@lobehub/lobehub 2.0.0-next.205 → 2.0.0-next.207
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/components.json +4 -0
- package/locales/ar/models.json +25 -126
- package/locales/bg-BG/components.json +4 -0
- package/locales/bg-BG/models.json +2 -2
- package/locales/de-DE/components.json +4 -0
- package/locales/de-DE/models.json +21 -120
- package/locales/en-US/components.json +4 -0
- package/locales/es-ES/components.json +4 -0
- package/locales/es-ES/models.json +24 -180
- package/locales/fa-IR/components.json +4 -0
- package/locales/fa-IR/models.json +2 -2
- package/locales/fr-FR/components.json +4 -0
- package/locales/fr-FR/models.json +2 -108
- package/locales/it-IT/components.json +4 -0
- package/locales/it-IT/models.json +22 -51
- package/locales/ja-JP/components.json +4 -0
- package/locales/ja-JP/models.json +16 -133
- package/locales/ko-KR/components.json +4 -0
- package/locales/ko-KR/models.json +26 -148
- package/locales/nl-NL/components.json +4 -0
- package/locales/nl-NL/models.json +2 -2
- package/locales/pl-PL/components.json +4 -0
- package/locales/pl-PL/models.json +2 -2
- package/locales/pt-BR/components.json +4 -0
- package/locales/pt-BR/models.json +49 -125
- package/locales/ru-RU/components.json +4 -0
- package/locales/ru-RU/models.json +17 -96
- package/locales/tr-TR/components.json +4 -0
- package/locales/tr-TR/models.json +28 -57
- package/locales/vi-VN/components.json +4 -0
- package/locales/vi-VN/models.json +1 -92
- package/locales/zh-CN/components.json +4 -0
- package/locales/zh-CN/models.json +31 -165
- package/locales/zh-TW/components.json +4 -0
- package/locales/zh-TW/models.json +2 -2
- package/package.json +1 -1
- package/packages/utils/src/object.test.ts +10 -2
- package/src/app/[variants]/(main)/chat/profile/features/EditorCanvas/index.tsx +4 -2
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +1 -1
- package/src/features/ModelSwitchPanel/index.tsx +393 -42
- package/src/locales/default/components.ts +4 -0
- package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
- package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +34 -11
- package/src/store/aiInfra/slices/aiProvider/action.ts +9 -1
- package/src/store/aiInfra/slices/aiProvider/initialState.ts +6 -1
- package/src/store/aiInfra/slices/aiProvider/selectors.ts +17 -3
|
@@ -103,7 +103,7 @@
|
|
|
103
103
|
"Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 یک مدل MoE با ۶۷۱ میلیارد پارامتر است که از MLA و DeepSeekMoE با تعادل بار بدون اتلاف برای استنتاج و آموزش کارآمد استفاده میکند. با پیشآموزش بر روی ۱۴.۸ تریلیون توکن با کیفیت بالا و تنظیم بیشتر با SFT و RL، از سایر مدلهای باز پیشی میگیرد و به مدلهای بسته پیشرو نزدیک میشود.",
|
|
104
104
|
"Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 جدیدترین و قدرتمندترین نسخه Kimi K2 است. این مدل MoE سطح بالا با ۱ تریلیون پارامتر کل و ۳۲ میلیارد پارامتر فعال است. ویژگیهای کلیدی شامل هوش کدنویسی عاملمحور قویتر با پیشرفتهای قابل توجه در معیارها و وظایف واقعی عاملها، بهعلاوه زیباییشناسی و قابلیت استفاده بهتر در کدنویسی رابط کاربری است.",
|
|
105
105
|
"Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo نسخه توربو بهینهشده برای سرعت استدلال و توان عملیاتی است، در حالی که استدلال چندمرحلهای و استفاده از ابزار K2 Thinking را حفظ میکند. این مدل MoE با حدود ۱ تریلیون پارامتر کل، زمینه بومی ۲۵۶ هزار توکن و فراخوانی ابزار در مقیاس بزرگ پایدار برای سناریوهای تولیدی با نیازهای سختگیرانهتر در تأخیر و همزمانی است.",
|
|
106
|
-
"Pro/zai-org/glm-4.7.description": "GLM-4.7 مدل پرچمدار نسل جدید شرکت Zhipu است که دارای ۳۵۵ میلیارد پارامتر کلی و ۳۲ میلیارد پارامتر فعال میباشد. این مدل در زمینههای گفتوگوی عمومی، استدلال و تواناییهای عامل هوشمند بهطور کامل ارتقاء یافته است. GLM-4.7
|
|
106
|
+
"Pro/zai-org/glm-4.7.description": "GLM-4.7 مدل پرچمدار نسل جدید شرکت Zhipu است که دارای ۳۵۵ میلیارد پارامتر کلی و ۳۲ میلیارد پارامتر فعال میباشد. این مدل در زمینههای گفتوگوی عمومی، استدلال و تواناییهای عامل هوشمند بهطور کامل ارتقاء یافته است. GLM-4.7 تفکر درهمتنیده (Interleaved Thinking) را تقویت کرده و مفاهیم تفکر حفظشده (Preserved Thinking) و تفکر در سطح نوبت (Turn-level Thinking) را معرفی میکند.",
|
|
107
107
|
"QwQ-32B-Preview.description": "Qwen QwQ یک مدل تحقیقاتی آزمایشی است که بر بهبود توانایی استدلال تمرکز دارد.",
|
|
108
108
|
"Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview یک مدل تحقیقاتی از Qwen است که بر استدلال بصری تمرکز دارد و در درک صحنههای پیچیده و حل مسائل ریاضی بصری توانمند است.",
|
|
109
109
|
"Qwen/QwQ-32B-Preview.description": "Qwen QwQ یک مدل تحقیقاتی آزمایشی است که بر بهبود استدلال هوش مصنوعی تمرکز دارد.",
|
|
@@ -609,4 +609,4 @@
|
|
|
609
609
|
"x-ai/grok-4.1-fast-non-reasoning.description": "Grok 4 Fast (بدون استدلال) مدل چندوجهی با توان عملیاتی بالا و هزینه پایین از xAI است (با پشتیبانی از پنجره زمینه ۲ میلیون توکن) که برای سناریوهای حساس به تأخیر و هزینه طراحی شده و نیازی به استدلال درونمدلی ندارد. این مدل در کنار نسخه استدلالی Grok 4 Fast قرار دارد و میتوان استدلال را از طریق پارامتر API فعال کرد. اعلانها و تکمیلها ممکن است توسط xAI یا OpenRouter برای بهبود مدلهای آینده استفاده شوند.",
|
|
610
610
|
"x-ai/grok-4.1-fast.description": "Grok 4 Fast مدل با توان عملیاتی بالا و هزینه پایین از xAI است (با پشتیبانی از پنجره زمینه ۲ میلیون توکن) که برای موارد استفاده با همزمانی بالا و زمینههای طولانی ایدهآل است.",
|
|
611
611
|
"x-ai/grok-4.description": "Grok 4 مدل پرچمدار xAI با توانایی استدلال قوی و قابلیت چندوجهی است."
|
|
612
|
-
}
|
|
612
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "Ce modèle prend en charge la reconnaissance vidéo",
|
|
93
93
|
"ModelSelect.featureTag.vision": "Ce modèle prend en charge la reconnaissance visuelle.",
|
|
94
94
|
"ModelSelect.removed": "Le modèle ne figure pas dans la liste. Il sera automatiquement retiré s’il est désélectionné.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "Par modèle",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "Par fournisseur",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "Aucun modèle activé. Veuillez aller dans les paramètres pour en activer un.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "Aucun fournisseur activé. Veuillez aller dans les paramètres pour en activer un.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Aller aux paramètres",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Gérer le fournisseur",
|
|
98
101
|
"ModelSwitchPanel.provider": "Fournisseur",
|
|
99
102
|
"ModelSwitchPanel.title": "Modèle",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Utiliser ce modèle depuis :",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Cliquez ou glissez pour téléverser plus",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Terminé",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "Nouveau",
|
|
@@ -335,113 +335,7 @@
|
|
|
335
335
|
"computer-use-preview.description": "computer-use-preview est un modèle spécialisé pour l'outil \"utilisation de l'ordinateur\", entraîné pour comprendre et exécuter des tâches liées à l'informatique.",
|
|
336
336
|
"dall-e-2.description": "Modèle DALL·E de deuxième génération avec une génération d'images plus réaliste et précise, et une résolution 4× supérieure à la première génération.",
|
|
337
337
|
"dall-e-3.description": "Le dernier modèle DALL·E, publié en novembre 2023, prend en charge une génération d'images plus réaliste et précise avec un niveau de détail renforcé.",
|
|
338
|
-
"databricks/dbrx-instruct.description": "DBRX Instruct offre une gestion des instructions hautement fiable
|
|
339
|
-
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR est un modèle vision-langage développé par DeepSeek AI, spécialisé dans la reconnaissance optique de caractères (OCR) et la « compression optique contextuelle ». Il explore la compression du contexte à partir d’images, traite efficacement les documents et les convertit en texte structuré (par exemple, Markdown). Il reconnaît avec précision le texte dans les images, ce qui le rend idéal pour la numérisation de documents, l’extraction de texte et le traitement structuré.",
|
|
340
|
-
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B distille la chaîne de raisonnement de DeepSeek-R1-0528 dans Qwen3 8B Base. Il atteint l’état de l’art parmi les modèles open source, surpassant Qwen3 8B de 10 % sur AIME 2024 et égalant les performances de raisonnement de Qwen3-235B. Il excelle en raisonnement mathématique, en programmation et sur les benchmarks de logique générale. Il partage l’architecture de Qwen3-8B mais utilise le tokenizer de DeepSeek-R1-0528.",
|
|
341
|
-
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 exploite une puissance de calcul accrue et des optimisations algorithmiques post-entraînement pour approfondir le raisonnement. Il affiche d’excellentes performances sur les benchmarks en mathématiques, programmation et logique générale, rivalisant avec des leaders comme o3 et Gemini 2.5 Pro.",
|
|
342
|
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Les modèles distillés DeepSeek-R1 utilisent l’apprentissage par renforcement (RL) et des données de démarrage à froid pour améliorer le raisonnement et établir de nouveaux standards sur les benchmarks multitâches open source.",
|
|
343
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Les modèles distillés DeepSeek-R1 utilisent l’apprentissage par renforcement (RL) et des données de démarrage à froid pour améliorer le raisonnement et établir de nouveaux standards sur les benchmarks multitâches open source.",
|
|
344
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Les modèles distillés DeepSeek-R1 utilisent l’apprentissage par renforcement (RL) et des données de démarrage à froid pour améliorer le raisonnement et établir de nouveaux standards sur les benchmarks multitâches open source.",
|
|
345
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B est distillé à partir de Qwen2.5-32B et affiné sur 800 000 échantillons sélectionnés de DeepSeek-R1. Il excelle en mathématiques, programmation et raisonnement, obtenant d’excellents résultats sur AIME 2024, MATH-500 (94,3 % de précision) et GPQA Diamond.",
|
|
346
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B est distillé à partir de Qwen2.5-Math-7B et affiné sur 800 000 échantillons sélectionnés de DeepSeek-R1. Il affiche de solides performances avec 92,8 % sur MATH-500, 55,5 % sur AIME 2024 et une note CodeForces de 1189 pour un modèle 7B.",
|
|
347
|
-
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 améliore le raisonnement grâce à l’apprentissage par renforcement et à des données de démarrage à froid, établissant de nouveaux standards multitâches open source et surpassant OpenAI-o1-mini.",
|
|
348
|
-
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 améliore DeepSeek-V2-Chat et DeepSeek-Coder-V2-Instruct, combinant capacités générales et de codage. Il améliore la rédaction et le suivi des instructions pour un meilleur alignement des préférences, avec des progrès significatifs sur AlpacaEval 2.0, ArenaHard, AlignBench et MT-Bench.",
|
|
349
|
-
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus est une version mise à jour du modèle V3.1, positionnée comme un agent hybride LLM. Il corrige les problèmes signalés par les utilisateurs et améliore la stabilité, la cohérence linguistique, tout en réduisant les caractères anormaux et le mélange chinois/anglais. Il intègre les modes Pensant et Non-pensant avec des modèles de chat pour un basculement flexible. Il améliore également les performances des agents de code et de recherche pour une utilisation plus fiable des outils et des tâches multi-étapes.",
|
|
350
|
-
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 utilise une architecture de raisonnement hybride et prend en charge les modes pensant et non-pensant.",
|
|
351
|
-
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp est une version expérimentale de V3.2 servant de passerelle vers la prochaine architecture. Il ajoute DeepSeek Sparse Attention (DSA) au-dessus de V3.1-Terminus pour améliorer l’efficacité de l’entraînement et de l’inférence sur les contextes longs, avec des optimisations pour l’utilisation d’outils, la compréhension de documents longs et le raisonnement multi-étapes. Idéal pour explorer une efficacité de raisonnement accrue avec de grands budgets de contexte.",
|
|
352
|
-
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 est un modèle MoE de 671 milliards de paramètres utilisant MLA et DeepSeekMoE avec un équilibrage de charge sans perte pour un entraînement et une inférence efficaces. Préentraîné sur 14,8T de tokens de haute qualité avec SFT et RL, il surpasse les autres modèles open source et rivalise avec les modèles fermés de pointe.",
|
|
353
|
-
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) est un modèle innovant offrant une compréhension linguistique approfondie et une interaction fluide.",
|
|
354
|
-
"deepseek-ai/deepseek-r1.description": "Un modèle LLM de pointe, efficace, performant en raisonnement, mathématiques et programmation.",
|
|
355
|
-
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 est un modèle de raisonnement nouvelle génération avec un raisonnement complexe renforcé et une chaîne de pensée pour les tâches d’analyse approfondie.",
|
|
356
|
-
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 est un modèle de raisonnement nouvelle génération avec un raisonnement complexe renforcé et une chaîne de pensée pour les tâches d’analyse approfondie.",
|
|
357
|
-
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 est un modèle vision-langage MoE basé sur DeepSeekMoE-27B avec activation clairsemée, atteignant de hautes performances avec seulement 4,5B de paramètres actifs. Il excelle en questions visuelles, OCR, compréhension de documents/tableaux/graphes et ancrage visuel.",
|
|
358
|
-
"deepseek-chat.description": "Un nouveau modèle open source combinant capacités générales et de codage. Il conserve le dialogue général du modèle de chat et la puissance du modèle de codeur, avec un meilleur alignement des préférences. DeepSeek-V2.5 améliore également la rédaction et le suivi des instructions.",
|
|
359
|
-
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B est un modèle de langage pour le code entraîné sur 2T de tokens (87 % de code, 13 % de texte en chinois/anglais). Il introduit une fenêtre de contexte de 16K et des tâches de remplissage au milieu, offrant une complétion de code à l’échelle du projet et un remplissage de fragments.",
|
|
360
|
-
"deepseek-coder-v2.description": "DeepSeek Coder V2 est un modèle de code MoE open source performant sur les tâches de programmation, comparable à GPT-4 Turbo.",
|
|
361
|
-
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 est un modèle de code MoE open source performant sur les tâches de programmation, comparable à GPT-4 Turbo.",
|
|
362
|
-
"deepseek-ocr.description": "DeepSeek-OCR est un modèle vision-langage de DeepSeek AI axé sur l’OCR et la « compression optique contextuelle ». Il explore la compression des informations contextuelles à partir d’images, traite efficacement les documents et les convertit en formats de texte structuré tels que Markdown. Il reconnaît avec précision le texte dans les images, ce qui le rend idéal pour la numérisation de documents, l’extraction de texte et le traitement structuré.",
|
|
363
|
-
"deepseek-r1-0528.description": "Modèle complet de 685B publié le 28/05/2025. DeepSeek-R1 utilise un apprentissage par renforcement à grande échelle en post-entraînement, améliorant considérablement le raisonnement avec peu de données annotées, et affiche de solides performances en mathématiques, codage et raisonnement en langage naturel.",
|
|
364
|
-
"deepseek-r1-250528.description": "DeepSeek R1 250528 est le modèle complet de raisonnement DeepSeek-R1 pour les tâches complexes en mathématiques et logique.",
|
|
365
|
-
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B édition rapide avec recherche web en temps réel, offrant des réponses plus rapides tout en maintenant les performances.",
|
|
366
|
-
"deepseek-r1-70b-online.description": "DeepSeek R1 70B édition standard avec recherche web en temps réel, adaptée aux tâches de chat et de texte à jour.",
|
|
367
|
-
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combine le raisonnement R1 avec l’écosystème Llama.",
|
|
368
|
-
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B est distillé à partir de Llama-3.1-8B en utilisant les sorties de DeepSeek R1.",
|
|
369
|
-
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama est distillé à partir de DeepSeek-R1 sur Llama.",
|
|
370
|
-
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B est une distillation R1 basée sur Qianfan-70B avec une forte valeur ajoutée.",
|
|
371
|
-
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B est une distillation R1 basée sur Qianfan-8B pour les applications petites et moyennes.",
|
|
372
|
-
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B est une distillation R1 basée sur Llama-70B.",
|
|
373
|
-
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B est un modèle ultra-léger pour les environnements à très faibles ressources.",
|
|
374
|
-
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B est un modèle de taille moyenne pour un déploiement multi-scénarios.",
|
|
375
|
-
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B est une distillation R1 basée sur Qwen-32B, équilibrant performance et coût.",
|
|
376
|
-
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B est un modèle léger pour les environnements en périphérie et les entreprises privées.",
|
|
377
|
-
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen est distillé à partir de DeepSeek-R1 sur Qwen.",
|
|
378
|
-
"deepseek-r1-fast-online.description": "Version complète rapide de DeepSeek R1 avec recherche web en temps réel, combinant capacité à l’échelle 671B et réponse rapide.",
|
|
379
|
-
"deepseek-r1-online.description": "Version complète de DeepSeek R1 avec 671B de paramètres et recherche web en temps réel, offrant une meilleure compréhension et génération.",
|
|
380
|
-
"deepseek-r1.description": "DeepSeek-R1 utilise des données de démarrage à froid avant l’apprentissage par renforcement et affiche des performances comparables à OpenAI-o1 en mathématiques, codage et raisonnement.",
|
|
381
|
-
"deepseek-reasoner.description": "Le mode de réflexion DeepSeek V3.2 produit une chaîne de raisonnement avant la réponse finale pour améliorer la précision.",
|
|
382
|
-
"deepseek-v2.description": "DeepSeek V2 est un modèle MoE efficace pour un traitement économique.",
|
|
383
|
-
"deepseek-v2:236b.description": "DeepSeek V2 236B est le modèle axé sur le code de DeepSeek avec une forte génération de code.",
|
|
384
|
-
"deepseek-v3-0324.description": "DeepSeek-V3-0324 est un modèle MoE de 671B paramètres avec des points forts en programmation, compréhension du contexte et traitement de longs textes.",
|
|
385
|
-
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus est un modèle LLM optimisé pour les terminaux, conçu par DeepSeek pour les appareils en ligne de commande.",
|
|
386
|
-
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 est le modèle de raisonnement profond correspondant à la version Terminus, conçu pour des performances élevées en raisonnement.",
|
|
387
|
-
"deepseek-v3.1.description": "DeepSeek-V3.1 est un nouveau modèle hybride de raisonnement de DeepSeek, prenant en charge les modes avec ou sans réflexion, avec une efficacité de raisonnement supérieure à DeepSeek-R1-0528. Les optimisations post-entraînement améliorent considérablement l'utilisation d'outils par les agents et leurs performances. Il prend en charge une fenêtre de contexte de 128k et jusqu'à 64k de jetons en sortie.",
|
|
388
|
-
"deepseek-v3.1:671b.description": "DeepSeek V3.1 est un modèle de raisonnement de nouvelle génération, amélioré pour les raisonnements complexes et les chaînes de pensée, adapté aux tâches nécessitant une analyse approfondie.",
|
|
389
|
-
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduit l'attention clairsemée pour améliorer l'efficacité de l'entraînement et de l'inférence sur les textes longs, à un coût inférieur à deepseek-v3.1.",
|
|
390
|
-
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think est un modèle de raisonnement profond complet, doté d'une capacité renforcée pour les chaînes de raisonnement longues.",
|
|
391
|
-
"deepseek-v3.2.description": "DeepSeek-V3.2 est le premier modèle hybride de raisonnement de DeepSeek intégrant la réflexion dans l'utilisation d'outils. Il combine une architecture efficace pour économiser les ressources, un apprentissage par renforcement à grande échelle pour améliorer les capacités, et des données synthétiques massives pour une meilleure généralisation. Ses performances rivalisent avec GPT-5-High, tout en réduisant considérablement la longueur des sorties, les coûts de calcul et le temps d'attente des utilisateurs.",
|
|
392
|
-
"deepseek-v3.description": "DeepSeek-V3 est un puissant modèle MoE avec 671 milliards de paramètres au total et 37 milliards actifs par jeton.",
|
|
393
|
-
"deepseek-vl2-small.description": "DeepSeek VL2 Small est une version multimodale légère, conçue pour les environnements à ressources limitées et les cas d'utilisation à forte concurrence.",
|
|
394
|
-
"deepseek-vl2.description": "DeepSeek VL2 est un modèle multimodal pour la compréhension image-texte et les questions-réponses visuelles de précision.",
|
|
395
|
-
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 est un modèle MoE de 685 milliards de paramètres, dernière itération de la série de chat phare de DeepSeek.\n\nIl s'appuie sur [DeepSeek V3](/deepseek/deepseek-chat-v3) et offre d'excellentes performances sur diverses tâches.",
|
|
396
|
-
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 est un modèle MoE de 685 milliards de paramètres, dernière itération de la série de chat phare de DeepSeek.\n\nIl s'appuie sur [DeepSeek V3](/deepseek/deepseek-chat-v3) et offre d'excellentes performances sur diverses tâches.",
|
|
397
|
-
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 est le modèle de raisonnement hybride à long contexte de DeepSeek, prenant en charge les modes avec ou sans réflexion et l'intégration d'outils.",
|
|
398
|
-
"deepseek/deepseek-chat.description": "DeepSeek-V3 est le modèle hybride haute performance de DeepSeek pour les tâches complexes et l'intégration d'outils.",
|
|
399
|
-
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 est une variante mise à jour axée sur l'ouverture et un raisonnement plus approfondi.",
|
|
400
|
-
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 améliore considérablement le raisonnement avec un minimum de données annotées et génère une chaîne de pensée avant la réponse finale pour une meilleure précision.",
|
|
401
|
-
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B est un LLM distillé basé sur Llama 3.3 70B, affiné à partir des sorties de DeepSeek R1 pour atteindre des performances comparables aux grands modèles de pointe.",
|
|
402
|
-
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B est un LLM distillé basé sur Llama-3.1-8B-Instruct, entraîné à partir des sorties de DeepSeek R1.",
|
|
403
|
-
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B est un LLM distillé basé sur Qwen 2.5 14B, entraîné à partir des sorties de DeepSeek R1. Il surpasse OpenAI o1-mini sur plusieurs benchmarks, atteignant des résultats de pointe parmi les modèles denses. Points forts des benchmarks :\nAIME 2024 pass@1 : 69,7\nMATH-500 pass@1 : 93,9\nCodeForces Rating : 1481\nL'affinage sur les sorties de DeepSeek R1 permet des performances compétitives face aux modèles de pointe plus grands.",
|
|
404
|
-
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B est un LLM distillé basé sur Qwen 2.5 32B, entraîné à partir des sorties de DeepSeek R1. Il surpasse OpenAI o1-mini sur plusieurs benchmarks, atteignant des résultats de pointe parmi les modèles denses. Points forts des benchmarks :\nAIME 2024 pass@1 : 72,6\nMATH-500 pass@1 : 94,3\nCodeForces Rating : 1691\nL'affinage sur les sorties de DeepSeek R1 permet des performances compétitives face aux modèles de pointe plus grands.",
|
|
405
|
-
"deepseek/deepseek-r1.description": "DeepSeek R1 a été mis à jour vers DeepSeek-R1-0528. Grâce à une puissance de calcul accrue et des optimisations algorithmiques post-entraînement, il améliore considérablement la profondeur et la capacité de raisonnement. Il obtient d'excellents résultats sur les benchmarks de mathématiques, de programmation et de logique générale, rivalisant avec des leaders comme o3 et Gemini 2.5 Pro.",
|
|
406
|
-
"deepseek/deepseek-r1/community.description": "DeepSeek R1 est le dernier modèle open source publié par l'équipe DeepSeek, avec d'excellentes performances en raisonnement, notamment en mathématiques, en programmation et en logique, comparables à OpenAI o1.",
|
|
407
|
-
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 améliore considérablement le raisonnement avec un minimum de données annotées et génère une chaîne de pensée avant la réponse finale pour une meilleure précision.",
|
|
408
|
-
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) est le modèle expérimental de raisonnement de DeepSeek, adapté aux tâches de raisonnement à haute complexité.",
|
|
409
|
-
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base est une version améliorée du modèle DeepSeek V3.",
|
|
410
|
-
"deepseek/deepseek-v3.description": "Un LLM polyvalent rapide avec des capacités de raisonnement renforcées.",
|
|
411
|
-
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 marque une avancée majeure en vitesse de raisonnement par rapport aux modèles précédents. Il se classe premier parmi les modèles open source et rivalise avec les modèles fermés les plus avancés. DeepSeek-V3 adopte l'attention latente multi-têtes (MLA) et l'architecture DeepSeekMoE, toutes deux validées dans DeepSeek-V2. Il introduit également une stratégie auxiliaire sans perte pour l'équilibrage de charge et un objectif d'entraînement à prédiction multi-jetons pour des performances accrues.",
|
|
412
|
-
"deepseek_r1.description": "DeepSeek-R1 est un modèle de raisonnement basé sur l'apprentissage par renforcement, conçu pour résoudre les problèmes de répétition et de lisibilité. Avant l'étape RL, il utilise des données de démarrage à froid pour améliorer encore les performances de raisonnement. Il rivalise avec OpenAI-o1 sur les tâches de mathématiques, de codage et de raisonnement, grâce à un entraînement soigneusement conçu qui améliore les résultats globaux.",
|
|
413
|
-
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B est distillé à partir de Llama-3.3-70B-Instruct. Faisant partie de la série DeepSeek-R1, il est affiné sur des exemples générés par DeepSeek-R1 et offre d'excellentes performances en mathématiques, codage et raisonnement.",
|
|
414
|
-
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B est distillé à partir de Qwen2.5-14B et affiné sur 800 000 exemples sélectionnés générés par DeepSeek-R1, offrant un raisonnement solide.",
|
|
415
|
-
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B est distillé à partir de Qwen2.5-32B et affiné sur 800 000 exemples sélectionnés générés par DeepSeek-R1, excellant en mathématiques, codage et raisonnement.",
|
|
416
|
-
"devstral-2:123b.description": "Devstral 2 123B excelle dans l’utilisation d’outils pour explorer des bases de code, modifier plusieurs fichiers et assister des agents en ingénierie logicielle.",
|
|
417
|
-
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite est un nouveau modèle léger à réponse ultra-rapide, offrant une qualité et une latence de premier ordre.",
|
|
418
|
-
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k est une mise à niveau complète de Doubao-1.5-Pro, améliorant les performances globales de 10 %. Il prend en charge une fenêtre de contexte de 256k et jusqu’à 12k jetons de sortie, offrant de meilleures performances, une fenêtre plus large et une forte valeur pour des cas d’usage étendus.",
|
|
419
|
-
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro est un modèle phare de nouvelle génération avec des améliorations globales, excellent en connaissances, codage et raisonnement.",
|
|
420
|
-
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 est un nouveau modèle de raisonnement profond (la version m inclut un raisonnement multimodal natif) qui excelle en mathématiques, codage, raisonnement scientifique et tâches générales comme l’écriture créative. Il atteint ou approche des résultats de premier plan sur des benchmarks tels que AIME 2024, Codeforces et GPQA. Il prend en charge une fenêtre de contexte de 128k et 16k jetons de sortie.",
|
|
421
|
-
"doubao-1.5-thinking-pro.description": "Doubao-1.5 est un nouveau modèle de raisonnement profond qui excelle en mathématiques, codage, raisonnement scientifique et tâches générales comme l’écriture créative. Il atteint ou approche des résultats de premier plan sur des benchmarks tels que AIME 2024, Codeforces et GPQA. Il prend en charge une fenêtre de contexte de 128k et 16k jetons de sortie.",
|
|
422
|
-
"doubao-1.5-thinking-vision-pro.description": "Un nouveau modèle visuel de raisonnement profond avec une compréhension et un raisonnement multimodaux renforcés, atteignant des résultats SOTA sur 37 des 59 benchmarks publics.",
|
|
423
|
-
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS est un modèle d’agent natif axé sur les interfaces graphiques, interagissant de manière fluide avec les interfaces via une perception, un raisonnement et des actions proches de l’humain.",
|
|
424
|
-
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite est un modèle multimodal amélioré prenant en charge les images de toute résolution et des rapports d’aspect extrêmes, renforçant le raisonnement visuel, la reconnaissance de documents, la compréhension des détails et le suivi des instructions. Il prend en charge une fenêtre de contexte de 128k et jusqu’à 16k jetons de sortie.",
|
|
425
|
-
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro est un modèle multimodal amélioré prenant en charge les images de toute résolution et des rapports d’aspect extrêmes, renforçant le raisonnement visuel, la reconnaissance de documents, la compréhension des détails et le suivi des instructions.",
|
|
426
|
-
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro est un modèle multimodal amélioré prenant en charge les images de toute résolution et des rapports d’aspect extrêmes, renforçant le raisonnement visuel, la reconnaissance de documents, la compréhension des détails et le suivi des instructions.",
|
|
427
|
-
"doubao-lite-128k.description": "Réponse ultra-rapide avec un meilleur rapport qualité-prix, offrant plus de flexibilité selon les scénarios. Prend en charge le raisonnement et l’ajustement fin avec une fenêtre de contexte de 128k.",
|
|
428
|
-
"doubao-lite-32k.description": "Réponse ultra-rapide avec un meilleur rapport qualité-prix, offrant plus de flexibilité selon les scénarios. Prend en charge le raisonnement et l’ajustement fin avec une fenêtre de contexte de 32k.",
|
|
429
|
-
"doubao-lite-4k.description": "Réponse ultra-rapide avec un meilleur rapport qualité-prix, offrant plus de flexibilité selon les scénarios. Prend en charge le raisonnement et l’ajustement fin avec une fenêtre de contexte de 4k.",
|
|
430
|
-
"doubao-pro-256k.description": "Le modèle phare le plus performant pour les tâches complexes, avec d’excellents résultats en questions-réponses, résumé, création, classification de texte et jeu de rôle. Prend en charge le raisonnement et l’ajustement fin avec une fenêtre de contexte de 256k.",
|
|
431
|
-
"doubao-pro-32k.description": "Le modèle phare le plus performant pour les tâches complexes, avec d’excellents résultats en questions-réponses, résumé, création, classification de texte et jeu de rôle. Prend en charge le raisonnement et l’ajustement fin avec une fenêtre de contexte de 32k.",
|
|
432
|
-
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash est un modèle multimodal de raisonnement profond ultra-rapide avec un TPOT aussi bas que 10 ms. Il prend en charge le texte et la vision, surpasse le modèle lite précédent en compréhension textuelle et rivalise avec les modèles pro concurrents en vision. Il prend en charge une fenêtre de contexte de 256k et jusqu’à 16k jetons de sortie.",
|
|
433
|
-
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite est un nouveau modèle multimodal de raisonnement profond avec un effort de raisonnement ajustable (Minimal, Faible, Moyen, Élevé), offrant un excellent rapport qualité-prix et un bon choix pour les tâches courantes, avec une fenêtre de contexte allant jusqu’à 256k.",
|
|
434
|
-
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6 renforce considérablement le raisonnement, améliorant encore les capacités clés en codage, mathématiques et logique par rapport à Doubao-1.5-thinking-pro, tout en ajoutant la compréhension visuelle. Il prend en charge une fenêtre de contexte de 256k et jusqu’à 16k jetons de sortie.",
|
|
435
|
-
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision est un modèle visuel de raisonnement profond offrant une compréhension et un raisonnement multimodaux renforcés pour l’éducation, la révision d’images, l’inspection/sécurité et les questions-réponses IA. Il prend en charge une fenêtre de contexte de 256k et jusqu’à 64k jetons de sortie.",
|
|
436
|
-
"doubao-seed-1.6.description": "Doubao-Seed-1.6 est un nouveau modèle multimodal de raisonnement profond avec des modes auto, raisonnement et non-raisonnement. En mode non-raisonnement, il surpasse nettement Doubao-1.5-pro/250115. Il prend en charge une fenêtre de contexte de 256k et jusqu’à 16k jetons de sortie.",
|
|
437
|
-
"doubao-seed-1.8.description": "Doubao-Seed-1.8 offre une compréhension multimodale et des capacités d’agent renforcées, prenant en charge les entrées texte/image/vidéo et la mise en cache contextuelle, pour des performances supérieures dans les tâches complexes.",
|
|
438
|
-
"doubao-seed-code.description": "Doubao-Seed-Code est optimisé pour le codage agentique, prend en charge les entrées multimodales (texte/image/vidéo) et une fenêtre de contexte de 256k, compatible avec l’API Anthropic, adapté au codage, à la compréhension visuelle et aux flux de travail d’agents.",
|
|
439
|
-
"doubao-seededit-3-0-i2i-250628.description": "Le modèle d’image Doubao de ByteDance Seed prend en charge les entrées texte et image avec une génération d’image de haute qualité et hautement contrôlable. Il prend en charge l’édition d’image guidée par texte, avec des tailles de sortie entre 512 et 1536 sur le côté long.",
|
|
440
|
-
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 est un modèle de génération d’image de ByteDance Seed, prenant en charge les entrées texte et image avec une génération d’image de haute qualité et hautement contrôlable. Il génère des images à partir d’invites textuelles.",
|
|
441
|
-
"doubao-seedream-4-0-250828.description": "Seedream 4.0 est un modèle de génération d’image de ByteDance Seed, prenant en charge les entrées texte et image avec une génération d’image de haute qualité et hautement contrôlable. Il génère des images à partir d’invites textuelles.",
|
|
442
|
-
"doubao-vision-lite-32k.description": "Doubao-vision est un modèle multimodal de Doubao avec une forte compréhension et un raisonnement d’image, ainsi qu’un suivi précis des instructions. Il est performant pour l’extraction image-texte et les tâches de raisonnement basées sur l’image, permettant des scénarios de questions-réponses visuelles plus complexes et étendus.",
|
|
443
|
-
"doubao-vision-pro-32k.description": "Doubao-vision est un modèle multimodal de Doubao avec une forte compréhension et un raisonnement d’image, ainsi qu’un suivi précis des instructions. Il est performant pour l’extraction image-texte et les tâches de raisonnement basées sur l’image, permettant des scénarios de questions-réponses visuelles plus complexes et étendus.",
|
|
444
|
-
"emohaa.description": "Emohaa est un modèle de santé mentale doté de compétences professionnelles en accompagnement psychologique pour aider les utilisateurs à comprendre leurs problèmes émotionnels.",
|
|
338
|
+
"databricks/dbrx-instruct.description": "DBRX Instruct offre une gestion des instructions hautement fiable, adaptée à divers secteurs d'activité.",
|
|
445
339
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 est un modèle LLM ouvert destiné aux développeurs, chercheurs et entreprises, conçu pour les aider à créer, expérimenter et faire évoluer de manière responsable des idées d'IA générative. Faisant partie de la base de l'innovation communautaire mondiale, il est particulièrement adapté aux environnements à ressources limitées, aux appareils en périphérie et aux temps d'entraînement réduits.",
|
|
446
340
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Raisonnement visuel performant sur des images haute résolution, idéal pour les applications de compréhension visuelle.",
|
|
447
341
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Raisonnement visuel avancé pour les agents d'applications de compréhension visuelle.",
|
|
@@ -643,4 +537,4 @@
|
|
|
643
537
|
"wizardlm2:8x22b.description": "WizardLM 2 est un modèle linguistique de Microsoft AI qui excelle dans les dialogues complexes, les tâches multilingues, le raisonnement et les assistants.",
|
|
644
538
|
"x-ai/grok-4-fast-non-reasoning.description": "Grok 4 Fast (Non-Reasoning) est le modèle multimodal à haut débit et faible coût de xAI (avec une fenêtre de contexte de 2M), conçu pour les scénarios sensibles à la latence et au coût ne nécessitant pas de raisonnement intégré. Il est proposé aux côtés de la version avec raisonnement de Grok 4 Fast, et le raisonnement peut être activé via le paramètre API. Les prompts et complétions peuvent être utilisés par xAI ou OpenRouter pour améliorer les modèles futurs.",
|
|
645
539
|
"x-ai/grok-4-fast.description": "Grok 4 Fast est le modèle à haut débit et faible coût de xAI (avec une fenêtre de contexte de 2M), idéal pour les cas d’usage à forte concurrence et à long contexte."
|
|
646
|
-
}
|
|
540
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "Questo modello supporta il riconoscimento video",
|
|
93
93
|
"ModelSelect.featureTag.vision": "Questo modello supporta il riconoscimento visivo.",
|
|
94
94
|
"ModelSelect.removed": "Il modello non è presente nell'elenco. Verrà rimosso automaticamente se deselezionato.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "Per Modello",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "Per Fornitore",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "Nessun modello abilitato. Vai alle impostazioni per abilitarne uno.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "Nessun provider abilitato. Vai alle impostazioni per abilitarne uno.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Vai alle impostazioni",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Gestisci Fornitore",
|
|
98
101
|
"ModelSwitchPanel.provider": "Provider",
|
|
99
102
|
"ModelSwitchPanel.title": "Modello",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Usa questo modello da:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Clicca o trascina per caricare altri",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Completato",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "Nuovo",
|
|
@@ -336,81 +336,52 @@
|
|
|
336
336
|
"dall-e-2.description": "Modello DALL·E di seconda generazione con generazione di immagini più realistica e accurata e risoluzione 4× rispetto alla prima generazione.",
|
|
337
337
|
"dall-e-3.description": "L'ultimo modello DALL·E, rilasciato a novembre 2023, supporta generazione di immagini più realistica e accurata con maggiore dettaglio.",
|
|
338
338
|
"databricks/dbrx-instruct.description": "DBRX Instruct offre una gestione delle istruzioni altamente affidabile in diversi settori.",
|
|
339
|
-
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR è un modello visione-linguaggio sviluppato da DeepSeek AI,
|
|
340
|
-
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B distilla il
|
|
341
|
-
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 sfrutta maggiore potenza computazionale e ottimizzazioni algoritmiche post-addestramento per approfondire il ragionamento. Ottiene risultati
|
|
339
|
+
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR è un modello visione-linguaggio sviluppato da DeepSeek AI, focalizzato sull'OCR e sulla \"compressione ottica contestuale\". Esplora la compressione del contesto dalle immagini, elabora documenti in modo efficiente e li converte in testo strutturato (es. Markdown). Riconosce accuratamente il testo nelle immagini, ideale per la digitalizzazione di documenti, l'estrazione di testo e l'elaborazione strutturata.",
|
|
340
|
+
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B distilla il chain-of-thought da DeepSeek-R1-0528 nel modello Qwen3 8B Base. Raggiunge lo stato dell'arte tra i modelli open-source, superando Qwen3 8B del 10% su AIME 2024 e uguagliando le prestazioni di Qwen3-235B-thinking. Eccelle nel ragionamento matematico, nella programmazione e nei benchmark di logica generale. Condivide l'architettura di Qwen3-8B ma utilizza il tokenizer di DeepSeek-R1-0528.",
|
|
341
|
+
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 sfrutta maggiore potenza computazionale e ottimizzazioni algoritmiche post-addestramento per approfondire il ragionamento. Ottiene ottimi risultati nei benchmark di matematica, programmazione e logica generale, avvicinandosi a modelli leader come o3 e Gemini 2.5 Pro.",
|
|
342
342
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "I modelli distillati DeepSeek-R1 utilizzano apprendimento per rinforzo (RL) e dati cold-start per migliorare il ragionamento e stabilire nuovi benchmark multi-task per modelli open-source.",
|
|
343
343
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "I modelli distillati DeepSeek-R1 utilizzano apprendimento per rinforzo (RL) e dati cold-start per migliorare il ragionamento e stabilire nuovi benchmark multi-task per modelli open-source.",
|
|
344
344
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "I modelli distillati DeepSeek-R1 utilizzano apprendimento per rinforzo (RL) e dati cold-start per migliorare il ragionamento e stabilire nuovi benchmark multi-task per modelli open-source.",
|
|
345
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B è distillato da Qwen2.5-32B e ottimizzato su 800.000 campioni curati da DeepSeek-R1. Eccelle in matematica, programmazione e ragionamento, ottenendo risultati
|
|
346
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B è distillato da Qwen2.5-Math-7B e ottimizzato su 800.000 campioni curati da DeepSeek-R1. Ottiene prestazioni
|
|
345
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B è distillato da Qwen2.5-32B e ottimizzato su 800.000 campioni curati da DeepSeek-R1. Eccelle in matematica, programmazione e ragionamento, ottenendo risultati eccellenti su AIME 2024, MATH-500 (94,3% di accuratezza) e GPQA Diamond.",
|
|
346
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B è distillato da Qwen2.5-Math-7B e ottimizzato su 800.000 campioni curati da DeepSeek-R1. Ottiene ottime prestazioni: 92,8% su MATH-500, 55,5% su AIME 2024 e un punteggio CodeForces di 1189 per un modello da 7B.",
|
|
347
347
|
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 migliora il ragionamento grazie a dati cold-start e apprendimento per rinforzo, stabilendo nuovi benchmark multi-task per modelli open-source e superando OpenAI-o1-mini.",
|
|
348
348
|
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 aggiorna DeepSeek-V2-Chat e DeepSeek-Coder-V2-Instruct, combinando capacità generali e di programmazione. Migliora la scrittura e il rispetto delle istruzioni per un migliore allineamento alle preferenze, con progressi significativi su AlpacaEval 2.0, ArenaHard, AlignBench e MT-Bench.",
|
|
349
349
|
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus è una versione aggiornata del modello V3.1, concepito come agente ibrido LLM. Risolve problemi segnalati dagli utenti e migliora stabilità, coerenza linguistica e riduce caratteri anomali o misti cinese/inglese. Integra modalità di pensiero e non-pensiero con template di chat per passaggi flessibili. Migliora anche le prestazioni di Code Agent e Search Agent per un uso più affidabile degli strumenti e compiti multi-step.",
|
|
350
350
|
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 utilizza un'architettura di ragionamento ibrida e supporta sia modalità di pensiero che non-pensiero.",
|
|
351
|
-
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp è una versione sperimentale che fa da ponte verso la prossima architettura. Aggiunge DeepSeek Sparse Attention (DSA) sopra V3.1-Terminus per migliorare l'efficienza nell'addestramento e inferenza su contesti lunghi, con ottimizzazioni per l'uso di strumenti, comprensione di documenti lunghi e ragionamento multi-step. Ideale per esplorare una maggiore efficienza di ragionamento con budget di contesto estesi.",
|
|
352
|
-
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 è un modello MoE
|
|
351
|
+
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp è una versione sperimentale della serie V3.2 che fa da ponte verso la prossima architettura. Aggiunge DeepSeek Sparse Attention (DSA) sopra V3.1-Terminus per migliorare l'efficienza nell'addestramento e inferenza su contesti lunghi, con ottimizzazioni per l'uso di strumenti, comprensione di documenti lunghi e ragionamento multi-step. Ideale per esplorare una maggiore efficienza di ragionamento con budget di contesto estesi.",
|
|
352
|
+
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 è un modello MoE con 671 miliardi di parametri che utilizza MLA e DeepSeekMoE con bilanciamento del carico senza perdite per un addestramento e inferenza efficienti. Preaddestrato su 14,8 trilioni di token di alta qualità con SFT e RL, supera altri modelli open-source e si avvicina ai modelli chiusi leader.",
|
|
353
353
|
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) è un modello innovativo che offre una profonda comprensione linguistica e interazione.",
|
|
354
354
|
"deepseek-ai/deepseek-r1.description": "Un modello LLM all'avanguardia, efficiente e potente nel ragionamento, matematica e programmazione.",
|
|
355
|
-
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 è un modello di nuova generazione per il ragionamento, con capacità avanzate di ragionamento complesso e
|
|
356
|
-
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 è un modello di nuova generazione per il ragionamento, con capacità avanzate di ragionamento complesso e
|
|
355
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 è un modello di nuova generazione per il ragionamento, con capacità avanzate di ragionamento complesso e chain-of-thought per compiti di analisi approfondita.",
|
|
356
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 è un modello di nuova generazione per il ragionamento, con capacità avanzate di ragionamento complesso e chain-of-thought per compiti di analisi approfondita.",
|
|
357
357
|
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 è un modello visione-linguaggio MoE basato su DeepSeekMoE-27B con attivazione sparsa, che raggiunge prestazioni elevate con solo 4,5B di parametri attivi. Eccelle in QA visivo, OCR, comprensione di documenti/tabelle/grafici e grounding visivo.",
|
|
358
|
-
"deepseek-
|
|
358
|
+
"deepseek-chat.description": "Un nuovo modello open-source che combina capacità generali e di programmazione. Mantiene il dialogo generale del modello di chat e la forte capacità di codifica del modello coder, con un migliore allineamento alle preferenze. DeepSeek-V2.5 migliora anche la scrittura e il rispetto delle istruzioni.",
|
|
359
|
+
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B è un modello linguistico per il codice addestrato su 2 trilioni di token (87% codice, 13% testo in cinese/inglese). Introduce una finestra di contesto da 16K e compiti di completamento intermedio, offrendo completamento di codice a livello di progetto e riempimento di snippet.",
|
|
359
360
|
"deepseek-coder-v2.description": "DeepSeek Coder V2 è un modello MoE open-source per il codice che ottiene ottimi risultati nei compiti di programmazione, comparabile a GPT-4 Turbo.",
|
|
360
361
|
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 è un modello MoE open-source per il codice che ottiene ottimi risultati nei compiti di programmazione, comparabile a GPT-4 Turbo.",
|
|
361
|
-
"deepseek-ocr.description": "DeepSeek-OCR è un modello visione-linguaggio sviluppato da DeepSeek AI, focalizzato
|
|
362
|
+
"deepseek-ocr.description": "DeepSeek-OCR è un modello visione-linguaggio sviluppato da DeepSeek AI, focalizzato sull'OCR e sulla \"compressione ottica contestuale\". Esplora la compressione delle informazioni contestuali dalle immagini, elabora documenti in modo efficiente e li converte in formati di testo strutturato come Markdown. Riconosce accuratamente il testo nelle immagini, rendendolo ideale per la digitalizzazione di documenti, l'estrazione di testo e l'elaborazione strutturata.",
|
|
362
363
|
"deepseek-r1-0528.description": "Modello completo da 685B rilasciato il 28/05/2025. DeepSeek-R1 utilizza RL su larga scala nel post-addestramento, migliorando notevolmente il ragionamento con dati etichettati minimi, ottenendo ottimi risultati in matematica, programmazione e ragionamento in linguaggio naturale.",
|
|
363
364
|
"deepseek-r1-250528.description": "DeepSeek R1 250528 è il modello completo di ragionamento DeepSeek-R1 per compiti complessi di matematica e logica.",
|
|
364
|
-
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B edizione veloce con ricerca web in tempo reale,
|
|
365
|
-
"deepseek-r1-70b-online.description": "DeepSeek R1 70B edizione standard con ricerca web in tempo reale,
|
|
365
|
+
"deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B edizione veloce con ricerca web in tempo reale, che fornisce risposte più rapide mantenendo alte prestazioni.",
|
|
366
|
+
"deepseek-r1-70b-online.description": "DeepSeek R1 70B edizione standard con ricerca web in tempo reale, adatta per chat aggiornate e compiti testuali.",
|
|
366
367
|
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combina il ragionamento R1 con l'ecosistema Llama.",
|
|
367
|
-
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B è distillato da Llama-3.1-8B utilizzando output di DeepSeek R1.",
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B è distillato da Llama-3.1-8B utilizzando gli output di DeepSeek R1.",
|
|
368
369
|
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama è distillato da DeepSeek-R1 su Llama.",
|
|
369
370
|
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B è una distillazione R1 basata su Qianfan-70B con elevato valore.",
|
|
370
371
|
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B è una distillazione R1 basata su Qianfan-8B per applicazioni di piccole e medie dimensioni.",
|
|
371
372
|
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B è una distillazione R1 basata su Llama-70B.",
|
|
372
373
|
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B è un modello distillato ultra-leggero per ambienti con risorse molto limitate.",
|
|
373
|
-
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B è un modello distillato di medie dimensioni per
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B è un modello distillato di medie dimensioni per implementazioni in scenari multipli.",
|
|
374
375
|
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B è una distillazione R1 basata su Qwen-32B, che bilancia prestazioni e costi.",
|
|
375
376
|
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B è un modello distillato leggero per ambienti edge e aziendali privati.",
|
|
376
377
|
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen è distillato da DeepSeek-R1 su Qwen.",
|
|
377
|
-
"deepseek-r1-fast-online.description": "
|
|
378
|
-
"deepseek-r1-online.description": "
|
|
378
|
+
"deepseek-r1-fast-online.description": "DeepSeek R1 versione completa veloce con ricerca web in tempo reale, che combina capacità su scala 671B e risposte rapide.",
|
|
379
|
+
"deepseek-r1-online.description": "DeepSeek R1 versione completa con 671 miliardi di parametri e ricerca web in tempo reale, che offre una comprensione e generazione più avanzate.",
|
|
379
380
|
"deepseek-r1.description": "DeepSeek-R1 utilizza dati cold-start prima dell'RL e ottiene prestazioni comparabili a OpenAI-o1 in matematica, programmazione e ragionamento.",
|
|
381
|
+
"deepseek-reasoner.description": "La modalità di pensiero di DeepSeek V3.2 produce un chain-of-thought prima della risposta finale per migliorare l'accuratezza.",
|
|
380
382
|
"deepseek-v2.description": "DeepSeek V2 è un modello MoE efficiente per un'elaborazione conveniente.",
|
|
381
|
-
"deepseek-v2:236b.description": "DeepSeek V2 236B è il modello
|
|
382
|
-
"deepseek-v3-0324.description": "DeepSeek-V3-0324 è un modello MoE con 671 miliardi di parametri, con punti di forza
|
|
383
|
-
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus è un LLM ottimizzato per terminali, progettato da DeepSeek per dispositivi terminali.",
|
|
384
|
-
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 è il modello di pensiero profondo corrispondente alla versione Terminus, progettato per un ragionamento ad alte prestazioni.",
|
|
385
|
-
"deepseek-v3.1.description": "DeepSeek-V3.1 è un nuovo modello di ragionamento ibrido di DeepSeek, che supporta modalità con e senza pensiero, offrendo un'efficienza di pensiero superiore rispetto a DeepSeek-R1-0528. Le ottimizzazioni post-addestramento migliorano notevolmente l'uso degli strumenti da parte degli agenti e le prestazioni nei compiti. Supporta una finestra di contesto di 128k e fino a 64k token in output.",
|
|
386
|
-
"deepseek-v3.1:671b.description": "DeepSeek V3.1 è un modello di ragionamento di nuova generazione con capacità migliorate di ragionamento complesso e catena di pensieri, adatto a compiti che richiedono analisi approfondite.",
|
|
387
|
-
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduce l'attenzione sparsa per migliorare l'efficienza dell'addestramento e dell'inferenza su testi lunghi, a un costo inferiore rispetto a deepseek-v3.1.",
|
|
388
|
-
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think è un modello completo di pensiero profondo con capacità di ragionamento a catena lunga più avanzate.",
|
|
389
|
-
"deepseek-v3.2.description": "DeepSeek-V3.2 è il primo modello di ragionamento ibrido di DeepSeek che integra il pensiero nell'uso degli strumenti. Combina un'architettura efficiente per ridurre il consumo computazionale, un apprendimento per rinforzo su larga scala per potenziare le capacità e dati sintetici su larga scala per una forte generalizzazione. Le sue prestazioni sono paragonabili a GPT-5-High, con una lunghezza dell'output significativamente ridotta, abbattendo i costi computazionali e i tempi di attesa per l'utente.",
|
|
390
|
-
"deepseek-v3.description": "DeepSeek-V3 è un potente modello MoE con 671 miliardi di parametri totali e 37 miliardi attivi per token.",
|
|
391
|
-
"deepseek-vl2-small.description": "DeepSeek VL2 Small è una versione multimodale leggera per ambienti con risorse limitate e alta concorrenza.",
|
|
392
|
-
"deepseek-vl2.description": "DeepSeek VL2 è un modello multimodale per la comprensione immagine-testo e domande visive dettagliate.",
|
|
393
|
-
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 è un modello MoE con 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
394
|
-
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 è un modello MoE con 685 miliardi di parametri e rappresenta l'ultima iterazione della serie di chat di punta di DeepSeek.\n\nSi basa su [DeepSeek V3](/deepseek/deepseek-chat-v3) e offre prestazioni elevate in vari compiti.",
|
|
395
|
-
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 è il modello di ragionamento ibrido a lungo contesto di DeepSeek, che supporta modalità miste con/senza pensiero e integrazione con strumenti.",
|
|
396
|
-
"deepseek/deepseek-chat.description": "DeepSeek-V3 è il modello di ragionamento ibrido ad alte prestazioni di DeepSeek per compiti complessi e integrazione con strumenti.",
|
|
397
|
-
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 è una variante aggiornata focalizzata sulla disponibilità open-source e su un ragionamento più profondo.",
|
|
398
|
-
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento con un numero minimo di dati etichettati e genera una catena di pensieri prima della risposta finale per aumentare l'accuratezza.",
|
|
399
|
-
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B è un LLM distillato basato su Llama 3.3 70B, ottimizzato utilizzando gli output di DeepSeek R1 per raggiungere prestazioni competitive con i modelli di frontiera di grandi dimensioni.",
|
|
400
|
-
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B è un LLM distillato basato su Llama-3.1-8B-Instruct, addestrato utilizzando gli output di DeepSeek R1.",
|
|
401
|
-
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B è un LLM distillato basato su Qwen 2.5 14B, addestrato con gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati principali:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nIl fine-tuning con gli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
402
|
-
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B è un LLM distillato basato su Qwen 2.5 32B, addestrato con gli output di DeepSeek R1. Supera OpenAI o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia tra i modelli densi. Risultati principali:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nIl fine-tuning con gli output di DeepSeek R1 garantisce prestazioni competitive con i modelli di frontiera più grandi.",
|
|
403
|
-
"deepseek/deepseek-r1.description": "DeepSeek R1 è stato aggiornato a DeepSeek-R1-0528. Con maggiore potenza computazionale e ottimizzazioni algoritmiche post-addestramento, migliora significativamente la profondità e la capacità di ragionamento. Ottiene ottimi risultati in matematica, programmazione e logica generale, avvicinandosi a leader come o3 e Gemini 2.5 Pro.",
|
|
404
|
-
"deepseek/deepseek-r1/community.description": "DeepSeek R1 è l'ultimo modello open-source rilasciato dal team DeepSeek, con prestazioni di ragionamento molto elevate, in particolare in matematica, programmazione e compiti logici, comparabili a OpenAI o1.",
|
|
405
|
-
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 migliora notevolmente il ragionamento con un numero minimo di dati etichettati e genera una catena di pensieri prima della risposta finale per aumentare l'accuratezza.",
|
|
406
|
-
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) è il modello sperimentale di ragionamento di DeepSeek, adatto a compiti di ragionamento ad alta complessità.",
|
|
407
|
-
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base è una versione migliorata del modello DeepSeek V3.",
|
|
408
|
-
"deepseek/deepseek-v3.description": "Un LLM veloce e generico con capacità di ragionamento potenziate.",
|
|
409
|
-
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 rappresenta un importante passo avanti nella velocità di ragionamento rispetto ai modelli precedenti. È al primo posto tra i modelli open-source e rivaleggia con i modelli chiusi più avanzati. Adotta l'attenzione latente multi-head (MLA) e l'architettura DeepSeekMoE, entrambe validate in DeepSeek-V2. Introduce anche una strategia ausiliaria lossless per il bilanciamento del carico e un obiettivo di addestramento con previsione multi-token per prestazioni più forti.",
|
|
410
|
-
"deepseek_r1.description": "DeepSeek-R1 è un modello di ragionamento basato su apprendimento per rinforzo che affronta problemi di ripetizione e leggibilità. Prima dell'RL, utilizza dati di avvio a freddo per migliorare ulteriormente le prestazioni di ragionamento. È comparabile a OpenAI-o1 in matematica, programmazione e compiti logici, con un addestramento attentamente progettato che migliora i risultati complessivi.",
|
|
411
|
-
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B è distillato da Llama-3.3-70B-Instruct. Fa parte della serie DeepSeek-R1, ottimizzato su campioni generati da DeepSeek-R1 e offre ottime prestazioni in matematica, programmazione e ragionamento.",
|
|
412
|
-
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B è distillato da Qwen2.5-14B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, offrendo un ragionamento solido.",
|
|
413
|
-
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B è distillato da Qwen2.5-32B e ottimizzato su 800.000 campioni curati generati da DeepSeek-R1, eccellendo in matematica, programmazione e ragionamento.",
|
|
383
|
+
"deepseek-v2:236b.description": "DeepSeek V2 236B è il modello DeepSeek focalizzato sul codice con forte capacità di generazione.",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 è un modello MoE con 671 miliardi di parametri, con punti di forza nella programmazione, capacità tecnica, comprensione del contesto e gestione di testi lunghi.",
|
|
414
385
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 è un LLM open-source pensato per sviluppatori, ricercatori e aziende, progettato per supportare la creazione, la sperimentazione e la scalabilità responsabile di idee basate su IA generativa. Parte integrante dell’ecosistema globale per l’innovazione comunitaria, è ideale per ambienti con risorse limitate, dispositivi edge e tempi di addestramento ridotti.",
|
|
415
386
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Solido ragionamento visivo su immagini ad alta risoluzione, ideale per applicazioni di comprensione visiva.",
|
|
416
387
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Ragionamento visivo avanzato per applicazioni agenti di comprensione visiva.",
|
|
@@ -647,4 +618,4 @@
|
|
|
647
618
|
"zai/glm-4.5.description": "La serie GLM-4.5 è progettata per agenti. Il modello di punta GLM-4.5 combina ragionamento, programmazione e capacità agentiche con 355B parametri totali (32B attivi) e offre modalità operative doppie come sistema di ragionamento ibrido.",
|
|
648
619
|
"zai/glm-4.5v.description": "GLM-4.5V si basa su GLM-4.5-Air, ereditando le tecniche collaudate di GLM-4.1V-Thinking e scalando con una potente architettura MoE da 106B parametri.",
|
|
649
620
|
"zenmux/auto.description": "Il sistema di instradamento automatico ZenMux seleziona il modello con il miglior rapporto qualità/prezzo tra quelli supportati in base alla tua richiesta."
|
|
650
|
-
}
|
|
621
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "このモデルは動画認識に対応しています",
|
|
93
93
|
"ModelSelect.featureTag.vision": "このモデルはビジョン認識をサポートしています。",
|
|
94
94
|
"ModelSelect.removed": "選択されたモデルはリストから削除されました。選択を解除すると自動的に削除されます。",
|
|
95
|
+
"ModelSwitchPanel.byModel": "モデル別",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "プロバイダー別",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "有効なモデルがありません。設定に移動して有効にしてください。",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "有効なサービスプロバイダーがありません。設定に移動して有効にしてください。",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "設定に移動",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "プロバイダーを管理",
|
|
98
101
|
"ModelSwitchPanel.provider": "プロバイダー",
|
|
99
102
|
"ModelSwitchPanel.title": "モデル",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "このモデルの提供元:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "クリックまたはドラッグしてさらにアップロード",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "完了",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "新規追加",
|