@lobehub/lobehub 2.0.0-next.105 → 2.0.0-next.106
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +25 -0
- package/changelog/v1.json +9 -0
- package/locales/ar/image.json +8 -0
- package/locales/ar/models.json +110 -64
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/image.json +8 -0
- package/locales/bg-BG/models.json +98 -68
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/image.json +8 -0
- package/locales/de-DE/models.json +176 -38
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/image.json +8 -0
- package/locales/en-US/models.json +176 -38
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/image.json +8 -0
- package/locales/es-ES/models.json +176 -38
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/image.json +8 -0
- package/locales/fa-IR/models.json +110 -64
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/image.json +8 -0
- package/locales/fr-FR/models.json +110 -64
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/image.json +8 -0
- package/locales/it-IT/models.json +176 -38
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/image.json +8 -0
- package/locales/ja-JP/models.json +110 -64
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/image.json +8 -0
- package/locales/ko-KR/models.json +110 -64
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/image.json +8 -0
- package/locales/nl-NL/models.json +176 -38
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/image.json +8 -0
- package/locales/pl-PL/models.json +110 -64
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/image.json +8 -0
- package/locales/pt-BR/models.json +176 -38
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/image.json +8 -0
- package/locales/ru-RU/models.json +98 -68
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/image.json +8 -0
- package/locales/tr-TR/models.json +110 -64
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/image.json +8 -0
- package/locales/vi-VN/models.json +176 -38
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/image.json +8 -0
- package/locales/zh-CN/models.json +179 -38
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/image.json +8 -0
- package/locales/zh-TW/models.json +176 -38
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
|
@@ -720,25 +720,28 @@
|
|
|
720
720
|
"description": "Claude 3 Opus は Anthropic の最も知能的なモデルで、高度に複雑なタスクにおいて市場をリードする性能を持ちます。卓越した流暢さと人間に近い理解力で、オープンプロンプトや未経験のシナリオを自在に扱います。"
|
|
721
721
|
},
|
|
722
722
|
"anthropic/claude-3.5-haiku": {
|
|
723
|
-
"description": "Claude 3.5 Haiku
|
|
723
|
+
"description": "Claude 3.5 Haiku は、速度、コーディング精度、ツール使用において強化された機能を備えています。高速性とツール連携が求められるシーンに最適です。"
|
|
724
724
|
},
|
|
725
725
|
"anthropic/claude-3.5-sonnet": {
|
|
726
|
-
"description": "Claude 3.5 Sonnet
|
|
726
|
+
"description": "Claude 3.5 Sonnet は Sonnet ファミリーの高速・高効率モデルで、優れたコーディングおよび推論性能を提供します。一部のバージョンは順次 Sonnet 3.7 などに置き換えられます。"
|
|
727
727
|
},
|
|
728
728
|
"anthropic/claude-3.7-sonnet": {
|
|
729
|
-
"description": "Claude 3.7 Sonnet
|
|
729
|
+
"description": "Claude 3.7 Sonnet は Sonnet シリーズのアップグレード版で、より強力な推論およびコーディング能力を備え、企業向けの複雑なタスクに適しています。"
|
|
730
|
+
},
|
|
731
|
+
"anthropic/claude-haiku-4.5": {
|
|
732
|
+
"description": "Claude Haiku 4.5 は Anthropic の高性能・高速モデルで、高い精度を維持しながら極めて低いレイテンシを実現しています。"
|
|
730
733
|
},
|
|
731
734
|
"anthropic/claude-opus-4": {
|
|
732
|
-
"description": "
|
|
735
|
+
"description": "Opus 4 は Anthropic のフラッグシップモデルで、複雑なタスクや企業向けアプリケーションに特化して設計されています。"
|
|
733
736
|
},
|
|
734
737
|
"anthropic/claude-opus-4.1": {
|
|
735
|
-
"description": "
|
|
738
|
+
"description": "Opus 4.1 は Anthropic のハイエンドモデルで、プログラミング、複雑な推論、継続的なタスクに最適化されています。"
|
|
736
739
|
},
|
|
737
740
|
"anthropic/claude-sonnet-4": {
|
|
738
|
-
"description": "Claude Sonnet 4 は
|
|
741
|
+
"description": "Claude Sonnet 4 は Anthropic のハイブリッド推論モデルで、思考と非思考の混合能力を提供します。"
|
|
739
742
|
},
|
|
740
743
|
"anthropic/claude-sonnet-4.5": {
|
|
741
|
-
"description": "Claude Sonnet 4.5 は Anthropic
|
|
744
|
+
"description": "Claude Sonnet 4.5 は Anthropic の最新ハイブリッド推論モデルで、複雑な推論とコーディングに最適化されています。"
|
|
742
745
|
},
|
|
743
746
|
"ascend-tribe/pangu-pro-moe": {
|
|
744
747
|
"description": "Pangu-Pro-MoE 72B-A16B は、720億パラメータ、160億アクティベーションパラメータのスパース大規模言語モデルであり、グループ化された混合エキスパート(MoGE)アーキテクチャに基づいています。エキスパート選択段階でエキスパートをグループ化し、各グループ内でトークンが均等にエキスパートをアクティベートするよう制約を設けることで、エキスパートの負荷バランスを実現し、昇騰プラットフォーム上でのモデル展開効率を大幅に向上させています。"
|
|
@@ -761,6 +764,9 @@
|
|
|
761
764
|
"baidu/ERNIE-4.5-300B-A47B": {
|
|
762
765
|
"description": "ERNIE-4.5-300B-A47B は、百度(Baidu)が開発した混合エキスパート(MoE)アーキテクチャに基づく大規模言語モデルです。総パラメータ数は3000億ですが、推論時には各トークンで470億パラメータのみをアクティベートし、強力な性能を維持しつつ計算効率も両立しています。ERNIE 4.5シリーズの中核モデルの一つとして、テキスト理解、生成、推論、プログラミングなどのタスクで卓越した能力を発揮します。本モデルは革新的なマルチモーダル異種MoE事前学習手法を採用し、テキストと視覚モダリティの共同学習により、特に指示遵守と世界知識の記憶において優れた効果を発揮しています。"
|
|
763
766
|
},
|
|
767
|
+
"baidu/ernie-5.0-thinking-preview": {
|
|
768
|
+
"description": "ERNIE 5.0 Thinking Preview は、百度の次世代ネイティブマルチモーダル文心モデルで、マルチモーダル理解、指示の遵守、創作、事実に基づく質疑応答、ツール呼び出しに優れています。"
|
|
769
|
+
},
|
|
764
770
|
"c4ai-aya-expanse-32b": {
|
|
765
771
|
"description": "Aya Expanseは、高性能な32B多言語モデルで、指示調整、データアービトラージ、好みのトレーニング、モデル統合の革新を通じて、単一言語モデルのパフォーマンスに挑戦します。23の言語をサポートしています。"
|
|
766
772
|
},
|
|
@@ -869,6 +875,9 @@
|
|
|
869
875
|
"codex-mini-latest": {
|
|
870
876
|
"description": "codex-mini-latest は o4-mini の微調整バージョンで、Codex CLI 専用に設計されています。API を直接使用する場合は、gpt-4.1 から始めることを推奨します。"
|
|
871
877
|
},
|
|
878
|
+
"cogito-2.1:671b": {
|
|
879
|
+
"description": "Cogito v2.1 671B は、商用利用が可能な米国発のオープンソース大規模言語モデルで、トップクラスの性能、高いトークン推論効率、128k の長文脈、強力な総合能力を備えています。"
|
|
880
|
+
},
|
|
872
881
|
"cogview-4": {
|
|
873
882
|
"description": "CogView-4 は智譜が初めて開発した漢字生成対応のオープンソーステキストから画像生成モデルであり、意味理解、画像生成の品質、中英文字生成能力の全方位的な向上を実現しています。任意の長さの中英バイリンガル入力に対応し、指定された範囲内で任意の解像度の画像を生成することが可能です。"
|
|
874
883
|
},
|
|
@@ -1139,6 +1148,9 @@
|
|
|
1139
1148
|
"deepseek-vl2-small": {
|
|
1140
1149
|
"description": "DeepSeek VL2 Small、軽量なマルチモーダルバージョンで、リソース制限や高負荷環境に適しています。"
|
|
1141
1150
|
},
|
|
1151
|
+
"deepseek/deepseek-chat": {
|
|
1152
|
+
"description": "DeepSeek-V3 は DeepSeek チームによる高性能ハイブリッド推論モデルで、複雑なタスクやツール統合に適しています。"
|
|
1153
|
+
},
|
|
1142
1154
|
"deepseek/deepseek-chat-v3-0324": {
|
|
1143
1155
|
"description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
|
|
1144
1156
|
},
|
|
@@ -1146,13 +1158,13 @@
|
|
|
1146
1158
|
"description": "DeepSeek V3は、685Bパラメータの専門的な混合モデルであり、DeepSeekチームのフラッグシップチャットモデルシリーズの最新のイテレーションです。\n\nこれは、[DeepSeek V3](/deepseek/deepseek-chat-v3)モデルを継承し、さまざまなタスクで優れたパフォーマンスを発揮します。"
|
|
1147
1159
|
},
|
|
1148
1160
|
"deepseek/deepseek-chat-v3.1": {
|
|
1149
|
-
"description": "DeepSeek-V3.1 は
|
|
1161
|
+
"description": "DeepSeek-V3.1 は DeepSeek の長文脈ハイブリッド推論モデルで、思考/非思考の混合モードとツール統合をサポートします。"
|
|
1150
1162
|
},
|
|
1151
1163
|
"deepseek/deepseek-r1": {
|
|
1152
1164
|
"description": "DeepSeek R1 モデルは小規模なバージョンアップを経て、現在のバージョンは DeepSeek-R1-0528 です。最新のアップデートでは、計算資源の増加とトレーニング後のアルゴリズム最適化を活用し、推論の深度と能力が大幅に向上しました。数学、プログラミング、一般論理など複数のベンチマークで優れた性能を示し、全体的な性能は O3 や Gemini 2.5 Pro といった先行モデルに近づいています。"
|
|
1153
1165
|
},
|
|
1154
1166
|
"deepseek/deepseek-r1-0528": {
|
|
1155
|
-
"description": "DeepSeek
|
|
1167
|
+
"description": "DeepSeek R1 0528 は DeepSeek のアップデート版で、オープンソース利用と推論の深さに重点を置いています。"
|
|
1156
1168
|
},
|
|
1157
1169
|
"deepseek/deepseek-r1-0528:free": {
|
|
1158
1170
|
"description": "DeepSeek-R1は極めて少ないラベル付きデータでモデルの推論能力を大幅に向上させました。最終回答を出力する前に、モデルは思考の連鎖を出力し、最終答えの正確性を高めます。"
|
|
@@ -1175,6 +1187,9 @@
|
|
|
1175
1187
|
"deepseek/deepseek-r1:free": {
|
|
1176
1188
|
"description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
|
|
1177
1189
|
},
|
|
1190
|
+
"deepseek/deepseek-reasoner": {
|
|
1191
|
+
"description": "DeepSeek-V3 Thinking(reasoner)は DeepSeek の実験的推論モデルで、高度な推論タスクに適しています。"
|
|
1192
|
+
},
|
|
1178
1193
|
"deepseek/deepseek-v3": {
|
|
1179
1194
|
"description": "強化された推論能力を持つ高速汎用大規模言語モデルです。"
|
|
1180
1195
|
},
|
|
@@ -1523,8 +1538,14 @@
|
|
|
1523
1538
|
"gemini-2.5-pro-preview-06-05": {
|
|
1524
1539
|
"description": "Gemini 2.5 Pro Preview は Google の最先端思考モデルで、コード、数学、STEM 分野の複雑な問題を推論し、長いコンテキストを用いて大規模なデータセット、コードベース、ドキュメントを分析できます。"
|
|
1525
1540
|
},
|
|
1541
|
+
"gemini-3-pro-image-preview": {
|
|
1542
|
+
"description": "Gemini 3 Pro Image(Nano Banana Pro)は Google の画像生成モデルで、マルチモーダル対話にも対応しています。"
|
|
1543
|
+
},
|
|
1544
|
+
"gemini-3-pro-image-preview:image": {
|
|
1545
|
+
"description": "Gemini 3 Pro Image(Nano Banana Pro)は Google の画像生成モデルで、マルチモーダル対話にも対応しています。"
|
|
1546
|
+
},
|
|
1526
1547
|
"gemini-3-pro-preview": {
|
|
1527
|
-
"description": "Gemini 3 Pro
|
|
1548
|
+
"description": "Gemini 3 Pro は世界最高水準のマルチモーダル理解モデルであり、Google 史上最も強力なエージェントおよび雰囲気プログラミングモデルです。豊かなビジュアル表現と深いインタラクションを提供し、最先端の推論能力に基づいて構築されています。"
|
|
1528
1549
|
},
|
|
1529
1550
|
"gemini-flash-latest": {
|
|
1530
1551
|
"description": "Gemini Flash の最新リリース"
|
|
@@ -1650,7 +1671,7 @@
|
|
|
1650
1671
|
"description": "GLM-Zero-Previewは、強力な複雑な推論能力を備え、論理推論、数学、プログラミングなどの分野で優れたパフォーマンスを発揮します。"
|
|
1651
1672
|
},
|
|
1652
1673
|
"google/gemini-2.0-flash": {
|
|
1653
|
-
"description": "Gemini 2.0 Flash
|
|
1674
|
+
"description": "Gemini 2.0 Flash は Google の高性能推論モデルで、拡張されたマルチモーダルタスクに適しています。"
|
|
1654
1675
|
},
|
|
1655
1676
|
"google/gemini-2.0-flash-001": {
|
|
1656
1677
|
"description": "Gemini 2.0 Flashは、卓越した速度、ネイティブツールの使用、マルチモーダル生成、1Mトークンのコンテキストウィンドウを含む次世代の機能と改善を提供します。"
|
|
@@ -1661,14 +1682,23 @@
|
|
|
1661
1682
|
"google/gemini-2.0-flash-lite": {
|
|
1662
1683
|
"description": "Gemini 2.0 Flash Lite は次世代の機能と改良を提供し、卓越した速度、組み込みツールの使用、マルチモーダル生成、100万トークンのコンテキストウィンドウを備えています。"
|
|
1663
1684
|
},
|
|
1685
|
+
"google/gemini-2.0-flash-lite-001": {
|
|
1686
|
+
"description": "Gemini 2.0 Flash Lite は Gemini ファミリーの軽量版で、デフォルトでは思考を無効にしてレイテンシとコストを最適化していますが、パラメータで有効化可能です。"
|
|
1687
|
+
},
|
|
1664
1688
|
"google/gemini-2.5-flash": {
|
|
1665
|
-
"description": "Gemini 2.5 Flash
|
|
1689
|
+
"description": "Gemini 2.5 Flash(Lite/Pro/Flash)シリーズは、Google の中低レイテンシから高性能推論モデル群です。"
|
|
1690
|
+
},
|
|
1691
|
+
"google/gemini-2.5-flash-image": {
|
|
1692
|
+
"description": "Gemini 2.5 Flash Image(Nano Banana)は Google の画像生成モデルで、マルチモーダル対話にも対応しています。"
|
|
1693
|
+
},
|
|
1694
|
+
"google/gemini-2.5-flash-image-free": {
|
|
1695
|
+
"description": "Gemini 2.5 Flash Image 無料版は、制限付きのマルチモーダル生成をサポートします。"
|
|
1666
1696
|
},
|
|
1667
1697
|
"google/gemini-2.5-flash-image-preview": {
|
|
1668
1698
|
"description": "Gemini 2.5 Flash 実験モデル、画像生成に対応"
|
|
1669
1699
|
},
|
|
1670
1700
|
"google/gemini-2.5-flash-lite": {
|
|
1671
|
-
"description": "Gemini 2.5 Flash
|
|
1701
|
+
"description": "Gemini 2.5 Flash Lite は Gemini 2.5 の軽量版で、レイテンシとコストを最適化し、高スループットなシーンに適しています。"
|
|
1672
1702
|
},
|
|
1673
1703
|
"google/gemini-2.5-flash-preview": {
|
|
1674
1704
|
"description": "Gemini 2.5 Flashは、Googleの最先端の主力モデルであり、高度な推論、コーディング、数学、科学タスクのために設計されています。内蔵の「思考」能力を備えており、より高い精度と詳細なコンテキスト処理で応答を提供します。\n\n注意:このモデルには、思考と非思考の2つのバリアントがあります。出力の価格は、思考能力が有効かどうかによって大きく異なります。標準バリアント(「:thinking」サフィックスなし)を選択すると、モデルは明示的に思考トークンの生成を避けます。\n\n思考能力を利用して思考トークンを受け取るには、「:thinking」バリアントを選択する必要があり、これにより思考出力の価格が高くなります。\n\nさらに、Gemini 2.5 Flashは、「推論最大トークン数」パラメータを介して構成可能であり、文書に記載されています (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)。"
|
|
@@ -1677,11 +1707,23 @@
|
|
|
1677
1707
|
"description": "Gemini 2.5 Flashは、Googleの最先端の主力モデルであり、高度な推論、コーディング、数学、科学タスクのために設計されています。内蔵の「思考」能力を備えており、より高い精度と詳細なコンテキスト処理で応答を提供します。\n\n注意:このモデルには、思考と非思考の2つのバリアントがあります。出力の価格は、思考能力が有効かどうかによって大きく異なります。標準バリアント(「:thinking」サフィックスなし)を選択すると、モデルは明示的に思考トークンの生成を避けます。\n\n思考能力を利用して思考トークンを受け取るには、「:thinking」バリアントを選択する必要があり、これにより思考出力の価格が高くなります。\n\nさらに、Gemini 2.5 Flashは、「推論最大トークン数」パラメータを介して構成可能であり、文書に記載されています (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)。"
|
|
1678
1708
|
},
|
|
1679
1709
|
"google/gemini-2.5-pro": {
|
|
1680
|
-
"description": "Gemini 2.5 Pro
|
|
1710
|
+
"description": "Gemini 2.5 Pro は Google のフラッグシップ推論モデルで、長文脈と複雑なタスクに対応します。"
|
|
1711
|
+
},
|
|
1712
|
+
"google/gemini-2.5-pro-free": {
|
|
1713
|
+
"description": "Gemini 2.5 Pro 無料版は、制限付きのマルチモーダル長文脈をサポートし、試用や軽量なワークフローに適しています。"
|
|
1681
1714
|
},
|
|
1682
1715
|
"google/gemini-2.5-pro-preview": {
|
|
1683
1716
|
"description": "Gemini 2.5 Pro Preview は、Google の最先端の思考モデルであり、コード、数学、STEM 分野の複雑な問題を推論し、長いコンテキストを用いて大規模なデータセット、コードベース、ドキュメントを分析することができます。"
|
|
1684
1717
|
},
|
|
1718
|
+
"google/gemini-3-pro-image-preview-free": {
|
|
1719
|
+
"description": "Gemini 3 Pro Image 無料版は、制限付きのマルチモーダル生成をサポートします。"
|
|
1720
|
+
},
|
|
1721
|
+
"google/gemini-3-pro-preview": {
|
|
1722
|
+
"description": "Gemini 3 Pro は Gemini シリーズの次世代マルチモーダル推論モデルで、テキスト、音声、画像、動画など多様な入力を理解し、複雑なタスクや大規模コードベースの処理に対応します。"
|
|
1723
|
+
},
|
|
1724
|
+
"google/gemini-3-pro-preview-free": {
|
|
1725
|
+
"description": "Gemini 3 Pro 無料プレビュー版は、標準版と同等のマルチモーダル理解と推論能力を備えていますが、無料枠とレート制限の影響を受けるため、体験や低頻度利用に適しています。"
|
|
1726
|
+
},
|
|
1685
1727
|
"google/gemini-embedding-001": {
|
|
1686
1728
|
"description": "最先端の埋め込みモデルで、英語、多言語、コードタスクにおいて優れた性能を発揮します。"
|
|
1687
1729
|
},
|
|
@@ -2057,21 +2099,36 @@
|
|
|
2057
2099
|
"inception/mercury-coder-small": {
|
|
2058
2100
|
"description": "Mercury Coder Small はコード生成、デバッグ、リファクタリングタスクに最適で、最小遅延を実現します。"
|
|
2059
2101
|
},
|
|
2060
|
-
"inclusionAI/Ling-1T": {
|
|
2061
|
-
"description": "Ling-1T は「Ling 2.0」シリーズ初のフラッグシップ non-thinking モデルで、総パラメータ数は1兆、トークンごとのアクティブパラメータは約500億。Ling 2.0 アーキテクチャに基づき、高効率な推論とスケーラブルな認知の限界に挑戦。Ling-1T-base は20兆以上の高品質かつ推論集約型トークンでトレーニングされています。"
|
|
2062
|
-
},
|
|
2063
2102
|
"inclusionAI/Ling-flash-2.0": {
|
|
2064
2103
|
"description": "Ling-flash-2.0は、Ant GroupのBailingチームがリリースしたLing 2.0アーキテクチャシリーズの第3弾モデルです。混合エキスパート(MoE)モデルで、総パラメータ数は1000億に達しますが、1トークンあたりの活性化パラメータは61億(非埋め込みは48億)に抑えられています。軽量構成のモデルとして、複数の権威ある評価で400億規模の密モデルやより大規模なMoEモデルに匹敵またはそれを超える性能を示しています。本モデルは「大きなモデル=大きなパラメータ」という共通認識のもと、効率的な性能向上の道を探求するために極限のアーキテクチャ設計とトレーニング戦略を採用しています。"
|
|
2065
2104
|
},
|
|
2066
2105
|
"inclusionAI/Ling-mini-2.0": {
|
|
2067
2106
|
"description": "Ling-mini-2.0はMoEアーキテクチャに基づく小型高性能大規模言語モデルです。総パラメータ数は16Bですが、1トークンあたりの活性化パラメータは1.4B(非埋め込みは789M)に抑えられており、非常に高速な生成を実現しています。効率的なMoE設計と大規模高品質トレーニングデータのおかげで、活性化パラメータが1.4Bに過ぎないにもかかわらず、下流タスクにおいて10B未満の密モデルやより大規模なMoEモデルに匹敵するトップクラスの性能を発揮します。"
|
|
2068
2107
|
},
|
|
2069
|
-
"inclusionAI/Ring-1T": {
|
|
2070
|
-
"description": "Ring-1T は百灵(Bailing)チームが開発した、1兆パラメータ規模のオープンソース思考モデルです。Ling 2.0 アーキテクチャと Ling-1T-base を基盤に構築され、総パラメータ数は1兆、アクティブパラメータは500億。最大128Kのコンテキストウィンドウに対応し、大規模な検証可能報酬強化学習によって最適化されています。"
|
|
2071
|
-
},
|
|
2072
2108
|
"inclusionAI/Ring-flash-2.0": {
|
|
2073
2109
|
"description": "Ring-flash-2.0はLing-flash-2.0-baseを深く最適化した高性能思考モデルです。混合エキスパート(MoE)アーキテクチャを採用し、総パラメータ数は100Bですが、推論時には6.1Bパラメータのみを活性化します。独自のicepopアルゴリズムにより、MoE大規模モデルの強化学習(RL)トレーニングにおける不安定性問題を解決し、長期トレーニングでの複雑推論能力の持続的向上を実現しました。Ring-flash-2.0は数学コンテスト、コード生成、論理推論などの高難度ベンチマークで顕著な成果を挙げており、40Bパラメータ未満のトップ密モデルを凌駕し、より大規模なオープンソースMoEモデルやクローズドソースの高性能思考モデルに匹敵します。複雑推論に特化しつつも、創造的な文章作成タスクでも優れた性能を示します。さらに、高効率なアーキテクチャ設計により、強力な性能を提供しつつ高速推論を実現し、高負荷環境での思考モデルの展開コストを大幅に削減しています。"
|
|
2074
2110
|
},
|
|
2111
|
+
"inclusionai/ling-1t": {
|
|
2112
|
+
"description": "Ling-1T は inclusionAI の 1T MoE 大規模モデルで、高度な推論タスクと大規模文脈に最適化されています。"
|
|
2113
|
+
},
|
|
2114
|
+
"inclusionai/ling-flash-2.0": {
|
|
2115
|
+
"description": "Ling-flash-2.0 は inclusionAI の MoE モデルで、効率と推論性能を最適化し、中〜大規模タスクに適しています。"
|
|
2116
|
+
},
|
|
2117
|
+
"inclusionai/ling-mini-2.0": {
|
|
2118
|
+
"description": "Ling-mini-2.0 は inclusionAI の軽量化 MoE モデルで、推論能力を維持しつつコストを大幅に削減しています。"
|
|
2119
|
+
},
|
|
2120
|
+
"inclusionai/ming-flash-omini-preview": {
|
|
2121
|
+
"description": "Ming-flash-omni Preview は inclusionAI のマルチモーダルモデルで、音声、画像、動画入力に対応し、画像レンダリングと音声認識能力を最適化しています。"
|
|
2122
|
+
},
|
|
2123
|
+
"inclusionai/ring-1t": {
|
|
2124
|
+
"description": "Ring-1T は inclusionAI のトリリオンパラメータ MoE 思考モデルで、大規模推論や研究タスクに適しています。"
|
|
2125
|
+
},
|
|
2126
|
+
"inclusionai/ring-flash-2.0": {
|
|
2127
|
+
"description": "Ring-flash-2.0 は inclusionAI の高スループット向け Ring モデルの派生版で、速度とコスト効率を重視しています。"
|
|
2128
|
+
},
|
|
2129
|
+
"inclusionai/ring-mini-2.0": {
|
|
2130
|
+
"description": "Ring-mini-2.0 は inclusionAI の高スループット軽量 MoE バージョンで、主に並列処理シーンに使用されます。"
|
|
2131
|
+
},
|
|
2075
2132
|
"internlm/internlm2_5-7b-chat": {
|
|
2076
2133
|
"description": "InternLM2.5は多様なシーンでのインテリジェントな対話ソリューションを提供します。"
|
|
2077
2134
|
},
|
|
@@ -2123,6 +2180,12 @@
|
|
|
2123
2180
|
"kimi-k2-instruct": {
|
|
2124
2181
|
"description": "Kimi K2 Instruct、Kimi 公式の推論モデルで、長文コンテキスト、コード、QA など多様なシナリオに対応します。"
|
|
2125
2182
|
},
|
|
2183
|
+
"kimi-k2-thinking": {
|
|
2184
|
+
"description": "K2 長期思考モデルは 256k の文脈をサポートし、マルチステップのツール呼び出しと思考に対応し、複雑な問題の解決に長けています。"
|
|
2185
|
+
},
|
|
2186
|
+
"kimi-k2-thinking-turbo": {
|
|
2187
|
+
"description": "K2 長期思考モデルの高速版で、256k の文脈をサポートし、深い推論に優れ、出力速度は毎秒 60〜100 トークンに向上しています。"
|
|
2188
|
+
},
|
|
2126
2189
|
"kimi-k2-turbo-preview": {
|
|
2127
2190
|
"description": "kimi-k2 は高度なコード処理能力とエージェント機能を備えた MoE(Mixture of Experts)アーキテクチャの基盤モデルで、総パラメータ数は1T、アクティブパラメータは32Bです。一般的な知識推論、プログラミング、数学、エージェントなどの主要カテゴリにおけるベンチマークで、K2モデルは他の主要なオープンソースモデルを上回る性能を示しています。"
|
|
2128
2191
|
},
|
|
@@ -2135,6 +2198,9 @@
|
|
|
2135
2198
|
"kimi-thinking-preview": {
|
|
2136
2199
|
"description": "kimi-thinking-preview モデルは月の裏側が提供するマルチモーダル推論能力と汎用推論能力を備えたマルチモーダル思考モデルで、深い推論に優れ、より多くの難しい課題の解決を支援します。"
|
|
2137
2200
|
},
|
|
2201
|
+
"kuaishou/kat-coder-pro-v1": {
|
|
2202
|
+
"description": "KAT-Coder-Pro-V1(期間限定無料)は、コード理解と自動プログラミングに特化し、効率的なプログラミングエージェントタスクに使用されます。"
|
|
2203
|
+
},
|
|
2138
2204
|
"learnlm-1.5-pro-experimental": {
|
|
2139
2205
|
"description": "LearnLMは、学習科学の原則に従って訓練された実験的なタスク特化型言語モデルで、教育や学習のシーンでシステムの指示に従い、専門的なメンターとして機能します。"
|
|
2140
2206
|
},
|
|
@@ -2466,7 +2532,7 @@
|
|
|
2466
2532
|
"description": "MiniMax M2は、コーディングおよびエージェントワークフローのために構築された高効率な大規模言語モデルです。"
|
|
2467
2533
|
},
|
|
2468
2534
|
"minimax/minimax-m2": {
|
|
2469
|
-
"description": "
|
|
2535
|
+
"description": "MiniMax-M2 は、コーディングとエージェントタスクにおいて優れた性能を発揮する高コストパフォーマンスモデルで、さまざまなエンジニアリングシーンに適しています。"
|
|
2470
2536
|
},
|
|
2471
2537
|
"minimaxai/minimax-m2": {
|
|
2472
2538
|
"description": "MiniMax-M2 は、コンパクトで高速、かつコスト効率に優れた混合エキスパート(MoE)モデルで、総パラメータ数は2,300億、アクティブパラメータは100億です。コーディングやエージェントタスクにおいて最高の性能を発揮しながら、強力な汎用知能を維持します。複数ファイルの編集、コードの実行と修正のループ、テストによる検証と修復、複雑な長距離ツールチェーンの処理において優れた性能を示し、開発者のワークフローに最適なモデルです。"
|
|
@@ -2615,12 +2681,21 @@
|
|
|
2615
2681
|
"moonshotai/kimi-k2": {
|
|
2616
2682
|
"description": "Kimi K2 は Moonshot AI による大規模混合エキスパート(MoE)言語モデルで、総パラメータ数1兆、1回のフォワードパスあたり320億の活性化パラメータを持ちます。高度なツール使用、推論、コード合成などのエージェント能力に最適化されています。"
|
|
2617
2683
|
},
|
|
2684
|
+
"moonshotai/kimi-k2-0711": {
|
|
2685
|
+
"description": "Kimi K2 0711 は Kimi シリーズの Instruct バージョンで、高品質なコード生成とツール呼び出しシーンに適しています。"
|
|
2686
|
+
},
|
|
2618
2687
|
"moonshotai/kimi-k2-0905": {
|
|
2619
|
-
"description": "
|
|
2688
|
+
"description": "Kimi K2 0905 は Kimi シリーズの 0905 アップデートで、文脈と推論性能を拡張し、コーディングシーンを最適化しています。"
|
|
2620
2689
|
},
|
|
2621
2690
|
"moonshotai/kimi-k2-instruct-0905": {
|
|
2622
2691
|
"description": "kimi-k2-0905-previewモデルは256kのコンテキスト長を持ち、より強力なエージェントコーディング能力、より優れたフロントエンドコードの美観と実用性、そしてより良いコンテキスト理解能力を備えています。"
|
|
2623
2692
|
},
|
|
2693
|
+
"moonshotai/kimi-k2-thinking": {
|
|
2694
|
+
"description": "Kimi K2 Thinking は Moonshot による深い推論タスク向けに最適化された思考モデルで、汎用エージェント能力を備えています。"
|
|
2695
|
+
},
|
|
2696
|
+
"moonshotai/kimi-k2-thinking-turbo": {
|
|
2697
|
+
"description": "Kimi K2 Thinking Turbo は Kimi K2 Thinking の高速版で、深い推論能力を維持しつつ、応答遅延を大幅に削減しています。"
|
|
2698
|
+
},
|
|
2624
2699
|
"morph/morph-v3-fast": {
|
|
2625
2700
|
"description": "Morph は Claude や GPT-4o のような最先端モデルが提案するコード変更を既存のコードファイルに高速に適用する専用AIモデルを提供します。高速で4500+トークン/秒の処理速度を持ち、AIコーディングワークフローの最終段階を担います。16k入力トークンと16k出力トークンをサポートします。"
|
|
2626
2701
|
},
|
|
@@ -2702,30 +2777,14 @@
|
|
|
2702
2777
|
"openai/gpt-4-turbo": {
|
|
2703
2778
|
"description": "OpenAI の gpt-4-turbo は広範な一般知識と専門知識を持ち、自然言語の複雑な指示に従い、難解な問題を正確に解決します。知識カットオフは2023年4月で、128,000トークンのコンテキストウィンドウを備えています。"
|
|
2704
2779
|
},
|
|
2705
|
-
"openai/gpt-4.1": {
|
|
2706
|
-
|
|
2707
|
-
},
|
|
2708
|
-
"openai/gpt-
|
|
2709
|
-
|
|
2710
|
-
},
|
|
2711
|
-
"openai/gpt-
|
|
2712
|
-
|
|
2713
|
-
},
|
|
2714
|
-
"openai/gpt-4o": {
|
|
2715
|
-
"description": "OpenAI の GPT-4o は広範な一般知識と専門知識を持ち、自然言語の複雑な指示に従い、難解な問題を正確に解決します。より高速かつ低コストのAPIで GPT-4 Turbo と同等の性能を発揮します。"
|
|
2716
|
-
},
|
|
2717
|
-
"openai/gpt-4o-mini": {
|
|
2718
|
-
"description": "OpenAI の GPT-4o mini は最先端かつコスト効率の高い小型モデルです。マルチモーダル対応(テキストまたは画像入力を受け付けテキスト出力)で、gpt-3.5-turbo より高い知能を持ちつつ同等の速度を実現しています。"
|
|
2719
|
-
},
|
|
2720
|
-
"openai/gpt-5": {
|
|
2721
|
-
"description": "GPT-5 は OpenAI のフラッグシップ言語モデルで、複雑な推論、広範な現実世界知識、コード集約型および多段階エージェントタスクに優れた性能を示します。"
|
|
2722
|
-
},
|
|
2723
|
-
"openai/gpt-5-mini": {
|
|
2724
|
-
"description": "GPT-5 mini はコスト最適化されたモデルで、推論・チャットタスクに優れています。速度、コスト、能力の最適なバランスを提供します。"
|
|
2725
|
-
},
|
|
2726
|
-
"openai/gpt-5-nano": {
|
|
2727
|
-
"description": "GPT-5 nano は高スループットモデルで、単純な指示や分類タスクに優れています。"
|
|
2728
|
-
},
|
|
2780
|
+
"openai/gpt-4.1": {},
|
|
2781
|
+
"openai/gpt-4.1-mini": {},
|
|
2782
|
+
"openai/gpt-4.1-nano": {},
|
|
2783
|
+
"openai/gpt-4o": {},
|
|
2784
|
+
"openai/gpt-4o-mini": {},
|
|
2785
|
+
"openai/gpt-5": {},
|
|
2786
|
+
"openai/gpt-5-mini": {},
|
|
2787
|
+
"openai/gpt-5-nano": {},
|
|
2729
2788
|
"openai/gpt-oss-120b": {
|
|
2730
2789
|
"description": "非常に有能な汎用大規模言語モデルで、強力かつ制御可能な推論能力を持ちます。"
|
|
2731
2790
|
},
|
|
@@ -2750,9 +2809,7 @@
|
|
|
2750
2809
|
"openai/o3-mini-high": {
|
|
2751
2810
|
"description": "o3-mini高推論レベル版は、o1-miniと同じコストと遅延目標で高い知性を提供します。"
|
|
2752
2811
|
},
|
|
2753
|
-
"openai/o4-mini": {
|
|
2754
|
-
"description": "OpenAI の o4-mini は高速かつコスト効率の良い推論を提供し、そのサイズにおいて卓越した性能を持ち、特に数学(AIMEベンチマークで最高評価)、コーディング、視覚タスクに優れています。"
|
|
2755
|
-
},
|
|
2812
|
+
"openai/o4-mini": {},
|
|
2756
2813
|
"openai/o4-mini-high": {
|
|
2757
2814
|
"description": "o4-mini高推論レベル版で、迅速かつ効果的な推論のために最適化されており、コーディングや視覚タスクで非常に高い効率と性能を発揮します。"
|
|
2758
2815
|
},
|
|
@@ -2954,9 +3011,7 @@
|
|
|
2954
3011
|
"qwen/qwen2.5-coder-7b-instruct": {
|
|
2955
3012
|
"description": "強力な中型コードモデルで、32Kのコンテキスト長をサポートし、多言語プログラミングに優れています。"
|
|
2956
3013
|
},
|
|
2957
|
-
"qwen/qwen3-14b": {
|
|
2958
|
-
"description": "Qwen3-14BはQwen3シリーズの中で、148億パラメータの密な因果言語モデルであり、複雑な推論と効率的な対話のために設計されています。数学、プログラミング、論理推論などのタスクのための「思考」モードと一般的な対話のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは微調整されており、指示の遵守、エージェントツールの使用、創造的な執筆、100以上の言語と方言にわたる多言語タスクに対応しています。32Kトークンのコンテキストをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
|
2959
|
-
},
|
|
3014
|
+
"qwen/qwen3-14b": {},
|
|
2960
3015
|
"qwen/qwen3-14b:free": {
|
|
2961
3016
|
"description": "Qwen3-14BはQwen3シリーズの中で、148億パラメータの密な因果言語モデルであり、複雑な推論と効率的な対話のために設計されています。数学、プログラミング、論理推論などのタスクのための「思考」モードと一般的な対話のための「非思考」モードの間をシームレスに切り替えることができます。このモデルは微調整されており、指示の遵守、エージェントツールの使用、創造的な執筆、100以上の言語と方言にわたる多言語タスクに対応しています。32Kトークンのコンテキストをネイティブに処理し、YaRNベースの拡張を使用して131Kトークンに拡張可能です。"
|
|
2962
3017
|
},
|
|
@@ -3275,9 +3330,6 @@
|
|
|
3275
3330
|
"step-r1-v-mini": {
|
|
3276
3331
|
"description": "このモデルは強力な画像理解能力を持つ推論大モデルで、画像とテキスト情報を処理し、深い思考の後にテキストを生成します。このモデルは視覚推論分野で優れたパフォーマンスを発揮し、数学、コード、テキスト推論能力も第一級です。コンテキスト長は100kです。"
|
|
3277
3332
|
},
|
|
3278
|
-
"step3": {
|
|
3279
|
-
"description": "Step3 は JIEYUEXINGCHEN によって開発されたマルチモーダルモデルで、優れた視覚理解能力を備えています。"
|
|
3280
|
-
},
|
|
3281
3333
|
"stepfun-ai/step3": {
|
|
3282
3334
|
"description": "Step3 は階跃星辰(StepFun)が公開した最先端のマルチモーダル推論モデルで、総パラメータ数321B、活性化パラメータ38Bを持つエキスパートミックス(MoE)アーキテクチャに基づいて構築されています。本モデルはエンドツーエンド設計を採用し、デコードコストの最小化を図りながら視覚言語推論においてトップクラスの性能を提供します。多行列分解注意(MFA)と注意-FFNのデカップリング(AFD)という協調設計により、Step3 はフラッグシップ級からローエンドのアクセラレータまで一貫して高い効率を維持します。事前学習段階では、Step3 は20Tを超えるテキストトークンと4Tの画像・テキスト混合トークンを処理し、十数言語をカバーしました。このモデルは数学、コード、多モーダルなど複数のベンチマークにおいてオープンソースモデルの中でトップレベルの成績を達成しています。"
|
|
3283
3335
|
},
|
|
@@ -3386,12 +3438,8 @@
|
|
|
3386
3438
|
"wizardlm2:8x22b": {
|
|
3387
3439
|
"description": "WizardLM 2は、Microsoft AIが提供する言語モデルであり、複雑な対話、多言語、推論、インテリジェントアシスタントの分野で特に優れた性能を発揮します。"
|
|
3388
3440
|
},
|
|
3389
|
-
"x-ai/grok-4-fast": {
|
|
3390
|
-
|
|
3391
|
-
},
|
|
3392
|
-
"x-ai/grok-code-fast-1": {
|
|
3393
|
-
"description": "grok-code-fast-1 を発表できることを嬉しく思います。これは、高速かつ経済的な推論モデルであり、エージェントによるコーディングにおいて優れた性能を発揮します。"
|
|
3394
|
-
},
|
|
3441
|
+
"x-ai/grok-4-fast": {},
|
|
3442
|
+
"x-ai/grok-code-fast-1": {},
|
|
3395
3443
|
"x1": {
|
|
3396
3444
|
"description": "Spark X1 モデルはさらにアップグレードされ、元の数学タスクで国内のリーダーシップを維持しつつ、推論、テキスト生成、言語理解などの一般的なタスクで OpenAI o1 および DeepSeek R1 に匹敵する効果を実現します。"
|
|
3397
3445
|
},
|
|
@@ -3452,9 +3500,7 @@
|
|
|
3452
3500
|
"yi-vision-v2": {
|
|
3453
3501
|
"description": "複雑な視覚タスクモデルで、複数の画像に基づく高性能な理解と分析能力を提供します。"
|
|
3454
3502
|
},
|
|
3455
|
-
"z-ai/glm-4.6": {
|
|
3456
|
-
"description": "智譜の最新フラッグシップモデル GLM-4.6 は、高度なコーディング、長文処理、推論およびエージェント能力において前世代を大きく上回る性能を実現しています。"
|
|
3457
|
-
},
|
|
3503
|
+
"z-ai/glm-4.6": {},
|
|
3458
3504
|
"zai-org/GLM-4.5": {
|
|
3459
3505
|
"description": "GLM-4.5はエージェントアプリケーション向けに設計された基盤モデルで、混合専門家(Mixture-of-Experts)アーキテクチャを採用。ツール呼び出し、ウェブブラウジング、ソフトウェア工学、フロントエンドプログラミング分野で深く最適化され、Claude CodeやRoo Codeなどのコードエージェントへのシームレスな統合をサポートします。混合推論モードを採用し、複雑な推論や日常利用など多様なシナリオに適応可能です。"
|
|
3460
3506
|
},
|
|
@@ -191,6 +191,9 @@
|
|
|
191
191
|
"xinference": {
|
|
192
192
|
"description": "Xorbits Inference(Xinference)は、様々なAIモデルの実行と統合を簡素化するためのオープンソースプラットフォームです。Xinferenceを利用することで、オープンソースのLLM、埋め込みモデル、マルチモーダルモデルをクラウドまたはオンプレミス環境で実行し、強力なAIアプリケーションを構築することができます。"
|
|
193
193
|
},
|
|
194
|
+
"zenmux": {
|
|
195
|
+
"description": "ZenMux は、OpenAI、Anthropic、Google VertexAI などの主要な AI サービスインターフェースに対応した、統合型 AI サービス集約プラットフォームです。柔軟なルーティング機能を提供し、さまざまな AI モデルを簡単に切り替え・管理することができます。"
|
|
196
|
+
},
|
|
194
197
|
"zeroone": {
|
|
195
198
|
"description": "01.AIは、AI 2.0時代の人工知能技術に特化し、「人+人工知能」の革新と応用を推進し、超強力なモデルと先進的なAI技術を用いて人類の生産性を向上させ、技術の力を実現します。"
|
|
196
199
|
},
|