@lobehub/lobehub 2.0.0-next.205 → 2.0.0-next.207

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/locales/ar/components.json +4 -0
  4. package/locales/ar/models.json +25 -126
  5. package/locales/bg-BG/components.json +4 -0
  6. package/locales/bg-BG/models.json +2 -2
  7. package/locales/de-DE/components.json +4 -0
  8. package/locales/de-DE/models.json +21 -120
  9. package/locales/en-US/components.json +4 -0
  10. package/locales/es-ES/components.json +4 -0
  11. package/locales/es-ES/models.json +24 -180
  12. package/locales/fa-IR/components.json +4 -0
  13. package/locales/fa-IR/models.json +2 -2
  14. package/locales/fr-FR/components.json +4 -0
  15. package/locales/fr-FR/models.json +2 -108
  16. package/locales/it-IT/components.json +4 -0
  17. package/locales/it-IT/models.json +22 -51
  18. package/locales/ja-JP/components.json +4 -0
  19. package/locales/ja-JP/models.json +16 -133
  20. package/locales/ko-KR/components.json +4 -0
  21. package/locales/ko-KR/models.json +26 -148
  22. package/locales/nl-NL/components.json +4 -0
  23. package/locales/nl-NL/models.json +2 -2
  24. package/locales/pl-PL/components.json +4 -0
  25. package/locales/pl-PL/models.json +2 -2
  26. package/locales/pt-BR/components.json +4 -0
  27. package/locales/pt-BR/models.json +49 -125
  28. package/locales/ru-RU/components.json +4 -0
  29. package/locales/ru-RU/models.json +17 -96
  30. package/locales/tr-TR/components.json +4 -0
  31. package/locales/tr-TR/models.json +28 -57
  32. package/locales/vi-VN/components.json +4 -0
  33. package/locales/vi-VN/models.json +1 -92
  34. package/locales/zh-CN/components.json +4 -0
  35. package/locales/zh-CN/models.json +31 -165
  36. package/locales/zh-TW/components.json +4 -0
  37. package/locales/zh-TW/models.json +2 -2
  38. package/package.json +1 -1
  39. package/packages/utils/src/object.test.ts +10 -2
  40. package/src/app/[variants]/(main)/chat/profile/features/EditorCanvas/index.tsx +4 -2
  41. package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +1 -1
  42. package/src/features/ModelSwitchPanel/index.tsx +393 -42
  43. package/src/locales/default/components.ts +4 -0
  44. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  45. package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +34 -11
  46. package/src/store/aiInfra/slices/aiProvider/action.ts +9 -1
  47. package/src/store/aiInfra/slices/aiProvider/initialState.ts +6 -1
  48. package/src/store/aiInfra/slices/aiProvider/selectors.ts +17 -3
@@ -361,11 +361,11 @@
361
361
  "deepseek-coder-v2:236b.description": "DeepSeek Coder V2 はオープンソースの MoE コードモデルで、コーディングタスクにおいて GPT-4 Turbo に匹敵する性能を発揮します。",
362
362
  "deepseek-ocr.description": "DeepSeek-OCR は DeepSeek AI による視覚と言語の統合モデルで、OCR(光学文字認識)と「コンテキスト光学圧縮」に特化しています。画像からの文脈情報を圧縮し、文書を効率的に処理して構造化テキスト(例:Markdown)に変換します。画像内のテキストを高精度で認識し、文書のデジタル化、テキスト抽出、構造化処理に最適です。",
363
363
  "deepseek-r1-0528.description": "2025年5月28日に685Bのフルモデルをリリース。DeepSeek-R1は、事後学習において大規模な強化学習(RL)を活用し、最小限のラベル付きデータで推論能力を大幅に向上。数学、コーディング、自然言語推論において高い性能を発揮します。",
364
- "deepseek-r1-250528.description": "DeepSeek R1 250528は、難解な数学や論理タスク向けに設計されたDeepSeek-R1の完全推論モデルです。",
364
+ "deepseek-r1-250528.description": "DeepSeek R1 250528は、難解な数学および論理タスク向けのDeepSeek-R1フル推論モデルです。",
365
365
  "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B 高速版はリアルタイムのウェブ検索を搭載し、性能を維持しつつ応答速度を向上させています。",
366
- "deepseek-r1-70b-online.description": "DeepSeek R1 70B 標準版はリアルタイムのウェブ検索を備え、最新のチャットやテキストタスクに適しています。",
366
+ "deepseek-r1-70b-online.description": "DeepSeek R1 70B 標準版はリアルタイムのウェブ検索を搭載し、最新のチャットやテキストタスクに適しています。",
367
367
  "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70Bは、R1の推論能力とLlamaエコシステムを融合させたモデルです。",
368
- "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8Bは、Llama-3.1-8BをベースにDeepSeek R1の出力を用いて蒸留されたモデルです。",
368
+ "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8Bは、Llama-3.1-8BからDeepSeek R1の出力を用いて蒸留されたモデルです。",
369
369
  "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llamaは、DeepSeek-R1をLlama上で蒸留したモデルです。",
370
370
  "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70Bは、Qianfan-70BをベースにしたR1蒸留モデルで、高い価値を提供します。",
371
371
  "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8Bは、Qianfan-8BをベースにしたR1蒸留モデルで、小規模から中規模アプリケーションに適しています。",
@@ -378,7 +378,7 @@
378
378
  "deepseek-r1-fast-online.description": "DeepSeek R1 高速フルバージョンは、リアルタイムのウェブ検索を搭載し、671Bスケールの能力と高速応答を両立します。",
379
379
  "deepseek-r1-online.description": "DeepSeek R1 フルバージョンは、671Bパラメータとリアルタイムのウェブ検索を備え、より強力な理解と生成を提供します。",
380
380
  "deepseek-r1.description": "DeepSeek-R1は、強化学習前にコールドスタートデータを使用し、数学、コーディング、推論においてOpenAI-o1と同等の性能を発揮します。",
381
- "deepseek-reasoner.description": "DeepSeek V3.2 の思考モードは、最終的な回答の前に思考の過程(Chain-of-Thought)を出力することで、精度を高めます。",
381
+ "deepseek-reasoner.description": "DeepSeek V3.2の思考モードは、最終的な回答の前に思考の連鎖(Chain-of-Thought)を出力し、精度を向上させます。",
382
382
  "deepseek-v2.description": "DeepSeek V2は、コスト効率の高い処理を実現する効率的なMoEモデルです。",
383
383
  "deepseek-v2:236b.description": "DeepSeek V2 236Bは、コード生成に特化したDeepSeekのモデルで、強力なコード生成能力を持ちます。",
384
384
  "deepseek-v3-0324.description": "DeepSeek-V3-0324は、671BパラメータのMoEモデルで、プログラミングや技術的能力、文脈理解、長文処理において優れた性能を発揮します。",
@@ -388,148 +388,31 @@
388
388
  "deepseek-v3.1:671b.description": "DeepSeek V3.1は、複雑な推論とChain-of-Thoughtに優れた次世代推論モデルで、深い分析を必要とするタスクに適しています。",
389
389
  "deepseek-v3.2-exp.description": "deepseek-v3.2-expは、長文テキストの学習と推論効率を向上させるスパースアテンションを導入し、deepseek-v3.1よりも低価格で提供されます。",
390
390
  "deepseek-v3.2-think.description": "DeepSeek V3.2 Thinkは、長い思考の連鎖に対応した完全な深層思考モデルです。",
391
- "deepseek-v3.2.description": "DeepSeek-V3.2は、深度求索が開発した初の思考とツール使用を融合したハイブリッド推論モデルです。効率的なアーキテクチャで計算資源を節約し、大規模強化学習で能力を強化、大量の合成タスクデータで汎化性能を高め、三位一体でGPT-5-Highに匹敵する性能を実現。出力長が大幅に短縮され、計算コストとユーザーの待機時間を大きく削減します。",
391
+ "deepseek-v3.2.description": "DeepSeek-V3.2は、深度求索が開発した初のツール使用と思考を融合したハイブリッド推論モデルです。効率的なアーキテクチャで計算資源を節約し、大規模強化学習で能力を強化、大量の合成タスクデータで汎化性能を高め、これらを組み合わせることでGPT-5-Highに匹敵する性能を実現。出力長が大幅に短縮され、計算コストとユーザーの待機時間を大きく削減します。",
392
392
  "deepseek-v3.description": "DeepSeek-V3は、671Bの総パラメータとトークンごとに37Bがアクティブな強力なMoEモデルです。",
393
393
  "deepseek-vl2-small.description": "DeepSeek VL2 Smallは、リソース制約や高同時接続環境向けの軽量マルチモーダルモデルです。",
394
394
  "deepseek-vl2.description": "DeepSeek VL2は、画像と言語の理解および精緻な視覚的質問応答に対応するマルチモーダルモデルです。",
395
- "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、あらゆるタスクで高い性能を発揮します。",
396
- "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、あらゆるタスクで高い性能を発揮します。",
395
+ "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、さまざまなタスクで高い性能を発揮します。",
396
+ "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3は、685BパラメータのMoEモデルで、DeepSeekのフラッグシップチャットシリーズの最新バージョンです。\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)を基盤とし、さまざまなタスクで高い性能を発揮します。",
397
397
  "deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1は、長文コンテキストに対応したDeepSeekのハイブリッド推論モデルで、思考モードと非思考モードの切り替えやツール統合をサポートします。",
398
398
  "deepseek/deepseek-chat.description": "DeepSeek-V3は、複雑なタスクやツール統合に対応する高性能ハイブリッド推論モデルです。",
399
399
  "deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528は、オープンアクセスと深い推論に焦点を当てた更新版です。",
400
400
  "deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1は、最小限のラベル付きデータで推論能力を大幅に向上させ、最終的な回答の前に思考の連鎖を出力して精度を高めます。",
401
401
  "deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70Bは、Llama 3.3 70BをベースにDeepSeek R1の出力でファインチューニングされた蒸留LLMで、大規模最先端モデルに匹敵する性能を実現します。",
402
402
  "deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8Bは、Llama-3.1-8B-InstructをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。",
403
- "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14Bは、Qwen 2.5 14BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。複数のベンチマークでOpenAI o1-miniを上回り、密なモデルの中で最先端の結果を達成しています。ベンチマークのハイライト:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
404
- "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32Bは、Qwen 2.5 32BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。複数のベンチマークでOpenAI o1-miniを上回り、密なモデルの中で最先端の結果を達成しています。ベンチマークのハイライト:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
405
- "deepseek/deepseek-r1.description": "DeepSeek R1は、DeepSeek-R1-0528にアップデートされました。計算資源と事後学習アルゴリズムの最適化により、推論の深さと能力が大幅に向上。数学、プログラミング、一般的な論理ベンチマークで高い性能を発揮し、o3やGemini 2.5 Proといったリーダーに迫る実力を持ちます。",
403
+ "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14Bは、Qwen 2.5 14BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。OpenAI o1-miniを複数のベンチマークで上回り、密なモデルの中で最先端の結果を達成しています。主なベンチマーク結果:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
404
+ "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32Bは、Qwen 2.5 32BをベースにDeepSeek R1の出力でトレーニングされた蒸留LLMです。OpenAI o1-miniを複数のベンチマークで上回り、密なモデルの中で最先端の結果を達成しています。主なベンチマーク結果:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDeepSeek R1の出力によるファインチューニングで、大規模最先端モデルに匹敵する性能を実現します。",
405
+ "deepseek/deepseek-r1.description": "DeepSeek R1は、DeepSeek-R1-0528に更新されました。より多くの計算資源と事後学習アルゴリズムの最適化により、推論の深さと能力が大幅に向上。数学、プログラミング、一般的な論理ベンチマークで高い性能を発揮し、o3やGemini 2.5 Proといったリーダーに迫る実力を持ちます。",
406
406
  "deepseek/deepseek-r1/community.description": "DeepSeek R1は、DeepSeekチームがリリースした最新のオープンソースモデルで、特に数学、コーディング、推論タスクにおいて非常に高い推論性能を発揮し、OpenAI o1に匹敵します。",
407
407
  "deepseek/deepseek-r1:free.description": "DeepSeek-R1は、最小限のラベル付きデータで推論能力を大幅に向上させ、最終的な回答の前に思考の連鎖を出力して精度を高めます。",
408
408
  "deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking(reasoner)は、DeepSeekの実験的推論モデルで、高度な複雑性を持つ推論タスクに適しています。",
409
409
  "deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Baseは、DeepSeek V3モデルの改良版です。",
410
410
  "deepseek/deepseek-v3.description": "高速かつ汎用性の高いLLMで、推論能力が強化されています。",
411
- "deepseek/deepseek-v3/community.description": "DeepSeek-V3は、従来モデルに比べて推論速度で大きなブレークスルーを達成。オープンソースモデルの中でトップにランクインし、最先端のクローズドモデルにも匹敵します。DeepSeek-V3は、DeepSeek-V2で実証されたMulti-Head Latent Attention(MLA)とDeepSeekMoEアーキテクチャを採用。さらに、負荷分散のためのロスレス補助戦略や、性能を強化するマルチトークン予測学習目標も導入しています。",
412
- "deepseek_r1.description": "DeepSeek-R1は、強化学習を活用した推論モデルで、繰り返しや可読性の問題に対応します。RL前にはコールドスタートデータを使用し、推論性能をさらに向上。数学、コーディング、推論タスクにおいてOpenAI-o1と同等の性能を発揮し、慎重に設計されたトレーニングにより全体的な結果を改善します。",
413
- "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70Bは、Llama-3.3-70B-Instructをベースに、DeepSeek-R1が生成したサンプルでファインチューニングされた蒸留モデルで、数学、コーディング、推論において高い性能を発揮します。",
414
- "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14Bは、Qwen2.5-14Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、強力な推論能力を持ちます。",
415
- "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bをベースに、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされた蒸留モデルで、数学、コーディング、推論において優れた性能を発揮します。",
416
- "devstral-2:123b.description": "Devstral 2 123B は、ツールを活用してコードベースを探索し、複数ファイルを編集し、ソフトウェアエンジニアリングエージェントを支援することに優れています。",
417
- "doubao-1.5-lite-32k.description": "Doubao-1.5-lite は、超高速応答を実現する新しい軽量モデルであり、最高水準の品質と低遅延を提供します。",
418
- "doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k は、Doubao-1.5-Pro の包括的なアップグレード版で、全体的な性能が 10% 向上しています。256k のコンテキストウィンドウと最大 12k の出力トークンをサポートし、より高い性能と広範な用途に対応する価値を提供します。",
419
- "doubao-1.5-pro-32k.description": "Doubao-1.5-pro は、知識、コーディング、推論において優れた性能を発揮する新世代のフラッグシップモデルです。",
420
- "doubao-1.5-thinking-pro-m.description": "Doubao-1.5 は、新しい深層推論モデルであり(m バージョンはネイティブなマルチモーダル深層推論を含む)、数学、コーディング、科学的推論、創作などの一般タスクにおいて卓越した性能を発揮します。AIME 2024、Codeforces、GPQA などのベンチマークでトップレベルの結果を達成または接近しており、128k のコンテキストウィンドウと 16k の出力をサポートします。",
421
- "doubao-1.5-thinking-pro.description": "Doubao-1.5 は、新しい深層推論モデルであり、数学、コーディング、科学的推論、創作などの一般タスクにおいて卓越した性能を発揮します。AIME 2024、Codeforces、GPQA などのベンチマークでトップレベルの結果を達成または接近しており、128k のコンテキストウィンドウと 16k の出力をサポートします。",
422
- "doubao-1.5-thinking-vision-pro.description": "新しい視覚的深層推論モデルであり、マルチモーダルの理解と推論能力が強化されており、59 の公開ベンチマーク中 37 で SOTA(最先端)結果を達成しています。",
423
- "doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS は、ネイティブ GUI に特化したエージェントモデルであり、人間のような知覚、推論、行動を通じてインターフェースとシームレスに対話します。",
424
- "doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite は、あらゆる解像度と極端なアスペクト比の画像をサポートするアップグレードされたマルチモーダルモデルであり、視覚的推論、文書認識、詳細理解、指示追従を強化します。128k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
425
- "doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro は、あらゆる解像度と極端なアスペクト比の画像をサポートするアップグレードされたマルチモーダルモデルであり、視覚的推論、文書認識、詳細理解、指示追従を強化します。",
426
- "doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro は、あらゆる解像度と極端なアスペクト比の画像をサポートするアップグレードされたマルチモーダルモデルであり、視覚的推論、文書認識、詳細理解、指示追従を強化します。",
427
- "doubao-lite-128k.description": "超高速応答と優れたコストパフォーマンスを実現し、さまざまなシナリオに柔軟に対応可能です。128k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
428
- "doubao-lite-32k.description": "超高速応答と優れたコストパフォーマンスを実現し、さまざまなシナリオに柔軟に対応可能です。32k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
429
- "doubao-lite-4k.description": "超高速応答と優れたコストパフォーマンスを実現し、さまざまなシナリオに柔軟に対応可能です。4k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
430
- "doubao-pro-256k.description": "複雑なタスクに最適な最高性能のフラッグシップモデルであり、参照型 QA、要約、創作、テキスト分類、ロールプレイにおいて優れた結果を発揮します。256k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
431
- "doubao-pro-32k.description": "複雑なタスクに最適な最高性能のフラッグシップモデルであり、参照型 QA、要約、創作、テキスト分類、ロールプレイにおいて優れた結果を発揮します。32k のコンテキストウィンドウをサポートし、推論とファインチューニングに対応します。",
432
- "doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash は、TPOT が 10ms 以下の超高速マルチモーダル深層推論モデルです。テキストと画像の両方をサポートし、テキスト理解では従来の lite モデルを上回り、視覚では競合する pro モデルに匹敵します。256k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
433
- "doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite は、推論の強度(最小、低、中、高)を調整可能な新しいマルチモーダル深層推論モデルであり、一般的なタスクにおいて優れたコストパフォーマンスを提供します。最大 256k のコンテキストウィンドウをサポートします。",
434
- "doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6-thinking は、Doubao-1.5-thinking-pro に比べて推論力を大幅に強化し、コーディング、数学、論理推論の中核能力をさらに向上させ、視覚理解も追加されています。256k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
435
- "doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision は、教育、画像レビュー、検査・セキュリティ、AI 検索 QA などにおいて、より強力なマルチモーダル理解と推論を提供する視覚的深層推論モデルです。256k のコンテキストウィンドウと最大 64k の出力トークンをサポートします。",
436
- "doubao-seed-1.6.description": "Doubao-Seed-1.6 は、自動、思考あり、思考なしのモードを備えた新しいマルチモーダル深層推論モデルです。思考なしモードでは、Doubao-1.5-pro/250115 を大きく上回る性能を発揮します。256k のコンテキストウィンドウと最大 16k の出力トークンをサポートします。",
437
- "doubao-seed-1.8.description": "Doubao-Seed-1.8 は、より強力なマルチモーダル理解能力とエージェント能力を備え、テキスト/画像/動画入力とコンテキストキャッシュをサポートし、複雑なタスクにおいて優れた性能を発揮します。",
438
- "doubao-seed-code.description": "Doubao-Seed-Code は、エージェント型コーディングに最適化されており、マルチモーダル入力(テキスト/画像/動画)と 256k のコンテキストウィンドウをサポートします。Anthropic API に対応し、コーディング、視覚理解、エージェントワークフローに適しています。",
439
- "doubao-seededit-3-0-i2i-250628.description": "ByteDance Seed による Doubao 画像モデルは、テキストと画像入力をサポートし、高品質かつ高い制御性のある画像生成を実現します。テキストによる画像編集をサポートし、出力サイズは長辺 512〜1536 の範囲で調整可能です。",
440
- "doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 は、ByteDance Seed による画像生成モデルであり、テキストと画像入力をサポートし、高品質かつ高い制御性のある画像生成を実現します。テキストプロンプトから画像を生成します。",
441
- "doubao-seedream-4-0-250828.description": "Seedream 4.0 は、ByteDance Seed による画像生成モデルであり、テキストと画像入力をサポートし、高品質かつ高い制御性のある画像生成を実現します。テキストプロンプトから画像を生成します。",
442
- "doubao-vision-lite-32k.description": "Doubao-vision は、Doubao によるマルチモーダルモデルであり、強力な画像理解と推論、正確な指示追従を実現します。画像とテキストの抽出や画像ベースの推論タスクにおいて優れた性能を発揮し、より複雑で広範な視覚 QA シナリオを可能にします。",
443
- "doubao-vision-pro-32k.description": "Doubao-vision は、Doubao によるマルチモーダルモデルであり、強力な画像理解と推論、正確な指示追従を実現します。画像とテキストの抽出や画像ベースの推論タスクにおいて優れた性能を発揮し、より複雑で広範な視覚 QA シナリオを可能にします。",
444
- "emohaa.description": "Emohaa は、専門的なカウンセリング能力を備えたメンタルヘルスモデルであり、ユーザーが感情的な問題を理解するのを支援します。",
445
- "ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B は、ローカルおよびカスタマイズされた導入に適したオープンソースの軽量モデルです。",
446
- "ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B は、より高度な理解と生成能力を備えたオープンソースの大規模パラメータモデルです。",
447
- "ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B は、優れた推論能力を持つ Baidu ERNIE の超大規模 MoE モデルです。",
448
- "ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview は、ERNIE 4.5 の評価用に設計された 8K コンテキストのプレビューモデルです。",
449
- "ernie-4.5-turbo-128k-preview.description": "ERNIE 4.5 Turbo 128K Preview は、リリースレベルの機能を備えた統合およびカナリアテストに適したモデルです。",
450
- "ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K は、検索拡張とツール呼び出し機能を備えた高性能な汎用モデルで、QA、コーディング、エージェントシナリオに適しています。",
451
- "ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K は、中程度の長さのコンテキストを持つバージョンで、QA、ナレッジベース検索、マルチターン対話に適しています。",
452
- "ernie-4.5-turbo-latest.description": "最新の ERNIE 4.5 Turbo は、全体的な性能が最適化されており、主要な本番モデルとして理想的です。",
453
- "ernie-4.5-turbo-vl-32k-preview.description": "ERNIE 4.5 Turbo VL 32K Preview は、長文コンテキストにおける視覚能力を評価するための 32K マルチモーダルプレビューモデルです。",
454
- "ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K は、長文ドキュメントと画像の理解を組み合わせた中長文マルチモーダルバージョンです。",
455
- "ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL Latest は、画像とテキストの理解および推論能力が向上した最新のマルチモーダルバージョンです。",
456
- "ernie-4.5-turbo-vl-preview.description": "ERNIE 4.5 Turbo VL Preview は、視覚的 QA やコンテンツ理解に適した画像とテキストの理解・生成を行うマルチモーダルプレビューモデルです。",
457
- "ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL は、画像とテキストの理解および認識において本番環境で使用可能な成熟したマルチモーダルモデルです。",
458
- "ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B は、画像とテキストの理解および推論に対応したオープンソースのマルチモーダルモデルです。",
459
- "ernie-5.0-thinking-latest.description": "文心 5.0 Thinking は、テキスト・画像・音声・動画を統合的に扱うネイティブなフルモーダルのフラッグシップモデルで、複雑なQA、創作、エージェントシナリオにおける能力を大幅に強化します。",
460
- "ernie-5.0-thinking-preview.description": "文心 5.0 Thinking Preview は、テキスト・画像・音声・動画を統合的に扱うネイティブなフルモーダルのフラッグシップモデルで、複雑なQA、創作、エージェントシナリオにおける能力を大幅に強化します。",
461
- "ernie-char-8k.description": "ERNIE Character 8K は、IPキャラクター構築や長期的な対話に適したパーソナリティ対話モデルです。",
462
- "ernie-char-fiction-8k-preview.description": "ERNIE Character Fiction 8K Preview は、キャラクターおよびプロット創作の機能評価とテスト用のプレビューモデルです。",
463
- "ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K は、小説やプロット創作に適したパーソナリティモデルで、長編ストーリー生成に対応します。",
464
- "ernie-irag-edit.description": "ERNIE iRAG Edit は、消去、再描画、バリエーション生成をサポートする画像編集モデルです。",
465
- "ernie-lite-8k.description": "ERNIE Lite 8K は、コスト重視の日常的なQAやコンテンツ生成に適した軽量汎用モデルです。",
466
- "ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K は、レイテンシとコストに敏感なシナリオ向けの軽量高性能モデルです。",
467
- "ernie-novel-8k.description": "ERNIE Novel 8K は、複数キャラクターによる長編小説やIPプロットの生成に特化したモデルです。",
468
- "ernie-speed-128k.description": "ERNIE Speed 128K は、I/Oコスト不要で長文理解や大規模試験に適したモデルです。",
469
- "ernie-speed-8k.description": "ERNIE Speed 8K は、日常会話や軽量なテキストタスクに適した無料かつ高速なモデルです。",
470
- "ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K は、大規模オンラインサービスや企業アプリ向けの高同時接続・高価値モデルです。",
471
- "ernie-tiny-8k.description": "ERNIE Tiny 8K は、シンプルなQA、分類、低コスト推論に適した超軽量モデルです。",
472
- "ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K は、複雑な推論やマルチターン対話に対応する32Kコンテキストの高速思考モデルです。",
473
- "ernie-x1.1-preview.description": "ERNIE X1.1 Preview は、評価とテスト用の思考モデルのプレビューバージョンです。",
474
- "fal-ai/bytedance/seedream/v4.description": "Seedream 4.0 は、ByteDance Seed による画像生成モデルで、テキストおよび画像入力に対応し、高品質かつ制御性の高い画像生成を実現します。テキストプロンプトから画像を生成します。",
475
- "fal-ai/flux-kontext/dev.description": "FLUX.1 モデルは画像編集に特化しており、テキストと画像の入力をサポートします。",
476
- "fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro] は、テキストと参照画像を入力として受け取り、局所的な編集や複雑なグローバルシーン変換を可能にします。",
477
- "fal-ai/flux/krea.description": "Flux Krea [dev] は、よりリアルで自然な画像を生成する美的バイアスを持つ画像生成モデルです。",
478
- "fal-ai/flux/schnell.description": "FLUX.1 [schnell] は、迅速かつ高品質な出力を目的とした 120 億パラメータの画像生成モデルです。",
479
- "fal-ai/hunyuan-image/v3.description": "強力なネイティブマルチモーダル画像生成モデルです。",
480
- "fal-ai/imagen4/preview.description": "Google による高品質な画像生成モデルです。",
481
- "fal-ai/nano-banana.description": "Nano Banana は、Google の最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話を通じた画像生成と編集を可能にします。",
482
- "fal-ai/qwen-image-edit.description": "Qwen チームによるプロフェッショナルな画像編集モデルで、意味や外観の編集、中文・英文テキストの精密な編集、スタイル変換や物体の回転など高品質な編集が可能です。",
483
- "fal-ai/qwen-image.description": "Qwen チームによる強力な画像生成モデルで、中国語テキストの描画に優れ、多様なビジュアルスタイルに対応します。",
484
- "flux-1-schnell.description": "Black Forest Labs による 120 億パラメータのテキストから画像への変換モデルで、潜在敵対的拡散蒸留を使用して 1~4 ステップで高品質な画像を生成します。Apache-2.0 ライセンスの下で個人、研究、商用利用が可能です。",
485
- "flux-dev.description": "FLUX.1 [dev] は、非商用利用向けのオープンウェイト蒸留モデルで、プロ品質に近い画像と指示追従性を維持しつつ、同サイズの標準モデルよりも効率的に動作します。",
486
- "flux-kontext-max.description": "テキストと画像を組み合わせて、精密かつ一貫性のある結果を生成する最先端のコンテキスト画像生成・編集モデルです。",
487
- "flux-kontext-pro.description": "テキストと画像を組み合わせて、精密かつ一貫性のある結果を生成する最先端のコンテキスト画像生成・編集モデルです。",
488
- "flux-merged.description": "FLUX.1-merged は、「DEV」で探求された深い特徴と「Schnell」の高速性を融合し、性能の限界を拡張し、応用範囲を広げます。",
489
- "flux-pro-1.1-ultra.description": "4MP 出力による超高解像度画像生成で、10 秒以内に鮮明な画像を生成します。",
490
- "flux-pro-1.1.description": "優れた画像品質と正確なプロンプト追従性を備えた、アップグレードされたプロフェッショナルグレードの画像生成モデルです。",
491
- "flux-pro.description": "比類なき画像品質と多様な出力を誇る、最上級の商用画像生成モデルです。",
492
- "flux-schnell.description": "FLUX.1 [schnell] は、最も高度なオープンソースの少ステップ画像生成モデルで、Midjourney v6.0 や DALL-E 3 (HD) などの強力な非蒸留モデルをも凌駕します。事前学習の多様性を保持するように微調整されており、視覚品質、指示追従性、サイズ・アスペクト比の変化、フォント処理、出力の多様性が大幅に向上しています。",
493
- "flux.1-schnell.description": "FLUX.1-schnell は、迅速なマルチスタイル出力に対応する高性能画像生成モデルです。",
494
- "gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001(チューニング版)は、複雑なタスクに対して安定した調整可能な性能を提供します。",
495
- "gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002(チューニング版)は、複雑なタスクに対して強力なマルチモーダル対応を提供します。",
496
- "gemini-1.0-pro-latest.description": "Gemini 1.0 Pro は、Google による高性能 AI モデルで、幅広いタスクに対応可能なスケーラビリティを備えています。",
497
- "gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001 は、幅広い用途に対応する効率的なマルチモーダルモデルです。",
498
- "gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002 は、広範な展開を目的とした効率的なマルチモーダルモデルです。",
499
- "gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924 は、テキストおよびマルチモーダルのユースケースにおいて顕著な進歩を示す最新の実験モデルです。",
500
- "gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B は、広範な展開を目的とした効率的なマルチモーダルモデルです。",
501
- "gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B は、幅広い用途に対応する効率的なマルチモーダルモデルです。",
502
- "gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827 は、複雑なタスクに対する最適化されたマルチモーダル処理を提供します。",
503
- "gemini-1.5-flash-latest.description": "Gemini 1.5 Flash は、Google による最新のマルチモーダル AI モデルで、テキスト、画像、動画入力に対応し、タスク全体の効率的なスケーリングを実現します。",
504
- "gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001 は、複雑なタスクに対応するスケーラブルなマルチモーダル AI ソリューションです。",
505
- "gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002 は、特に数学、長文コンテキスト、視覚タスクにおいて高品質な出力を提供する最新の本番対応モデルです。",
506
- "gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801 は、アプリ開発における柔軟性を高めた強力なマルチモーダル処理を提供します。",
507
- "gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827 は、より効率的なマルチモーダル処理のための最新の最適化を適用しています。",
508
- "gemini-1.5-pro-latest.description": "Gemini 1.5 Pro は最大 200 万トークンに対応し、複雑なタスクに最適な中規模マルチモーダルモデルです。",
509
- "gemini-2.0-flash-001.description": "Gemini 2.0 Flash は、卓越したスピード、ネイティブツールの使用、マルチモーダル生成、100 万トークンのコンテキストウィンドウなど、次世代の機能を提供します。",
510
- "gemini-2.0-flash-exp-image-generation.description": "Gemini 2.0 Flash の実験モデルで、画像生成に対応しています。",
511
- "gemini-2.0-flash-exp.description": "コスト効率と低遅延に最適化された Gemini 2.0 Flash のバリアントです。",
512
- "gemini-2.0-flash-lite-001.description": "コスト効率と低遅延に最適化された Gemini 2.0 Flash のバリアントです。",
513
- "gemini-2.0-flash-lite.description": "コスト効率と低遅延に最適化された Gemini 2.0 Flash のバリアントです。",
514
- "gemini-2.0-flash.description": "Gemini 2.0 Flash は、卓越したスピード、ネイティブツールの使用、マルチモーダル生成、100 万トークンのコンテキストウィンドウなど、次世代の機能を提供します。",
515
- "gemini-2.5-flash-image-preview.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
516
- "gemini-2.5-flash-image-preview:image.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
517
- "gemini-2.5-flash-image.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
518
- "gemini-2.5-flash-image:image.description": "Nano Banana は、Google による最新かつ最速で最も効率的なネイティブマルチモーダルモデルで、会話形式の画像生成と編集を可能にします。",
519
- "gemini-2.5-flash-lite-preview-06-17.description": "Gemini 2.5 Flash-Lite Preview は、Google による最小かつ最高のコストパフォーマンスを誇るモデルで、大規模な利用に適しています。",
520
- "gemini-2.5-flash-lite-preview-09-2025.description": "Gemini 2.5 Flash-Lite のプレビューリリース(2025年9月25日)",
521
- "gemini-2.5-flash-lite.description": "Gemini 2.5 Flash-Lite は、Google による最小かつ最高のコストパフォーマンスを誇るモデルで、大規模な利用に適しています。",
522
- "gemini-2.5-flash-preview-04-17.description": "Gemini 2.5 Flash Preview は、Google によるフル機能を備えた最高のコストパフォーマンスモデルです。",
523
- "gemini-2.5-flash-preview-09-2025.description": "Gemini 2.5 Flash のプレビューリリース(2025年9月25日)",
524
- "gemini-2.5-flash.description": "Gemini 2.5 Flash は、Google によるフル機能を備えた最高のコストパフォーマンスモデルです。",
525
- "gemini-2.5-pro-preview-03-25.description": "Gemini 2.5 Pro Preview は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
526
- "gemini-2.5-pro-preview-05-06.description": "Gemini 2.5 Pro Preview は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
527
- "gemini-2.5-pro-preview-06-05.description": "Gemini 2.5 Pro Preview は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
528
- "gemini-2.5-pro.description": "Gemini 2.5 Pro は、Google による最も高度な推論モデルで、コード、数学、STEM 問題に対する推論や、大規模なデータセット、コードベース、文書の長文解析に対応します。",
529
- "gemini-3-flash-preview.description": "Gemini 3 Flash は、スピードを重視して設計された最もインテリジェントなモデルで、最先端の知能と優れた検索接地を融合しています。",
530
- "gemini-3-pro-image-preview.description": "Gemini 3 Pro Image(Nano Banana Pro)は、Google による画像生成モデルで、マルチモーダル対話にも対応しています。",
531
- "gemini-3-pro-image-preview:image.description": "Gemini 3 Pro Image(Nano Banana Pro)は、Google による画像生成モデルで、マルチモーダル対話にも対応しています。",
532
- "gemini-3-pro-preview.description": "Gemini 3 Pro は、Google による最も強力なエージェントおよびバイブコーディングモデルで、最先端の推論に加え、より豊かなビジュアルと深いインタラクションを提供します。",
411
+ "deepseek/deepseek-v3/community.description": "DeepSeek-V3は、従来モデルに比べて推論速度で大きなブレークスルーを達成。オープンソースモデルの中でトップにランクインし、最先端のクローズドモデルにも匹敵します。DeepSeek-V3は、DeepSeek-V2で実証されたMulti-Head Latent Attention(MLA)とDeepSeekMoEアーキテクチャを採用。また、負荷分散のためのロスレス補助戦略や、性能を強化するマルチトークン予測学習目標も導入しています。",
412
+ "deepseek_r1.description": "DeepSeek-R1は、強化学習を活用した推論モデルで、繰り返しや可読性の問題に対応します。RL前にはコールドスタートデータを使用し、推論性能をさらに向上。数学、コーディング、推論タスクにおいてOpenAI-o1と同等の性能を発揮し、慎重に設計されたトレーニングにより全体的な結果を改善しています。",
413
+ "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70Bは、Llama-3.3-70B-Instructから蒸留されたモデルで、DeepSeek-R1シリーズの一部として、DeepSeek-R1が生成したサンプルでファインチューニングされ、数学、コーディング、推論において高い性能を発揮します。",
414
+ "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14Bは、Qwen2.5-14Bから蒸留され、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされ、強力な推論能力を発揮します。",
415
+ "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32Bは、Qwen2.5-32Bから蒸留され、DeepSeek-R1が生成した80万件の厳選サンプルでファインチューニングされ、数学、コーディング、推論において卓越した性能を発揮します。",
533
416
  "gemini-flash-latest.description": "Gemini Flash の最新リリース",
534
417
  "gemini-flash-lite-latest.description": "Gemini Flash-Lite の最新リリース",
535
418
  "gemini-pro-latest.description": "Gemini Pro の最新リリース",
@@ -761,4 +644,4 @@
761
644
  "zai/glm-4.5.description": "GLM-4.5シリーズはエージェント向けに設計されており、フラッグシップのGLM-4.5は推論、コーディング、エージェントスキルを統合し、355B総パラメータ(32Bアクティブ)を持つハイブリッド推論システムとしてデュアル動作モードを提供します。",
762
645
  "zai/glm-4.5v.description": "GLM-4.5Vは、GLM-4.5-Airをベースに、実績あるGLM-4.1V-Thinking技術を継承し、強力な106BパラメータのMoEアーキテクチャでスケーリングされています。",
763
646
  "zenmux/auto.description": "ZenMuxの自動ルーティングは、リクエストに基づいて最もコストパフォーマンスと性能に優れた対応モデルを選択します。"
764
- }
647
+ }
@@ -92,11 +92,15 @@
92
92
  "ModelSelect.featureTag.video": "이 모델은 비디오 인식을 지원합니다.",
93
93
  "ModelSelect.featureTag.vision": "이 모델은 시각 인식을 지원합니다.",
94
94
  "ModelSelect.removed": "이 모델은 목록에 없습니다. 선택 해제 시 자동으로 제거됩니다.",
95
+ "ModelSwitchPanel.byModel": "모델별",
96
+ "ModelSwitchPanel.byProvider": "제공자별",
95
97
  "ModelSwitchPanel.emptyModel": "활성화된 모델이 없습니다. 설정에서 활성화하세요.",
96
98
  "ModelSwitchPanel.emptyProvider": "활성화된 서비스 제공자가 없습니다. 설정에서 활성화하세요.",
97
99
  "ModelSwitchPanel.goToSettings": "설정으로 이동",
100
+ "ModelSwitchPanel.manageProvider": "제공자 관리",
98
101
  "ModelSwitchPanel.provider": "서비스 제공자",
99
102
  "ModelSwitchPanel.title": "모델",
103
+ "ModelSwitchPanel.useModelFrom": "다음에서 이 모델 사용:",
100
104
  "MultiImagesUpload.actions.uploadMore": "클릭하거나 끌어다 놓아 더 많은 이미지 업로드",
101
105
  "MultiImagesUpload.modal.complete": "완료",
102
106
  "MultiImagesUpload.modal.newFileIndicator": "신규",
@@ -348,170 +348,48 @@
348
348
  "deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5는 DeepSeek-V2-Chat과 DeepSeek-Coder-V2-Instruct를 업그레이드하여 일반 및 코딩 능력을 통합합니다. 글쓰기 및 지시문 이행 능력을 향상시켜 선호도 정렬을 개선하며, AlpacaEval 2.0, ArenaHard, AlignBench, MT-Bench에서 큰 성능 향상을 보입니다.",
349
349
  "deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus는 하이브리드 에이전트 LLM으로 포지셔닝된 V3.1 모델의 업데이트 버전입니다. 사용자 피드백 문제를 해결하고 안정성, 언어 일관성, 중문/영문 혼합 및 비정상 문자 출력을 개선합니다. 사고 및 비사고 모드를 통합하고 채팅 템플릿을 통해 유연하게 전환할 수 있으며, Code Agent 및 Search Agent 성능도 향상되어 도구 사용 및 다단계 작업에서 더 높은 신뢰성을 제공합니다.",
350
350
  "deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1은 하이브리드 추론 아키텍처를 사용하며, 사고 모드와 비사고 모드를 모두 지원합니다.",
351
- "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp는 차세대 아키텍처로의 전환을 위한 실험적 V3.2 릴리스입니다. V3.1-Terminus 위에 DeepSeek Sparse Attention(DSA)을 추가하여 긴 문맥 학습 및 추론 효율성을 향상시켰으며, 도구 사용, 장문 문서 이해, 다단계 추론에 최적화되어 있습니다. 대규모 문맥 처리 예산 하에서 고차원 추론 효율성을 탐색하기에 이상적입니다.",
352
- "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3는 MLA와 DeepSeekMoE를 기반으로 손실 없는 부하 분산을 구현한 671B 파라미터의 MoE 모델입니다. 14.8T 고품질 토큰으로 사전 학습되었으며 SFT와 RL을 통해 미세 조정되어, 다른 오픈 모델을 능가하고 주요 폐쇄형 모델에 근접한 성능을 보입니다.",
351
+ "deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp는 차세대 아키텍처로의 전환을 위한 실험적 V3.2 릴리스입니다. V3.1-Terminus 기반 위에 DeepSeek Sparse Attention(DSA)을 추가하여 긴 문맥 학습 및 추론 효율을 향상시켰으며, 도구 사용, 장문 이해, 다단계 추론에 최적화되어 있습니다. 대규모 문맥 처리 예산 하에서 고차원 추론 효율을 탐색하기에 이상적입니다.",
352
+ "deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3는 MLA와 DeepSeekMoE를 활용한 671B 파라미터의 MoE 모델로, 손실 없는 부하 분산을 통해 학습 추론 효율을 극대화합니다. 14.8T 고품질 토큰으로 사전 학습되었으며, SFT와 RL을 통해 다른 오픈 모델을 능가하고 주요 폐쇄형 모델에 근접한 성능을 보입니다.",
353
353
  "deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B)은 심층 언어 이해와 상호작용을 제공하는 혁신적인 모델입니다.",
354
354
  "deepseek-ai/deepseek-r1.description": "최신 기술을 반영한 고효율 LLM으로, 추론, 수학, 프로그래밍에 강점을 보입니다.",
355
- "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
356
- "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1은 복잡한 추론과 사고의 흐름(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
357
- "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2는 DeepSeekMoE-27B 기반의 MoE 비전-언어 모델로, 희소 활성화를 통해 4.5B 활성 파라미터만으로도 뛰어난 성능을 발휘합니다. 시각적 질의응답, OCR, 문서/표/차트 이해, 시각적 정렬에 탁월합니다.",
358
- "deepseek-chat.description": "일반 대화 능력과 코딩 능력을 결합한 새로운 오픈소스 모델입니다. 대화형 모델의 일반적인 대화 능력과 코더 모델의 강력한 코딩 능력을 유지하면서 선호도 정렬이 향상되었습니다. DeepSeek-V2.5는 글쓰기와 지시 따르기 능력도 개선되었습니다.",
355
+ "deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1은 복잡한 추론과 연쇄적 사고(chain-of-thought)에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
356
+ "deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1은 복잡한 추론과 연쇄적 사고에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
357
+ "deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2는 DeepSeekMoE-27B 기반의 MoE 비전-언어 모델로, 희소 활성화를 통해 4.5B 활성 파라미터만으로도 뛰어난 성능을 발휘합니다. 시각적 QA, OCR, 문서/표/차트 이해, 시각적 정렬에 탁월합니다.",
358
+ "deepseek-chat.description": "일반 대화 능력과 코드 처리 능력을 결합한 새로운 오픈소스 모델입니다. 대화 모델의 자연스러운 상호작용과 코드 모델의 강력한 코딩 능력을 유지하며, 사용자 선호도 정렬이 향상되었습니다. DeepSeek-V2.5는 글쓰기와 지시 따르기에서도 개선되었습니다.",
359
359
  "deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B는 2T 토큰(코드 87%, 중/영문 텍스트 13%)으로 학습된 코드 언어 모델입니다. 16K 문맥 창과 중간 채우기(fit-in-the-middle) 작업을 도입하여 프로젝트 수준의 코드 완성과 코드 조각 보완을 지원합니다.",
360
- "deepseek-coder-v2.description": "DeepSeek Coder V2는 오픈소스 MoE 코드 모델로, GPT-4 Turbo에 필적하는 뛰어난 코딩 성능을 자랑합니다.",
361
- "deepseek-coder-v2:236b.description": "DeepSeek Coder V2는 오픈소스 MoE 코드 모델로, GPT-4 Turbo에 필적하는 뛰어난 코딩 성능을 자랑합니다.",
360
+ "deepseek-coder-v2.description": "DeepSeek Coder V2는 GPT-4 Turbo에 필적하는 성능을 보이는 오픈소스 MoE 코드 모델입니다.",
361
+ "deepseek-coder-v2:236b.description": "DeepSeek Coder V2는 GPT-4 Turbo에 필적하는 성능을 보이는 오픈소스 MoE 코드 모델입니다.",
362
362
  "deepseek-ocr.description": "DeepSeek-OCR은 DeepSeek AI가 개발한 비전-언어 모델로, OCR과 '문맥 기반 광학 압축'에 중점을 둡니다. 이미지에서 문맥 정보를 압축하고 문서를 효율적으로 처리하여 Markdown과 같은 구조화된 텍스트 형식으로 변환합니다. 이미지 내 텍스트를 정확하게 인식하여 문서 디지털화, 텍스트 추출, 구조화 처리에 적합합니다.",
363
- "deepseek-r1-0528.description": "2025년 5월 28일에 공개된 685B 전체 모델입니다. DeepSeek-R1은 사후 학습에서 대규모 강화 학습을 활용하여 소량의 라벨 데이터로도 추론 능력을 크게 향상시켰으며, 수학, 코딩, 자연어 추론에서 뛰어난 성능을 보입니다.",
363
+ "deepseek-r1-0528.description": "2025년 5월 28 공개된 685B 전체 모델입니다. DeepSeek-R1은 사후 학습에서 대규모 강화 학습을 적용하여 적은 라벨 데이터로도 추론 능력을 크게 향상시켰으며, 수학, 코딩, 자연어 추론에서 뛰어난 성능을 보입니다.",
364
364
  "deepseek-r1-250528.description": "DeepSeek R1 250528은 고난도 수학 및 논리 작업을 위한 DeepSeek-R1 전체 추론 모델입니다.",
365
365
  "deepseek-r1-70b-fast-online.description": "DeepSeek R1 70B의 빠른 버전으로, 실시간 웹 검색을 지원하며 성능을 유지하면서 더 빠른 응답을 제공합니다.",
366
366
  "deepseek-r1-70b-online.description": "DeepSeek R1 70B 표준 버전으로, 실시간 웹 검색을 지원하며 최신 대화 및 텍스트 작업에 적합합니다.",
367
- "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B는 R1 추론을 Llama 생태계와 결합한 모델입니다.",
368
- "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B는 DeepSeek R1의 출력을 기반으로 Llama-3.1-8B에서 증류된 모델입니다.",
367
+ "deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B는 R1 추론과 Llama 생태계를 결합한 모델입니다.",
368
+ "deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B는 Llama-3.1-8B에서 DeepSeek R1 출력을 기반으로 증류된 모델입니다.",
369
369
  "deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama는 DeepSeek-R1을 Llama에 증류한 모델입니다.",
370
- "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B는 Qianfan-70B 기반으로 R1 증류 모델로, 높은 가치의 성능을 제공합니다.",
371
- "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B는 Qianfan-8B 기반으로 R1 증류 모델로, 중소형 애플리케이션에 적합합니다.",
372
- "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B는 Llama-70B 기반으로 R1 증류 모델입니다.",
370
+ "deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B는 Qianfan-70B 기반의 R1 증류 모델로, 높은 가치와 성능을 제공합니다.",
371
+ "deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B는 Qianfan-8B 기반의 R1 증류 모델로, 중소형 애플리케이션에 적합합니다.",
372
+ "deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B는 Llama-70B 기반의 R1 증류 모델입니다.",
373
373
  "deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B는 매우 저자원 환경을 위한 초경량 증류 모델입니다.",
374
374
  "deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B는 다양한 시나리오에 배포 가능한 중형 증류 모델입니다.",
375
- "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B는 Qwen-32B 기반으로 R1 증류 모델로, 성능과 비용의 균형을 이룹니다.",
375
+ "deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B는 Qwen-32B 기반의 R1 증류 모델로, 성능과 비용의 균형을 이룹니다.",
376
376
  "deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B는 엣지 및 프라이빗 기업 환경을 위한 경량 증류 모델입니다.",
377
377
  "deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen은 DeepSeek-R1을 Qwen에 증류한 모델입니다.",
378
378
  "deepseek-r1-fast-online.description": "DeepSeek R1의 빠른 전체 버전으로, 실시간 웹 검색을 지원하며 671B 규모의 성능과 빠른 응답을 결합합니다.",
379
379
  "deepseek-r1-online.description": "DeepSeek R1 전체 버전은 671B 파라미터와 실시간 웹 검색을 지원하여 더 강력한 이해 및 생성 능력을 제공합니다.",
380
- "deepseek-r1.description": "DeepSeek-R1은 강화 학습 이전에 콜드 스타트 데이터를 사용하며, 수학, 코딩, 추론 작업에서 OpenAI-o1과 유사한 성능을 보입니다.",
381
- "deepseek-reasoner.description": "DeepSeek V3.2 추론 모드는 최종 답변 전에 사고 과정을 출력하여 정확도를 높입니다.",
380
+ "deepseek-r1.description": "DeepSeek-R1은 강화 학습 콜드 스타트 데이터를 사용하며, 수학, 코딩, 추론에서 OpenAI-o1과 유사한 성능을 보입니다.",
381
+ "deepseek-reasoner.description": "DeepSeek V3.2 사고 모드는 최종 답변 전에 연쇄적 사고를 출력하여 정확도를 향상시킵니다.",
382
382
  "deepseek-v2.description": "DeepSeek V2는 비용 효율적인 처리를 위한 고효율 MoE 모델입니다.",
383
383
  "deepseek-v2:236b.description": "DeepSeek V2 236B는 코드 생성에 강점을 가진 DeepSeek의 코드 특화 모델입니다.",
384
- "deepseek-v3-0324.description": "DeepSeek-V3-0324는 671B 파라미터의 MoE 모델로, 프로그래밍 및 기술적 역량, 문맥 이해, 장문 처리에서 뛰어난 성능을 보입니다.",
385
- "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus는 터미널 장치에 최적화된 DeepSeek의 LLM으로, 터미널 환경에 맞춰 설계되었습니다.",
386
- "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821은 Terminus 버전에 대응하는 심층 사고 모델로, 고성능 추론을 위해 구축되었습니다.",
387
- "deepseek-v3.1.description": "DeepSeek-V3.1은 DeepSeek의 새로운 하이브리드 추론 모델로, 사고 모드와 비사고 모드를 모두 지원하며, DeepSeek-R1-0528보다 높은 사고 효율을 제공합니다. 사후 학습 최적화를 통해 에이전트 도구 사용 및 작업 수행 능력이 크게 향상되었습니다. 128k 컨텍스트 윈도우와 최대 64k 출력 토큰을 지원합니다.",
388
- "deepseek-v3.1:671b.description": "DeepSeek V3.1은 복잡한 추론과 연쇄 사고 능력이 향상된 차세대 추론 모델로, 심층 분석이 필요한 작업에 적합합니다.",
389
- "deepseek-v3.2-exp.description": "deepseek-v3.2-exp는 희소 어텐션(sparse attention)을 도입하여 텍스트에 대한 학습 및 추론 효율을 개선하였으며, deepseek-v3.1보다 저렴한 가격으로 제공됩니다.",
390
- "deepseek-v3.2-think.description": "DeepSeek V3.2 Think는 장기 연쇄 추론 능력이 강화된 완전 심층 사고 모델입니다.",
391
- "deepseek-v3.2.description": "DeepSeek-V3.2는 DeepSeek가 출시한 최초의 도구 사용에 사고를 통합한 하이브리드 추론 모델로, 효율적인 아키텍처로 연산 자원을 절약하고, 대규모 강화 학습으로 능력을 향상시키며, 대규모 합성 작업 데이터를 통해 일반화 성능을 강화합니다. 이 세 가지 요소의 결합으로 GPT-5-High에 필적하는 성능을 제공하며, 출력 길이를 대폭 줄여 계산 비용과 사용자 대기 시간을 현저히 감소시켰습니다.",
384
+ "deepseek-v3-0324.description": "DeepSeek-V3-0324는 671B 파라미터의 MoE 모델로, 프로그래밍 및 기술 역량, 문맥 이해, 장문 처리에서 뛰어난 성능을 보입니다.",
385
+ "deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus는 터미널 장치에 최적화된 DeepSeek의 LLM입니다.",
386
+ "deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821은 Terminus 버전에 대응하는 심층 사고 모델로, 고성능 추론을 위해 설계되었습니다.",
387
+ "deepseek-v3.1.description": "DeepSeek-V3.1은 DeepSeek의 새로운 하이브리드 추론 모델로, 사고 비사고 모드를 모두 지원하며 DeepSeek-R1-0528보다 높은 사고 효율을 제공합니다. 사후 학습 최적화를 통해 에이전트 도구 사용 및 작업 성능이 크게 향상되었으며, 128k 문맥 창과 최대 64k 출력 토큰을 지원합니다.",
388
+ "deepseek-v3.1:671b.description": "DeepSeek V3.1은 복잡한 추론과 연쇄적 사고에 강한 차세대 추론 모델로, 심층 분석 작업에 적합합니다.",
389
+ "deepseek-v3.2-exp.description": "deepseek-v3.2-exp는 희소 어텐션을 도입하여 장문 텍스트의 학습 및 추론 효율을 향상시키며, deepseek-v3.1보다 저렴한 비용으로 제공됩니다.",
390
+ "deepseek-v3.2-think.description": "DeepSeek V3.2 Think는 더욱 강력한 장기 연쇄 추론을 지원하는 완전한 심층 사고 모델입니다.",
391
+ "deepseek-v3.2.description": "DeepSeek-V3.2는 DeepSeek가 출시한 최초의 도구 사용에 사고를 결합한 하이브리드 추론 모델로, 효율적인 아키텍처로 연산을 절감하고, 대규모 강화 학습으로 능력을 향상시키며, 대규모 합성 작업 데이터로 일반화 성능을 강화합니다. 이 세 가지를 결합하여 GPT-5-High에 필적하는 성능을 제공하며, 출력 길이를 대폭 줄여 계산 비용과 사용자 대기 시간을 현저히 감소시켰습니다.",
392
392
  "deepseek-v3.description": "DeepSeek-V3는 총 671B 파라미터 중 토큰당 37B가 활성화되는 강력한 MoE 모델입니다.",
393
- "deepseek-vl2-small.description": "DeepSeek VL2 Small은 자원이 제한되거나 동시 접속이 많은 환경을 위한 경량 멀티모달 버전입니다.",
394
- "deepseek-vl2.description": "DeepSeek VL2는 이미지-텍스트 이해와 정밀한 시각적 질의응답에 특화된 멀티모달 모델입니다.",
395
- "deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3는 685B 파라미터를 가진 MoE 모델로, DeepSeek의 대표 챗봇 시리즈의 최신 버전입니다.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)를 기반으로 다양한 작업에서 뛰어난 성능을 발휘합니다.",
396
- "deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3는 685B 파라미터를 가진 MoE 모델로, DeepSeek의 대표 챗봇 시리즈의 최신 버전입니다.\n\n[DeepSeek V3](/deepseek/deepseek-chat-v3)를 기반으로 다양한 작업에서 뛰어난 성능을 발휘합니다.",
397
- "deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1은 DeepSeek의 장문 컨텍스트 하이브리드 추론 모델로, 사고/비사고 모드 전환과 도구 통합을 지원합니다.",
398
- "deepseek/deepseek-chat.description": "DeepSeek-V3는 복잡한 작업과 도구 통합을 위한 DeepSeek의 고성능 하이브리드 추론 모델입니다.",
399
- "deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528은 공개 사용성과 심층 추론에 중점을 둔 업데이트 버전입니다.",
400
- "deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1은 최소한의 라벨링 데이터로도 추론 능력을 크게 향상시키며, 최종 답변 전에 사고 과정을 출력하여 정확도를 높입니다.",
401
- "deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B는 Llama 3.3 70B를 기반으로 DeepSeek R1의 출력으로 파인튜닝된 디스틸 LLM으로, 대형 최첨단 모델과 경쟁할 수 있는 성능을 제공합니다.",
402
- "deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B는 Llama-3.1-8B-Instruct를 기반으로 DeepSeek R1의 출력으로 학습된 디스틸 LLM입니다.",
403
- "deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B는 Qwen 2.5 14B를 기반으로 DeepSeek R1의 출력으로 학습된 디스틸 LLM입니다. OpenAI o1-mini를 여러 벤치마크에서 능가하며, 밀집 모델 중 최고 성능을 기록합니다. 주요 벤치마크:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDeepSeek R1 출력으로 파인튜닝하여 대형 모델과 경쟁 가능한 성능을 제공합니다.",
404
- "deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B는 Qwen 2.5 32B를 기반으로 DeepSeek R1의 출력으로 학습된 디스틸 LLM입니다. OpenAI o1-mini를 여러 벤치마크에서 능가하며, 밀집 모델 중 최고 성능을 기록합니다. 주요 벤치마크:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDeepSeek R1 출력으로 파인튜닝하여 대형 모델과 경쟁 가능한 성능을 제공합니다.",
405
- "deepseek/deepseek-r1.description": "DeepSeek R1은 DeepSeek-R1-0528로 업데이트되었습니다. 더 많은 연산 자원과 사후 학습 알고리즘 최적화를 통해 추론 깊이와 능력이 크게 향상되었습니다. 수학, 프로그래밍, 일반 논리 벤치마크에서 뛰어난 성능을 보이며, o3 및 Gemini 2.5 Pro와 같은 선도 모델에 근접합니다.",
406
- "deepseek/deepseek-r1/community.description": "DeepSeek R1은 DeepSeek 팀이 공개한 최신 오픈소스 모델로, 수학, 코딩, 추론 작업에서 매우 강력한 성능을 발휘하며, OpenAI o1과 견줄 수 있습니다.",
407
- "deepseek/deepseek-r1:free.description": "DeepSeek-R1은 최소한의 라벨링 데이터로도 추론 능력을 크게 향상시키며, 최종 답변 전에 사고 과정을 출력하여 정확도를 높입니다.",
408
- "deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner)은 DeepSeek의 실험적 추론 모델로, 고난도 복잡 추론 작업에 적합합니다.",
409
- "deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base는 DeepSeek V3 모델의 개선 버전입니다.",
410
- "deepseek/deepseek-v3.description": "추론 능력이 향상된 고속 범용 LLM입니다.",
411
- "deepseek/deepseek-v3/community.description": "DeepSeek-V3는 이전 모델 대비 추론 속도에서 획기적인 발전을 이루었습니다. 오픈소스 모델 중 1위를 기록하며, 최고 수준의 폐쇄형 모델과 경쟁합니다. DeepSeek-V3는 DeepSeek-V2에서 검증된 Multi-Head Latent Attention (MLA)과 DeepSeekMoE 아키텍처를 채택하였으며, 부하 균형을 위한 무손실 보조 전략과 다중 토큰 예측 학습 목표를 도입하여 성능을 강화했습니다.",
412
- "deepseek_r1.description": "DeepSeek-R1은 반복성과 가독성 문제를 해결하기 위해 강화 학습 기반으로 설계된 추론 모델입니다. RL 이전에는 cold-start 데이터를 활용하여 추론 성능을 더욱 향상시킵니다. 수학, 코딩, 추론 작업에서 OpenAI-o1과 대등한 성능을 보이며, 정교한 학습 설계로 전반적인 결과를 개선합니다.",
413
- "deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B는 Llama-3.3-70B-Instruct에서 디스틸된 모델로, DeepSeek-R1 시리즈의 일부입니다. DeepSeek-R1이 생성한 샘플로 파인튜닝되어 수학, 코딩, 추론에서 뛰어난 성능을 발휘합니다.",
414
- "deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B는 Qwen2.5-14B에서 디스틸되었으며, DeepSeek-R1이 생성한 80만 개의 정제된 샘플로 파인튜닝되어 강력한 추론 능력을 제공합니다.",
415
- "deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B는 Qwen2.5-32B에서 디스틸되었으며, DeepSeek-R1이 생성한 80만 개의 정제된 샘플로 파인튜닝되어 수학, 코딩, 추론에서 탁월한 성능을 발휘합니다.",
416
- "devstral-2:123b.description": "Devstral 2 123B는 코드베이스 탐색, 다중 파일 편집, 소프트웨어 엔지니어링 에이전트 지원에 탁월한 도구 활용 능력을 갖춘 모델입니다.",
417
- "doubao-1.5-lite-32k.description": "Doubao-1.5-lite는 초고속 응답을 제공하는 경량 모델로, 최고 수준의 품질과 지연 시간을 자랑합니다.",
418
- "doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k는 Doubao-1.5-Pro의 전면 업그레이드 버전으로, 전체 성능이 10% 향상되었습니다. 256k 컨텍스트 윈도우와 최대 12k 출력 토큰을 지원하며, 더 넓은 활용 사례에 적합한 고성능과 가성비를 제공합니다.",
419
- "doubao-1.5-pro-32k.description": "Doubao-1.5-pro는 지식, 코딩, 추론 전반에서 뛰어난 성능을 보이는 차세대 플래그십 모델입니다.",
420
- "doubao-1.5-thinking-pro-m.description": "Doubao-1.5는 수학, 코딩, 과학적 추론, 창의적 글쓰기 등 일반 작업에서 뛰어난 성능을 보이는 심층 추론 모델입니다. m 버전은 멀티모달 심층 추론을 기본으로 포함하며, AIME 2024, Codeforces, GPQA 등 주요 벤치마크에서 최고 수준의 결과를 달성하거나 근접합니다. 128k 컨텍스트 윈도우와 16k 출력 토큰을 지원합니다.",
421
- "doubao-1.5-thinking-pro.description": "Doubao-1.5는 수학, 코딩, 과학적 추론, 창의적 글쓰기 등 일반 작업에서 뛰어난 성능을 보이는 심층 추론 모델입니다. AIME 2024, Codeforces, GPQA 등 주요 벤치마크에서 최고 수준의 결과를 달성하거나 근접하며, 128k 컨텍스트 윈도우와 16k 출력 토큰을 지원합니다.",
422
- "doubao-1.5-thinking-vision-pro.description": "더 강력한 멀티모달 이해 및 추론 능력을 갖춘 새로운 시각 심층 추론 모델로, 59개 공개 벤치마크 중 37개에서 SOTA 성과를 달성했습니다.",
423
- "doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS는 GUI 중심의 네이티브 에이전트 모델로, 인간과 유사한 인지, 추론, 행동을 통해 인터페이스와 자연스럽게 상호작용합니다.",
424
- "doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite는 모든 해상도 및 극단적인 종횡비의 이미지를 지원하는 업그레이드된 멀티모달 모델로, 시각적 추론, 문서 인식, 세부 이해, 지시 따르기 능력을 향상시킵니다. 128k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
425
- "doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro는 모든 해상도 및 극단적인 종횡비의 이미지를 지원하는 업그레이드된 멀티모달 모델로, 시각적 추론, 문서 인식, 세부 이해, 지시 따르기 능력을 향상시킵니다.",
426
- "doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro는 모든 해상도 및 극단적인 종횡비의 이미지를 지원하는 업그레이드된 멀티모달 모델로, 시각적 추론, 문서 인식, 세부 이해, 지시 따르기 능력을 향상시킵니다.",
427
- "doubao-lite-128k.description": "초고속 응답과 뛰어난 가성비를 제공하며, 다양한 상황에서 유연한 선택이 가능합니다. 128k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
428
- "doubao-lite-32k.description": "초고속 응답과 뛰어난 가성비를 제공하며, 다양한 상황에서 유연한 선택이 가능합니다. 32k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
429
- "doubao-lite-4k.description": "초고속 응답과 뛰어난 가성비를 제공하며, 다양한 상황에서 유연한 선택이 가능합니다. 4k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
430
- "doubao-pro-256k.description": "복잡한 작업을 위한 최고 성능의 플래그십 모델로, 참조 기반 질의응답, 요약, 창작, 텍스트 분류, 롤플레이 등에서 강력한 성과를 보입니다. 256k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
431
- "doubao-pro-32k.description": "복잡한 작업을 위한 최고 성능의 플래그십 모델로, 참조 기반 질의응답, 요약, 창작, 텍스트 분류, 롤플레이 등에서 강력한 성과를 보입니다. 32k 컨텍스트 윈도우를 지원하며 추론 및 파인튜닝이 가능합니다.",
432
- "doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash는 TPOT 10ms 수준의 초고속 멀티모달 심층 추론 모델입니다. 텍스트와 시각 입력을 모두 지원하며, 텍스트 이해는 이전 lite 모델을 능가하고, 시각 성능은 경쟁 pro 모델과 동등합니다. 256k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
433
- "doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite는 추론 강도를 조절할 수 있는 새로운 멀티모달 심층 추론 모델로, 일반 작업에 적합한 가성비 높은 선택지를 제공합니다. 최대 256k 컨텍스트 윈도우를 지원합니다.",
434
- "doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6-thinking은 Doubao-1.5-thinking-pro보다 코딩, 수학, 논리 추론의 핵심 능력을 더욱 강화하고 시각 이해 기능을 추가한 모델입니다. 256k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
435
- "doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision은 교육, 이미지 리뷰, 검사/보안, AI 검색 질의응답 등에서 강력한 멀티모달 이해 및 추론을 제공하는 시각 심층 추론 모델입니다. 256k 컨텍스트 윈도우와 최대 64k 출력 토큰을 지원합니다.",
436
- "doubao-seed-1.6.description": "Doubao-Seed-1.6은 자동, 사고, 비사고 모드를 지원하는 새로운 멀티모달 심층 추론 모델입니다. 비사고 모드에서는 Doubao-1.5-pro/250115보다 현저히 뛰어난 성능을 보입니다. 256k 컨텍스트 윈도우와 최대 16k 출력 토큰을 지원합니다.",
437
- "doubao-seed-1.8.description": "Doubao-Seed-1.8은 더 강력한 멀티모달 이해력과 에이전트 능력을 갖추고 있으며, 텍스트/이미지/비디오 입력과 컨텍스트 캐시를 지원하여 복잡한 작업에서 뛰어난 성능을 발휘합니다.",
438
- "doubao-seed-code.description": "Doubao-Seed-Code는 에이전트 기반 코딩에 최적화된 모델로, 멀티모달 입력(텍스트/이미지/비디오)과 256k 컨텍스트 윈도우를 지원하며, Anthropic API와 호환됩니다. 코딩, 시각 이해, 에이전트 워크플로우에 적합합니다.",
439
- "doubao-seededit-3-0-i2i-250628.description": "ByteDance Seed의 Doubao 이미지 모델은 텍스트 및 이미지 입력을 지원하며, 고품질 이미지 생성과 세밀한 제어가 가능합니다. 텍스트 기반 이미지 편집을 지원하며, 출력 크기는 긴 변 기준 512~1536 사이입니다.",
440
- "doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0은 ByteDance Seed의 이미지 생성 모델로, 텍스트 및 이미지 입력을 지원하며, 고품질 이미지 생성을 세밀하게 제어할 수 있습니다. 텍스트 프롬프트로부터 이미지를 생성합니다.",
441
- "doubao-seedream-4-0-250828.description": "Seedream 4.0은 ByteDance Seed의 이미지 생성 모델로, 텍스트 및 이미지 입력을 지원하며, 고품질 이미지 생성을 세밀하게 제어할 수 있습니다. 텍스트 프롬프트로부터 이미지를 생성합니다.",
442
- "doubao-vision-lite-32k.description": "Doubao-vision은 Doubao의 멀티모달 모델로, 강력한 이미지 이해 및 추론 능력과 정확한 지시 따르기 기능을 갖추고 있습니다. 이미지-텍스트 추출 및 이미지 기반 추론 작업에서 뛰어난 성능을 발휘하며, 더 복잡하고 다양한 시각 질의응답 시나리오를 가능하게 합니다.",
443
- "doubao-vision-pro-32k.description": "Doubao-vision은 Doubao의 멀티모달 모델로, 강력한 이미지 이해 및 추론 능력과 정확한 지시 따르기 기능을 갖추고 있습니다. 이미지-텍스트 추출 및 이미지 기반 추론 작업에서 뛰어난 성능을 발휘하며, 더 복잡하고 다양한 시각 질의응답 시나리오를 가능하게 합니다.",
444
- "emohaa.description": "Emohaa는 전문 상담 능력을 갖춘 정신 건강 모델로, 사용자가 감정 문제를 이해하도록 돕습니다.",
445
- "ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B는 로컬 및 맞춤형 배포를 위한 오픈소스 경량 모델입니다.",
446
- "ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B는 이해력과 생성 능력이 뛰어난 오픈소스 대규모 파라미터 모델입니다.",
447
- "ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B는 Baidu ERNIE의 초대형 MoE 모델로, 탁월한 추론 능력을 자랑합니다.",
448
- "ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview는 ERNIE 4.5의 평가를 위한 8K 컨텍스트 프리뷰 모델입니다.",
449
- "ernie-4.5-turbo-128k-preview.description": "ERNIE 4.5 Turbo 128K Preview는 릴리스 수준의 기능을 갖춘 모델로, 통합 및 카나리아 테스트에 적합합니다.",
450
- "ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K는 검색 보강 및 도구 호출 기능을 갖춘 고성능 범용 모델로, QA, 코딩, 에이전트 시나리오에 적합합니다.",
451
- "ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K는 QA, 지식 기반 검색, 다중 턴 대화를 위한 중간 길이 컨텍스트 버전입니다.",
452
- "ernie-4.5-turbo-latest.description": "최신 ERNIE 4.5 Turbo는 전반적인 성능이 최적화되어 주력 프로덕션 모델로 이상적입니다.",
453
- "ernie-4.5-turbo-vl-32k-preview.description": "ERNIE 4.5 Turbo VL 32K Preview는 장문 컨텍스트 비전 능력 평가를 위한 32K 멀티모달 프리뷰 모델입니다.",
454
- "ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K는 장문 문서와 이미지 이해를 결합한 중장기 멀티모달 버전입니다.",
455
- "ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL Latest는 이미지-텍스트 이해 및 추론 능력이 향상된 최신 멀티모달 버전입니다.",
456
- "ernie-4.5-turbo-vl-preview.description": "ERNIE 4.5 Turbo VL Preview는 이미지-텍스트 이해 및 생성을 위한 멀티모달 프리뷰 모델로, 시각적 QA 및 콘텐츠 이해에 적합합니다.",
457
- "ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL은 프로덕션 환경에서 이미지-텍스트 이해 및 인식을 위한 성숙한 멀티모달 모델입니다.",
458
- "ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B는 이미지-텍스트 이해 및 추론을 위한 오픈소스 멀티모달 모델입니다.",
459
- "ernie-5.0-thinking-latest.description": "Wenxin 5.0 Thinking은 텍스트, 이미지, 오디오, 비디오를 통합 모델링하는 네이티브 풀모달 플래그십 모델로, 복잡한 QA, 창작, 에이전트 시나리오에 대한 전반적인 기능 향상을 제공합니다.",
460
- "ernie-5.0-thinking-preview.description": "Wenxin 5.0 Thinking Preview는 텍스트, 이미지, 오디오, 비디오를 통합 모델링하는 네이티브 풀모달 플래그십 모델로, 복잡한 QA, 창작, 에이전트 시나리오에 대한 전반적인 기능 향상을 제공합니다.",
461
- "ernie-char-8k.description": "ERNIE Character 8K는 IP 캐릭터 구축 및 장기 동반자형 대화를 위한 페르소나 대화 모델입니다.",
462
- "ernie-char-fiction-8k-preview.description": "ERNIE Character Fiction 8K Preview는 캐릭터 및 플롯 창작 기능 평가를 위한 프리뷰 모델입니다.",
463
- "ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K는 장편 소설 및 플롯 창작에 적합한 페르소나 모델입니다.",
464
- "ernie-irag-edit.description": "ERNIE iRAG Edit는 지우기, 다시 그리기, 변형 생성 등을 지원하는 이미지 편집 모델입니다.",
465
- "ernie-lite-8k.description": "ERNIE Lite 8K는 비용 민감한 일상 QA 및 콘텐츠 생성을 위한 경량 범용 모델입니다.",
466
- "ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K는 지연 시간 및 비용에 민감한 시나리오를 위한 경량 고성능 모델입니다.",
467
- "ernie-novel-8k.description": "ERNIE Novel 8K는 다중 캐릭터 내러티브를 포함한 장편 소설 및 IP 플롯 생성을 위해 설계되었습니다.",
468
- "ernie-speed-128k.description": "ERNIE Speed 128K는 I/O 비용이 없는 모델로, 장문 이해 및 대규모 테스트에 적합합니다.",
469
- "ernie-speed-8k.description": "ERNIE Speed 8K는 일상 대화 및 간단한 텍스트 작업을 위한 무료 고속 모델입니다.",
470
- "ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K는 대규모 온라인 서비스 및 엔터프라이즈 앱을 위한 고동시성 고가치 모델입니다.",
471
- "ernie-tiny-8k.description": "ERNIE Tiny 8K는 간단한 QA, 분류, 저비용 추론을 위한 초경량 모델입니다.",
472
- "ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K는 복잡한 추론 및 다중 턴 대화를 위한 32K 컨텍스트의 고속 사고 모델입니다.",
473
- "ernie-x1.1-preview.description": "ERNIE X1.1 Preview는 평가 및 테스트를 위한 사고 모델 프리뷰입니다.",
474
- "fal-ai/bytedance/seedream/v4.description": "Seedream 4.0은 ByteDance Seed에서 개발한 이미지 생성 모델로, 텍스트와 이미지 입력을 지원하며 고품질의 이미지 생성과 높은 제어력을 제공합니다. 텍스트 프롬프트로부터 이미지를 생성합니다.",
475
- "fal-ai/flux-kontext/dev.description": "FLUX.1 모델은 이미지 편집에 중점을 두며, 텍스트와 이미지 입력을 지원합니다.",
476
- "fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro]는 텍스트와 참조 이미지를 입력으로 받아, 국소 편집과 복잡한 장면 변환을 정밀하게 수행할 수 있습니다.",
477
- "fal-ai/flux/krea.description": "Flux Krea [dev]는 보다 사실적이고 자연스러운 이미지 스타일에 중점을 둔 이미지 생성 모델입니다.",
478
- "fal-ai/flux/schnell.description": "FLUX.1 [schnell]은 빠르고 고품질의 출력을 위해 설계된 120억 파라미터 이미지 생성 모델입니다.",
479
- "fal-ai/hunyuan-image/v3.description": "강력한 네이티브 멀티모달 이미지 생성 모델입니다.",
480
- "fal-ai/imagen4/preview.description": "Google에서 개발한 고품질 이미지 생성 모델입니다.",
481
- "fal-ai/nano-banana.description": "Nano Banana는 Google의 최신, 가장 빠르고 효율적인 네이티브 멀티모달 모델로, 대화형 이미지 생성 및 편집을 지원합니다.",
482
- "fal-ai/qwen-image-edit.description": "Qwen 팀에서 개발한 전문 이미지 편집 모델로, 의미 및 외형 편집을 지원하며, 중국어 및 영어 텍스트를 정밀하게 편집하고 스타일 전환, 객체 회전 등 고품질 편집을 수행할 수 있습니다.",
483
- "fal-ai/qwen-image.description": "Qwen 팀에서 개발한 강력한 이미지 생성 모델로, 중국어 텍스트 렌더링과 다양한 시각 스타일에서 뛰어난 성능을 보입니다.",
484
- "flux-1-schnell.description": "Black Forest Labs에서 개발한 120억 파라미터 텍스트-이미지 모델로, 잠재 적대 확산 증류를 사용하여 1~4단계 내에 고품질 이미지를 생성합니다. 상용 모델과 경쟁하며, Apache-2.0 라이선스로 개인, 연구, 상업적 사용이 가능합니다.",
485
- "flux-dev.description": "FLUX.1 [dev]는 비상업적 사용을 위한 오픈 가중치 증류 모델로, 전문가 수준의 이미지 품질과 지시 따르기를 유지하면서도 더 효율적으로 작동합니다.",
486
- "flux-kontext-max.description": "최첨단 문맥 기반 이미지 생성 및 편집 모델로, 텍스트와 이미지를 결합하여 정밀하고 일관된 결과를 생성합니다.",
487
- "flux-kontext-pro.description": "최첨단 문맥 기반 이미지 생성 및 편집 모델로, 텍스트와 이미지를 결합하여 정밀하고 일관된 결과를 생성합니다.",
488
- "flux-merged.description": "FLUX.1-merged는 \"DEV\"의 심층 기능과 \"Schnell\"의 고속 장점을 결합하여 성능 한계를 확장하고 활용 범위를 넓혔습니다.",
489
- "flux-pro-1.1-ultra.description": "4MP 해상도의 초고해상도 이미지 생성 모델로, 10초 내에 선명한 이미지를 생성합니다.",
490
- "flux-pro-1.1.description": "우수한 이미지 품질과 정밀한 프롬프트 반응을 제공하는 업그레이드된 전문가급 이미지 생성 모델입니다.",
491
- "flux-pro.description": "최고 수준의 상업용 이미지 생성 모델로, 탁월한 이미지 품질과 다양한 출력을 제공합니다.",
492
- "flux-schnell.description": "FLUX.1 [schnell]은 가장 진보된 오픈소스 소수 단계 모델로, Midjourney v6.0 및 DALL-E 3 (HD)와 같은 강력한 비증류 모델을 능가합니다. 사전 학습의 다양성을 유지하도록 정밀하게 조정되어 시각 품질, 지시 따르기, 크기/비율 다양성, 글꼴 처리, 출력 다양성이 크게 향상되었습니다.",
493
- "flux.1-schnell.description": "FLUX.1-schnell은 빠른 다중 스타일 출력을 위한 고성능 이미지 생성 모델입니다.",
494
- "gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001 (튜닝)은 복잡한 작업을 위한 안정적이고 조정 가능한 성능을 제공합니다.",
495
- "gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002 (튜닝)은 복잡한 작업을 위한 강력한 멀티모달 지원을 제공합니다.",
496
- "gemini-1.0-pro-latest.description": "Gemini 1.0 Pro는 Google의 고성능 AI 모델로, 다양한 작업 확장에 적합하도록 설계되었습니다.",
497
- "gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001은 광범위한 애플리케이션 확장을 위한 효율적인 멀티모달 모델입니다.",
498
- "gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002는 대규모 배포를 위해 설계된 효율적인 멀티모달 모델입니다.",
499
- "gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924는 텍스트 및 멀티모달 사용 사례 전반에서 눈에 띄는 향상을 보이는 최신 실험 모델입니다.",
500
- "gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B는 대규모 배포를 위해 설계된 효율적인 멀티모달 모델입니다.",
501
- "gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B는 광범위한 애플리케이션 확장을 위한 효율적인 멀티모달 모델입니다.",
502
- "gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827은 복잡한 작업을 위한 최적화된 멀티모달 처리를 제공합니다.",
503
- "gemini-1.5-flash-latest.description": "Gemini 1.5 Flash는 Google의 최신 멀티모달 AI 모델로, 빠른 처리 속도와 텍스트, 이미지, 비디오 입력을 지원하여 다양한 작업에 효율적으로 확장할 수 있습니다.",
504
- "gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001은 복잡한 작업을 위한 확장 가능한 멀티모달 AI 솔루션입니다.",
505
- "gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002는 수학, 장문 문맥, 비전 작업에서 특히 뛰어난 품질을 제공하는 최신 생산 준비 모델입니다.",
506
- "gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801은 앱 개발을 위한 더 큰 유연성을 갖춘 강력한 멀티모달 처리를 제공합니다.",
507
- "gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827은 보다 효율적인 멀티모달 처리를 위해 최신 최적화를 적용했습니다.",
508
- "gemini-1.5-pro-latest.description": "Gemini 1.5 Pro는 최대 200만 토큰을 지원하는 중간 규모의 멀티모달 모델로, 복잡한 작업에 이상적입니다.",
509
- "gemini-2.0-flash-001.description": "Gemini 2.0 Flash는 차세대 기능을 제공하며, 뛰어난 속도, 네이티브 도구 사용, 멀티모달 생성, 100만 토큰 문맥 창을 지원합니다.",
510
- "gemini-2.0-flash-exp-image-generation.description": "이미지 생성을 지원하는 Gemini 2.0 Flash 실험 모델입니다.",
511
- "gemini-2.0-flash-exp.description": "비용 효율성과 낮은 지연 시간에 최적화된 Gemini 2.0 Flash 변형입니다.",
512
- "gemini-2.0-flash-lite-001.description": "비용 효율성과 낮은 지연 시간에 최적화된 Gemini 2.0 Flash 변형입니다.",
513
- "gemini-2.0-flash-lite.description": "비용 효율성과 낮은 지연 시간에 최적화된 Gemini 2.0 Flash 변형입니다.",
514
- "gemini-2.0-flash.description": "Gemini 2.0 Flash는 차세대 기능을 제공하며, 뛰어난 속도, 네이티브 도구 사용, 멀티모달 생성, 100만 토큰 문맥 창을 지원합니다.",
515
393
  "gemini-flash-latest.description": "Gemini Flash 최신 버전",
516
394
  "gemini-flash-lite-latest.description": "Gemini Flash-Lite 최신 버전",
517
395
  "gemini-pro-latest.description": "Gemini Pro 최신 버전",
@@ -770,4 +648,4 @@
770
648
  "zai/glm-4.5.description": "GLM-4.5 시리즈는 에이전트를 위해 설계되었습니다. 대표 모델인 GLM-4.5는 355B 총 파라미터(32B 활성)를 갖추고 있으며, 추론, 코딩, 에이전트 기능을 결합한 하이브리드 추론 시스템으로 이중 작동 모드를 제공합니다.",
771
649
  "zai/glm-4.5v.description": "GLM-4.5V는 GLM-4.5-Air를 기반으로 하며, 검증된 GLM-4.1V-Thinking 기술을 계승하고, 106B 파라미터의 강력한 MoE 아키텍처로 확장되었습니다.",
772
650
  "zenmux/auto.description": "ZenMux 자동 라우팅은 요청에 따라 지원되는 옵션 중 최고의 성능과 가성비를 갖춘 모델을 선택합니다."
773
- }
651
+ }
@@ -92,11 +92,15 @@
92
92
  "ModelSelect.featureTag.video": "Dit model ondersteunt videobegrip",
93
93
  "ModelSelect.featureTag.vision": "Dit model ondersteunt visuele herkenning.",
94
94
  "ModelSelect.removed": "Het model staat niet in de lijst. Het wordt automatisch verwijderd als het wordt gedeselecteerd.",
95
+ "ModelSwitchPanel.byModel": "Op model",
96
+ "ModelSwitchPanel.byProvider": "Op aanbieder",
95
97
  "ModelSwitchPanel.emptyModel": "Geen ingeschakeld model. Ga naar instellingen om er een in te schakelen.",
96
98
  "ModelSwitchPanel.emptyProvider": "Geen ingeschakelde providers. Ga naar instellingen om er een in te schakelen.",
97
99
  "ModelSwitchPanel.goToSettings": "Ga naar instellingen",
100
+ "ModelSwitchPanel.manageProvider": "Beheer aanbieder",
98
101
  "ModelSwitchPanel.provider": "Provider",
99
102
  "ModelSwitchPanel.title": "Model",
103
+ "ModelSwitchPanel.useModelFrom": "Gebruik dit model van:",
100
104
  "MultiImagesUpload.actions.uploadMore": "Klik of sleep om meer te uploaden",
101
105
  "MultiImagesUpload.modal.complete": "Voltooid",
102
106
  "MultiImagesUpload.modal.newFileIndicator": "Nieuw",
@@ -103,7 +103,7 @@
103
103
  "Pro/deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 is een MoE-model met 671 miljard parameters dat gebruikmaakt van MLA en DeepSeekMoE met verliesvrije load balancing voor efficiënte inferentie en training. Voorgetraind op 14,8 biljoen hoogwaardige tokens en verder verfijnd met SFT en RL, overtreft het andere open modellen en benadert toonaangevende gesloten modellen.",
104
104
  "Pro/moonshotai/Kimi-K2-Instruct-0905.description": "Kimi K2-Instruct-0905 is de nieuwste en krachtigste Kimi K2. Het is een topklasse MoE-model met 1 biljoen totale en 32 miljard actieve parameters. Belangrijke kenmerken zijn sterkere agentgerichte programmeerintelligentie met aanzienlijke verbeteringen op benchmarks en echte agenttaken, plus verbeterde esthetiek en bruikbaarheid van frontend-code.",
105
105
  "Pro/moonshotai/Kimi-K2-Thinking.description": "Kimi K2 Thinking Turbo is de Turbo-variant geoptimaliseerd voor redeneersnelheid en verwerkingscapaciteit, terwijl het de meerstapsredenering en gereedschapsgebruik van K2 Thinking behoudt. Het is een MoE-model met ongeveer 1 biljoen totale parameters, native 256K context en stabiele grootschalige tool-aanroepen voor productieomgevingen met strengere eisen aan latentie en gelijktijdigheid.",
106
- "Pro/zai-org/glm-4.7.description": "GLM-4.7 is het nieuwste vlaggenschipmodel van Zhipu, met verbeterde codeerprestaties, lange-termijn taakplanning en samenwerking met tools, speciaal geoptimaliseerd voor Agentic Coding-scenario’s. Het model behaalt toonaangevende resultaten onder open-source modellen op meerdere openbare benchmarks. De algemene capaciteiten zijn verbeterd: antwoorden zijn beknopter en natuurlijker, en schrijfopdrachten voelen meeslepender aan. Bij het uitvoeren van complexe agenttaken volgt het model instructies nauwkeuriger op tijdens toolgebruik. De esthetiek van gegenereerde artefacten en de efficiëntie bij het voltooien van lange taken zijn verder verbeterd.",
106
+ "Pro/zai-org/glm-4.7.description": "GLM-4.7 is het nieuwste vlaggenschipmodel van Zhipu, met verbeterde codeerprestaties, lange-termijn taakplanning en samenwerking met tools, speciaal geoptimaliseerd voor Agentic Coding-scenario’s. Het model behaalt toonaangevende resultaten onder open-source modellen op meerdere openbare benchmarks. De algemene capaciteiten zijn verbeterd, met natuurlijkere en beknoptere antwoorden en meeslepender schrijfkwaliteit. Bij het uitvoeren van complexe agenttaken volgt het model instructies nauwkeuriger tijdens toolgebruik, en zijn de visuele presentatie van artefacten en de efficiëntie van lange-termijn taakuitvoering verder verbeterd.",
107
107
  "QwQ-32B-Preview.description": "Qwen QwQ is een experimenteel onderzoeksmodel gericht op het verbeteren van redenering.",
108
108
  "Qwen/QVQ-72B-Preview.description": "QVQ-72B-Preview is een onderzoeksmodel van Qwen gericht op visuele redenering, met sterke prestaties in het begrijpen van complexe scènes en visuele wiskundeproblemen.",
109
109
  "Qwen/QwQ-32B-Preview.description": "Qwen QwQ is een experimenteel onderzoeksmodel gericht op verbeterde AI-redenering.",
@@ -562,4 +562,4 @@
562
562
  "zai/glm-4.5.description": "De GLM-4.5-serie is ontworpen voor agents. Het vlaggenschip GLM-4.5 combineert redenering, codering en agentvaardigheden met 355B totale parameters (32B actief) en biedt dubbele werkmodi als hybride redeneersysteem.",
563
563
  "zai/glm-4.5v.description": "GLM-4.5V is gebaseerd op GLM-4.5-Air, erft bewezen technieken van GLM-4.1V-Thinking en schaalt met een krachtige 106B-parameter MoE-architectuur.",
564
564
  "zenmux/auto.description": "ZenMux auto-routing selecteert het best presterende en meest kostenefficiënte model uit de ondersteunde opties op basis van je aanvraag."
565
- }
565
+ }