@lobehub/lobehub 2.0.0-next.205 → 2.0.0-next.207
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/locales/ar/components.json +4 -0
- package/locales/ar/models.json +25 -126
- package/locales/bg-BG/components.json +4 -0
- package/locales/bg-BG/models.json +2 -2
- package/locales/de-DE/components.json +4 -0
- package/locales/de-DE/models.json +21 -120
- package/locales/en-US/components.json +4 -0
- package/locales/es-ES/components.json +4 -0
- package/locales/es-ES/models.json +24 -180
- package/locales/fa-IR/components.json +4 -0
- package/locales/fa-IR/models.json +2 -2
- package/locales/fr-FR/components.json +4 -0
- package/locales/fr-FR/models.json +2 -108
- package/locales/it-IT/components.json +4 -0
- package/locales/it-IT/models.json +22 -51
- package/locales/ja-JP/components.json +4 -0
- package/locales/ja-JP/models.json +16 -133
- package/locales/ko-KR/components.json +4 -0
- package/locales/ko-KR/models.json +26 -148
- package/locales/nl-NL/components.json +4 -0
- package/locales/nl-NL/models.json +2 -2
- package/locales/pl-PL/components.json +4 -0
- package/locales/pl-PL/models.json +2 -2
- package/locales/pt-BR/components.json +4 -0
- package/locales/pt-BR/models.json +49 -125
- package/locales/ru-RU/components.json +4 -0
- package/locales/ru-RU/models.json +17 -96
- package/locales/tr-TR/components.json +4 -0
- package/locales/tr-TR/models.json +28 -57
- package/locales/vi-VN/components.json +4 -0
- package/locales/vi-VN/models.json +1 -92
- package/locales/zh-CN/components.json +4 -0
- package/locales/zh-CN/models.json +31 -165
- package/locales/zh-TW/components.json +4 -0
- package/locales/zh-TW/models.json +2 -2
- package/package.json +1 -1
- package/packages/utils/src/object.test.ts +10 -2
- package/src/app/[variants]/(main)/chat/profile/features/EditorCanvas/index.tsx +4 -2
- package/src/app/[variants]/(main)/settings/provider/features/ProviderConfig/index.tsx +1 -1
- package/src/features/ModelSwitchPanel/index.tsx +393 -42
- package/src/locales/default/components.ts +4 -0
- package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
- package/src/store/aiInfra/slices/aiProvider/__tests__/selectors.test.ts +34 -11
- package/src/store/aiInfra/slices/aiProvider/action.ts +9 -1
- package/src/store/aiInfra/slices/aiProvider/initialState.ts +6 -1
- package/src/store/aiInfra/slices/aiProvider/selectors.ts +17 -3
|
@@ -385,133 +385,34 @@
|
|
|
385
385
|
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus ist ein für Terminalgeräte optimiertes Sprachmodell von DeepSeek.",
|
|
386
386
|
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 ist das tiefgründige Denkmodell zur Terminus-Version, entwickelt für leistungsstarke Schlussfolgerungen.",
|
|
387
387
|
"deepseek-v3.1.description": "DeepSeek-V3.1 ist ein neues hybrides Schlussfolgerungsmodell von DeepSeek, das sowohl Denk- als auch Nicht-Denk-Modi unterstützt und eine höhere Denkeffizienz als DeepSeek-R1-0528 bietet. Optimierungen nach dem Training verbessern die Nutzung von Agenten-Tools und die Leistung bei Agentenaufgaben erheblich. Es unterstützt ein Kontextfenster von 128k und bis zu 64k Ausgabetokens.",
|
|
388
|
-
"deepseek-v3.1:671b.description": "DeepSeek V3.1 ist ein
|
|
388
|
+
"deepseek-v3.1:671b.description": "DeepSeek V3.1 ist ein Modell der nächsten Generation für komplexe Schlussfolgerungen und Gedankengänge, ideal für Aufgaben mit tiefgehender Analyse.",
|
|
389
389
|
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp führt Sparse Attention ein, um die Effizienz beim Training und bei der Inferenz bei langen Texten zu verbessern – zu einem günstigeren Preis als deepseek-v3.1.",
|
|
390
|
-
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think ist ein
|
|
391
|
-
"deepseek-v3.2.description": "DeepSeek-V3.2 ist das erste hybride Schlussfolgerungsmodell von DeepSeek, das Denken in die Werkzeugnutzung integriert. Es kombiniert eine effiziente Architektur zur Rechenersparnis, großskaliges
|
|
390
|
+
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think ist ein vollwertiges Denkmodell mit stärkerer langkettiger Argumentation.",
|
|
391
|
+
"deepseek-v3.2.description": "DeepSeek-V3.2 ist das erste hybride Schlussfolgerungsmodell von DeepSeek, das Denken in die Werkzeugnutzung integriert. Es kombiniert eine effiziente Architektur zur Rechenersparnis, großskaliges Reinforcement Learning zur Leistungssteigerung und synthetische Aufgabendaten zur besseren Generalisierung. Die Leistung ist vergleichbar mit GPT-5-High, die Ausgabelänge wurde deutlich reduziert, was Rechenaufwand und Wartezeit für Nutzer erheblich senkt.",
|
|
392
392
|
"deepseek-v3.description": "DeepSeek-V3 ist ein leistungsstarkes MoE-Modell mit insgesamt 671 Milliarden Parametern und 37 Milliarden aktiven Parametern pro Token.",
|
|
393
393
|
"deepseek-vl2-small.description": "DeepSeek VL2 Small ist eine leichtgewichtige multimodale Version für ressourcenbeschränkte und hochparallele Anwendungen.",
|
|
394
|
-
"deepseek-vl2.description": "DeepSeek VL2 ist ein multimodales Modell für Bild-Text-Verständnis und
|
|
395
|
-
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste
|
|
396
|
-
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste
|
|
397
|
-
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 ist das Langkontext-
|
|
398
|
-
"deepseek/deepseek-chat.description": "DeepSeek-V3 ist das leistungsstarke
|
|
399
|
-
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 ist eine aktualisierte Variante mit Fokus auf offene Verfügbarkeit und tiefere
|
|
400
|
-
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 verbessert die
|
|
394
|
+
"deepseek-vl2.description": "DeepSeek VL2 ist ein multimodales Modell für Bild-Text-Verständnis und fein abgestimmte visuelle Fragebeantwortung.",
|
|
395
|
+
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste Iteration der Flaggschiff-Chatreihe von DeepSeek.\n\nEs basiert auf [DeepSeek V3](/deepseek/deepseek-chat-v3) und zeigt starke Leistung in verschiedenen Aufgaben.",
|
|
396
|
+
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 ist ein MoE-Modell mit 685 Milliarden Parametern und die neueste Iteration der Flaggschiff-Chatreihe von DeepSeek.\n\nEs basiert auf [DeepSeek V3](/deepseek/deepseek-chat-v3) und zeigt starke Leistung in verschiedenen Aufgaben.",
|
|
397
|
+
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 ist das hybride Langkontext-Schlussfolgerungsmodell von DeepSeek, das gemischte Denk-/Nicht-Denk-Modi und Tool-Integration unterstützt.",
|
|
398
|
+
"deepseek/deepseek-chat.description": "DeepSeek-V3 ist das leistungsstarke hybride Schlussfolgerungsmodell von DeepSeek für komplexe Aufgaben und Tool-Integration.",
|
|
399
|
+
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 ist eine aktualisierte Variante mit Fokus auf offene Verfügbarkeit und tiefere Schlussfolgerungen.",
|
|
400
|
+
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 verbessert die Schlussfolgerung erheblich mit minimalen gelabelten Daten und gibt vor der finalen Antwort eine Gedankenkette aus, um die Genauigkeit zu erhöhen.",
|
|
401
401
|
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B ist ein destilliertes Sprachmodell basierend auf Llama 3.3 70B, feinabgestimmt mit Ausgaben von DeepSeek R1, um eine konkurrenzfähige Leistung mit großen Modellen zu erreichen.",
|
|
402
402
|
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B ist ein destilliertes Sprachmodell basierend auf Llama-3.1-8B-Instruct, trainiert mit Ausgaben von DeepSeek R1.",
|
|
403
403
|
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B ist ein destilliertes Sprachmodell basierend auf Qwen 2.5 14B, trainiert mit Ausgaben von DeepSeek R1. Es übertrifft OpenAI o1-mini in mehreren Benchmarks und erzielt Spitzenwerte unter dichten Modellen. Benchmark-Highlights:\nAIME 2024 pass@1: 69,7\nMATH-500 pass@1: 93,9\nCodeForces Rating: 1481\nFeinabstimmung mit DeepSeek R1-Ausgaben liefert konkurrenzfähige Leistung mit größeren Modellen.",
|
|
404
404
|
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B ist ein destilliertes Sprachmodell basierend auf Qwen 2.5 32B, trainiert mit Ausgaben von DeepSeek R1. Es übertrifft OpenAI o1-mini in mehreren Benchmarks und erzielt Spitzenwerte unter dichten Modellen. Benchmark-Highlights:\nAIME 2024 pass@1: 72,6\nMATH-500 pass@1: 94,3\nCodeForces Rating: 1691\nFeinabstimmung mit DeepSeek R1-Ausgaben liefert konkurrenzfähige Leistung mit größeren Modellen.",
|
|
405
|
-
"deepseek/deepseek-r1.description": "DeepSeek R1 wurde zu DeepSeek-R1-0528 aktualisiert. Mit mehr Rechenleistung und algorithmischen Optimierungen nach dem Training verbessert es die Tiefe und Fähigkeit der
|
|
406
|
-
"deepseek/deepseek-r1/community.description": "DeepSeek R1 ist das neueste Open-Source-Modell des DeepSeek-Teams mit sehr starker
|
|
407
|
-
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 verbessert die
|
|
408
|
-
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (Reasoner) ist das experimentelle
|
|
405
|
+
"deepseek/deepseek-r1.description": "DeepSeek R1 wurde zu DeepSeek-R1-0528 aktualisiert. Mit mehr Rechenleistung und algorithmischen Optimierungen nach dem Training verbessert es die Tiefe und Fähigkeit der Schlussfolgerung erheblich. Es zeigt starke Leistung in Mathematik, Programmierung und allgemeiner Logik und nähert sich führenden Modellen wie o3 und Gemini 2.5 Pro an.",
|
|
406
|
+
"deepseek/deepseek-r1/community.description": "DeepSeek R1 ist das neueste Open-Source-Modell des DeepSeek-Teams mit sehr starker Schlussfolgerungsleistung, insbesondere in Mathematik, Programmierung und logischen Aufgaben – vergleichbar mit OpenAI o1.",
|
|
407
|
+
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 verbessert die Schlussfolgerung erheblich mit minimalen gelabelten Daten und gibt vor der finalen Antwort eine Gedankenkette aus, um die Genauigkeit zu erhöhen.",
|
|
408
|
+
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (Reasoner) ist das experimentelle Schlussfolgerungsmodell von DeepSeek, geeignet für hochkomplexe Denkaufgaben.",
|
|
409
409
|
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base ist eine verbesserte Version des DeepSeek V3 Modells.",
|
|
410
|
-
"deepseek/deepseek-v3.description": "Ein schnelles, vielseitiges Sprachmodell mit verbesserter
|
|
411
|
-
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 stellt einen Durchbruch in der
|
|
412
|
-
"deepseek_r1.description": "DeepSeek-R1 ist ein durch Reinforcement Learning gesteuertes
|
|
413
|
-
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B ist ein destilliertes Modell basierend auf Llama-3.3-70B-Instruct. Als Teil der DeepSeek-R1-Serie ist es mit DeepSeek-R1-generierten Beispielen feinabgestimmt und
|
|
414
|
-
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B ist ein destilliertes Modell basierend auf Qwen2.5-14B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1
|
|
415
|
-
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B ist ein destilliertes Modell basierend auf Qwen2.5-32B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1
|
|
416
|
-
"devstral-2:123b.description": "Devstral 2 123B ist besonders leistungsfähig beim Einsatz von Tools zur Erkundung von Codebasen, Bearbeitung mehrerer Dateien und zur Unterstützung softwaretechnischer Agenten.",
|
|
417
|
-
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite ist ein neues, leichtgewichtiges Modell mit extrem schneller Reaktionszeit und bietet erstklassige Qualität bei minimaler Latenz.",
|
|
418
|
-
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k ist ein umfassendes Upgrade von Doubao-1.5-Pro mit einer Leistungssteigerung von 10 %. Es unterstützt ein Kontextfenster von 256k und bis zu 12k Ausgabetokens und bietet damit höhere Leistung, ein größeres Kontextfenster und hohen Mehrwert für vielfältige Anwendungsfälle.",
|
|
419
|
-
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro ist ein neues Flaggschiffmodell der nächsten Generation mit umfassenden Verbesserungen und überzeugt in den Bereichen Wissen, Programmierung und logisches Denken.",
|
|
420
|
-
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 ist ein neues Modell für tiefes logisches Denken (die m-Version beinhaltet native multimodale Tiefenanalyse) und überzeugt in Mathematik, Programmierung, wissenschaftlichem Denken sowie allgemeinen Aufgaben wie kreativem Schreiben. Es erzielt Spitzenwerte in Benchmarks wie AIME 2024, Codeforces und GPQA. Unterstützt ein Kontextfenster von 128k und 16k Ausgabetokens.",
|
|
421
|
-
"doubao-1.5-thinking-pro.description": "Doubao-1.5 ist ein neues Modell für tiefes logisches Denken und überzeugt in Mathematik, Programmierung, wissenschaftlichem Denken sowie allgemeinen Aufgaben wie kreativem Schreiben. Es erzielt Spitzenwerte in Benchmarks wie AIME 2024, Codeforces und GPQA. Unterstützt ein Kontextfenster von 128k und 16k Ausgabetokens.",
|
|
422
|
-
"doubao-1.5-thinking-vision-pro.description": "Ein neues visuelles Modell für tiefes logisches Denken mit verbesserter multimodaler Analyse und Schlussfolgerung, das in 37 von 59 öffentlichen Benchmarks SOTA-Ergebnisse erzielt.",
|
|
423
|
-
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS ist ein nativ auf grafische Benutzeroberflächen fokussiertes Agentenmodell, das durch menschenähnliche Wahrnehmung, Schlussfolgerung und Handlung nahtlos mit Benutzeroberflächen interagiert.",
|
|
424
|
-
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite ist ein verbessertes multimodales Modell, das Bilder in jeder Auflösung und extremen Seitenverhältnissen unterstützt. Es verbessert visuelles Denken, Dokumentenerkennung, Detailverständnis und Befolgen von Anweisungen. Unterstützt ein Kontextfenster von 128k und bis zu 16k Ausgabetokens.",
|
|
425
|
-
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro ist ein verbessertes multimodales Modell, das Bilder in jeder Auflösung und extremen Seitenverhältnissen unterstützt. Es verbessert visuelles Denken, Dokumentenerkennung, Detailverständnis und Befolgen von Anweisungen.",
|
|
426
|
-
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro ist ein verbessertes multimodales Modell, das Bilder in jeder Auflösung und extremen Seitenverhältnissen unterstützt. Es verbessert visuelles Denken, Dokumentenerkennung, Detailverständnis und Befolgen von Anweisungen.",
|
|
427
|
-
"doubao-lite-128k.description": "Extrem schnelle Reaktion mit besserem Preis-Leistungs-Verhältnis und flexiblen Einsatzmöglichkeiten. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 128k.",
|
|
428
|
-
"doubao-lite-32k.description": "Extrem schnelle Reaktion mit besserem Preis-Leistungs-Verhältnis und flexiblen Einsatzmöglichkeiten. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 32k.",
|
|
429
|
-
"doubao-lite-4k.description": "Extrem schnelle Reaktion mit besserem Preis-Leistungs-Verhältnis und flexiblen Einsatzmöglichkeiten. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 4k.",
|
|
430
|
-
"doubao-pro-256k.description": "Das leistungsstärkste Flaggschiffmodell für komplexe Aufgaben mit starken Ergebnissen in referenzbasierten Fragen, Zusammenfassungen, kreativen Inhalten, Textklassifikation und Rollenspielen. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 256k.",
|
|
431
|
-
"doubao-pro-32k.description": "Das leistungsstärkste Flaggschiffmodell für komplexe Aufgaben mit starken Ergebnissen in referenzbasierten Fragen, Zusammenfassungen, kreativen Inhalten, Textklassifikation und Rollenspielen. Unterstützt logisches Denken und Feinabstimmung mit einem Kontextfenster von 32k.",
|
|
432
|
-
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash ist ein ultraschnelles multimodales Modell für tiefes logisches Denken mit einer TPOT von nur 10 ms. Es unterstützt Text- und Bildverarbeitung, übertrifft das vorherige Lite-Modell im Textverständnis und erreicht die Leistung konkurrierender Pro-Modelle im visuellen Bereich. Unterstützt ein Kontextfenster von 256k und bis zu 16k Ausgabetokens.",
|
|
433
|
-
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite ist ein neues multimodales Modell für tiefes logisches Denken mit einstellbarem Denkaufwand (Minimal, Niedrig, Mittel, Hoch). Es bietet ein hervorragendes Preis-Leistungs-Verhältnis und ist eine starke Wahl für allgemeine Aufgaben. Unterstützt ein Kontextfenster von bis zu 256k.",
|
|
434
|
-
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6-thinking verstärkt das logische Denken erheblich und verbessert die Kernfähigkeiten in Programmierung, Mathematik und logischem Denken im Vergleich zu Doubao-1.5-thinking-pro. Zusätzlich wird das visuelle Verständnis erweitert. Unterstützt ein Kontextfenster von 256k und bis zu 16k Ausgabetokens.",
|
|
435
|
-
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision ist ein visuelles Modell für tiefes logisches Denken mit verbesserter multimodaler Analyse für Bildung, Bildprüfung, Inspektion/Sicherheit und KI-gestützte Fragenbeantwortung. Unterstützt ein Kontextfenster von 256k und bis zu 64k Ausgabetokens.",
|
|
436
|
-
"doubao-seed-1.6.description": "Doubao-Seed-1.6 ist ein neues multimodales Modell für tiefes logisches Denken mit automatischen, denkenden und nicht-denkenden Modi. Im nicht-denkenden Modus übertrifft es Doubao-1.5-pro/250115 deutlich. Unterstützt ein Kontextfenster von 256k und bis zu 16k Ausgabetokens.",
|
|
437
|
-
"doubao-seed-1.8.description": "Doubao-Seed-1.8 verfügt über eine verbesserte multimodale Verständnisfähigkeit und Agentenfähigkeiten. Es unterstützt Text-, Bild- und Videoeingaben sowie Kontext-Caching und bietet herausragende Leistung bei komplexen Aufgaben.",
|
|
438
|
-
"doubao-seed-code.description": "Doubao-Seed-Code ist speziell für agentenbasiertes Programmieren optimiert, unterstützt multimodale Eingaben (Text/Bild/Video) und ein Kontextfenster von 256k. Es ist kompatibel mit der Anthropic API und eignet sich für Programmierung, visuelles Verständnis und Agenten-Workflows.",
|
|
439
|
-
"doubao-seededit-3-0-i2i-250628.description": "Das Doubao-Bildmodell von ByteDance Seed unterstützt Text- und Bildeingaben mit hochgradig kontrollierbarer, hochwertiger Bildgenerierung. Es ermöglicht textgesteuerte Bildbearbeitung mit Ausgabengrößen zwischen 512 und 1536 Pixeln auf der langen Seite.",
|
|
440
|
-
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 ist ein Bildgenerierungsmodell von ByteDance Seed, das Text- und Bildeingaben unterstützt und eine hochgradig kontrollierbare, hochwertige Bildgenerierung ermöglicht. Es erzeugt Bilder aus Texteingaben.",
|
|
441
|
-
"doubao-seedream-4-0-250828.description": "Seedream 4.0 ist ein Bildgenerierungsmodell von ByteDance Seed, das Text- und Bildeingaben unterstützt und eine hochgradig kontrollierbare, hochwertige Bildgenerierung ermöglicht. Es erzeugt Bilder aus Texteingaben.",
|
|
442
|
-
"doubao-vision-lite-32k.description": "Doubao-vision ist ein multimodales Modell von Doubao mit starkem Bildverständnis und logischem Denken sowie präziser Befolgung von Anweisungen. Es überzeugt bei Bild-Text-Extraktion und bildbasierten Denkaufgaben und ermöglicht komplexere und umfassendere visuelle Frage-Antwort-Szenarien.",
|
|
443
|
-
"doubao-vision-pro-32k.description": "Doubao-vision ist ein multimodales Modell von Doubao mit starkem Bildverständnis und logischem Denken sowie präziser Befolgung von Anweisungen. Es überzeugt bei Bild-Text-Extraktion und bildbasierten Denkaufgaben und ermöglicht komplexere und umfassendere visuelle Frage-Antwort-Szenarien.",
|
|
444
|
-
"emohaa.description": "Emohaa ist ein Modell für psychische Gesundheit mit professionellen Beratungsfähigkeiten, das Nutzern hilft, emotionale Probleme besser zu verstehen.",
|
|
445
|
-
"ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B ist ein leichtgewichtiges Open-Source-Modell für lokale und individuell angepasste Bereitstellungen.",
|
|
446
|
-
"ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B ist ein Open-Source-Modell mit großer Parameteranzahl und verbessertem Verständnis- und Generierungsvermögen.",
|
|
447
|
-
"ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B ist das ultra-große MoE-Modell von Baidu ERNIE mit herausragender logischer Denkfähigkeit.",
|
|
448
|
-
"ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview ist ein Vorschau-Modell mit 8K Kontextlänge zur Bewertung von ERNIE 4.5.",
|
|
449
|
-
"ernie-4.5-turbo-128k-preview.description": "ERNIE 4.5 Turbo 128K Preview mit produktionsreifen Funktionen – ideal für Integration und Canary-Tests.",
|
|
450
|
-
"ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K ist ein leistungsstarkes Allzweckmodell mit Sucherweiterung und Werkzeugnutzung für QA, Programmierung und Agentenszenarien.",
|
|
451
|
-
"ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K ist eine Version mit mittlerer Kontextlänge für QA, Wissensdatenbankabfragen und mehrstufige Dialoge.",
|
|
452
|
-
"ernie-4.5-turbo-latest.description": "Die neueste Version von ERNIE 4.5 Turbo mit optimierter Gesamtleistung – ideal als primäres Produktionsmodell.",
|
|
453
|
-
"ernie-4.5-turbo-vl-32k-preview.description": "ERNIE 4.5 Turbo VL 32K Preview ist ein multimodales Vorschau-Modell mit 32K Kontext zur Bewertung der Langkontext-Bildverarbeitung.",
|
|
454
|
-
"ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K ist eine multimodale Version mit mittlerer bis langer Kontextlänge für kombinierte Text- und Bildverarbeitung.",
|
|
455
|
-
"ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL Latest ist die neueste multimodale Version mit verbesserter Bild-Text-Verständnis- und Argumentationsfähigkeit.",
|
|
456
|
-
"ernie-4.5-turbo-vl-preview.description": "ERNIE 4.5 Turbo VL Preview ist ein multimodales Vorschau-Modell für Bild-Text-Verständnis und -Generierung – geeignet für visuelle QA und Inhaltsverständnis.",
|
|
457
|
-
"ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL ist ein ausgereiftes multimodales Modell für die Bild-Text-Verarbeitung in Produktionsumgebungen.",
|
|
458
|
-
"ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B ist ein Open-Source-Multimodalmodell für Bild-Text-Verständnis und logisches Denken.",
|
|
459
|
-
"ernie-5.0-thinking-latest.description": "Wenxin 5.0 Thinking ist ein natives, vollmodales Flaggschiffmodell mit einheitlicher Modellierung von Text, Bild, Audio und Video. Es bietet umfassende Leistungsverbesserungen für komplexe QA-, Kreativ- und Agentenszenarien.",
|
|
460
|
-
"ernie-5.0-thinking-preview.description": "Wenxin 5.0 Thinking Preview ist ein natives, vollmodales Flaggschiffmodell mit einheitlicher Modellierung von Text, Bild, Audio und Video. Es bietet umfassende Leistungsverbesserungen für komplexe QA-, Kreativ- und Agentenszenarien.",
|
|
461
|
-
"ernie-char-8k.description": "ERNIE Character 8K ist ein Dialogmodell mit Persönlichkeit für IP-Charakterentwicklung und langfristige Begleitgespräche.",
|
|
462
|
-
"ernie-char-fiction-8k-preview.description": "ERNIE Character Fiction 8K Preview ist ein Vorschau-Modell zur Charakter- und Plotentwicklung für Funktionsbewertung und Tests.",
|
|
463
|
-
"ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K ist ein Persönlichkeitsmodell für Roman- und Plotentwicklung – ideal für die Generierung von Langformgeschichten.",
|
|
464
|
-
"ernie-irag-edit.description": "ERNIE iRAG Edit ist ein Bildbearbeitungsmodell mit Unterstützung für Entfernen, Übermalen und Varianten-Generierung.",
|
|
465
|
-
"ernie-lite-8k.description": "ERNIE Lite 8K ist ein leichtgewichtiges Allzweckmodell für kostensensitive tägliche QA- und Inhaltserstellung.",
|
|
466
|
-
"ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K ist ein leichtgewichtiges Hochleistungsmodell für latenz- und kostensensitive Szenarien.",
|
|
467
|
-
"ernie-novel-8k.description": "ERNIE Novel 8K ist für Langformromane und IP-Plots mit mehreren Charakteren konzipiert.",
|
|
468
|
-
"ernie-speed-128k.description": "ERNIE Speed 128K ist ein Modell ohne I/O-Gebühren für Langtextverständnis und groß angelegte Tests.",
|
|
469
|
-
"ernie-speed-8k.description": "ERNIE Speed 8K ist ein kostenloses, schnelles Modell für tägliche Chats und einfache Textaufgaben.",
|
|
470
|
-
"ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K ist ein hochskalierbares Modell für Online-Dienste und Unternehmensanwendungen mit hoher Parallelität und Wertschöpfung.",
|
|
471
|
-
"ernie-tiny-8k.description": "ERNIE Tiny 8K ist ein ultraleichtes Modell für einfache QA, Klassifikation und kostengünstige Inferenz.",
|
|
472
|
-
"ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K ist ein schnelles Denkmodell mit 32K Kontext für komplexe Argumentation und mehrstufige Dialoge.",
|
|
473
|
-
"ernie-x1.1-preview.description": "ERNIE X1.1 Preview ist ein Vorschau-Modell mit Denkfähigkeit zur Bewertung und zum Testen.",
|
|
474
|
-
"fal-ai/bytedance/seedream/v4.description": "Seedream 4.0 ist ein Bildgenerierungsmodell von ByteDance Seed, das Text- und Bildeingaben unterstützt und eine hochgradig steuerbare, qualitativ hochwertige Bildgenerierung ermöglicht. Es erstellt Bilder aus Texteingaben.",
|
|
475
|
-
"fal-ai/flux-kontext/dev.description": "FLUX.1-Modell mit Fokus auf Bildbearbeitung, unterstützt Text- und Bildeingaben.",
|
|
476
|
-
"fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro] akzeptiert Texte und Referenzbilder als Eingabe und ermöglicht gezielte lokale Bearbeitungen sowie komplexe globale Szenentransformationen.",
|
|
477
|
-
"fal-ai/flux/krea.description": "Flux Krea [dev] ist ein Bildgenerierungsmodell mit ästhetischer Ausrichtung auf realistischere, natürlichere Bilder.",
|
|
478
|
-
"fal-ai/flux/schnell.description": "FLUX.1 [schnell] ist ein Bildgenerierungsmodell mit 12 Milliarden Parametern, das für schnelle und hochwertige Ausgaben entwickelt wurde.",
|
|
479
|
-
"fal-ai/hunyuan-image/v3.description": "Ein leistungsstarkes natives multimodales Bildgenerierungsmodell.",
|
|
480
|
-
"fal-ai/imagen4/preview.description": "Hochwertiges Bildgenerierungsmodell von Google.",
|
|
481
|
-
"fal-ai/nano-banana.description": "Nano Banana ist Googles neuestes, schnellstes und effizientestes natives multimodales Modell, das Bildgenerierung und -bearbeitung im Dialog ermöglicht.",
|
|
482
|
-
"fal-ai/qwen-image-edit.description": "Ein professionelles Bildbearbeitungsmodell des Qwen-Teams, das semantische und visuelle Bearbeitungen unterstützt, chinesischen und englischen Text präzise editiert und hochwertige Bearbeitungen wie Stilübertragungen und Objektrotationen ermöglicht.",
|
|
483
|
-
"fal-ai/qwen-image.description": "Ein leistungsstarkes Bildgenerierungsmodell des Qwen-Teams mit beeindruckender chinesischer Textrendering-Fähigkeit und vielfältigen visuellen Stilen.",
|
|
484
|
-
"flux-1-schnell.description": "Ein Text-zu-Bild-Modell mit 12 Milliarden Parametern von Black Forest Labs, das mithilfe latenter adversarialer Diffusionsdistillation hochwertige Bilder in 1–4 Schritten erzeugt. Es konkurriert mit geschlossenen Alternativen und ist unter Apache-2.0 für private, Forschungs- und kommerzielle Nutzung verfügbar.",
|
|
485
|
-
"flux-dev.description": "FLUX.1 [dev] ist ein Modell mit offenen Gewichten für nicht-kommerzielle Nutzung. Es bietet nahezu professionelle Bildqualität und Anweisungsbefolgung bei effizienterer Ressourcennutzung als Standardmodelle gleicher Größe.",
|
|
486
|
-
"flux-kontext-max.description": "Modernste kontextuelle Bildgenerierung und -bearbeitung, kombiniert Text und Bilder für präzise, kohärente Ergebnisse.",
|
|
487
|
-
"flux-kontext-pro.description": "Modernste kontextuelle Bildgenerierung und -bearbeitung, kombiniert Text und Bilder für präzise, kohärente Ergebnisse.",
|
|
488
|
-
"flux-merged.description": "FLUX.1-merged vereint die tiefen Funktionen von „DEV“ mit den Hochgeschwindigkeitsvorteilen von „Schnell“, erweitert die Leistungsgrenzen und eröffnet neue Anwendungsbereiche.",
|
|
489
|
-
"flux-pro-1.1-ultra.description": "Bildgenerierung in Ultra-HD mit 4MP-Ausgabe, erzeugt gestochen scharfe Bilder in 10 Sekunden.",
|
|
490
|
-
"flux-pro-1.1.description": "Verbessertes professionelles Bildgenerierungsmodell mit exzellenter Bildqualität und präziser Umsetzung von Eingabeaufforderungen.",
|
|
491
|
-
"flux-pro.description": "Hochwertiges kommerzielles Bildgenerierungsmodell mit unübertroffener Bildqualität und vielfältigen Ausgaben.",
|
|
492
|
-
"flux-schnell.description": "FLUX.1 [schnell] ist das fortschrittlichste Open-Source-Modell mit wenigen Schritten, übertrifft vergleichbare Konkurrenten und sogar starke nicht-destillierte Modelle wie Midjourney v6.0 und DALL-E 3 (HD). Es ist fein abgestimmt, um die Vielfalt des Pretrainings zu bewahren und verbessert die visuelle Qualität, Anweisungsbefolgung, Größen-/Seitenverhältnisvariation, Schriftverarbeitung und Ausgabevielfalt erheblich.",
|
|
493
|
-
"flux.1-schnell.description": "FLUX.1-schnell ist ein leistungsstarkes Bildgenerierungsmodell für schnelle Ausgaben in mehreren Stilen.",
|
|
494
|
-
"gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001 (Tuning) bietet stabile, anpassbare Leistung für komplexe Aufgaben.",
|
|
495
|
-
"gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002 (Tuning) bietet starke multimodale Unterstützung für komplexe Aufgaben.",
|
|
496
|
-
"gemini-1.0-pro-latest.description": "Gemini 1.0 Pro ist Googles leistungsstarkes KI-Modell für skalierbare Aufgaben.",
|
|
497
|
-
"gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001 ist ein effizientes multimodales Modell für breit gefächerte Anwendungen.",
|
|
498
|
-
"gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002 ist ein effizientes multimodales Modell für breite Einsatzbereiche.",
|
|
499
|
-
"gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924 ist das neueste experimentelle Modell mit deutlichen Verbesserungen bei Text- und Multimodalanwendungen.",
|
|
500
|
-
"gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B ist ein effizientes multimodales Modell für breite Einsatzbereiche.",
|
|
501
|
-
"gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B ist ein effizientes multimodales Modell für breit gefächerte Anwendungen.",
|
|
502
|
-
"gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827 bietet optimierte multimodale Verarbeitung für komplexe Aufgaben.",
|
|
503
|
-
"gemini-1.5-flash-latest.description": "Gemini 1.5 Flash ist Googles neuestes multimodales KI-Modell mit schneller Verarbeitung, unterstützt Text-, Bild- und Videoeingaben für effiziente Skalierung über Aufgaben hinweg.",
|
|
504
|
-
"gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001 ist eine skalierbare multimodale KI-Lösung für komplexe Aufgaben.",
|
|
505
|
-
"gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002 ist das neueste produktionsreife Modell mit höherer Ausgabequalität, insbesondere bei Mathematik, langen Kontexten und visuellen Aufgaben.",
|
|
506
|
-
"gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801 bietet starke multimodale Verarbeitung mit größerer Flexibilität für App-Entwicklung.",
|
|
507
|
-
"gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827 nutzt neueste Optimierungen für effizientere multimodale Verarbeitung.",
|
|
508
|
-
"gemini-1.5-pro-latest.description": "Gemini 1.5 Pro unterstützt bis zu 2 Millionen Tokens – ein ideales mittelgroßes multimodales Modell für komplexe Aufgaben.",
|
|
509
|
-
"gemini-2.0-flash-001.description": "Gemini 2.0 Flash bietet Next-Gen-Funktionen wie außergewöhnliche Geschwindigkeit, native Tool-Nutzung, multimodale Generierung und ein Kontextfenster von 1 Million Tokens.",
|
|
510
|
-
"gemini-2.0-flash-exp-image-generation.description": "Experimentelles Gemini 2.0 Flash-Modell mit Unterstützung für Bildgenerierung.",
|
|
511
|
-
"gemini-2.0-flash-exp.description": "Eine Gemini 2.0 Flash-Variante, optimiert für Kosteneffizienz und geringe Latenz.",
|
|
512
|
-
"gemini-2.0-flash-lite-001.description": "Eine Gemini 2.0 Flash-Variante, optimiert für Kosteneffizienz und geringe Latenz.",
|
|
513
|
-
"gemini-2.0-flash-lite.description": "Eine Gemini 2.0 Flash-Variante, optimiert für Kosteneffizienz und geringe Latenz.",
|
|
514
|
-
"gemini-2.0-flash.description": "Gemini 2.0 Flash bietet Next-Gen-Funktionen wie außergewöhnliche Geschwindigkeit, native Tool-Nutzung, multimodale Generierung und ein Kontextfenster von 1 Million Tokens.",
|
|
410
|
+
"deepseek/deepseek-v3.description": "Ein schnelles, vielseitiges Sprachmodell mit verbesserter Schlussfolgerung.",
|
|
411
|
+
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 stellt einen Durchbruch in der Geschwindigkeit der Schlussfolgerung gegenüber früheren Modellen dar. Es belegt den ersten Platz unter Open-Source-Modellen und konkurriert mit den fortschrittlichsten geschlossenen Modellen. DeepSeek-V3 verwendet Multi-Head Latent Attention (MLA) und die DeepSeekMoE-Architektur, beide validiert in DeepSeek-V2. Es führt außerdem eine verlustfreie Hilfsstrategie für Lastverteilung und ein Multi-Token-Vorhersageziel für stärkere Leistung ein.",
|
|
412
|
+
"deepseek_r1.description": "DeepSeek-R1 ist ein durch Reinforcement Learning gesteuertes Schlussfolgerungsmodell, das Wiederholungen und Lesbarkeit verbessert. Vor dem RL nutzt es Cold-Start-Daten zur weiteren Leistungssteigerung. Es erreicht das Niveau von OpenAI-o1 in Mathematik, Programmierung und logischen Aufgaben, mit gezieltem Training zur Verbesserung der Gesamtergebnisse.",
|
|
413
|
+
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B ist ein destilliertes Modell basierend auf Llama-3.3-70B-Instruct. Als Teil der DeepSeek-R1-Serie ist es mit DeepSeek-R1-generierten Beispielen feinabgestimmt und zeigt starke Leistung in Mathematik, Programmierung und Schlussfolgerung.",
|
|
414
|
+
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B ist ein destilliertes Modell basierend auf Qwen2.5-14B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 feinabgestimmt. Es liefert starke Schlussfolgerungsleistung.",
|
|
415
|
+
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B ist ein destilliertes Modell basierend auf Qwen2.5-32B und wurde mit 800.000 kuratierten Beispielen von DeepSeek-R1 feinabgestimmt. Es überzeugt in Mathematik, Programmierung und Schlussfolgerung.",
|
|
515
416
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 ist ein offenes LLM für Entwickler, Forscher und Unternehmen. Es wurde entwickelt, um beim Aufbau, Experimentieren und verantwortungsvollen Skalieren generativer KI-Ideen zu unterstützen. Als Teil der Grundlage für globale Innovationsgemeinschaften eignet es sich besonders für Umgebungen mit begrenzten Rechenressourcen, Edge-Geräte und schnellere Trainingszeiten.",
|
|
516
417
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Starke Bildverarbeitung bei hochauflösenden Bildern – ideal für visuelle Verständnisanwendungen.",
|
|
517
418
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Fortschrittliche Bildverarbeitung für visuelle Agentenanwendungen.",
|
|
@@ -749,4 +650,4 @@
|
|
|
749
650
|
"zai/glm-4.5.description": "Die GLM-4.5-Serie ist für Agenten konzipiert. Das Flaggschiff GLM-4.5 kombiniert Reasoning-, Coding- und Agentenfähigkeiten mit 355B Gesamtparametern (32B aktiv) und bietet zwei Betriebsmodi als hybrides Reasoning-System.",
|
|
750
651
|
"zai/glm-4.5v.description": "GLM-4.5V baut auf GLM-4.5-Air auf, übernimmt bewährte GLM-4.1V-Thinking-Techniken und skaliert mit einer starken 106B-Parameter-MoE-Architektur.",
|
|
751
652
|
"zenmux/auto.description": "ZenMux Auto-Routing wählt basierend auf Ihrer Anfrage das leistungsstärkste und kosteneffizienteste Modell aus den unterstützten Optionen aus."
|
|
752
|
-
}
|
|
653
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "This model supports video recognition",
|
|
93
93
|
"ModelSelect.featureTag.vision": "This model supports visual recognition.",
|
|
94
94
|
"ModelSelect.removed": "The model is not in the list. It will be automatically removed if deselected.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "By Model",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "By Provider",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "No enabled model. Please go to settings to enable.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "No enabled providers. Please go to settings to enable one.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Go to settings",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Manage Provider",
|
|
98
101
|
"ModelSwitchPanel.provider": "Provider",
|
|
99
102
|
"ModelSwitchPanel.title": "Model",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Use this model from:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Click or drag to upload more",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Done",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "New",
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "Este modelo admite reconocimiento de video",
|
|
93
93
|
"ModelSelect.featureTag.vision": "Este modelo admite reconocimiento visual.",
|
|
94
94
|
"ModelSelect.removed": "El modelo no está en la lista. Se eliminará automáticamente si se deselecciona.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "Por modelo",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "Por proveedor",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "No hay modelos habilitados. Ve a configuración para habilitar uno.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "No hay proveedores habilitados. Ve a configuración para habilitar uno.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "Ir a configuración",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "Gestionar proveedor",
|
|
98
101
|
"ModelSwitchPanel.provider": "Proveedor",
|
|
99
102
|
"ModelSwitchPanel.title": "Modelo",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "Usar este modelo de:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "Haz clic o arrastra para subir más",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "Hecho",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "Nuevo",
|
|
@@ -335,209 +335,53 @@
|
|
|
335
335
|
"computer-use-preview.description": "computer-use-preview es un modelo especializado para la herramienta \"uso de computadora\", entrenado para comprender y ejecutar tareas relacionadas con computadoras.",
|
|
336
336
|
"dall-e-2.description": "Modelo DALL·E de segunda generación con generación de imágenes más realista y precisa, y 4× la resolución de la primera generación.",
|
|
337
337
|
"dall-e-3.description": "El modelo DALL·E más reciente, lanzado en noviembre de 2023, admite generación de imágenes más realista y precisa con mayor nivel de detalle.",
|
|
338
|
-
"databricks/dbrx-instruct.description": "DBRX Instruct ofrece
|
|
339
|
-
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR es un modelo visión-lenguaje de DeepSeek AI
|
|
338
|
+
"databricks/dbrx-instruct.description": "DBRX Instruct ofrece un manejo de instrucciones altamente confiable en múltiples industrias.",
|
|
339
|
+
"deepseek-ai/DeepSeek-OCR.description": "DeepSeek-OCR es un modelo visión-lenguaje de DeepSeek AI enfocado en OCR y \"compresión óptica contextual\". Explora la compresión del contexto a partir de imágenes, procesa documentos de forma eficiente y los convierte en texto estructurado (por ejemplo, Markdown). Reconoce texto en imágenes con gran precisión, ideal para digitalización de documentos, extracción de texto y procesamiento estructurado.",
|
|
340
340
|
"deepseek-ai/DeepSeek-R1-0528-Qwen3-8B.description": "DeepSeek-R1-0528-Qwen3-8B destila el razonamiento en cadena de DeepSeek-R1-0528 en Qwen3 8B Base. Alcanza el estado del arte entre los modelos abiertos, superando a Qwen3 8B en un 10% en AIME 2024 y equiparando el rendimiento de Qwen3-235B-thinking. Destaca en razonamiento matemático, programación y lógica general. Comparte la arquitectura de Qwen3-8B pero utiliza el tokenizador de DeepSeek-R1-0528.",
|
|
341
341
|
"deepseek-ai/DeepSeek-R1-0528.description": "DeepSeek R1 aprovecha mayor capacidad de cómputo y optimizaciones algorítmicas post-entrenamiento para profundizar el razonamiento. Tiene un rendimiento destacado en pruebas de matemáticas, programación y lógica general, acercándose a líderes como o3 y Gemini 2.5 Pro.",
|
|
342
342
|
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
|
|
343
343
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
|
|
344
344
|
"deepseek-ai/DeepSeek-R1-Distill-Qwen-14B.description": "Los modelos destilados DeepSeek-R1 utilizan aprendizaje por refuerzo (RL) y datos de arranque en frío para mejorar el razonamiento y establecer nuevos estándares en tareas múltiples con modelos abiertos.",
|
|
345
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B
|
|
346
|
-
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B
|
|
345
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.description": "DeepSeek-R1-Distill-Qwen-32B es una destilación de Qwen2.5-32B afinada con 800,000 muestras curadas de DeepSeek-R1. Destaca en matemáticas, programación y razonamiento, logrando excelentes resultados en AIME 2024, MATH-500 (94.3% de precisión) y GPQA Diamond.",
|
|
346
|
+
"deepseek-ai/DeepSeek-R1-Distill-Qwen-7B.description": "DeepSeek-R1-Distill-Qwen-7B es una destilación de Qwen2.5-Math-7B afinada con 800,000 muestras curadas de DeepSeek-R1. Tiene un rendimiento sobresaliente, con 92.8% en MATH-500, 55.5% en AIME 2024 y una puntuación de 1189 en CodeForces para un modelo de 7B.",
|
|
347
347
|
"deepseek-ai/DeepSeek-R1.description": "DeepSeek-R1 mejora el razonamiento mediante aprendizaje por refuerzo (RL) y datos de arranque en frío, estableciendo nuevos estándares en tareas múltiples con modelos abiertos y superando a OpenAI-o1-mini.",
|
|
348
348
|
"deepseek-ai/DeepSeek-V2.5.description": "DeepSeek-V2.5 mejora DeepSeek-V2-Chat y DeepSeek-Coder-V2-Instruct, combinando capacidades generales y de programación. Mejora la redacción y el seguimiento de instrucciones para una mejor alineación con las preferencias, mostrando avances significativos en AlpacaEval 2.0, ArenaHard, AlignBench y MT-Bench.",
|
|
349
349
|
"deepseek-ai/DeepSeek-V3.1-Terminus.description": "DeepSeek-V3.1-Terminus es una versión actualizada del modelo V3.1, concebido como un agente híbrido. Corrige problemas reportados por usuarios y mejora la estabilidad, coherencia lingüística y reduce caracteres anómalos o mezclas de chino/inglés. Integra modos de pensamiento y no pensamiento con plantillas de chat para cambiar de forma flexible. También mejora el rendimiento de los agentes de código y búsqueda para un uso más confiable de herramientas y tareas de múltiples pasos.",
|
|
350
350
|
"deepseek-ai/DeepSeek-V3.1.description": "DeepSeek V3.1 utiliza una arquitectura de razonamiento híbrido y admite modos de pensamiento y no pensamiento.",
|
|
351
351
|
"deepseek-ai/DeepSeek-V3.2-Exp.description": "DeepSeek-V3.2-Exp es una versión experimental de V3.2 que sirve de puente hacia la próxima arquitectura. Añade DeepSeek Sparse Attention (DSA) sobre V3.1-Terminus para mejorar el entrenamiento y la inferencia en contextos largos, con optimizaciones para el uso de herramientas, comprensión de documentos extensos y razonamiento de múltiples pasos. Ideal para explorar mayor eficiencia de razonamiento con presupuestos de contexto amplios.",
|
|
352
|
-
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 es un modelo MoE con 671 mil millones de parámetros que utiliza MLA y DeepSeekMoE con balanceo de carga sin pérdida para un entrenamiento e inferencia eficientes. Preentrenado con 14.8T tokens de alta calidad, SFT y RL, supera a otros modelos abiertos y se acerca a los modelos cerrados líderes.",
|
|
352
|
+
"deepseek-ai/DeepSeek-V3.description": "DeepSeek-V3 es un modelo MoE con 671 mil millones de parámetros que utiliza MLA y DeepSeekMoE con balanceo de carga sin pérdida para un entrenamiento e inferencia eficientes. Preentrenado con 14.8T de tokens de alta calidad, SFT y RL, supera a otros modelos abiertos y se acerca a los modelos cerrados líderes.",
|
|
353
353
|
"deepseek-ai/deepseek-llm-67b-chat.description": "DeepSeek LLM Chat (67B) es un modelo innovador que ofrece una comprensión profunda del lenguaje y una interacción avanzada.",
|
|
354
354
|
"deepseek-ai/deepseek-r1.description": "Un modelo LLM de última generación, eficiente y fuerte en razonamiento, matemáticas y programación.",
|
|
355
|
-
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento
|
|
356
|
-
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento
|
|
357
|
-
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 es un modelo visión-lenguaje MoE basado en DeepSeekMoE-27B con activación dispersa, logrando un alto rendimiento con solo 4.5B parámetros activos. Destaca en preguntas visuales, OCR, comprensión de documentos/tablas/gráficos y anclaje visual.",
|
|
358
|
-
"deepseek-chat.description": "Un nuevo modelo de código abierto que combina
|
|
359
|
-
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B es un modelo de lenguaje para
|
|
360
|
-
"deepseek-coder-v2.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que
|
|
361
|
-
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que
|
|
355
|
+
"deepseek-ai/deepseek-v3.1-terminus.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento, ideal para tareas de análisis profundo.",
|
|
356
|
+
"deepseek-ai/deepseek-v3.1.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con capacidades mejoradas para razonamiento complejo y cadenas de pensamiento, ideal para tareas de análisis profundo.",
|
|
357
|
+
"deepseek-ai/deepseek-vl2.description": "DeepSeek-VL2 es un modelo visión-lenguaje MoE basado en DeepSeekMoE-27B con activación dispersa, logrando un alto rendimiento con solo 4.5B de parámetros activos. Destaca en preguntas visuales, OCR, comprensión de documentos/tablas/gráficos y anclaje visual.",
|
|
358
|
+
"deepseek-chat.description": "Un nuevo modelo de código abierto que combina capacidades generales y de programación. Conserva el diálogo general del modelo de chat y la sólida codificación del modelo de programación, con mejor alineación de preferencias. DeepSeek-V2.5 también mejora la redacción y el seguimiento de instrucciones.",
|
|
359
|
+
"deepseek-coder-33B-instruct.description": "DeepSeek Coder 33B es un modelo de lenguaje para código entrenado con 2T de tokens (87% código, 13% texto en chino/inglés). Introduce una ventana de contexto de 16K y tareas de completado intermedio, ofreciendo completado de código a nivel de proyecto y relleno de fragmentos.",
|
|
360
|
+
"deepseek-coder-v2.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que tiene un rendimiento sólido en tareas de programación, comparable a GPT-4 Turbo.",
|
|
361
|
+
"deepseek-coder-v2:236b.description": "DeepSeek Coder V2 es un modelo de código MoE de código abierto que tiene un rendimiento sólido en tareas de programación, comparable a GPT-4 Turbo.",
|
|
362
362
|
"deepseek-ocr.description": "DeepSeek-OCR es un modelo visión-lenguaje de DeepSeek AI centrado en OCR y \"compresión óptica contextual\". Explora la compresión de información contextual a partir de imágenes, procesa documentos de forma eficiente y los convierte en formatos de texto estructurado como Markdown. Reconoce texto en imágenes con gran precisión, ideal para digitalización de documentos, extracción de texto y procesamiento estructurado.",
|
|
363
|
-
"deepseek-r1-0528.description": "Modelo completo de 685B lanzado el 28-05-2025. DeepSeek-R1 utiliza aprendizaje por refuerzo a gran escala en la
|
|
363
|
+
"deepseek-r1-0528.description": "Modelo completo de 685B lanzado el 28-05-2025. DeepSeek-R1 utiliza aprendizaje por refuerzo a gran escala en la etapa post-entrenamiento, mejorando significativamente el razonamiento con datos etiquetados mínimos, y tiene un rendimiento destacado en matemáticas, programación y razonamiento en lenguaje natural.",
|
|
364
364
|
"deepseek-r1-250528.description": "DeepSeek R1 250528 es el modelo completo de razonamiento DeepSeek-R1 para tareas complejas de matemáticas y lógica.",
|
|
365
365
|
"deepseek-r1-70b-fast-online.description": "Edición rápida de DeepSeek R1 70B con búsqueda web en tiempo real, ofreciendo respuestas más rápidas sin sacrificar rendimiento.",
|
|
366
366
|
"deepseek-r1-70b-online.description": "Edición estándar de DeepSeek R1 70B con búsqueda web en tiempo real, ideal para tareas de chat y texto actualizadas.",
|
|
367
367
|
"deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B combina el razonamiento de R1 con el ecosistema Llama.",
|
|
368
|
-
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B
|
|
369
|
-
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama
|
|
368
|
+
"deepseek-r1-distill-llama-8b.description": "DeepSeek-R1-Distill-Llama-8B es una destilación de Llama-3.1-8B utilizando salidas de DeepSeek R1.",
|
|
369
|
+
"deepseek-r1-distill-llama.description": "deepseek-r1-distill-llama es una destilación de DeepSeek-R1 sobre Llama.",
|
|
370
370
|
"deepseek-r1-distill-qianfan-70b.description": "DeepSeek R1 Distill Qianfan 70B es una destilación R1 basada en Qianfan-70B con gran valor.",
|
|
371
371
|
"deepseek-r1-distill-qianfan-8b.description": "DeepSeek R1 Distill Qianfan 8B es una destilación R1 basada en Qianfan-8B para aplicaciones pequeñas y medianas.",
|
|
372
372
|
"deepseek-r1-distill-qianfan-llama-70b.description": "DeepSeek R1 Distill Qianfan Llama 70B es una destilación R1 basada en Llama-70B.",
|
|
373
|
-
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B es un modelo
|
|
374
|
-
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B es un modelo
|
|
373
|
+
"deepseek-r1-distill-qwen-1.5b.description": "DeepSeek R1 Distill Qwen 1.5B es un modelo de destilación ultraligero para entornos con muy pocos recursos.",
|
|
374
|
+
"deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B es un modelo de destilación de tamaño medio para despliegue en múltiples escenarios.",
|
|
375
375
|
"deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B es una destilación R1 basada en Qwen-32B, equilibrando rendimiento y coste.",
|
|
376
|
-
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B es un modelo
|
|
377
|
-
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen
|
|
376
|
+
"deepseek-r1-distill-qwen-7b.description": "DeepSeek R1 Distill Qwen 7B es un modelo de destilación ligero para entornos empresariales privados y en el borde.",
|
|
377
|
+
"deepseek-r1-distill-qwen.description": "deepseek-r1-distill-qwen es una destilación de DeepSeek-R1 sobre Qwen.",
|
|
378
378
|
"deepseek-r1-fast-online.description": "Versión completa rápida de DeepSeek R1 con búsqueda web en tiempo real, combinando capacidad a escala 671B y respuesta ágil.",
|
|
379
|
-
"deepseek-r1-online.description": "Versión completa de DeepSeek R1 con 671B parámetros y búsqueda web en tiempo real, ofreciendo mejor comprensión y generación.",
|
|
380
|
-
"deepseek-r1.description": "DeepSeek-R1 utiliza datos de arranque en frío antes del aprendizaje por refuerzo y
|
|
381
|
-
"deepseek-reasoner.description": "El modo de
|
|
379
|
+
"deepseek-r1-online.description": "Versión completa de DeepSeek R1 con 671B de parámetros y búsqueda web en tiempo real, ofreciendo mejor comprensión y generación.",
|
|
380
|
+
"deepseek-r1.description": "DeepSeek-R1 utiliza datos de arranque en frío antes del aprendizaje por refuerzo y tiene un rendimiento comparable a OpenAI-o1 en matemáticas, programación y razonamiento.",
|
|
381
|
+
"deepseek-reasoner.description": "El modo de pensamiento de DeepSeek V3.2 genera una cadena de razonamiento antes de la respuesta final para mejorar la precisión.",
|
|
382
382
|
"deepseek-v2.description": "DeepSeek V2 es un modelo MoE eficiente para procesamiento rentable.",
|
|
383
383
|
"deepseek-v2:236b.description": "DeepSeek V2 236B es el modelo de DeepSeek centrado en código con fuerte generación de código.",
|
|
384
|
-
"deepseek-v3-0324.description": "DeepSeek-V3-0324 es un modelo MoE con
|
|
385
|
-
"deepseek-v3.1-terminus.description": "DeepSeek-V3.1-Terminus es un modelo LLM optimizado para terminales de DeepSeek, diseñado específicamente para dispositivos de terminal.",
|
|
386
|
-
"deepseek-v3.1-think-250821.description": "DeepSeek V3.1 Think 250821 es el modelo de pensamiento profundo correspondiente a la versión Terminus, creado para un razonamiento de alto rendimiento.",
|
|
387
|
-
"deepseek-v3.1.description": "DeepSeek-V3.1 es un nuevo modelo híbrido de razonamiento de DeepSeek, que admite modos de pensamiento y no pensamiento, y ofrece una mayor eficiencia de razonamiento que DeepSeek-R1-0528. Las optimizaciones posteriores al entrenamiento mejoran significativamente el uso de herramientas por parte de agentes y el rendimiento en tareas. Admite una ventana de contexto de 128k y hasta 64k tokens de salida.",
|
|
388
|
-
"deepseek-v3.1:671b.description": "DeepSeek V3.1 es un modelo de razonamiento de nueva generación con mejoras en razonamiento complejo y cadena de pensamiento, ideal para tareas que requieren análisis profundo.",
|
|
389
|
-
"deepseek-v3.2-exp.description": "deepseek-v3.2-exp introduce atención dispersa para mejorar la eficiencia de entrenamiento e inferencia en textos largos, a un precio inferior al de deepseek-v3.1.",
|
|
390
|
-
"deepseek-v3.2-think.description": "DeepSeek V3.2 Think es un modelo de pensamiento profundo completo con razonamiento de cadenas largas más sólido.",
|
|
391
|
-
"deepseek-v3.2.description": "DeepSeek-V3.2 es el primer modelo de razonamiento híbrido de DeepSeek que integra el pensamiento en el uso de herramientas. Con una arquitectura eficiente que ahorra recursos, aprendizaje reforzado a gran escala para mejorar capacidades y datos sintéticos masivos para una fuerte generalización, su rendimiento es comparable al de GPT-5-High. La longitud de salida se ha reducido considerablemente, disminuyendo el coste computacional y el tiempo de espera del usuario.",
|
|
392
|
-
"deepseek-v3.description": "DeepSeek-V3 es un potente modelo MoE con 671 mil millones de parámetros totales y 37 mil millones activos por token.",
|
|
393
|
-
"deepseek-vl2-small.description": "DeepSeek VL2 Small es una versión multimodal ligera para entornos con recursos limitados y alta concurrencia.",
|
|
394
|
-
"deepseek-vl2.description": "DeepSeek VL2 es un modelo multimodal para comprensión imagen-texto y preguntas visuales detalladas.",
|
|
395
|
-
"deepseek/deepseek-chat-v3-0324.description": "DeepSeek V3 es un modelo MoE de 685 mil millones de parámetros y la última iteración de la serie de chat insignia de DeepSeek.\n\nSe basa en [DeepSeek V3](/deepseek/deepseek-chat-v3) y ofrece un rendimiento sólido en diversas tareas.",
|
|
396
|
-
"deepseek/deepseek-chat-v3-0324:free.description": "DeepSeek V3 es un modelo MoE de 685 mil millones de parámetros y la última iteración de la serie de chat insignia de DeepSeek.\n\nSe basa en [DeepSeek V3](/deepseek/deepseek-chat-v3) y ofrece un rendimiento sólido en diversas tareas.",
|
|
397
|
-
"deepseek/deepseek-chat-v3.1.description": "DeepSeek-V3.1 es el modelo de razonamiento híbrido de largo contexto de DeepSeek, compatible con modos mixtos de pensamiento/no pensamiento e integración de herramientas.",
|
|
398
|
-
"deepseek/deepseek-chat.description": "DeepSeek-V3 es el modelo de razonamiento híbrido de alto rendimiento de DeepSeek para tareas complejas e integración de herramientas.",
|
|
399
|
-
"deepseek/deepseek-r1-0528.description": "DeepSeek R1 0528 es una variante actualizada centrada en disponibilidad abierta y razonamiento más profundo.",
|
|
400
|
-
"deepseek/deepseek-r1-0528:free.description": "DeepSeek-R1 mejora significativamente el razonamiento con datos etiquetados mínimos y genera una cadena de pensamiento antes de la respuesta final para mejorar la precisión.",
|
|
401
|
-
"deepseek/deepseek-r1-distill-llama-70b.description": "DeepSeek R1 Distill Llama 70B es un modelo LLM destilado basado en Llama 3.3 70B, ajustado con salidas de DeepSeek R1 para lograr un rendimiento competitivo con modelos de frontera de gran tamaño.",
|
|
402
|
-
"deepseek/deepseek-r1-distill-llama-8b.description": "DeepSeek R1 Distill Llama 8B es un modelo LLM destilado basado en Llama-3.1-8B-Instruct, entrenado con salidas de DeepSeek R1.",
|
|
403
|
-
"deepseek/deepseek-r1-distill-qwen-14b.description": "DeepSeek R1 Distill Qwen 14B es un modelo LLM destilado basado en Qwen 2.5 14B, entrenado con salidas de DeepSeek R1. Supera a OpenAI o1-mini en múltiples pruebas, logrando resultados de vanguardia entre modelos densos. Resultados destacados:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nPuntuación CodeForces: 1481\nEl ajuste fino con salidas de DeepSeek R1 ofrece un rendimiento competitivo frente a modelos de frontera más grandes.",
|
|
404
|
-
"deepseek/deepseek-r1-distill-qwen-32b.description": "DeepSeek R1 Distill Qwen 32B es un modelo LLM destilado basado en Qwen 2.5 32B, entrenado con salidas de DeepSeek R1. Supera a OpenAI o1-mini en múltiples pruebas, logrando resultados de vanguardia entre modelos densos. Resultados destacados:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nPuntuación CodeForces: 1691\nEl ajuste fino con salidas de DeepSeek R1 ofrece un rendimiento competitivo frente a modelos de frontera más grandes.",
|
|
405
|
-
"deepseek/deepseek-r1.description": "DeepSeek R1 ha sido actualizado a DeepSeek-R1-0528. Con mayor capacidad de cómputo y optimizaciones algorítmicas posteriores al entrenamiento, mejora significativamente la profundidad y capacidad de razonamiento. Tiene un rendimiento sólido en matemáticas, programación y pruebas de lógica general, acercándose a líderes como o3 y Gemini 2.5 Pro.",
|
|
406
|
-
"deepseek/deepseek-r1/community.description": "DeepSeek R1 es el último modelo de código abierto lanzado por el equipo de DeepSeek, con un rendimiento de razonamiento muy sólido, especialmente en matemáticas, programación y tareas de lógica, comparable a OpenAI o1.",
|
|
407
|
-
"deepseek/deepseek-r1:free.description": "DeepSeek-R1 mejora significativamente el razonamiento con datos etiquetados mínimos y genera una cadena de pensamiento antes de la respuesta final para mejorar la precisión.",
|
|
408
|
-
"deepseek/deepseek-reasoner.description": "DeepSeek-V3 Thinking (reasoner) es el modelo experimental de razonamiento de DeepSeek, adecuado para tareas de razonamiento de alta complejidad.",
|
|
409
|
-
"deepseek/deepseek-v3.1-base.description": "DeepSeek V3.1 Base es una versión mejorada del modelo DeepSeek V3.",
|
|
410
|
-
"deepseek/deepseek-v3.description": "Un modelo LLM rápido de propósito general con razonamiento mejorado.",
|
|
411
|
-
"deepseek/deepseek-v3/community.description": "DeepSeek-V3 representa un gran avance en velocidad de razonamiento respecto a modelos anteriores. Ocupa el primer lugar entre los modelos de código abierto y rivaliza con los modelos cerrados más avanzados. DeepSeek-V3 adopta Multi-Head Latent Attention (MLA) y la arquitectura DeepSeekMoE, ambas validadas en DeepSeek-V2. También introduce una estrategia auxiliar sin pérdida para el balanceo de carga y un objetivo de entrenamiento de predicción multi-token para un rendimiento más sólido.",
|
|
412
|
-
"deepseek_r1.description": "DeepSeek-R1 es un modelo de razonamiento impulsado por aprendizaje por refuerzo que aborda problemas de repetición y legibilidad. Antes del RL, utiliza datos de arranque en frío para mejorar aún más el rendimiento de razonamiento. Igual a OpenAI-o1 en tareas de matemáticas, programación y razonamiento, con un entrenamiento cuidadosamente diseñado que mejora los resultados generales.",
|
|
413
|
-
"deepseek_r1_distill_llama_70b.description": "DeepSeek-R1-Distill-Llama-70B es una versión destilada de Llama-3.3-70B-Instruct. Como parte de la serie DeepSeek-R1, está ajustado con muestras generadas por DeepSeek-R1 y ofrece un rendimiento sólido en matemáticas, programación y razonamiento.",
|
|
414
|
-
"deepseek_r1_distill_qwen_14b.description": "DeepSeek-R1-Distill-Qwen-14B es una versión destilada de Qwen2.5-14B y ajustada con 800K muestras seleccionadas generadas por DeepSeek-R1, ofreciendo un razonamiento sólido.",
|
|
415
|
-
"deepseek_r1_distill_qwen_32b.description": "DeepSeek-R1-Distill-Qwen-32B es una versión destilada de Qwen2.5-32B y ajustada con 800K muestras seleccionadas generadas por DeepSeek-R1, destacando en matemáticas, programación y razonamiento.",
|
|
416
|
-
"devstral-2:123b.description": "Devstral 2 123B sobresale en el uso de herramientas para explorar bases de código, editar múltiples archivos y asistir a agentes de ingeniería de software.",
|
|
417
|
-
"doubao-1.5-lite-32k.description": "Doubao-1.5-lite es un nuevo modelo ligero con respuesta ultrarrápida, ofreciendo calidad de primer nivel y baja latencia.",
|
|
418
|
-
"doubao-1.5-pro-256k.description": "Doubao-1.5-pro-256k es una mejora integral de Doubao-1.5-Pro, con un aumento del 10% en el rendimiento general. Soporta una ventana de contexto de 256k y hasta 12k tokens de salida, ofreciendo mayor rendimiento, mayor contexto y gran valor para casos de uso amplios.",
|
|
419
|
-
"doubao-1.5-pro-32k.description": "Doubao-1.5-pro es un modelo insignia de nueva generación con mejoras en todas las áreas, destacando en conocimiento, programación y razonamiento.",
|
|
420
|
-
"doubao-1.5-thinking-pro-m.description": "Doubao-1.5 es un nuevo modelo de razonamiento profundo (la versión m incluye razonamiento multimodal nativo) que sobresale en matemáticas, programación, razonamiento científico y tareas generales como escritura creativa. Alcanza o se aproxima a resultados de primer nivel en benchmarks como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y salida de hasta 16k tokens.",
|
|
421
|
-
"doubao-1.5-thinking-pro.description": "Doubao-1.5 es un nuevo modelo de razonamiento profundo que sobresale en matemáticas, programación, razonamiento científico y tareas generales como escritura creativa. Alcanza o se aproxima a resultados de primer nivel en benchmarks como AIME 2024, Codeforces y GPQA. Soporta una ventana de contexto de 128k y salida de hasta 16k tokens.",
|
|
422
|
-
"doubao-1.5-thinking-vision-pro.description": "Un nuevo modelo visual de razonamiento profundo con mayor comprensión y razonamiento multimodal, logrando resultados SOTA en 37 de 59 benchmarks públicos.",
|
|
423
|
-
"doubao-1.5-ui-tars.description": "Doubao-1.5-UI-TARS es un modelo de agente enfocado en interfaces gráficas que interactúa fluidamente con interfaces mediante percepción, razonamiento y acción similares a los humanos.",
|
|
424
|
-
"doubao-1.5-vision-lite.description": "Doubao-1.5-vision-lite es un modelo multimodal mejorado que admite imágenes de cualquier resolución y proporciones extremas, mejorando el razonamiento visual, reconocimiento de documentos, comprensión de detalles y seguimiento de instrucciones. Soporta una ventana de contexto de 128k y hasta 16k tokens de salida.",
|
|
425
|
-
"doubao-1.5-vision-pro-32k.description": "Doubao-1.5-vision-pro es un modelo multimodal mejorado que admite imágenes de cualquier resolución y proporciones extremas, mejorando el razonamiento visual, reconocimiento de documentos, comprensión de detalles y seguimiento de instrucciones.",
|
|
426
|
-
"doubao-1.5-vision-pro.description": "Doubao-1.5-vision-pro es un modelo multimodal mejorado que admite imágenes de cualquier resolución y proporciones extremas, mejorando el razonamiento visual, reconocimiento de documentos, comprensión de detalles y seguimiento de instrucciones.",
|
|
427
|
-
"doubao-lite-128k.description": "Respuesta ultrarrápida con mejor relación calidad-precio, ofreciendo opciones más flexibles en distintos escenarios. Soporta razonamiento y ajuste fino con una ventana de contexto de 128k.",
|
|
428
|
-
"doubao-lite-32k.description": "Respuesta ultrarrápida con mejor relación calidad-precio, ofreciendo opciones más flexibles en distintos escenarios. Soporta razonamiento y ajuste fino con una ventana de contexto de 32k.",
|
|
429
|
-
"doubao-lite-4k.description": "Respuesta ultrarrápida con mejor relación calidad-precio, ofreciendo opciones más flexibles en distintos escenarios. Soporta razonamiento y ajuste fino con una ventana de contexto de 4k.",
|
|
430
|
-
"doubao-pro-256k.description": "El modelo insignia de mejor rendimiento para tareas complejas, con resultados sólidos en preguntas con referencia, resumen, creación, clasificación de texto y juegos de rol. Soporta razonamiento y ajuste fino con una ventana de contexto de 256k.",
|
|
431
|
-
"doubao-pro-32k.description": "El modelo insignia de mejor rendimiento para tareas complejas, con resultados sólidos en preguntas con referencia, resumen, creación, clasificación de texto y juegos de rol. Soporta razonamiento y ajuste fino con una ventana de contexto de 32k.",
|
|
432
|
-
"doubao-seed-1.6-flash.description": "Doubao-Seed-1.6-flash es un modelo multimodal de razonamiento profundo ultrarrápido con TPOT de hasta 10ms. Soporta texto e imagen, supera al modelo lite anterior en comprensión textual y se equipara a modelos pro en visión. Soporta una ventana de contexto de 256k y hasta 16k tokens de salida.",
|
|
433
|
-
"doubao-seed-1.6-lite.description": "Doubao-Seed-1.6-lite es un nuevo modelo multimodal de razonamiento profundo con esfuerzo de razonamiento ajustable (Mínimo, Bajo, Medio, Alto), ofreciendo mejor valor y una opción sólida para tareas comunes, con una ventana de contexto de hasta 256k.",
|
|
434
|
-
"doubao-seed-1.6-thinking.description": "Doubao-Seed-1.6 refuerza significativamente el razonamiento, mejorando aún más las habilidades clave en programación, matemáticas y lógica respecto a Doubao-1.5-thinking-pro, además de añadir comprensión visual. Soporta una ventana de contexto de 256k y hasta 16k tokens de salida.",
|
|
435
|
-
"doubao-seed-1.6-vision.description": "Doubao-Seed-1.6-vision es un modelo visual de razonamiento profundo que ofrece mayor comprensión y razonamiento multimodal para educación, revisión de imágenes, inspección/seguridad y preguntas y respuestas con búsqueda por IA. Soporta una ventana de contexto de 256k y hasta 64k tokens de salida.",
|
|
436
|
-
"doubao-seed-1.6.description": "Doubao-Seed-1.6 es un nuevo modelo multimodal de razonamiento profundo con modos automático, con razonamiento y sin razonamiento. En modo sin razonamiento, supera significativamente a Doubao-1.5-pro/250115. Soporta una ventana de contexto de 256k y hasta 16k tokens de salida.",
|
|
437
|
-
"doubao-seed-1.8.description": "Doubao-Seed-1.8 ofrece una comprensión multimodal y capacidades de agente aún más potentes, admitiendo entrada de texto/imagen/video y almacenamiento en caché de contexto, con un rendimiento superior en tareas complejas.",
|
|
438
|
-
"doubao-seed-code.description": "Doubao-Seed-Code está profundamente optimizado para programación con agentes, admite entradas multimodales (texto/imagen/video) y una ventana de contexto de 256k, es compatible con la API de Anthropic y se adapta a flujos de trabajo de programación, comprensión visual y agentes.",
|
|
439
|
-
"doubao-seededit-3-0-i2i-250628.description": "El modelo de imagen Doubao de ByteDance Seed admite entradas de texto e imagen con generación de imágenes de alta calidad y altamente controlable. Soporta edición de imágenes guiada por texto, con tamaños de salida entre 512 y 1536 en el lado largo.",
|
|
440
|
-
"doubao-seedream-3-0-t2i-250415.description": "Seedream 3.0 es un modelo de generación de imágenes de ByteDance Seed que admite entradas de texto e imagen con generación de imágenes de alta calidad y altamente controlable. Genera imágenes a partir de indicaciones de texto.",
|
|
441
|
-
"doubao-seedream-4-0-250828.description": "Seedream 4.0 es un modelo de generación de imágenes de ByteDance Seed que admite entradas de texto e imagen con generación de imágenes de alta calidad y altamente controlable. Genera imágenes a partir de indicaciones de texto.",
|
|
442
|
-
"doubao-vision-lite-32k.description": "Doubao-vision es un modelo multimodal de Doubao con sólida comprensión y razonamiento de imágenes, además de seguimiento preciso de instrucciones. Tiene un buen desempeño en tareas de extracción imagen-texto y razonamiento basado en imágenes, permitiendo escenarios de preguntas y respuestas visuales más complejos y amplios.",
|
|
443
|
-
"doubao-vision-pro-32k.description": "Doubao-vision es un modelo multimodal de Doubao con sólida comprensión y razonamiento de imágenes, además de seguimiento preciso de instrucciones. Tiene un buen desempeño en tareas de extracción imagen-texto y razonamiento basado en imágenes, permitiendo escenarios de preguntas y respuestas visuales más complejos y amplios.",
|
|
444
|
-
"emohaa.description": "Emohaa es un modelo de salud mental con capacidades profesionales de asesoramiento para ayudar a los usuarios a comprender sus problemas emocionales.",
|
|
445
|
-
"ernie-4.5-0.3b.description": "ERNIE 4.5 0.3B es un modelo ligero de código abierto para implementación local y personalizada.",
|
|
446
|
-
"ernie-4.5-21b-a3b.description": "ERNIE 4.5 21B A3B es un modelo de código abierto con gran número de parámetros y mejor capacidad de comprensión y generación.",
|
|
447
|
-
"ernie-4.5-300b-a47b.description": "ERNIE 4.5 300B A47B es el modelo MoE ultra grande de Baidu ERNIE con excelente razonamiento.",
|
|
448
|
-
"ernie-4.5-8k-preview.description": "ERNIE 4.5 8K Preview es un modelo de vista previa con contexto de 8K para evaluar ERNIE 4.5.",
|
|
449
|
-
"ernie-4.5-turbo-128k-preview.description": "Vista previa de ERNIE 4.5 Turbo 128K con capacidades de nivel de lanzamiento, adecuado para integración y pruebas canarias.",
|
|
450
|
-
"ernie-4.5-turbo-128k.description": "ERNIE 4.5 Turbo 128K es un modelo general de alto rendimiento con aumento de búsqueda y llamadas a herramientas para preguntas y respuestas, programación y escenarios de agentes.",
|
|
451
|
-
"ernie-4.5-turbo-32k.description": "ERNIE 4.5 Turbo 32K es una versión de contexto medio para preguntas y respuestas, recuperación de bases de conocimiento y diálogo de múltiples turnos.",
|
|
452
|
-
"ernie-4.5-turbo-latest.description": "Última versión de ERNIE 4.5 Turbo con rendimiento general optimizado, ideal como modelo principal de producción.",
|
|
453
|
-
"ernie-4.5-turbo-vl-32k-preview.description": "ERNIE 4.5 Turbo VL 32K Preview es una vista previa multimodal de 32K para evaluar la capacidad de visión de contexto largo.",
|
|
454
|
-
"ernie-4.5-turbo-vl-32k.description": "ERNIE 4.5 Turbo VL 32K es una versión multimodal de contexto medio-largo para comprensión combinada de documentos largos e imágenes.",
|
|
455
|
-
"ernie-4.5-turbo-vl-latest.description": "ERNIE 4.5 Turbo VL Latest es la versión multimodal más reciente con mejor comprensión y razonamiento imagen-texto.",
|
|
456
|
-
"ernie-4.5-turbo-vl-preview.description": "ERNIE 4.5 Turbo VL Preview es un modelo multimodal de vista previa para comprensión y generación imagen-texto, adecuado para preguntas visuales y comprensión de contenido.",
|
|
457
|
-
"ernie-4.5-turbo-vl.description": "ERNIE 4.5 Turbo VL es un modelo multimodal maduro para comprensión y reconocimiento imagen-texto en producción.",
|
|
458
|
-
"ernie-4.5-vl-28b-a3b.description": "ERNIE 4.5 VL 28B A3B es un modelo multimodal de código abierto para comprensión y razonamiento imagen-texto.",
|
|
459
|
-
"ernie-5.0-thinking-latest.description": "Wenxin 5.0 Thinking es un modelo insignia nativo de modalidad completa con modelado unificado de texto, imagen, audio y video. Ofrece mejoras significativas en capacidades para preguntas complejas, creación y escenarios de agentes.",
|
|
460
|
-
"ernie-5.0-thinking-preview.description": "Wenxin 5.0 Thinking Preview es un modelo insignia nativo de modalidad completa con modelado unificado de texto, imagen, audio y video. Proporciona mejoras amplias en capacidades para preguntas complejas, creación y escenarios de agentes.",
|
|
461
|
-
"ernie-char-8k.description": "ERNIE Character 8K es un modelo de diálogo con personalidad diseñado para la construcción de personajes de propiedad intelectual y conversaciones de compañía a largo plazo.",
|
|
462
|
-
"ernie-char-fiction-8k-preview.description": "ERNIE Character Fiction 8K Preview es un modelo preliminar para la creación de personajes y tramas, destinado a evaluación y pruebas de funcionalidades.",
|
|
463
|
-
"ernie-char-fiction-8k.description": "ERNIE Character Fiction 8K es un modelo de personalidad para novelas y creación de tramas, ideal para la generación de historias de formato largo.",
|
|
464
|
-
"ernie-irag-edit.description": "ERNIE iRAG Edit es un modelo de edición de imágenes que permite borrar, repintar y generar variantes.",
|
|
465
|
-
"ernie-lite-8k.description": "ERNIE Lite 8K es un modelo general ligero para preguntas frecuentes y generación de contenido con sensibilidad al costo.",
|
|
466
|
-
"ernie-lite-pro-128k.description": "ERNIE Lite Pro 128K es un modelo ligero de alto rendimiento para escenarios sensibles a la latencia y al costo.",
|
|
467
|
-
"ernie-novel-8k.description": "ERNIE Novel 8K está diseñado para novelas de formato largo y tramas de propiedad intelectual con narrativas de múltiples personajes.",
|
|
468
|
-
"ernie-speed-128k.description": "ERNIE Speed 128K es un modelo sin tarifas de entrada/salida para comprensión de textos largos y pruebas a gran escala.",
|
|
469
|
-
"ernie-speed-8k.description": "ERNIE Speed 8K es un modelo gratuito y rápido para conversaciones diarias y tareas ligeras de texto.",
|
|
470
|
-
"ernie-speed-pro-128k.description": "ERNIE Speed Pro 128K es un modelo de alto valor y alta concurrencia para servicios en línea a gran escala y aplicaciones empresariales.",
|
|
471
|
-
"ernie-tiny-8k.description": "ERNIE Tiny 8K es un modelo ultraligero para preguntas simples, clasificación e inferencia de bajo costo.",
|
|
472
|
-
"ernie-x1-turbo-32k.description": "ERNIE X1 Turbo 32K es un modelo de pensamiento rápido con contexto de 32K para razonamiento complejo y conversaciones de múltiples turnos.",
|
|
473
|
-
"ernie-x1.1-preview.description": "ERNIE X1.1 Preview es una vista previa del modelo de pensamiento para evaluación y pruebas.",
|
|
474
|
-
"fal-ai/bytedance/seedream/v4.description": "Seedream 4.0 es un modelo de generación de imágenes de ByteDance Seed que admite entradas de texto e imagen, con una generación de imágenes altamente controlable y de alta calidad. Genera imágenes a partir de indicaciones de texto.",
|
|
475
|
-
"fal-ai/flux-kontext/dev.description": "FLUX.1 es un modelo centrado en la edición de imágenes, compatible con entradas de texto e imagen.",
|
|
476
|
-
"fal-ai/flux-pro/kontext.description": "FLUX.1 Kontext [pro] acepta texto e imágenes de referencia como entrada, permitiendo ediciones locales dirigidas y transformaciones globales complejas de escena.",
|
|
477
|
-
"fal-ai/flux/krea.description": "Flux Krea [dev] es un modelo de generación de imágenes con una inclinación estética hacia imágenes más realistas y naturales.",
|
|
478
|
-
"fal-ai/flux/schnell.description": "FLUX.1 [schnell] es un modelo de generación de imágenes con 12 mil millones de parámetros, diseñado para producir resultados rápidos y de alta calidad.",
|
|
479
|
-
"fal-ai/hunyuan-image/v3.description": "Un potente modelo nativo multimodal de generación de imágenes.",
|
|
480
|
-
"fal-ai/imagen4/preview.description": "Modelo de generación de imágenes de alta calidad de Google.",
|
|
481
|
-
"fal-ai/nano-banana.description": "Nano Banana es el modelo multimodal nativo más nuevo, rápido y eficiente de Google, que permite la generación y edición de imágenes mediante conversación.",
|
|
482
|
-
"fal-ai/qwen-image-edit.description": "Un modelo profesional de edición de imágenes del equipo Qwen que permite ediciones semánticas y de apariencia, edita texto en chino e inglés con precisión y permite ediciones de alta calidad como transferencia de estilo y rotación de objetos.",
|
|
483
|
-
"fal-ai/qwen-image.description": "Un potente modelo de generación de imágenes del equipo Qwen con una impresionante representación de texto en chino y una amplia variedad de estilos visuales.",
|
|
484
|
-
"flux-1-schnell.description": "Modelo de texto a imagen con 12 mil millones de parámetros de Black Forest Labs que utiliza destilación adversarial latente para generar imágenes de alta calidad en 1 a 4 pasos. Compite con alternativas cerradas y se publica bajo Apache-2.0 para uso personal, de investigación y comercial.",
|
|
485
|
-
"flux-dev.description": "FLUX.1 [dev] es un modelo destilado con pesos abiertos para uso no comercial. Mantiene calidad de imagen cercana a nivel profesional y seguimiento de instrucciones, funcionando de manera más eficiente que modelos estándar del mismo tamaño.",
|
|
486
|
-
"flux-kontext-max.description": "Generación y edición de imágenes contextual de última generación, combinando texto e imágenes para resultados precisos y coherentes.",
|
|
487
|
-
"flux-kontext-pro.description": "Generación y edición de imágenes contextual de última generación, combinando texto e imágenes para resultados precisos y coherentes.",
|
|
488
|
-
"flux-merged.description": "FLUX.1-merged combina las características profundas exploradas en \"DEV\" con las ventajas de alta velocidad de \"Schnell\", ampliando los límites de rendimiento y ampliando las aplicaciones.",
|
|
489
|
-
"flux-pro-1.1-ultra.description": "Generación de imágenes de ultra alta resolución con salida de 4MP, produciendo imágenes nítidas en 10 segundos.",
|
|
490
|
-
"flux-pro-1.1.description": "Modelo de generación de imágenes de nivel profesional mejorado con excelente calidad de imagen y adherencia precisa a las indicaciones.",
|
|
491
|
-
"flux-pro.description": "Modelo comercial de generación de imágenes de primer nivel con calidad de imagen inigualable y salidas diversas.",
|
|
492
|
-
"flux-schnell.description": "FLUX.1 [schnell] es el modelo de pocos pasos más avanzado de código abierto, superando a competidores similares e incluso a modelos no destilados como Midjourney v6.0 y DALL-E 3 (HD). Está finamente ajustado para preservar la diversidad del preentrenamiento, mejorando significativamente la calidad visual, el seguimiento de instrucciones, la variación de tamaño/aspecto, el manejo de fuentes y la diversidad de salida.",
|
|
493
|
-
"flux.1-schnell.description": "FLUX.1-schnell es un modelo de generación de imágenes de alto rendimiento para salidas rápidas y de múltiples estilos.",
|
|
494
|
-
"gemini-1.0-pro-001.description": "Gemini 1.0 Pro 001 (Tuning) ofrece un rendimiento estable y ajustable para tareas complejas.",
|
|
495
|
-
"gemini-1.0-pro-002.description": "Gemini 1.0 Pro 002 (Tuning) proporciona un sólido soporte multimodal para tareas complejas.",
|
|
496
|
-
"gemini-1.0-pro-latest.description": "Gemini 1.0 Pro es el modelo de IA de alto rendimiento de Google diseñado para escalar tareas de forma amplia.",
|
|
497
|
-
"gemini-1.5-flash-001.description": "Gemini 1.5 Flash 001 es un modelo multimodal eficiente para escalar aplicaciones de forma amplia.",
|
|
498
|
-
"gemini-1.5-flash-002.description": "Gemini 1.5 Flash 002 es un modelo multimodal eficiente diseñado para implementaciones a gran escala.",
|
|
499
|
-
"gemini-1.5-flash-8b-exp-0924.description": "Gemini 1.5 Flash 8B 0924 es el modelo experimental más reciente con mejoras notables en casos de uso de texto y multimodales.",
|
|
500
|
-
"gemini-1.5-flash-8b-latest.description": "Gemini 1.5 Flash 8B es un modelo multimodal eficiente diseñado para implementaciones a gran escala.",
|
|
501
|
-
"gemini-1.5-flash-8b.description": "Gemini 1.5 Flash 8B es un modelo multimodal eficiente para escalar aplicaciones de forma amplia.",
|
|
502
|
-
"gemini-1.5-flash-exp-0827.description": "Gemini 1.5 Flash 0827 ofrece procesamiento multimodal optimizado para tareas complejas.",
|
|
503
|
-
"gemini-1.5-flash-latest.description": "Gemini 1.5 Flash es el modelo de IA multimodal más reciente de Google con procesamiento rápido, compatible con entradas de texto, imagen y video para escalar tareas de manera eficiente.",
|
|
504
|
-
"gemini-1.5-pro-001.description": "Gemini 1.5 Pro 001 es una solución de IA multimodal escalable para tareas complejas.",
|
|
505
|
-
"gemini-1.5-pro-002.description": "Gemini 1.5 Pro 002 es el modelo más reciente listo para producción con salidas de mayor calidad, especialmente en matemáticas, contexto largo y tareas visuales.",
|
|
506
|
-
"gemini-1.5-pro-exp-0801.description": "Gemini 1.5 Pro 0801 ofrece un procesamiento multimodal sólido con mayor flexibilidad para el desarrollo de aplicaciones.",
|
|
507
|
-
"gemini-1.5-pro-exp-0827.description": "Gemini 1.5 Pro 0827 aplica las últimas optimizaciones para un procesamiento multimodal más eficiente.",
|
|
508
|
-
"gemini-1.5-pro-latest.description": "Gemini 1.5 Pro admite hasta 2 millones de tokens, siendo un modelo multimodal de tamaño medio ideal para tareas complejas.",
|
|
509
|
-
"gemini-2.0-flash-001.description": "Gemini 2.0 Flash ofrece funciones de próxima generación, incluyendo velocidad excepcional, uso nativo de herramientas, generación multimodal y una ventana de contexto de 1 millón de tokens.",
|
|
510
|
-
"gemini-2.0-flash-exp-image-generation.description": "Modelo experimental Gemini 2.0 Flash con soporte para generación de imágenes.",
|
|
511
|
-
"gemini-2.0-flash-exp.description": "Una variante de Gemini 2.0 Flash optimizada para eficiencia de costos y baja latencia.",
|
|
512
|
-
"gemini-2.0-flash-lite-001.description": "Una variante de Gemini 2.0 Flash optimizada para eficiencia de costos y baja latencia.",
|
|
513
|
-
"gemini-2.0-flash-lite.description": "Una variante de Gemini 2.0 Flash optimizada para eficiencia de costos y baja latencia.",
|
|
514
|
-
"gemini-2.0-flash.description": "Gemini 2.0 Flash ofrece funciones de próxima generación, incluyendo velocidad excepcional, uso nativo de herramientas, generación multimodal y una ventana de contexto de 1 millón de tokens.",
|
|
515
|
-
"gemini-2.5-flash-image-preview.description": "Nano Banana es el modelo multimodal nativo más nuevo, rápido y eficiente de Google, que permite la generación y edición de imágenes mediante conversación.",
|
|
516
|
-
"gemini-2.5-flash-image-preview:image.description": "Nano Banana es el modelo multimodal nativo más nuevo, rápido y eficiente de Google, que permite la generación y edición de imágenes mediante conversación.",
|
|
517
|
-
"gemini-2.5-flash-image.description": "Nano Banana es el modelo multimodal nativo más nuevo, rápido y eficiente de Google, que permite la generación y edición de imágenes mediante conversación.",
|
|
518
|
-
"gemini-2.5-flash-image:image.description": "Nano Banana es el modelo multimodal nativo más nuevo, rápido y eficiente de Google, que permite la generación y edición de imágenes mediante conversación.",
|
|
519
|
-
"gemini-2.5-flash-lite-preview-06-17.description": "Gemini 2.5 Flash-Lite Preview es el modelo más pequeño y rentable de Google, diseñado para uso a gran escala.",
|
|
520
|
-
"gemini-2.5-flash-lite-preview-09-2025.description": "Versión preliminar (25 de septiembre de 2025) de Gemini 2.5 Flash-Lite",
|
|
521
|
-
"gemini-2.5-flash-lite.description": "Gemini 2.5 Flash-Lite es el modelo más pequeño y rentable de Google, diseñado para uso a gran escala.",
|
|
522
|
-
"gemini-2.5-flash-preview-04-17.description": "Gemini 2.5 Flash Preview es el modelo con mejor relación calidad-precio de Google con capacidades completas.",
|
|
523
|
-
"gemini-2.5-flash-preview-09-2025.description": "Versión preliminar (25 de septiembre de 2025) de Gemini 2.5 Flash",
|
|
524
|
-
"gemini-2.5-flash.description": "Gemini 2.5 Flash es el modelo con mejor relación calidad-precio de Google con capacidades completas.",
|
|
525
|
-
"gemini-2.5-pro-preview-03-25.description": "Gemini 2.5 Pro Preview es el modelo de razonamiento más avanzado de Google, capaz de razonar sobre código, matemáticas y problemas STEM, y analizar grandes conjuntos de datos, bases de código y documentos con contexto extenso.",
|
|
526
|
-
"gemini-2.5-pro-preview-05-06.description": "Gemini 2.5 Pro Preview es el modelo de razonamiento más avanzado de Google, capaz de razonar sobre código, matemáticas y problemas STEM, y analizar grandes conjuntos de datos, bases de código y documentos con contexto extenso.",
|
|
527
|
-
"gemini-2.5-pro-preview-06-05.description": "Gemini 2.5 Pro Preview es el modelo de razonamiento más avanzado de Google, capaz de razonar sobre código, matemáticas y problemas STEM, y analizar grandes conjuntos de datos, bases de código y documentos con contexto extenso.",
|
|
528
|
-
"gemini-2.5-pro.description": "Gemini 2.5 Pro es el modelo de razonamiento más avanzado de Google, capaz de razonar sobre código, matemáticas y problemas STEM, y analizar grandes conjuntos de datos, bases de código y documentos con contexto extenso.",
|
|
529
|
-
"gemini-3-flash-preview.description": "Gemini 3 Flash es el modelo más inteligente diseñado para la velocidad, combinando inteligencia de vanguardia con una integración excepcional con la búsqueda.",
|
|
530
|
-
"gemini-3-pro-image-preview.description": "Gemini 3 Pro Image (Nano Banana Pro) es el modelo de generación de imágenes de Google, que también admite conversación multimodal.",
|
|
531
|
-
"gemini-3-pro-image-preview:image.description": "Gemini 3 Pro Image (Nano Banana Pro) es el modelo de generación de imágenes de Google, que también admite conversación multimodal.",
|
|
532
|
-
"gemini-3-pro-preview.description": "Gemini 3 Pro es el agente más potente de Google y modelo de codificación emocional, que ofrece visuales más ricos e interacción más profunda sobre una base de razonamiento de última generación.",
|
|
533
|
-
"gemini-flash-latest.description": "Última versión de Gemini Flash",
|
|
534
|
-
"gemini-flash-lite-latest.description": "Última versión de Gemini Flash-Lite",
|
|
535
|
-
"gemini-pro-latest.description": "Última versión de Gemini Pro",
|
|
536
|
-
"gemma-7b-it.description": "Gemma 7B es rentable para tareas de pequeña a mediana escala.",
|
|
537
|
-
"gemma2-9b-it.description": "Gemma 2 9B está optimizado para tareas específicas e integración con herramientas.",
|
|
538
|
-
"gemma2.description": "Gemma 2 es el modelo eficiente de Google, que cubre casos de uso desde aplicaciones pequeñas hasta procesamiento de datos complejo.",
|
|
539
|
-
"gemma2:27b.description": "Gemma 2 es el modelo eficiente de Google, que cubre casos de uso desde aplicaciones pequeñas hasta procesamiento de datos complejo.",
|
|
540
|
-
"gemma2:2b.description": "Gemma 2 es el modelo eficiente de Google, que cubre casos de uso desde aplicaciones pequeñas hasta procesamiento de datos complejo.",
|
|
384
|
+
"deepseek-v3-0324.description": "DeepSeek-V3-0324 es un modelo MoE con 671 mil millones de parámetros, con fortalezas destacadas en programación, capacidad técnica, comprensión de contexto y manejo de textos largos.",
|
|
541
385
|
"meta.llama3-8b-instruct-v1:0.description": "Meta Llama 3 es un modelo LLM abierto para desarrolladores, investigadores y empresas, diseñado para ayudarles a construir, experimentar y escalar de manera responsable ideas de IA generativa. Como parte de la base para la innovación de la comunidad global, es ideal para entornos con recursos y capacidad de cómputo limitados, dispositivos en el borde y tiempos de entrenamiento más rápidos.",
|
|
542
386
|
"meta/Llama-3.2-11B-Vision-Instruct.description": "Razonamiento visual sólido en imágenes de alta resolución, ideal para aplicaciones de comprensión visual.",
|
|
543
387
|
"meta/Llama-3.2-90B-Vision-Instruct.description": "Razonamiento visual avanzado para aplicaciones de agentes con comprensión visual.",
|
|
@@ -745,4 +589,4 @@
|
|
|
745
589
|
"zai/glm-4.5.description": "La serie GLM-4.5 está diseñada para agentes. El modelo insignia GLM-4.5 combina razonamiento, programación y habilidades de agente con 355B de parámetros totales (32B activos) y ofrece modos de operación dual como sistema de razonamiento híbrido.",
|
|
746
590
|
"zai/glm-4.5v.description": "GLM-4.5V se basa en GLM-4.5-Air, heredando técnicas comprobadas de GLM-4.1V-Thinking y escalando con una sólida arquitectura MoE de 106B parámetros.",
|
|
747
591
|
"zenmux/auto.description": "El enrutamiento automático de ZenMux selecciona el modelo con mejor relación calidad-rendimiento entre las opciones compatibles según tu solicitud."
|
|
748
|
-
}
|
|
592
|
+
}
|
|
@@ -92,11 +92,15 @@
|
|
|
92
92
|
"ModelSelect.featureTag.video": "این مدل از تشخیص ویدیو پشتیبانی میکند",
|
|
93
93
|
"ModelSelect.featureTag.vision": "این مدل از تشخیص بصری پشتیبانی میکند.",
|
|
94
94
|
"ModelSelect.removed": "مدل در فهرست نیست. در صورت عدم انتخاب، بهطور خودکار حذف خواهد شد.",
|
|
95
|
+
"ModelSwitchPanel.byModel": "بر اساس مدل",
|
|
96
|
+
"ModelSwitchPanel.byProvider": "بر اساس ارائهدهنده",
|
|
95
97
|
"ModelSwitchPanel.emptyModel": "مدلی فعال نیست. لطفاً به تنظیمات بروید و فعال کنید.",
|
|
96
98
|
"ModelSwitchPanel.emptyProvider": "ارائهدهندهای فعال نیست. لطفاً به تنظیمات بروید و یکی را فعال کنید.",
|
|
97
99
|
"ModelSwitchPanel.goToSettings": "رفتن به تنظیمات",
|
|
100
|
+
"ModelSwitchPanel.manageProvider": "مدیریت ارائهدهنده",
|
|
98
101
|
"ModelSwitchPanel.provider": "ارائهدهنده",
|
|
99
102
|
"ModelSwitchPanel.title": "مدل",
|
|
103
|
+
"ModelSwitchPanel.useModelFrom": "استفاده از این مدل از:",
|
|
100
104
|
"MultiImagesUpload.actions.uploadMore": "برای بارگذاری بیشتر کلیک یا بکشید",
|
|
101
105
|
"MultiImagesUpload.modal.complete": "انجام شد",
|
|
102
106
|
"MultiImagesUpload.modal.newFileIndicator": "جدید",
|