.description": "Mô hình SDXL chuyển hình ảnh thành hình ảnh thực hiện các chuyển đổi chất lượng cao từ hình ảnh đầu vào, hỗ trợ chuyển đổi phong cách, phục hồi và biến thể sáng tạo.",
322
- "comfyui/stable-diffusion-xl.description": "SDXL là mô hình chuyển văn bản thành hình ảnh hỗ trợ tạo hình ảnh độ phân giải cao 1024x1024 với chất lượng và chi tiết tốt hơn.",
323
- "command-a-03-2025.description": "Command A là mô hình mạnh nhất của chúng tôi cho đến nay, vượt trội trong việc sử dụng công cụ, tác tử, RAG và các tình huống đa ngôn ngữ. Mô hình có cửa sổ ngữ cảnh 256K, chạy chỉ với hai GPU và đạt thông lượng cao hơn 150% so với Command R+ 08-2024.",
324
- "command-light-nightly.description": "Để rút ngắn khoảng cách giữa các bản phát hành chính, chúng tôi cung cấp các bản dựng Command hàng đêm. Với dòng command-light, phiên bản này được gọi là command-light-nightly. Đây là phiên bản mới nhất, mang tính thử nghiệm cao (và có thể không ổn định), được cập nhật thường xuyên mà không thông báo, do đó không khuyến nghị sử dụng trong môi trường sản xuất.",
325
- "command-light.description": "Biến thể Command nhỏ hơn, nhanh hơn, gần như mạnh mẽ như bản gốc nhưng có tốc độ cao hơn.",
326
- "command-nightly.description": "Để rút ngắn khoảng cách giữa các bản phát hành chính, chúng tôi cung cấp các bản dựng Command hàng đêm. Với dòng Command, phiên bản này được gọi là command-nightly. Đây là phiên bản mới nhất, mang tính thử nghiệm cao (và có thể không ổn định), được cập nhật thường xuyên mà không thông báo, do đó không khuyến nghị sử dụng trong môi trường sản xuất.",
327
- "command-r-03-2024.description": "Command R là mô hình trò chuyện tuân theo hướng dẫn với chất lượng cao hơn, độ tin cậy lớn hơn và cửa sổ ngữ cảnh dài hơn so với các mô hình trước đó. Mô hình hỗ trợ các quy trình phức tạp như tạo mã, RAG, sử dụng công cụ và tác tử.",
328
- "command-r-08-2024.description": "command-r-08-2024 là phiên bản cập nhật của mô hình Command R được phát hành vào tháng 8 năm 2024.",
329
- "command-r-plus-04-2024.description": "command-r-plus là bí danh của command-r-plus-04-2024, vì vậy sử dụng command-r-plus trong API sẽ trỏ đến mô hình đó.",
330
- "command-r-plus-08-2024.description": "Command R+ là mô hình trò chuyện tuân theo hướng dẫn với chất lượng cao hơn, độ tin cậy lớn hơn và cửa sổ ngữ cảnh dài hơn so với các mô hình trước đó. Mô hình phù hợp nhất cho các quy trình RAG phức tạp và sử dụng công cụ nhiều bước.",
331
- "command-r-plus.description": "Command R+ là mô hình LLM hiệu suất cao được thiết kế cho các tình huống doanh nghiệp thực tế và ứng dụng phức tạp.",
332
- "command-r.description": "Command R là mô hình LLM được tối ưu hóa cho trò chuyện và các tác vụ ngữ cảnh dài, lý tưởng cho tương tác động và quản lý tri thức.",
333
- "command-r7b-12-2024.description": "command-r7b-12-2024 là bản cập nhật nhỏ, hiệu quả được phát hành vào tháng 12 năm 2024. Mô hình vượt trội trong các tác vụ RAG, sử dụng công cụ và tác tử đòi hỏi suy luận phức tạp nhiều bước.",
334
- "command.description": "Mô hình trò chuyện tuân theo hướng dẫn cung cấp chất lượng và độ tin cậy cao hơn trong các tác vụ ngôn ngữ, với cửa sổ ngữ cảnh dài hơn so với các mô hình sinh văn bản cơ bản của chúng tôi.",
335
- "computer-use-preview.description": "computer-use-preview là mô hình chuyên biệt cho công cụ \"sử dụng máy tính\", được huấn luyện để hiểu và thực hiện các tác vụ liên quan đến máy tính.",
336
- "dall-e-2.description": "DALL·E thế hệ thứ hai với khả năng tạo hình ảnh chân thực, chính xác hơn và độ phân giải gấp 4 lần thế hệ đầu tiên.",
337
- "dall-e-3.description": "Mô hình DALL·E mới nhất, phát hành tháng 11 năm 2023, hỗ trợ tạo hình ảnh chân thực, chính xác hơn với chi tiết mạnh mẽ hơn.",
338
- "databricks/dbrx-instruct.description": "DBRX Instruct cung cấp khả năng xử lý hướng dẫn đáng tin cậy cao trong nhiều ngành công nghiệp.",
339
- "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR là mô hình thị giác-ngôn ngữ từ DeepSeek AI tập trung vào OCR và \"nén quang học theo ngữ cảnh.\" Mô hình này khám phá cách nén ngữ cảnh từ hình ảnh, xử lý tài liệu hiệu quả và chuyển đổi chúng thành văn bản có cấu trúc (ví dụ: Markdown). Nó nhận diện văn bản trong hình ảnh một cách chính xác, phù hợp cho số hóa tài liệu, trích xuất văn bản và xử lý có cấu trúc.",
340
- "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B chắt lọc chuỗi tư duy từ DeepSeek-R1-0528 vào Qwen3 8B Base. Mô hình đạt SOTA trong số các mô hình mã nguồn mở, vượt Qwen3 8B 10% trên AIME 2024 và ngang bằng hiệu suất tư duy của Qwen3-235B. Nó vượt trội trong suy luận toán học, lập trình và các bài kiểm tra logic tổng quát. Mô hình sử dụng kiến trúc Qwen3-8B nhưng dùng tokenizer của DeepSeek-R1-0528.",
341
- "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 tận dụng sức mạnh tính toán bổ sung và tối ưu hóa thuật toán sau huấn luyện để tăng cường khả năng suy luận. Mô hình thể hiện hiệu suất mạnh mẽ trên các tiêu chuẩn toán học, lập trình và logic tổng quát, tiệm cận các mô hình hàng đầu như o3 và Gemini 2.5 Pro.",
342
- "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Các mô hình chắt lọc DeepSeek-R1 sử dụng học tăng cường (RL) và dữ liệu khởi đầu lạnh để cải thiện khả năng suy luận và thiết lập các tiêu chuẩn mới cho mô hình mã nguồn mở đa nhiệm.",
343
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Các mô hình chắt lọc DeepSeek-R1 sử dụng học tăng cường (RL) và dữ liệu khởi đầu lạnh để cải thiện khả năng suy luận và thiết lập các tiêu chuẩn mới cho mô hình mã nguồn mở đa nhiệm.",
344
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Các mô hình chắt lọc DeepSeek-R1 sử dụng học tăng cường (RL) và dữ liệu khởi đầu lạnh để cải thiện khả năng suy luận và thiết lập các tiêu chuẩn mới cho mô hình mã nguồn mở đa nhiệm.",
345
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B được chắt lọc từ Qwen2.5-32B và tinh chỉnh trên 800K mẫu DeepSeek-R1 được tuyển chọn. Mô hình vượt trội trong toán học, lập trình và suy luận, đạt kết quả cao trên AIME 2024, MATH-500 (độ chính xác 94.3%) và GPQA Diamond.",
346
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B được chắt lọc từ Qwen2.5-Math-7B và tinh chỉnh trên 800K mẫu DeepSeek-R1 được tuyển chọn. Mô hình đạt hiệu suất cao với 92.8% trên MATH-500, 55.5% trên AIME 2024 và xếp hạng CodeForces 1189 cho mô hình 7B.",
347
- "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 cải thiện khả năng suy luận với học tăng cường và dữ liệu khởi đầu lạnh, thiết lập các tiêu chuẩn mới cho mô hình mã nguồn mở đa nhiệm và vượt qua OpenAI-o1-mini.",
348
- "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 nâng cấp từ DeepSeek-V2-Chat và DeepSeek-Coder-V2-Instruct, kết hợp khả năng tổng quát và lập trình. Mô hình cải thiện khả năng viết và tuân theo hướng dẫn để phù hợp hơn với sở thích người dùng, và đạt tiến bộ đáng kể trên các tiêu chuẩn như AlpacaEval 2.0, ArenaHard, AlignBench và MT-Bench.",
349
- "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus là phiên bản cập nhật của mô hình V3.1, định vị như một mô hình đại lý lai. Mô hình khắc phục các vấn đề do người dùng báo cáo, cải thiện độ ổn định, tính nhất quán ngôn ngữ và giảm ký tự bất thường hoặc trộn lẫn Trung/Anh. Nó tích hợp chế độ Tư duy và Không tư duy với mẫu trò chuyện để chuyển đổi linh hoạt. Ngoài ra, nó còn nâng cao hiệu suất của Code Agent và Search Agent để sử dụng công cụ đáng tin cậy hơn và xử lý tác vụ nhiều bước.",
350
- "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 sử dụng kiến trúc suy luận lai và hỗ trợ cả chế độ tư duy và không tư duy.",
351
- "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp là bản phát hành thử nghiệm của V3.2, làm cầu nối đến kiến trúc tiếp theo. Mô hình bổ sung DeepSeek Sparse Attention (DSA) trên nền V3.1-Terminus để cải thiện hiệu quả huấn luyện và suy luận với ngữ cảnh dài, tối ưu hóa cho việc sử dụng công cụ, hiểu tài liệu dài và suy luận nhiều bước. Đây là lựa chọn lý tưởng để khám phá hiệu quả suy luận cao hơn với ngân sách ngữ cảnh lớn.",
352
- "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 là mô hình MoE với 671 tỷ tham số, sử dụng MLA và DeepSeekMoE với cân bằng tải không tổn thất để huấn luyện và suy luận hiệu quả. Được huấn luyện trước trên 14.8T token chất lượng cao với SFT và RL, mô hình vượt trội so với các mô hình mã nguồn mở khác và tiệm cận các mô hình đóng hàng đầu.",
353
- "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) là mô hình sáng tạo cung cấp khả năng hiểu ngôn ngữ sâu và tương tác hiệu quả.",
354
- "deepseek-ai/deepseek-r1.description": "Một mô hình ngôn ngữ tiên tiến, hiệu quả, mạnh về lập luận, toán học và lập trình.",
355
- "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 là mô hình lập luận thế hệ mới với khả năng suy luận phức tạp và chuỗi tư duy mạnh mẽ, phù hợp cho các tác vụ phân tích chuyên sâu.",
356
- "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 là mô hình lập luận thế hệ mới với khả năng suy luận phức tạp và chuỗi tư duy mạnh mẽ, phù hợp cho các tác vụ phân tích chuyên sâu.",
357
- "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 là mô hình thị giác-ngôn ngữ MoE dựa trên DeepSeekMoE-27B với kích hoạt thưa, đạt hiệu suất cao chỉ với 4.5B tham số hoạt động. Mô hình vượt trội trong các tác vụ hỏi đáp hình ảnh, OCR, hiểu tài liệu/bảng/biểu đồ và định vị hình ảnh.",
358
- "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B là mô hình ngôn ngữ lập trình được huấn luyện trên 2 nghìn tỷ token (87% mã nguồn, 13% văn bản tiếng Trung/Anh). Mô hình hỗ trợ cửa sổ ngữ cảnh 16K và nhiệm vụ điền vào giữa, cung cấp khả năng hoàn thành mã ở cấp độ dự án và chèn đoạn mã.",
359
- "deepseek-coder-v2.description": "DeepSeek Coder V2 là mô hình mã nguồn mở MoE chuyên về lập trình, đạt hiệu suất tương đương GPT-4 Turbo.",
360
- "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 là mô hình mã nguồn mở MoE chuyên về lập trình, đạt hiệu suất tương đương GPT-4 Turbo.",
361
- "deepseek-ocr.description": "DeepSeek-OCR là mô hình thị giác-ngôn ngữ từ DeepSeek AI tập trung vào OCR và \"nén quang học theo ngữ cảnh\". Mô hình khám phá cách nén thông tin ngữ cảnh từ hình ảnh, xử lý tài liệu hiệu quả và chuyển đổi chúng thành định dạng văn bản có cấu trúc như Markdown. Mô hình nhận diện văn bản trong hình ảnh chính xác, lý tưởng cho số hóa tài liệu, trích xuất văn bản và xử lý có cấu trúc.",
362
- "deepseek-r1-0528.description": "Mô hình đầy đủ 685B được phát hành vào ngày 28-05-2025. DeepSeek-R1 sử dụng học tăng cường quy mô lớn trong giai đoạn hậu huấn luyện, cải thiện đáng kể khả năng lập luận với dữ liệu gán nhãn tối thiểu, và thể hiện mạnh mẽ trong toán học, lập trình và lập luận ngôn ngữ tự nhiên.",
363
- "deepseek-r1-250528.description": "DeepSeek R1 250528 là mô hình lập luận đầy đủ DeepSeek-R1 dành cho các tác vụ toán học và logic khó.",
364
- "deepseek-r1-70b-fast-online.description": "Phiên bản nhanh DeepSeek R1 70B với tìm kiếm web thời gian thực, mang lại phản hồi nhanh hơn mà vẫn duy trì hiệu suất.",
365
- "deepseek-r1-70b-online.description": "Phiên bản tiêu chuẩn DeepSeek R1 70B với tìm kiếm web thời gian thực, phù hợp cho trò chuyện và tác vụ văn bản cập nhật.",
366
- "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B kết hợp khả năng lập luận của R1 với hệ sinh thái Llama.",
367
- "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B được chưng cất từ Llama-3.1-8B sử dụng đầu ra từ DeepSeek R1.",
368
- "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama được chưng cất từ DeepSeek-R1 trên nền tảng Llama.",
369
- "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B là phiên bản chưng cất R1 dựa trên Qianfan-70B với giá trị cao.",
370
- "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B là phiên bản chưng cất R1 dựa trên Qianfan-8B, phù hợp cho ứng dụng quy mô nhỏ và trung bình.",
371
- "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B là phiên bản chưng cất R1 dựa trên Llama-70B.",
372
- "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B là mô hình chưng cất siêu nhẹ dành cho môi trường tài nguyên rất thấp.",
373
- "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B là mô hình chưng cất cỡ trung cho triển khai đa kịch bản.",
374
- "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B là phiên bản chưng cất R1 dựa trên Qwen-32B, cân bằng giữa hiệu suất và chi phí.",
375
- "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B là mô hình chưng cất nhẹ dành cho môi trường biên và doanh nghiệp riêng tư.",
376
- "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen được chưng cất từ DeepSeek-R1 trên nền tảng Qwen.",
377
- "deepseek-r1-fast-online.description": "Phiên bản đầy đủ DeepSeek R1 nhanh với tìm kiếm web thời gian thực, kết hợp khả năng 671B và phản hồi nhanh hơn.",
378
- "deepseek-r1-online.description": "Phiên bản đầy đủ DeepSeek R1 với 671B tham số và tìm kiếm web thời gian thực, mang lại khả năng hiểu và tạo nội dung mạnh mẽ hơn.",
379
- "deepseek-r1.description": "DeepSeek-R1 sử dụng dữ liệu khởi động lạnh trước học tăng cường và đạt hiệu suất tương đương OpenAI-o1 trong toán học, lập trình và lập luận.",
380
- "deepseek-v2.description": "DeepSeek V2 là mô hình MoE hiệu quả cho xử lý tiết kiệm chi phí.",
381
- "deepseek-v2:236b.description": "DeepSeek V2 236B là mô hình tập trung vào mã nguồn của DeepSeek với khả năng tạo mã mạnh mẽ.",
382
- "deepseek-v3-0324.description": "DeepSeek-V3-0324 là mô hình MoE với 671B tham số, nổi bật về lập trình, khả năng kỹ thuật, hiểu ngữ cảnh và xử lý văn bản dài.",
383
- "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus là mô hình LLM tối ưu cho thiết bị đầu cuối từ DeepSeek.",
384
- "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 là mô hình tư duy sâu tương ứng với phiên bản Terminus, được xây dựng cho lập luận hiệu suất cao.",
385
- "deepseek-v3.1.description": "DeepSeek-V3.1 là mô hình lập luận lai mới từ DeepSeek, hỗ trợ cả chế độ tư duy và không tư duy, mang lại hiệu quả tư duy cao hơn so với DeepSeek-R1-0528. Tối ưu hóa sau huấn luyện giúp cải thiện đáng kể việc sử dụng công cụ và hiệu suất tác vụ tác nhân. Mô hình hỗ trợ cửa sổ ngữ cảnh 128k và tối đa 64k token đầu ra.",
386
- "deepseek-v3.1:671b.description": "DeepSeek V3.1 là mô hình lập luận thế hệ mới với khả năng suy luận phức tạp và chuỗi tư duy được cải thiện, phù hợp cho các tác vụ phân tích chuyên sâu.",
387
- "deepseek-v3.2-exp.description": "deepseek-v3.2-exp giới thiệu attention thưa để cải thiện hiệu quả huấn luyện và suy luận trên văn bản dài, với chi phí thấp hơn deepseek-v3.1.",
388
- "deepseek-v3.2-think.description": "DeepSeek V3.2 Think là mô hình tư duy sâu đầy đủ với khả năng lập luận chuỗi dài mạnh mẽ hơn.",
389
- "deepseek-v3.2.description": "DeepSeek-V3.2 là mô hình lập luận lai đầu tiên của DeepSeek tích hợp tư duy vào việc sử dụng công cụ, kết hợp kiến trúc hiệu quả để tiết kiệm tài nguyên, học tăng cường quy mô lớn để nâng cao năng lực, và dữ liệu nhiệm vụ tổng hợp quy mô lớn để tăng khả năng tổng quát. Hiệu suất tổng thể tương đương GPT-5-High, độ dài đầu ra giảm đáng kể, giúp tiết kiệm chi phí tính toán và thời gian chờ của người dùng.",
390
- "deepseek-v3.description": "DeepSeek-V3 là mô hình MoE mạnh mẽ với tổng cộng 671B tham số và 37B tham số hoạt động mỗi token.",
391
- "deepseek-vl2-small.description": "DeepSeek VL2 Small là phiên bản đa phương thức nhẹ, phù hợp cho môi trường hạn chế tài nguyên và yêu cầu đồng thời cao.",
392
- "deepseek-vl2.description": "DeepSeek VL2 là mô hình đa phương thức cho hiểu hình ảnh-văn bản và hỏi đáp hình ảnh chi tiết.",
393
302
  "meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 là một mô hình ngôn ngữ mở dành cho nhà phát triển, nhà nghiên cứu và doanh nghiệp, được thiết kế để hỗ trợ xây dựng, thử nghiệm và mở rộng các ý tưởng AI sinh ngữ một cách có trách nhiệm. Là một phần trong nền tảng đổi mới cộng đồng toàn cầu, mô hình này phù hợp với môi trường có tài nguyên hạn chế, thiết bị biên và yêu cầu thời gian huấn luyện nhanh hơn.",
394
303
  "meta/Llama-3.2-11B-Vision-Instruct.description": "Khả năng suy luận hình ảnh mạnh mẽ trên ảnh độ phân giải cao, phù hợp cho các ứng dụng hiểu thị giác.",
395
304
  "meta/Llama-3.2-90B-Vision-Instruct.description": "Khả năng suy luận hình ảnh tiên tiến dành cho các ứng dụng tác tử hiểu thị giác.",
@@ -570,4 +479,4 @@
570
479
  "wizardlm2:8x22b.description": "WizardLM 2 là mô hình ngôn ngữ từ Microsoft AI, vượt trội trong đối thoại phức tạp, tác vụ đa ngôn ngữ, suy luận và trợ lý.",
571
480
  "x-ai/grok-4-fast-non-reasoning.description": "Grok 4 Fast (Không Suy Luận) là mô hình đa phương thức hiệu suất cao, chi phí thấp của xAI (hỗ trợ cửa sổ ngữ cảnh 2M), phù hợp cho các tình huống nhạy cảm với độ trễ và chi phí mà không cần suy luận trong mô hình. Có thể bật suy luận qua tham số API khi cần. Lời nhắc và phản hồi có thể được xAI hoặc OpenRouter sử dụng để cải thiện các mô hình tương lai.",
572
481
  "x-ai/grok-4-fast.description": "Grok 4 Fast là mô hình hiệu suất cao, chi phí thấp của xAI (hỗ trợ cửa sổ ngữ cảnh 2M), lý tưởng cho các trường hợp sử dụng có tính đồng thời cao và ngữ cảnh dài."
573
- }
482
+ }
@@ -92,11 +92,15 @@
92
92
  "ModelSelect.featureTag.video": "该模型支持视频识别",
93
93
  "ModelSelect.featureTag.vision": "该模型支持视觉识别",
94
94
  "ModelSelect.removed": "该模型不在列表中,若取消选中将会自动移除",
95
+ "ModelSwitchPanel.byModel": "按模型",
96
+ "ModelSwitchPanel.byProvider": "按提供商",
95
97
  "ModelSwitchPanel.emptyModel": "还没有启用模型。去设置启用后再试",
96
98
  "ModelSwitchPanel.emptyProvider": "还没有启用模型服务商。去设置启用后再试",
97
99
  "ModelSwitchPanel.goToSettings": "前往设置",
100
+ "ModelSwitchPanel.manageProvider": "管理提供商",
98
101
  "ModelSwitchPanel.provider": "提供方",
99
102
  "ModelSwitchPanel.title": "模型",
103
+ "ModelSwitchPanel.useModelFrom": "使用此模型来自:",
100
104
  "MultiImagesUpload.actions.uploadMore": "点击或拖拽上传更多",
101
105
  "MultiImagesUpload.modal.complete": "完成",
102
106
  "MultiImagesUpload.modal.newFileIndicator": "新增",
@@ -271,20 +271,22 @@
271
271
  "chatgpt-4o-latest.description": "ChatGPT-4o 是一款实时更新的动态模型,结合强大的理解与生成能力,适用于客户支持、教育和技术支持等大规模应用场景。",
272
272
  "claude-2.0.description": "Claude 2 提供关键的企业级改进,包括领先的 20 万 token 上下文窗口、减少幻觉、系统提示支持,以及新测试功能:工具调用。",
273
273
  "claude-2.1.description": "Claude 2 提供关键的企业级改进,包括领先的 20 万 token 上下文窗口、减少幻觉、系统提示支持,以及新测试功能:工具调用。",
274
- "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku 是 Anthropic 推出的下一代最快模型。相较于 Claude 3 Haiku,其在多项能力上均有提升,并在众多智能基准测试中超越了此前的最大模型 Claude 3 Opus。",
274
+ "claude-3-5-haiku-20241022.description": "Claude 3.5 Haiku 是 Anthropic 推出的下一代最快模型。与 Claude 3 Haiku 相比,其各项能力均有提升,并在多个智能基准测试中超越了此前的最大模型 Claude 3 Opus。",
275
275
  "claude-3-5-haiku-latest.description": "Claude 3.5 Haiku 提供快速响应,适用于轻量级任务。",
276
- "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet 是 Anthropic 最智能的模型,也是市场上首个混合推理模型。它既可实现近乎即时的响应,也支持用户可见的逐步推理过程。Sonnet 在编程、数据科学、视觉处理和智能体任务方面表现尤为出色。",
276
+ "claude-3-7-sonnet-20250219.description": "Claude 3.7 Sonnet 是 Anthropic 最智能的模型,也是市场上首个混合推理模型。它既能生成几乎即时的响应,也能展示逐步推理过程,用户可清晰看到其思考路径。Sonnet 在编程、数据科学、视觉理解和智能体任务方面表现尤为出色。",
277
277
  "claude-3-7-sonnet-latest.description": "Claude 3.7 Sonnet 是 Anthropic 最新、最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
278
278
  "claude-3-haiku-20240307.description": "Claude 3 Haiku 是 Anthropic 推出的最快、最紧凑的模型,专为近乎即时响应而设计,具备快速且准确的性能。",
279
279
  "claude-3-opus-20240229.description": "Claude 3 Opus 是 Anthropic 最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
280
280
  "claude-3-sonnet-20240229.description": "Claude 3 Sonnet 在智能与速度之间取得平衡,适用于企业级工作负载,提供高效能与低成本的可靠部署。",
281
281
  "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 是 Anthropic 推出的最快、最智能的 Haiku 模型,具备闪电般的响应速度和增强的推理能力。",
282
+ "claude-haiku-4-5-20251001.description": "Claude Haiku 4.5 是 Anthropic 推出的最快、最智能的 Haiku 模型,具备闪电般的响应速度和增强的推理能力。",
282
283
  "claude-opus-4-1-20250805-thinking.description": "Claude Opus 4.1 Thinking 是一款高级变体,能够展示其推理过程。",
283
284
  "claude-opus-4-1-20250805.description": "Claude Opus 4.1 是 Anthropic 最新、最强大的模型,适用于高度复杂的任务,在性能、智能、流畅性和理解力方面表现卓越。",
284
285
  "claude-opus-4-20250514.description": "Claude Opus 4 是 Anthropic 最强大的模型,专为处理高度复杂任务而设计,在性能、智能、流畅性和理解力方面表现卓越。",
286
+ "claude-opus-4-20250514.description": "Claude Opus 4 是 Anthropic 最强大的模型,专为处理高度复杂任务而设计,在性能、智能、流畅性和理解力方面表现卓越。",
285
287
  "claude-opus-4-5-20251101.description": "Claude Opus 4.5 是 Anthropic 的旗舰模型,结合卓越智能与可扩展性能,适用于需要最高质量响应与推理的复杂任务。",
286
288
  "claude-sonnet-4-20250514-thinking.description": "Claude Sonnet 4 Thinking 可生成近乎即时的响应或可视化的逐步推理过程。",
287
- "claude-sonnet-4-20250514.description": "Claude Sonnet 4 可实现近乎即时的响应,或通过可视化过程进行逐步推理。",
289
+ "claude-sonnet-4-20250514.description": "Claude Sonnet 4 能够生成几乎即时的响应,或展示可视化的逐步思考过程。",
288
290
  "claude-sonnet-4-5-20250929.description": "Claude Sonnet 4.5 是 Anthropic 迄今为止最智能的模型。",
289
291
  "codegeex-4.description": "CodeGeeX-4 是一款强大的 AI 编程助手,支持多语言问答和代码补全,提升开发者效率。",
290
292
  "codegeex4-all-9b.description": "CodeGeeX4-ALL-9B 是一款多语言代码生成模型,支持代码补全与生成、代码解释器、网页搜索、函数调用和仓库级代码问答,覆盖广泛的软件开发场景。是 100 亿参数以下的顶级代码模型。",
@@ -336,31 +338,31 @@
336
338
  "dall-e-2.description": "第二代 DALL·E 模型,图像生成更真实、准确,分辨率是第一代的 4 倍。",
337
339
  "dall-e-3.description": "最新的 DALL·E 模型,于 2023 年 11 月发布,图像生成更真实、准确,细节表现更强。",
338
340
  "databricks/dbrx-instruct.description": "DBRX Instruct 提供跨行业高度可靠的指令处理能力。",
339
- "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR 是 DeepSeek AI 推出的视觉语言模型,专注于 OCR 和“上下文光学压缩”。该模型探索从图像中压缩上下文信息,能够高效处理文档并将其转换为结构化文本(如 Markdown)。它在图像文字识别方面表现精准,适用于文档数字化、文本提取和结构化处理。",
341
+ "deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR 是 DeepSeek AI 推出的视觉语言模型,专注于光学字符识别(OCR)和“上下文光学压缩”。该模型探索从图像中压缩上下文信息,能够高效处理文档并将其转换为结构化文本(如 Markdown)。它在图像文字识别方面表现精准,适用于文档数字化、文本提取和结构化处理。",
340
342
  "deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B 将 DeepSeek-R1-0528 的链式思维能力蒸馏至 Qwen3 8B Base 模型中。在开源模型中达到 SOTA 水平,在 AIME 2024 上超越 Qwen3 8B 10%,并与 Qwen3-235B-thinking 表现相当。擅长数学推理、编程和通用逻辑任务,采用 Qwen3-8B 架构,并使用 DeepSeek-R1-0528 的分词器。",
341
- "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 利用额外算力和后训练算法优化,增强推理能力。在数学、编程和通用逻辑等基准测试中表现优异,接近 o3 和 Gemini 2.5 Pro 等领先模型。",
342
- "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
343
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
344
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 蒸馏模型使用强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
343
+ "deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 利用更强的计算资源和后训练算法优化,显著增强推理能力。在数学、编程和通用逻辑等基准测试中表现优异,接近 o3 和 Gemini 2.5 Pro 等领先模型。",
344
+ "deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "DeepSeek-R1 蒸馏模型通过强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
345
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "DeepSeek-R1 蒸馏模型通过强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
346
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "DeepSeek-R1 蒸馏模型通过强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准。",
345
347
  "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B 由 Qwen2.5-32B 蒸馏而来,并在 80 万条精挑细选的 DeepSeek-R1 样本上微调。擅长数学、编程和推理任务,在 AIME 2024、MATH-500(94.3% 准确率)和 GPQA Diamond 上表现出色。",
346
- "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B 由 Qwen2.5-Math-7B 蒸馏而来,并在 80 万条精挑细选的 DeepSeek-R1 样本上微调。在 MATH-500 上达到 92.8%,AIME 2024 55.5%,CodeForces 评分为 1189(7B 模型)。",
348
+ "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B 由 Qwen2.5-Math-7B 蒸馏而来,并在 80 万条 DeepSeek-R1 精选样本上微调。在 MATH-500 上达到 92.8%、AIME 2024 达到 55.5%、CodeForces 评分为 1189(7B 模型)。",
347
349
  "deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 通过强化学习和冷启动数据提升推理能力,刷新开源多任务模型基准,超越 OpenAI-o1-mini。",
348
- "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 升级了 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct,融合通用与编程能力。提升写作与指令遵循能力,实现更优偏好对齐,在 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 上取得显著进步。",
349
- "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus 是 V3.1 的更新版本,定位为混合智能体大模型。修复用户反馈问题,提升稳定性、语言一致性,减少中英混杂和异常字符。集成思考与非思考模式,支持通过聊天模板灵活切换。Code Agent 和 Search Agent 性能也得到提升,工具使用更可靠,多步任务完成度更高。",
350
+ "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 升级了 DeepSeek-V2-Chat 和 DeepSeek-Coder-V2-Instruct,融合通用与编程能力。提升了写作和指令遵循能力,实现更好的偏好对齐,在 AlpacaEval 2.0、ArenaHard、AlignBench 和 MT-Bench 上取得显著进步。",
351
+ "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus 是 V3.1 的更新版本,定位为混合智能体大模型。修复用户反馈问题,提升稳定性、语言一致性,减少中英混杂和异常字符。集成思考与非思考模式,支持通过聊天模板灵活切换。Code Agent 和 Search Agent 性能也得到提升,工具使用更可靠,多步任务执行更高效。",
350
352
  "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 采用混合推理架构,支持思考与非思考模式。",
351
- "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp 是 V3.2 的实验版本,连接下一代架构。在 V3.1-Terminus 基础上引入 DeepSeek Sparse Attention(DSA),提升长上下文训练与推理效率,优化工具使用、长文档理解和多步推理。适合探索大上下文预算下的高效推理。",
352
- "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一个拥有 671B 参数的 MoE 模型,采用 MLA 和 DeepSeekMoE 架构,具备无损负载均衡能力,实现高效训练与推理。预训练数据达 14.8T,结合 SFT RL,性能超越其他开源模型,接近领先闭源模型。",
353
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp 是 V3.2 的实验版本,连接下一代架构。在 V3.1-Terminus 基础上引入 DeepSeek 稀疏注意力(DSA),提升长上下文训练与推理效率,优化工具使用、长文档理解和多步推理。适合探索大上下文预算下的高效推理。",
354
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一个拥有 671B 参数的 MoE 模型,采用 MLA 和 DeepSeekMoE 架构,具备无损负载均衡,实现高效训练与推理。在 14.8T 高质量数据上预训练,并结合 SFT RL,性能超越其他开源模型,接近领先闭源模型。",
353
355
  "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat(67B)是一款创新模型,具备深度语言理解与交互能力。",
354
- "deepseek-ai/deepseek-r1.description": "一款高效的先进大模型,在推理、数学和编程方面表现出色。",
356
+ "deepseek-ai/deepseek-r1.description": "一款高效的最先进大模型,在推理、数学和编程方面表现强劲。",
355
357
  "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于深度分析任务。",
356
358
  "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于深度分析任务。",
357
- "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 是基于 DeepSeekMoE-27B 的 MoE 视觉语言模型,采用稀疏激活机制,仅使用 4.5B 激活参数即可实现强大性能。擅长视觉问答、OCR、文档/表格/图表理解和视觉定位任务。",
358
- "deepseek-chat.description": "一款结合通用能力与编程能力的开源模型。它保留了聊天模型的对话能力和编程模型的强大编程能力,并在偏好对齐方面表现更佳。DeepSeek-V2.5 还提升了写作和指令遵循能力。",
359
- "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B 是一款代码语言模型,训练数据达 2T87% 代码,13% 中英文文本)。引入 16K 上下文窗口与中间填充任务,支持项目级代码补全与片段填充。",
360
- "deepseek-coder-v2.description": "DeepSeek Coder V2 是一款开源 MoE 编码模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
361
- "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 是一款开源 MoE 编码模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
359
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 是基于 DeepSeekMoE-27B 的 MoE 视觉语言模型,采用稀疏激活,仅使用 4.5B 激活参数即可实现强大性能。擅长视觉问答、OCR、文档/表格/图表理解和视觉定位。",
360
+ "deepseek-chat.description": "一款结合通用与编程能力的开源模型。保留聊天模型的通用对话能力与编程模型的强大编程能力,实现更好的偏好对齐。DeepSeek-V2.5 还提升了写作与指令遵循能力。",
361
+ "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B 是一款代码语言模型,训练于 2T 数据(87% 代码,13% 中英文文本)。支持 16K 上下文窗口与中间填充任务,提供项目级代码补全与片段填充。",
362
+ "deepseek-coder-v2.description": "DeepSeek Coder V2 是一款开源 MoE 编程模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
363
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 是一款开源 MoE 编程模型,在编程任务中表现强劲,可媲美 GPT-4 Turbo。",
362
364
  "deepseek-ocr.description": "DeepSeek-OCR 是 DeepSeek AI 推出的视觉语言模型,专注于 OCR 和“上下文光学压缩”。该模型探索从图像中压缩上下文信息,能够高效处理文档并将其转换为结构化文本格式(如 Markdown)。它在图像文字识别方面表现精准,适用于文档数字化、文本提取和结构化处理。",
363
- "deepseek-r1-0528.description": "2025 年 5 月 28 日发布的 685B 全量模型。DeepSeek-R1 在后训练阶段使用大规模强化学习,显著提升推理能力,仅需极少标注数据,在数学、编程和自然语言推理方面表现出色。",
365
+ "deepseek-r1-0528.description": "2025 年 5 月 28 日发布的 685B 全量模型。DeepSeek-R1 在后训练阶段使用大规模强化学习,显著提升推理能力,仅需极少标注数据即可在数学、编程和自然语言推理方面表现出色。",
364
366
  "deepseek-r1-250528.description": "DeepSeek R1 250528 是 DeepSeek-R1 的完整推理模型,专为高难度数学与逻辑任务设计。",
365
367
  "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B 快速版,支持实时网页搜索,在保持性能的同时提供更快响应。",
366
368
  "deepseek-r1-70b-online.description": "DeepSeek R1 70B 标准版,支持实时网页搜索,适用于最新聊天与文本任务。",
@@ -372,160 +374,24 @@
372
374
  "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B 是基于 Llama-70B 的 R1 蒸馏模型。",
373
375
  "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B 是一款超轻量蒸馏模型,适用于极低资源环境。",
374
376
  "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B 是一款中型蒸馏模型,适用于多场景部署。",
375
- "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B 是基于 Qwen-32B 的 R1 蒸馏模型,兼顾性能与成本。",
377
+ "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B 是基于 Qwen-32B 的 R1 蒸馏模型,在性能与成本之间取得平衡。",
376
378
  "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B 是一款轻量蒸馏模型,适用于边缘计算与企业私有部署环境。",
377
379
  "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen 是在 Qwen 上基于 DeepSeek-R1 蒸馏而成。",
378
- "deepseek-r1-fast-online.description": "DeepSeek R1 快速全量版,支持实时网页搜索,结合 671B 规模能力与更快响应。",
379
- "deepseek-r1-online.description": "DeepSeek R1 全量版,具备 671B 参数与实时网页搜索能力,提供更强理解与生成能力。",
380
- "deepseek-r1.description": "DeepSeek-R1 在强化学习前使用冷启动数据,数学、编程与推理任务表现可与 OpenAI-o1 相媲美。",
381
- "deepseek-reasoner.description": "DeepSeek V3.2 推理模式在给出最终答案前输出思维链,以提升准确性。",
380
+ "deepseek-r1-fast-online.description": "DeepSeek R1 快速全量版本,支持实时网页搜索,结合 671B 规模能力与更快响应。",
381
+ "deepseek-r1-online.description": "DeepSeek R1 全量版本,具备 671B 参数与实时网页搜索,提供更强理解与生成能力。",
382
+ "deepseek-r1.description": "DeepSeek-R1 在强化学习前使用冷启动数据,在数学、编程和推理任务中表现可与 OpenAI-o1 相媲美。",
383
+ "deepseek-reasoner.description": "DeepSeek V3.2 思考模式在最终答案前输出链式思维,以提升准确性。",
382
384
  "deepseek-v2.description": "DeepSeek V2 是一款高效的 MoE 模型,适用于成本敏感型处理任务。",
383
385
  "deepseek-v2:236b.description": "DeepSeek V2 236B 是 DeepSeek 推出的代码专用模型,具备强大代码生成能力。",
384
386
  "deepseek-v3-0324.description": "DeepSeek-V3-0324 是一款拥有 671B 参数的 MoE 模型,在编程与技术能力、上下文理解和长文本处理方面表现突出。",
385
387
  "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus 是 DeepSeek 推出的终端优化大模型,专为终端设备定制。",
386
- "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 Terminus 版本对应的深度思考模型,专为高性能推理任务打造。",
388
+ "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 是对应 Terminus 版本的深度思考模型,专为高性能推理任务打造。",
387
389
  "deepseek-v3.1.description": "DeepSeek-V3.1 是 DeepSeek 推出的新一代混合推理模型,支持思考与非思考模式,推理效率高于 DeepSeek-R1-0528。后训练优化显著提升智能体工具使用与任务执行能力,支持 128k 上下文窗口与最多 64k 输出。",
388
390
  "deepseek-v3.1:671b.description": "DeepSeek V3.1 是下一代推理模型,具备更强的复杂推理与链式思维能力,适用于需要深度分析的任务。",
389
- "deepseek-v3.2-exp.description": "deepseek-v3.2-exp 引入稀疏注意力机制,提升长文本训练与推理效率,价格低于 deepseek-v3.1。",
391
+ "deepseek-v3.2-exp.description": "deepseek-v3.2-exp 引入稀疏注意力机制,在处理长文本时提升训练与推理效率,价格低于 deepseek-v3.1。",
390
392
  "deepseek-v3.2-think.description": "DeepSeek V3.2 Think 是一款完整的深度思考模型,具备更强的长链推理能力。",
391
- "deepseek-v3.2.description": "DeepSeek-V3.2 是深度求索推出的首个将思考融入工具使用的混合推理模型,采用高效架构节省算力,结合大规模强化学习提升能力,配合大规模合成任务数据增强泛化能力,三者结合使其性能媲美 GPT-5-High,输出长度大幅降低,显著减少计算开销与用户等待时间。",
393
+ "deepseek-v3.2.description": "DeepSeek-V3.2 是深度求索推出的首个将思考融入工具使用的混合推理模型,采用高效架构节省算力,结合大规模强化学习提升能力与大规模合成任务数据增强泛化能力,三者融合使其性能媲美 GPT-5-High,输出长度大幅降低,显著减少计算开销与用户等待时间。",
392
394
  "deepseek-v3.description": "DeepSeek-V3 是一款强大的 MoE 模型,总参数量为 671B,每个 token 激活参数为 37B。",
393
- "deepseek-vl2-small.description": "DeepSeek VL2 Small 是一款轻量级多模态模型,适用于资源受限和高并发场景。",
394
- "deepseek-vl2.description": "DeepSeek VL2 是一款多模态模型,支持图文理解与细粒度视觉问答。",
395
- "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 是一款拥有 685B 参数的 MoE 模型,是 DeepSeek 聊天系列的最新旗舰版本。\n\n该模型基于 [DeepSeek V3](/deepseek/deepseek-chat-v3) 构建,在多项任务中表现出色。",
396
- "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 是一款拥有 685B 参数的 MoE 模型,是 DeepSeek 聊天系列的最新旗舰版本。\n\n该模型基于 [DeepSeek V3](/deepseek/deepseek-chat-v3) 构建,在多项任务中表现出色。",
397
- "deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 是 DeepSeek 的长上下文混合推理模型,支持思考与非思考模式切换,并可集成工具使用。",
398
- "deepseek/deepseek-chat.description": "DeepSeek-V3 是 DeepSeek 的高性能混合推理模型,适用于复杂任务与工具集成。",
399
- "deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 是一款专注于开放可用性与深度推理的更新版本。",
400
- "deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 在仅使用少量标注数据的情况下显著提升推理能力,并在最终答案前输出思维链以提高准确性。",
401
- "deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B 是基于 Llama 3.3 70B 精炼而成的大语言模型,使用 DeepSeek R1 输出进行微调,在性能上可与大型前沿模型竞争。",
402
- "deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B 是基于 Llama-3.1-8B-Instruct 精炼而成的大语言模型,使用 DeepSeek R1 输出进行训练。",
403
- "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B 是基于 Qwen 2.5 14B 精炼而成的大语言模型,使用 DeepSeek R1 输出进行训练。在多个基准测试中超越 OpenAI o1-mini,在密集模型中实现 SOTA 表现。基准亮点:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces 评分: 1481\n基于 DeepSeek R1 输出的微调实现了与更大前沿模型的竞争性能。",
404
- "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B 是基于 Qwen 2.5 32B 精炼而成的大语言模型,使用 DeepSeek R1 输出进行训练。在多个基准测试中超越 OpenAI o1-mini,在密集模型中实现 SOTA 表现。基准亮点:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces 评分: 1691\n基于 DeepSeek R1 输出的微调实现了与更大前沿模型的竞争性能。",
405
- "deepseek/deepseek-r1.description": "DeepSeek R1 已更新为 DeepSeek-R1-0528。通过更强的计算资源与后训练算法优化,显著提升了推理深度与能力。在数学、编程与通用逻辑基准测试中表现优异,接近 o3 与 Gemini 2.5 Pro 等领先模型。",
406
- "deepseek/deepseek-r1/community.description": "DeepSeek R1 是 DeepSeek 团队最新开源模型,在数学、编程与推理任务中表现出色,推理能力可媲美 OpenAI o1。",
407
- "deepseek/deepseek-r1:free.description": "DeepSeek-R1 在仅使用少量标注数据的情况下显著提升推理能力,并在最终答案前输出思维链以提高准确性。",
408
- "deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking(reasoner)是 DeepSeek 的实验性推理模型,适用于高复杂度推理任务。",
409
- "deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base 是 DeepSeek V3 模型的改进版本。",
410
- "deepseek/deepseek-v3.description": "一款快速的通用大语言模型,具备增强的推理能力。",
411
- "deepseek/deepseek-v3/community.description": "DeepSeek-V3 在推理速度方面实现重大突破,领先于以往模型。在开源模型中排名第一,性能媲美最先进的闭源模型。DeepSeek-V3 采用 Multi-Head Latent Attention(MLA)与 DeepSeekMoE 架构,这些技术已在 DeepSeek-V2 中充分验证。同时引入无损辅助策略实现负载均衡,并采用多 token 预测训练目标以增强性能。",
412
- "deepseek_r1.description": "DeepSeek-R1 是一款基于强化学习的推理模型,解决重复与可读性问题。在强化学习前使用冷启动数据进一步提升推理能力。在数学、编程与推理任务中表现与 OpenAI-o1 相当,训练过程精心设计以提升整体效果。",
413
- "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B 是基于 Llama-3.3-70B-Instruct 精炼而成。作为 DeepSeek-R1 系列的一部分,使用 DeepSeek-R1 生成的样本进行微调,在数学、编程与推理方面表现出色。",
414
- "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B 是基于 Qwen2.5-14B 精炼而成,使用 DeepSeek-R1 生成的 80 万高质量样本进行微调,推理能力强大。",
415
- "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B 是基于 Qwen2.5-32B 精炼而成,使用 DeepSeek-R1 生成的 80 万高质量样本进行微调,在数学、编程与推理方面表现卓越。",
416
- "devstral-2:123b.description": "Devstral 2 123B 擅长使用工具探索代码库、编辑多个文件,并支持软件工程智能体。",
417
- "doubao-1.5-lite-32k.description": "Doubao-1.5-lite 是一款全新轻量模型,响应速度极快,提供顶级质量与低延迟体验。",
418
- "doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k 是 Doubao-1.5-Pro 的全面升级版,整体性能提升 10%。支持 256k 上下文窗口与最多 12k 输出 token,性能更强、窗口更大,适用于更广泛的场景。",
419
- "doubao-1.5-pro-32k.description": "Doubao-1.5-pro 是新一代旗舰模型,在知识、编程与推理方面全面升级,表现卓越。",
420
- "doubao-1.5-thinking-pro-m.description": "Doubao-1.5 是一款全新深度推理模型(m 版本支持原生多模态深度推理),在数学、编程、科学推理及创意写作等通用任务中表现出色。在 AIME 2024、Codeforces 与 GPQA 等基准测试中达到或接近顶级水平。支持 128k 上下文窗口与 16k 输出。",
421
- "doubao-1.5-thinking-pro.description": "Doubao-1.5 是一款全新深度推理模型,在数学、编程、科学推理及创意写作等通用任务中表现出色。在 AIME 2024、Codeforces 与 GPQA 等基准测试中达到或接近顶级水平。支持 128k 上下文窗口与 16k 输出。",
422
- "doubao-1.5-thinking-vision-pro.description": "一款全新视觉深度推理模型,具备更强的多模态理解与推理能力,在 59 个公开基准中有 37 项达到 SOTA 水平。",
423
- "doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS 是一款原生 GUI 智能体模型,具备类人感知、推理与操作能力,可无缝与界面交互。",
424
- "doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite 是一款升级版多模态模型,支持任意分辨率与极端长宽比图像,增强视觉推理、文档识别、细节理解与指令执行能力。支持 128k 上下文窗口与最多 16k 输出 token。",
425
- "doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro 是一款升级版多模态模型,支持任意分辨率与极端长宽比图像,增强视觉推理、文档识别、细节理解与指令执行能力。",
426
- "doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro 是一款升级版多模态模型,支持任意分辨率与极端长宽比图像,增强视觉推理、文档识别、细节理解与指令执行能力。",
427
- "doubao-lite-128k.description": "超快响应,性价比更高,适用于多种场景,支持推理与微调,具备 128k 上下文窗口。",
428
- "doubao-lite-32k.description": "超快响应,性价比更高,适用于多种场景,支持推理与微调,具备 32k 上下文窗口。",
429
- "doubao-lite-4k.description": "超快响应,性价比更高,适用于多种场景,支持推理与微调,具备 4k 上下文窗口。",
430
- "doubao-pro-256k.description": "适用于复杂任务的旗舰性能模型,在参考问答、摘要、创作、文本分类与角色扮演等方面表现强劲。支持推理与微调,具备 256k 上下文窗口。",
431
- "doubao-pro-32k.description": "适用于复杂任务的旗舰性能模型,在参考问答、摘要、创作、文本分类与角色扮演等方面表现强劲。支持推理与微调,具备 32k 上下文窗口。",
432
- "doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash 是一款超快多模态深度推理模型,TPOT 低至 10ms,支持文本与图像输入,在文本理解方面超越前代 lite 模型,在视觉方面媲美 pro 模型。支持 256k 上下文窗口与最多 16k 输出 token。",
433
- "doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite 是一款全新多模态深度推理模型,支持可调推理强度(最小、低、中、高),性价比更高,适用于常见任务,支持最长 256k 上下文窗口。",
434
- "doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6-thinking 显著增强推理能力,在编程、数学与逻辑推理方面全面超越 Doubao-1.5-thinking-pro,并新增视觉理解能力。支持 256k 上下文窗口与最多 16k 输出 token。",
435
- "doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision 是一款视觉深度推理模型,在教育、图像审核、安检与 AI 搜索问答等场景中提供更强的多模态理解与推理能力。支持 256k 上下文窗口与最多 64k 输出 token。",
436
- "doubao-seed-1.6.description": "Doubao-Seed-1.6 是一款全新多模态深度推理模型,支持自动、思考与非思考模式。在非思考模式下,性能显著优于 Doubao-1.5-pro/250115。支持 256k 上下文窗口与最多 16k 输出 token。",
437
- "doubao-seed-1.8.description": "Doubao-Seed-1.8 拥有更强的多模态理解与智能体能力,支持文本/图像/视频输入与上下文缓存,在复杂任务中表现更出色。",
438
- "doubao-seed-code.description": "豆包 Seed-Code 是专为智能体编程深度优化的模型,支持多模态输入(文本/图像/视频)和 256k 上下文窗口,兼容 Anthropic API,适用于编程、视觉理解和智能体工作流。",
439
- "doubao-seededit-3-0-i2i-250628.description": "字节跳动 Seed 团队推出的 Doubao 图像模型,支持文本与图像输入,具备高度可控的高质量图像生成能力。支持基于文本的图像编辑,输出尺寸长边范围为 512 至 1536。",
440
- "doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 是字节跳动 Seed 团队推出的图像生成模型,支持文本与图像输入,具备高度可控的高质量图像生成能力,可根据文本提示生成图像。",
441
- "doubao-seedream-4-0-250828.description": "Seedream 4.0 是字节跳动 Seed 团队推出的图像生成模型,支持文本与图像输入,具备高度可控的高质量图像生成能力,可根据文本提示生成图像。",
442
- "doubao-vision-lite-32k.description": "Doubao-Vision 是豆包推出的多模态模型,具备强大的图像理解与推理能力,并能精准执行指令。在图文提取与图像推理任务中表现出色,支持更复杂、更广泛的视觉问答场景。",
443
- "doubao-vision-pro-32k.description": "Doubao-Vision 是豆包推出的多模态模型,具备强大的图像理解与推理能力,并能精准执行指令。在图文提取与图像推理任务中表现出色,支持更复杂、更广泛的视觉问答场景。",
444
- "emohaa.description": "Emohaa 是一款具备专业心理咨询能力的心理健康模型,帮助用户理解情绪问题。",
445
- "ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B 是一款开源轻量模型,适用于本地化和定制化部署。",
446
- "ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B 是一款开源大参数模型,具备更强的理解与生成能力。",
447
- "ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B 是百度 ERNIE 推出的超大规模 MoE 模型,推理能力卓越。",
448
- "ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview 是一款用于评估 ERNIE 4.5 的 8K 上下文预览模型。",
449
- "ernie-4.5-turbo-128k-preview.description": "ERNIE 4.5 Turbo 128K 预览版具备发布级能力,适用于集成与灰度测试。",
450
- "ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K 是一款高性能通用模型,支持搜索增强与工具调用,适用于问答、编程与智能体场景。",
451
- "ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K 是一款中等长度上下文版本,适用于问答、知识库检索与多轮对话。",
452
- "ernie-4.5-turbo-latest.description": "最新的 ERNIE 4.5 Turbo,整体性能优化,适合作为主力生产模型。",
453
- "ernie-4.5-turbo-vl-32k-preview.description": "ERNIE 4.5 Turbo VL 32K Preview 是一款 32K 多模态预览模型,用于评估长上下文视觉能力。",
454
- "ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K 是一款中长上下文多模态模型,支持长文档与图像的联合理解。",
455
- "ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL 最新版是最新的多模态模型,图文理解与推理能力进一步提升。",
456
- "ernie-4.5-turbo-vl-preview.description": "ERNIE 4.5 Turbo VL Preview 是一款多模态预览模型,支持图文理解与生成,适用于视觉问答与内容理解。",
457
- "ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL 是一款成熟的多模态模型,适用于生产级图文理解与识别。",
458
- "ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B 是一款开源多模态模型,支持图文理解与推理。",
459
- "ernie-5.0-thinking-latest.description": "文心 5.0 Thinking 是一款原生全模态旗舰模型,实现文本、图像、音频与视频的统一建模,全面升级复杂问答、创作与智能体能力。",
460
- "ernie-5.0-thinking-preview.description": "文心 5.0 Thinking Preview 是一款原生全模态旗舰模型,实现文本、图像、音频与视频的统一建模,全面升级复杂问答、创作与智能体能力。",
461
- "ernie-char-8k.description": "ERNIE Character 8K 是一款角色对话模型,适用于 IP 角色构建与长期陪伴聊天。",
462
- "ernie-char-fiction-8k-preview.description": "ERNIE Character Fiction 8K Preview 是一款角色与剧情创作模型预览版,用于功能评估与测试。",
463
- "ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K 是一款面向小说与剧情创作的角色模型,适合长篇故事生成。",
464
- "ernie-irag-edit.description": "ERNIE iRAG Edit 是一款图像编辑模型,支持擦除、重绘与变体生成。",
465
- "ernie-lite-8k.description": "ERNIE Lite 8K 是一款轻量通用模型,适用于成本敏感的日常问答与内容生成。",
466
- "ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K 是一款轻量高性能模型,适用于延迟与成本敏感场景。",
467
- "ernie-novel-8k.description": "ERNIE Novel 8K 专为长篇小说与 IP 剧情创作打造,支持多角色叙事。",
468
- "ernie-speed-128k.description": "ERNIE Speed 128K 是一款免 I/O 费用模型,适用于长文本理解与大规模试验。",
469
- "ernie-speed-8k.description": "ERNIE Speed 8K 是一款免费快速模型,适用于日常聊天与轻量文本任务。",
470
- "ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K 是一款高并发高价值模型,适用于大规模在线服务与企业应用。",
471
- "ernie-tiny-8k.description": "ERNIE Tiny 8K 是一款超轻量模型,适用于简单问答、分类与低成本推理。",
472
- "ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K 是一款快速思考模型,具备 32K 上下文,适用于复杂推理与多轮对话。",
473
- "ernie-x1.1-preview.description": "ERNIE X1.1 Preview 是一款思考模型预览版,用于评估与测试。",
474
- "fal-ai/bytedance/seedream/v4.description": "Seedream 4.0 是字节跳动 Seed 团队推出的图像生成模型,支持文本和图像输入,具备高度可控的高质量图像生成能力,可根据文本提示生成图像。",
475
- "fal-ai/flux-kontext/dev.description": "FLUX.1 模型专注于图像编辑,支持文本和图像输入。",
476
- "fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [专业版] 支持文本和参考图像输入,实现目标区域编辑和复杂场景的整体变换。",
477
- "fal-ai/flux/krea.description": "Flux Krea [开发版] 是一款图像生成模型,偏好生成更真实自然的图像风格。",
478
- "fal-ai/flux/schnell.description": "FLUX.1 [schnell] 是一款拥有 120 亿参数的图像生成模型,专为快速高质量输出而设计。",
479
- "fal-ai/hunyuan-image/v3.description": "一款强大的原生多模态图像生成模型。",
480
- "fal-ai/imagen4/preview.description": "来自 Google 的高质量图像生成模型。",
481
- "fal-ai/nano-banana.description": "Nano Banana 是 Google 最新、最快、最高效的原生多模态模型,支持通过对话生成和编辑图像。",
482
- "fal-ai/qwen-image-edit.description": "来自 Qwen 团队的专业图像编辑模型,支持语义和外观编辑,精确处理中英文文本,并实现风格迁移、物体旋转等高质量编辑。",
483
- "fal-ai/qwen-image.description": "Qwen 团队推出的强大图像生成模型,具备出色的中文文本渲染能力和多样化视觉风格。",
484
- "flux-1-schnell.description": "来自 Black Forest Labs 的 120 亿参数文本转图像模型,采用潜在对抗扩散蒸馏技术,在 1-4 步内生成高质量图像。性能媲美闭源模型,采用 Apache-2.0 许可,适用于个人、研究和商业用途。",
485
- "flux-dev.description": "FLUX.1 [开发版] 是一款开源权重蒸馏模型,仅限非商业用途。在保持接近专业图像质量和指令遵循能力的同时,运行效率更高,资源利用优于同等规模标准模型。",
486
- "flux-kontext-max.description": "最先进的上下文图像生成与编辑模型,结合文本与图像输入,实现精确且连贯的结果。",
487
- "flux-kontext-pro.description": "最先进的上下文图像生成与编辑模型,结合文本与图像输入,实现精确且连贯的结果。",
488
- "flux-merged.description": "FLUX.1-merged 融合了“开发版”中的深度特征与“Schnell”版本的高速优势,拓展性能边界,拓宽应用场景。",
489
- "flux-pro-1.1-ultra.description": "超高分辨率图像生成,输出达 400 万像素,10 秒内生成清晰图像。",
490
- "flux-pro-1.1.description": "升级版专业图像生成模型,图像质量卓越,提示词响应精准。",
491
- "flux-pro.description": "顶级商业图像生成模型,图像质量无与伦比,输出多样丰富。",
492
- "flux-schnell.description": "FLUX.1 [schnell] 是最先进的开源少步图像生成模型,超越同类竞品,甚至优于 Midjourney v6.0 和 DALL-E 3(高清版)等强大非蒸馏模型。其精调保留了预训练多样性,显著提升视觉质量、指令遵循、尺寸/比例变化、字体处理和输出多样性。",
493
- "flux.1-schnell.description": "FLUX.1-schnell 是一款高性能图像生成模型,支持快速多风格输出。",
494
- "gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001(调优版)为复杂任务提供稳定、可调的性能。",
495
- "gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002(调优版)为复杂任务提供强大的多模态支持。",
496
- "gemini-1.0-pro-latest.description": "Gemini 1.0 Pro 是 Google 的高性能 AI 模型,适用于大规模任务。",
497
- "gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001 是一款高效的多模态模型,适用于广泛应用场景。",
498
- "gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002 是一款高效的多模态模型,适用于大规模部署。",
499
- "gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924 是最新实验模型,在文本和多模态应用中表现显著提升。",
500
- "gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B 是一款高效的多模态模型,适用于大规模部署。",
501
- "gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B 是一款高效的多模态模型,适用于广泛应用场景。",
502
- "gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827 优化了多模态处理能力,适用于复杂任务。",
503
- "gemini-1.5-flash-latest.description": "Gemini 1.5 Flash 是 Google 最新的多模态 AI 模型,处理速度快,支持文本、图像和视频输入,适用于高效任务扩展。",
504
- "gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001 是一款可扩展的多模态 AI 解决方案,适用于复杂任务。",
505
- "gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002 是最新的生产就绪模型,输出质量更高,尤其适用于数学、长上下文和视觉任务。",
506
- "gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801 提供强大的多模态处理能力,为应用开发提供更大灵活性。",
507
- "gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827 应用了最新优化,提升多模态处理效率。",
508
- "gemini-1.5-pro-latest.description": "Gemini 1.5 Pro 支持最多 200 万个 token,是一款适用于复杂任务的中型多模态模型。",
509
- "gemini-2.0-flash-001.description": "Gemini 2.0 Flash 提供下一代功能,包括卓越速度、原生工具使用、多模态生成和 100 万 token 上下文窗口。",
510
- "gemini-2.0-flash-exp-image-generation.description": "Gemini 2.0 Flash 实验模型,支持图像生成。",
511
- "gemini-2.0-flash-exp.description": "Gemini 2.0 Flash 变体,优化成本效率和低延迟。",
512
- "gemini-2.0-flash-lite-001.description": "Gemini 2.0 Flash 变体,优化成本效率和低延迟。",
513
- "gemini-2.0-flash-lite.description": "Gemini 2.0 Flash 变体,优化成本效率和低延迟。",
514
- "gemini-2.0-flash.description": "Gemini 2.0 Flash 提供下一代功能,包括卓越速度、原生工具使用、多模态生成和 100 万 token 上下文窗口。",
515
- "gemini-2.5-flash-image-preview.description": "Nano Banana 是 Google 最新、最快、最高效的原生多模态模型,支持对话式图像生成与编辑。",
516
- "gemini-2.5-flash-image-preview:image.description": "Nano Banana 是 Google 最新、最快、最高效的原生多模态模型,支持对话式图像生成与编辑。",
517
- "gemini-2.5-flash-image.description": "Nano Banana 是 Google 最新、最快、最高效的原生多模态模型,支持对话式图像生成与编辑。",
518
- "gemini-2.5-flash-image:image.description": "Nano Banana 是 Google 最新、最快、最高效的原生多模态模型,支持对话式图像生成与编辑。",
519
- "gemini-2.5-flash-lite-preview-06-17.description": "Gemini 2.5 Flash-Lite Preview 是 Google 最小、性价比最高的模型,适用于大规模使用。",
520
- "gemini-2.5-flash-lite-preview-09-2025.description": "Gemini 2.5 Flash-Lite 2025 年 9 月 25 日预览版发布。",
521
- "gemini-2.5-flash-lite.description": "Gemini 2.5 Flash-Lite 是 Google 最小、性价比最高的模型,适用于大规模使用。",
522
- "gemini-2.5-flash-preview-04-17.description": "Gemini 2.5 Flash Preview 是 Google 性价比最高的模型,具备完整能力。",
523
- "gemini-2.5-flash-preview-09-2025.description": "Gemini 2.5 Flash 2025 年 9 月 25 日预览版发布。",
524
- "gemini-2.5-flash.description": "Gemini 2.5 Flash 是 Google 性价比最高的模型,具备完整能力。",
525
- "gemini-2.5-pro-preview-03-25.description": "Gemini 2.5 Pro Preview 是 Google 最先进的推理模型,擅长代码、数学和 STEM 问题推理,能分析大规模数据集、代码库和长文档。",
526
- "gemini-2.5-pro-preview-05-06.description": "Gemini 2.5 Pro Preview 是 Google 最先进的推理模型,擅长代码、数学和 STEM 问题推理,能分析大规模数据集、代码库和长文档。",
527
- "gemini-2.5-pro-preview-06-05.description": "Gemini 2.5 Pro Preview 是 Google 最先进的推理模型,擅长代码、数学和 STEM 问题推理,能分析大规模数据集、代码库和长文档。",
528
- "gemini-2.5-pro.description": "Gemini 2.5 Pro 是 Google 的旗舰推理模型,支持长上下文,适用于复杂任务。",
529
395
  "gemini-flash-latest.description": "Latest release of Gemini Flash",
530
396
  "gemini-flash-lite-latest.description": "Latest release of Gemini Flash-Lite",
531
397
  "gemini-pro-latest.description": "Latest release of Gemini Pro",
@@ -778,4 +644,4 @@
778
644
  "zai/glm-4.5.description": "GLM-4.5 系列专为智能体设计,旗舰版 GLM-4.5 结合推理、编程和智能体能力,总参数 355B(激活 32B),提供双模式混合推理系统。",
779
645
  "zai/glm-4.5v.description": "GLM-4.5V 基于 GLM-4.5-Air 构建,继承 GLM-4.1V-Thinking 的成熟技术,采用强大的 106B 参数 MoE 架构扩展能力。",
780
646
  "zenmux/auto.description": "ZenMux 自动路由根据请求自动选择性价比最高、性能最优的支持模型。"
781
- }
647
+ }
@@ -92,11 +92,15 @@
92
92
  "ModelSelect.featureTag.video": "該模型支援影片識別",
93
93
  "ModelSelect.featureTag.vision": "該模型支援視覺辨識",
94
94
  "ModelSelect.removed": "該模型不在清單中,若取消選取將會自動移除",
95
+ "ModelSwitchPanel.byModel": "依模型",
96
+ "ModelSwitchPanel.byProvider": "依提供者",
95
97
  "ModelSwitchPanel.emptyModel": "沒有啟用的模型,請前往設定開啟",
96
98
  "ModelSwitchPanel.emptyProvider": "沒有啟用的服務商,請前往設定開啟",
97
99
  "ModelSwitchPanel.goToSettings": "前往設定",
100
+ "ModelSwitchPanel.manageProvider": "管理提供者",
98
101
  "ModelSwitchPanel.provider": "提供商",
99
102
  "ModelSwitchPanel.title": "模型",
103
+ "ModelSwitchPanel.useModelFrom": "使用此模型來自:",
100
104
  "MultiImagesUpload.actions.uploadMore": "點擊或拖曳上傳更多",
101
105
  "MultiImagesUpload.modal.complete": "完成",
102
106
  "MultiImagesUpload.modal.newFileIndicator": "新增",
@@ -103,7 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 是一款擁有 6710 億參數的 MoE 模型,採用 MLA 與 DeepSeekMoE 架構,並透過無損負載平衡實現高效推理與訓練。預訓練於 14.8 兆高品質詞元上,並經過 SFT 與強化學習微調,表現超越其他開源模型,接近領先的封閉模型。",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 是最新且最強大的 Kimi K2 模型。這是一款頂級的 MoE 模型,總參數達 1 兆,啟用參數為 320 億。其主要特點包括更強的代理式程式設計智能,在基準測試與真實世界代理任務中表現大幅提升,並且前端程式碼的美學與可用性也獲得顯著改善。",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo 是 K2 Thinking 的 Turbo 變體,針對推理速度與吞吐量進行優化,同時保留多步推理與工具使用能力。這是一款 MoE 模型,總參數約為 1 兆,原生支援 256K 上下文,並具備穩定的大規模工具調用能力,適用於對延遲與併發有嚴格要求的生產場景。",
106
- "Pro/zai-org/glm-4.7.description": "GLM-4.7 是智譜推出的新一代旗艦模型,總參數量達 355B,激活參數量為 32B,在通用對話、推理與智能體能力方面全面升級。GLM-4.7 強化了交錯思考(Interleaved Thinking),並引入保留思考(Preserved Thinking)與輪級思考(Turn-level Thinking),在多輪對話與複雜任務中展現更高效的推理與決策能力。",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 是智譜推出的新一代旗艦模型,總參數量達 355B,激活參數量為 32B,在通用對話、推理與智能體能力方面全面升級。GLM-4.7 強化了交錯思考(Interleaved Thinking),並引入保留思考(Preserved Thinking)與輪級思考(Turn-level Thinking),在多輪對話與複雜任務中展現更強的邏輯與連貫性。",
107
107
  "QwQ-32B-Preview.description": "Qwen QwQ 是一個實驗性研究模型,專注於提升推理能力。",
108
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview 是來自 Qwen 的研究模型,專注於視覺推理,擅長複雜場景理解與視覺數學問題。",
109
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ 是一個實驗性研究模型,致力於提升 AI 推理能力。",
@@ -746,4 +746,4 @@
746
746
  "zai/glm-4.5.description": "GLM-4.5 系列專為代理設計。旗艦版 GLM-4.5 結合推理、編碼與代理能力,總參數 355B(啟用 32B),提供混合推理系統的雙模式運行。",
747
747
  "zai/glm-4.5v.description": "GLM-4.5V 建構於 GLM-4.5-Air 基礎上,延續 GLM-4.1V-Thinking 技術,並以強大的 106B MoE 架構擴展能力。",
748
748
  "zenmux/auto.description": "ZenMux 自動路由會根據您的請求,從支援的選項中選擇性價比最高、效能最佳的模型。"
749
- }
749
+ }
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/lobehub",
3
- "version": "2.0.0-next.205",
3
+ "version": "2.0.0-next.207",
4
4
  "description": "LobeHub - an open-source,comprehensive AI Agent framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -4,8 +4,16 @@ import { cleanObject } from './object';
4
4
 
5
5
  describe('cleanObject', () => {
6
6
  it('should remove null, undefined and empty string fields', () => {
7
- const input = { a: 1, b: null, c: undefined, d: '', e: 0, f: false } as const;
7
+ const input = {
8
+ a: 1,
9
+ b: null,
10
+ c: undefined,
11
+ d: '',
12
+ e: 0,
13
+ f: false,
14
+ abc: { d: undefined },
15
+ } as const;
8
16
  const res = cleanObject({ ...input });
9
- expect(res).toEqual({ a: 1, e: 0, f: false });
17
+ expect(res).toEqual({ a: 1, e: 0, f: false, abc: {} });
10
18
  });
11
19
  });
@@ -33,7 +33,9 @@ const EditorCanvas = memo(() => {
33
33
  const editorData = config?.editorData;
34
34
  const systemRole = config?.systemRole;
35
35
  const updateConfig = useAgentStore((s) => s.updateAgentConfig);
36
- const [initialLoad] = useState(editorData || EMPTY_EDITOR_STATE);
36
+ const [initialLoad] = useState(
37
+ editorData === undefined || editorData?.root === undefined ? EMPTY_EDITOR_STATE : editorData,
38
+ );
37
39
  const mentionOptions = useMentionOptions();
38
40
  const editor = useProfileStore((s) => s.editor);
39
41
  const handleContentChange = useProfileStore((s) => s.handleContentChange);
@@ -89,7 +91,7 @@ const EditorCanvas = memo(() => {
89
91
  // Don't init if streaming is in progress
90
92
  if (streamingInProgress) return;
91
93
  try {
92
- if (editorData) {
94
+ if (editorData && editorData?.root !== undefined) {
93
95
  editor.setDocument('json', editorData);
94
96
  } else if (systemRole) {
95
97
  editor.setDocument('markdown', systemRole);
@@ -155,7 +155,7 @@ const ProviderConfig = memo<ProviderConfigProps>(
155
155
  isProviderEndpointNotEmpty,
156
156
  isProviderApiKeyNotEmpty,
157
157
  ] = useAiInfraStore((s) => [
158
- aiProviderSelectors.activeProviderConfig(s),
158
+ aiProviderSelectors.providerDetailById(id)(s),
159
159
  s.updateAiProviderConfig,
160
160
  aiProviderSelectors.isProviderEnabled(id)(s),
161
161
  aiProviderSelectors.isAiProviderConfigLoading(id)(s),