@lobehub/lobehub 2.0.0-next.105 → 2.0.0-next.106

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. package/CHANGELOG.md +25 -0
  2. package/changelog/v1.json +9 -0
  3. package/locales/ar/image.json +8 -0
  4. package/locales/ar/models.json +110 -64
  5. package/locales/ar/providers.json +3 -0
  6. package/locales/bg-BG/image.json +8 -0
  7. package/locales/bg-BG/models.json +98 -68
  8. package/locales/bg-BG/providers.json +3 -0
  9. package/locales/de-DE/image.json +8 -0
  10. package/locales/de-DE/models.json +176 -38
  11. package/locales/de-DE/providers.json +3 -0
  12. package/locales/en-US/image.json +8 -0
  13. package/locales/en-US/models.json +176 -38
  14. package/locales/en-US/providers.json +3 -0
  15. package/locales/es-ES/image.json +8 -0
  16. package/locales/es-ES/models.json +176 -38
  17. package/locales/es-ES/providers.json +3 -0
  18. package/locales/fa-IR/image.json +8 -0
  19. package/locales/fa-IR/models.json +110 -64
  20. package/locales/fa-IR/providers.json +3 -0
  21. package/locales/fr-FR/image.json +8 -0
  22. package/locales/fr-FR/models.json +110 -64
  23. package/locales/fr-FR/providers.json +3 -0
  24. package/locales/it-IT/image.json +8 -0
  25. package/locales/it-IT/models.json +176 -38
  26. package/locales/it-IT/providers.json +3 -0
  27. package/locales/ja-JP/image.json +8 -0
  28. package/locales/ja-JP/models.json +110 -64
  29. package/locales/ja-JP/providers.json +3 -0
  30. package/locales/ko-KR/image.json +8 -0
  31. package/locales/ko-KR/models.json +110 -64
  32. package/locales/ko-KR/providers.json +3 -0
  33. package/locales/nl-NL/image.json +8 -0
  34. package/locales/nl-NL/models.json +176 -38
  35. package/locales/nl-NL/providers.json +3 -0
  36. package/locales/pl-PL/image.json +8 -0
  37. package/locales/pl-PL/models.json +110 -64
  38. package/locales/pl-PL/providers.json +3 -0
  39. package/locales/pt-BR/image.json +8 -0
  40. package/locales/pt-BR/models.json +176 -38
  41. package/locales/pt-BR/providers.json +3 -0
  42. package/locales/ru-RU/image.json +8 -0
  43. package/locales/ru-RU/models.json +98 -68
  44. package/locales/ru-RU/providers.json +3 -0
  45. package/locales/tr-TR/image.json +8 -0
  46. package/locales/tr-TR/models.json +110 -64
  47. package/locales/tr-TR/providers.json +3 -0
  48. package/locales/vi-VN/image.json +8 -0
  49. package/locales/vi-VN/models.json +176 -38
  50. package/locales/vi-VN/providers.json +3 -0
  51. package/locales/zh-CN/image.json +8 -0
  52. package/locales/zh-CN/models.json +179 -38
  53. package/locales/zh-CN/providers.json +3 -0
  54. package/locales/zh-TW/image.json +8 -0
  55. package/locales/zh-TW/models.json +176 -38
  56. package/locales/zh-TW/providers.json +3 -0
  57. package/package.json +1 -1
  58. package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
package/CHANGELOG.md CHANGED
@@ -2,6 +2,31 @@
2
2
 
3
3
  # Changelog
4
4
 
5
+ ## [Version 2.0.0-next.106](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.105...v2.0.0-next.106)
6
+
7
+ <sup>Released on **2025-11-23**</sup>
8
+
9
+ #### ✨ Features
10
+
11
+ - **misc**: Add nano-banana-pro model support and optimization.
12
+
13
+ <br/>
14
+
15
+ <details>
16
+ <summary><kbd>Improvements and Fixes</kbd></summary>
17
+
18
+ #### What's improved
19
+
20
+ - **misc**: Add nano-banana-pro model support and optimization, closes [#10376](https://github.com/lobehub/lobe-chat/issues/10376) ([5349bdc](https://github.com/lobehub/lobe-chat/commit/5349bdc))
21
+
22
+ </details>
23
+
24
+ <div align="right">
25
+
26
+ [![](https://img.shields.io/badge/-BACK_TO_TOP-151515?style=flat-square)](#readme-top)
27
+
28
+ </div>
29
+
5
30
  ## [Version 2.0.0-next.105](https://github.com/lobehub/lobe-chat/compare/v2.0.0-next.104...v2.0.0-next.105)
6
31
 
7
32
  <sup>Released on **2025-11-23**</sup>
package/changelog/v1.json CHANGED
@@ -1,4 +1,13 @@
1
1
  [
2
+ {
3
+ "children": {
4
+ "features": [
5
+ "Add nano-banana-pro model support and optimization."
6
+ ]
7
+ },
8
+ "date": "2025-11-23",
9
+ "version": "2.0.0-next.106"
10
+ },
2
11
  {
3
12
  "children": {},
4
13
  "date": "2025-11-23",
@@ -37,6 +37,14 @@
37
37
  "standard": "عادي"
38
38
  }
39
39
  },
40
+ "resolution": {
41
+ "label": "الدقة",
42
+ "options": {
43
+ "1K": "1K",
44
+ "2K": "2K",
45
+ "4K": "4K"
46
+ }
47
+ },
40
48
  "seed": {
41
49
  "label": "البذرة",
42
50
  "random": "بذرة عشوائية"
@@ -720,25 +720,28 @@
720
720
  "description": "Claude 3 Opus هو أذكى نموذج من Anthropic، يقدم أداءً رائدًا في السوق للمهام المعقدة للغاية. يتميز بسلاسة استثنائية وفهم شبيه بالبشر للتعامل مع المطالبات المفتوحة والسيناريوهات غير المسبوقة."
721
721
  },
722
722
  "anthropic/claude-3.5-haiku": {
723
- "description": "Claude 3.5 Haiku هو الجيل التالي من أسرع نماذجنا. يتمتع بسرعة مماثلة لـ Claude 3 Haiku، مع تحسينات في كل مجموعة مهارات، وتفوق في العديد من اختبارات الذكاء على أكبر نموذج لدينا من الجيل السابق Claude 3 Opus."
723
+ "description": "يتميز Claude 3.5 Haiku بقدرات محسّنة في السرعة ودقة البرمجة واستخدام الأدوات. مناسب للسيناريوهات التي تتطلب سرعة عالية وتفاعلًا فعالًا مع الأدوات."
724
724
  },
725
725
  "anthropic/claude-3.5-sonnet": {
726
- "description": "Claude 3.5 Sonnet يحقق توازنًا مثاليًا بين الذكاء والسرعة، خاصة لأعباء العمل المؤسسية. يقدم أداءً قويًا بتكلفة أقل مقارنة بالمنافسين، ومصمم لتحمل عالي في نشرات الذكاء الاصطناعي على نطاق واسع."
726
+ "description": "Claude 3.5 Sonnet هو نموذج سريع وفعّال من عائلة Sonnet، يوفر أداءً أفضل في البرمجة والاستدلال، وسيتم استبدال بعض نسخه تدريجيًا بـ Sonnet 3.7 وما بعده."
727
727
  },
728
728
  "anthropic/claude-3.7-sonnet": {
729
- "description": "Claude 3.7 Sonnet هو أول نموذج استدلال مختلط، وأذكى نموذج حتى الآن من Anthropic. يقدم أداءً متقدمًا في الترميز، وتوليد المحتوى، وتحليل البيانات، ومهام التخطيط، مبنيًا على قدرات الهندسة البرمجية واستخدام الحاسوب في سلفه Claude 3.5 Sonnet."
729
+ "description": "Claude 3.7 Sonnet هو إصدار مطوّر من سلسلة Sonnet، يتمتع بقدرات استدلال وبرمجة أقوى، ومناسب للمهام المعقدة على مستوى المؤسسات."
730
+ },
731
+ "anthropic/claude-haiku-4.5": {
732
+ "description": "Claude Haiku 4.5 هو نموذج عالي الأداء من Anthropic يتميز بزمن استجابة منخفض جدًا مع الحفاظ على دقة عالية."
730
733
  },
731
734
  "anthropic/claude-opus-4": {
732
- "description": "Claude Opus 4 هو أقوى نموذج حتى الآن من Anthropic، وأفضل نموذج ترميز في العالم، متصدرًا في اختبارات SWE-bench (72.5%) وTerminal-bench (43.2%). يوفر أداءً مستمرًا للمهام الطويلة التي تتطلب تركيزًا وجهدًا وآلاف الخطوات، قادرًا على العمل لساعات متواصلة، مما يوسع بشكل كبير قدرات وكلاء الذكاء الاصطناعي."
735
+ "description": "Opus 4 هو النموذج الرائد من Anthropic، مصمم خصيصًا للمهام المعقدة والتطبيقات المؤسسية."
733
736
  },
734
737
  "anthropic/claude-opus-4.1": {
735
- "description": "Claude Opus 4.1 هو بديل جاهز للاستخدام لـ Opus 4، يقدم أداءً ودقة ممتازة في مهام الترميز والوكالة العملية. يرفع أداء الترميز المتقدم إلى 74.5% في SWE-bench Verified، ويتعامل مع المشكلات المعقدة متعددة الخطوات بدقة واهتمام أكبر بالتفاصيل."
738
+ "description": "Opus 4.1 هو نموذج متقدم من Anthropic، محسن للبرمجة، الاستدلال المعقد، والمهام المستمرة."
736
739
  },
737
740
  "anthropic/claude-sonnet-4": {
738
- "description": "Claude Sonnet 4 يحسن بشكل كبير على قدرات Sonnet 3.7 الرائدة في الصناعة، ويظهر أداءً ممتازًا في الترميز، محققًا 72.7% في SWE-bench. يوازن النموذج بين الأداء والكفاءة، مناسب للحالات الداخلية والخارجية، ويحقق تحكمًا أكبر في التنفيذ من خلال قابلية تحكم محسنة."
741
+ "description": "Claude Sonnet 4 هو إصدار الاستدلال الهجين من Anthropic، يجمع بين قدرات التفكير وغير التفكير."
739
742
  },
740
743
  "anthropic/claude-sonnet-4.5": {
741
- "description": "كلود سونيت 4.5 هو أذكى نموذج قدمته شركة أنثروبيك حتى الآن."
744
+ "description": "Claude Sonnet 4.5 هو أحدث نموذج استدلال هجين من Anthropic، محسن للاستدلال المعقد والبرمجة."
742
745
  },
743
746
  "ascend-tribe/pangu-pro-moe": {
744
747
  "description": "Pangu-Pro-MoE 72B-A16B هو نموذج لغة ضخم نادر التنشيط يحتوي على 72 مليار معلمة و16 مليار معلمة نشطة، يعتمد على بنية الخبراء المختلطين المجمعة (MoGE). في مرحلة اختيار الخبراء، يتم تجميع الخبراء وتقيد تنشيط عدد متساوٍ من الخبراء داخل كل مجموعة لكل رمز، مما يحقق توازنًا في تحميل الخبراء ويعزز بشكل كبير كفاءة نشر النموذج على منصة Ascend."
@@ -761,6 +764,9 @@
761
764
  "baidu/ERNIE-4.5-300B-A47B": {
762
765
  "description": "ERNIE-4.5-300B-A47B هو نموذج لغة ضخم يعتمد على بنية الخبراء المختلطين (MoE) تم تطويره بواسطة شركة بايدو. يحتوي النموذج على 300 مليار معلمة إجمالاً، لكنه ينشط فقط 47 مليار معلمة لكل رمز أثناء الاستدلال، مما يوازن بين الأداء القوي والكفاءة الحسابية. كأحد النماذج الأساسية في سلسلة ERNIE 4.5، يظهر أداءً متميزًا في مهام فهم النصوص، التوليد، الاستدلال، والبرمجة. يستخدم النموذج طريقة تدريب مسبق مبتكرة متعددة الوسائط ومتغايرة تعتمد على MoE، من خلال التدريب المشترك للنصوص والوسائط البصرية، مما يعزز قدراته الشاملة، خاصة في الالتزام بالتعليمات وتذكر المعرفة العالمية."
763
766
  },
767
+ "baidu/ernie-5.0-thinking-preview": {
768
+ "description": "ERNIE 5.0 Thinking Preview هو نموذج Wenxin متعدد الوسائط من الجيل الجديد من Baidu، بارع في الفهم متعدد الوسائط، اتباع التعليمات، الإبداع، الأسئلة والأجوبة الواقعية، واستخدام الأدوات."
769
+ },
764
770
  "c4ai-aya-expanse-32b": {
765
771
  "description": "Aya Expanse هو نموذج متعدد اللغات عالي الأداء بسعة 32B، يهدف إلى تحدي أداء النماذج أحادية اللغة من خلال تحسين التعليمات، وتداول البيانات، وتدريب التفضيلات، وابتكارات دمج النماذج. يدعم 23 لغة."
766
772
  },
@@ -869,6 +875,9 @@
869
875
  "codex-mini-latest": {
870
876
  "description": "codex-mini-latest هو نسخة محسنة من o4-mini، مخصصة لـ Codex CLI. بالنسبة للاستخدام المباشر عبر API، نوصي بالبدء من gpt-4.1."
871
877
  },
878
+ "cogito-2.1:671b": {
879
+ "description": "Cogito v2.1 671B هو نموذج لغة مفتوح المصدر من الولايات المتحدة ومتاح للاستخدام التجاري المجاني، يتميز بأداء يقارن بأفضل النماذج، وكفاءة استدلال أعلى، وسياق طويل يصل إلى 128k، وقدرات شاملة قوية."
880
+ },
872
881
  "cogview-4": {
873
882
  "description": "CogView-4 هو أول نموذج مفتوح المصدر من Zhipu يدعم توليد الحروف الصينية، مع تحسينات شاملة في فهم المعاني، وجودة توليد الصور، وقدرات توليد النصوص باللغتين الصينية والإنجليزية، ويدعم إدخال ثنائي اللغة بأي طول، وقادر على توليد صور بأي دقة ضمن النطاق المحدد."
874
883
  },
@@ -1139,6 +1148,9 @@
1139
1148
  "deepseek-vl2-small": {
1140
1149
  "description": "DeepSeek VL2 Small، نسخة خفيفة متعددة الوسائط، مناسبة للبيئات ذات الموارد المحدودة وسيناريوهات الحمل العالي."
1141
1150
  },
1151
+ "deepseek/deepseek-chat": {
1152
+ "description": "DeepSeek-V3 هو نموذج استدلال هجين عالي الأداء من فريق DeepSeek، مناسب للمهام المعقدة وتكامل الأدوات."
1153
+ },
1142
1154
  "deepseek/deepseek-chat-v3-0324": {
1143
1155
  "description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
1144
1156
  },
@@ -1146,13 +1158,13 @@
1146
1158
  "description": "DeepSeek V3 هو نموذج مختلط خبير يحتوي على 685B من المعلمات، وهو أحدث إصدار من سلسلة نماذج الدردشة الرائدة لفريق DeepSeek.\n\nيستفيد من نموذج [DeepSeek V3](/deepseek/deepseek-chat-v3) ويظهر أداءً ممتازًا في مجموعة متنوعة من المهام."
1147
1159
  },
1148
1160
  "deepseek/deepseek-chat-v3.1": {
1149
- "description": "DeepSeek-V3.1 هو نموذج استدلال هجين كبير يدعم سياق طويل يصل إلى 128K وتبديل أوضاع فعال، ويحقق أداءً وسرعة ممتازة في استدعاء الأدوات، وتوليد الأكواد، والمهام الاستدلالية المعقدة."
1161
+ "description": "DeepSeek-V3.1 هو نموذج استدلال هجين طويل السياق من DeepSeek، يدعم أوضاع التفكير وغير التفكير وتكامل الأدوات."
1150
1162
  },
1151
1163
  "deepseek/deepseek-r1": {
1152
1164
  "description": "تم ترقية نموذج DeepSeek R1 إلى إصدار صغير جديد، الإصدار الحالي هو DeepSeek-R1-0528. في التحديث الأخير، حسّن DeepSeek R1 عمق الاستدلال وقدرته بشكل ملحوظ من خلال استغلال موارد حسابية متزايدة وإدخال آليات تحسين خوارزمية بعد التدريب. النموذج يحقق أداءً ممتازًا في تقييمات معيارية متعددة مثل الرياضيات، والبرمجة، والمنطق العام، وأداؤه العام يقترب الآن من النماذج الرائدة مثل O3 وGemini 2.5 Pro."
1153
1165
  },
1154
1166
  "deepseek/deepseek-r1-0528": {
1155
- "description": "DeepSeek-R1 يعزز بشكل كبير قدرة الاستدلال للنموذج حتى مع وجود بيانات تعليمية قليلة جدًا. قبل إخراج الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
1167
+ "description": "DeepSeek R1 0528 هو إصدار محدث من DeepSeek، يركز على المصدر المفتوح وعمق الاستدلال."
1156
1168
  },
1157
1169
  "deepseek/deepseek-r1-0528:free": {
1158
1170
  "description": "DeepSeek-R1 يعزز بشكل كبير قدرة الاستدلال للنموذج حتى مع وجود بيانات تعليمية قليلة جدًا. قبل إخراج الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
@@ -1175,6 +1187,9 @@
1175
1187
  "deepseek/deepseek-r1:free": {
1176
1188
  "description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
1177
1189
  },
1190
+ "deepseek/deepseek-reasoner": {
1191
+ "description": "DeepSeek-V3 Thinking (reasoner) هو نموذج استدلال تجريبي من DeepSeek، مناسب للمهام الاستدلالية عالية التعقيد."
1192
+ },
1178
1193
  "deepseek/deepseek-v3": {
1179
1194
  "description": "نموذج لغة كبير عام سريع مع قدرات استدلال محسنة."
1180
1195
  },
@@ -1523,8 +1538,14 @@
1523
1538
  "gemini-2.5-pro-preview-06-05": {
1524
1539
  "description": "جيميني 2.5 برو بريڤيو هو أحدث نموذج تفكيري من جوجل، قادر على استنتاج حلول للمشكلات المعقدة في مجالات البرمجة، الرياضيات، والعلوم والتكنولوجيا والهندسة والرياضيات (STEM)، بالإضافة إلى تحليل مجموعات بيانات كبيرة، قواعد بيانات البرمجة، والوثائق باستخدام سياق طويل."
1525
1540
  },
1541
+ "gemini-3-pro-image-preview": {
1542
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) هو نموذج توليد صور من Google، يدعم أيضًا المحادثات متعددة الوسائط."
1543
+ },
1544
+ "gemini-3-pro-image-preview:image": {
1545
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) هو نموذج توليد صور من Google، يدعم أيضًا المحادثات متعددة الوسائط."
1546
+ },
1526
1547
  "gemini-3-pro-preview": {
1527
- "description": "Gemini 3 Pro هو النموذج الأذكى من Google، يتميز بأحدث تقنيات الاستدلال والفهم متعدد الوسائط، بالإضافة إلى قدرات قوية في التمثيل الذكي وترميز السياق."
1548
+ "description": "Gemini 3 Pro هو أفضل نموذج لفهم الوسائط المتعددة عالميًا، وأقوى نموذج ذكي من Google حتى الآن، يوفر تأثيرات بصرية غنية وتفاعلية عميقة، وكل ذلك مبني على قدرات استدلال متقدمة."
1528
1549
  },
1529
1550
  "gemini-flash-latest": {
1530
1551
  "description": "أحدث إصدار من Gemini Flash"
@@ -1650,7 +1671,7 @@
1650
1671
  "description": "يمتلك GLM-Zero-Preview قدرة قوية على الاستدلال المعقد، ويظهر أداءً ممتازًا في مجالات الاستدلال المنطقي، والرياضيات، والبرمجة."
1651
1672
  },
1652
1673
  "google/gemini-2.0-flash": {
1653
- "description": "Gemini 2.0 Flash يقدم ميزات الجيل التالي وتحسينات تشمل سرعة فائقة، استخدام أدوات مدمجة، توليد متعدد الوسائط، ونافذة سياق تصل إلى مليون رمز."
1674
+ "description": "Gemini 2.0 Flash هو نموذج استدلال عالي الأداء من Google، مناسب للمهام متعددة الوسائط الممتدة."
1654
1675
  },
1655
1676
  "google/gemini-2.0-flash-001": {
1656
1677
  "description": "Gemini 2.0 Flash يقدم ميزات وتحسينات من الجيل التالي، بما في ذلك سرعة فائقة، واستخدام أدوات أصلية، وتوليد متعدد الوسائط، ونافذة سياق تصل إلى 1M توكن."
@@ -1661,14 +1682,23 @@
1661
1682
  "google/gemini-2.0-flash-lite": {
1662
1683
  "description": "Gemini 2.0 Flash Lite يقدم ميزات الجيل التالي وتحسينات تشمل سرعة فائقة، استخدام أدوات مدمجة، توليد متعدد الوسائط، ونافذة سياق تصل إلى مليون رمز."
1663
1684
  },
1685
+ "google/gemini-2.0-flash-lite-001": {
1686
+ "description": "Gemini 2.0 Flash Lite هو إصدار خفيف من عائلة Gemini، لا يفعل وضع التفكير افتراضيًا لتحسين الأداء من حيث التأخير والتكلفة، ويمكن تفعيله عبر المعلمات."
1687
+ },
1664
1688
  "google/gemini-2.5-flash": {
1665
- "description": "Gemini 2.5 Flash هو نموذج تفكيري يقدم قدرات شاملة ممتازة. مصمم لتحقيق توازن بين السعر والأداء، ويدعم متعدد الوسائط ونافذة سياق تصل إلى مليون رمز."
1689
+ "description": "سلسلة Gemini 2.5 Flash (Lite/Pro/Flash) هي نماذج استدلال من Google تتراوح من تأخير منخفض إلى أداء عالٍ."
1690
+ },
1691
+ "google/gemini-2.5-flash-image": {
1692
+ "description": "Gemini 2.5 Flash Image (Nano Banana) هو نموذج توليد صور من Google، يدعم أيضًا المحادثات متعددة الوسائط."
1693
+ },
1694
+ "google/gemini-2.5-flash-image-free": {
1695
+ "description": "الإصدار المجاني من Gemini 2.5 Flash Image، يدعم توليد الوسائط المتعددة بحدود استخدام معينة."
1666
1696
  },
1667
1697
  "google/gemini-2.5-flash-image-preview": {
1668
1698
  "description": "نموذج تجريبي Gemini 2.5 Flash، يدعم توليد الصور."
1669
1699
  },
1670
1700
  "google/gemini-2.5-flash-lite": {
1671
- "description": "Gemini 2.5 Flash-Lite هو نموذج متوازن ومنخفض التأخير مع ميزانية تفكير قابلة للتكوين واتصال بالأدوات (مثل البحث في Google والتنفيذ البرمجي). يدعم مدخلات متعددة الوسائط ويوفر نافذة سياق تصل إلى مليون رمز."
1701
+ "description": "Gemini 2.5 Flash Lite هو إصدار خفيف من Gemini 2. محسن من حيث التأخير والتكلفة، مناسب للسيناريوهات ذات الإنتاجية العالية."
1672
1702
  },
1673
1703
  "google/gemini-2.5-flash-preview": {
1674
1704
  "description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
@@ -1677,11 +1707,23 @@
1677
1707
  "description": "Gemini 2.5 Flash هو النموذج الرائد الأكثر تقدمًا من Google، مصمم للاستدلال المتقدم، الترميز، المهام الرياضية والعلمية. يحتوي على قدرة \"التفكير\" المدمجة، مما يمكّنه من تقديم استجابات بدقة أعلى ومعالجة سياقات أكثر تفصيلاً.\n\nملاحظة: يحتوي هذا النموذج على نوعين: التفكير وغير التفكير. تختلف تسعير الإخراج بشكل ملحوظ بناءً على ما إذا كانت قدرة التفكير مفعلة. إذا اخترت النوع القياسي (بدون لاحقة \" :thinking \")، سيتجنب النموذج بشكل صريح توليد رموز التفكير.\n\nلاستغلال قدرة التفكير واستقبال رموز التفكير، يجب عليك اختيار النوع \" :thinking \"، مما سيؤدي إلى تسعير إخراج تفكير أعلى.\n\nبالإضافة إلى ذلك، يمكن تكوين Gemini 2.5 Flash من خلال معلمة \"الحد الأقصى لعدد رموز الاستدلال\"، كما هو موضح في الوثائق (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1678
1708
  },
1679
1709
  "google/gemini-2.5-pro": {
1680
- "description": "Gemini 2.5 Pro هو نموذج Gemini المتقدم للاستدلال، قادر على حل المشكلات المعقدة. يحتوي على نافذة سياق تصل إلى مليوني رمز، ويدعم مدخلات متعددة الوسائط تشمل النصوص، الصور، الصوت، الفيديو، ومستندات PDF."
1710
+ "description": "Gemini 2.5 Pro هو نموذج استدلال رائد من Google، يدعم السياق الطويل والمهام المعقدة."
1711
+ },
1712
+ "google/gemini-2.5-pro-free": {
1713
+ "description": "الإصدار المجاني من Gemini 2.5 Pro، يدعم سياق طويل متعدد الوسائط بحدود استخدام معينة، مناسب للتجربة وسير العمل الخفيف."
1681
1714
  },
1682
1715
  "google/gemini-2.5-pro-preview": {
1683
1716
  "description": "معاينة Gemini 2.5 Pro هي أحدث نموذج تفكيري من Google، قادر على استنتاج المشكلات المعقدة في مجالات البرمجة والرياضيات والعلوم والتكنولوجيا والهندسة والرياضيات (STEM)، بالإضافة إلى استخدام سياق طويل لتحليل مجموعات البيانات الكبيرة، وقواعد الشيفرة، والوثائق."
1684
1717
  },
1718
+ "google/gemini-3-pro-image-preview-free": {
1719
+ "description": "الإصدار المجاني من Gemini 3 Pro Image، يدعم توليد الوسائط المتعددة بحدود استخدام معينة."
1720
+ },
1721
+ "google/gemini-3-pro-preview": {
1722
+ "description": "Gemini 3 Pro هو الجيل التالي من نماذج الاستدلال متعددة الوسائط من سلسلة Gemini، قادر على فهم النصوص، الصوت، الصور، الفيديو وغيرها، ويعالج المهام المعقدة ومستودعات الشيفرة الكبيرة."
1723
+ },
1724
+ "google/gemini-3-pro-preview-free": {
1725
+ "description": "الإصدار المجاني من Gemini 3 Pro Preview، يتمتع بنفس قدرات الفهم والاستدلال متعددة الوسائط مثل الإصدار القياسي، لكنه يخضع لقيود الاستخدام المجاني ومعدل الاستجابة، مما يجعله مناسبًا للتجربة والاستخدام منخفض التكرار."
1726
+ },
1685
1727
  "google/gemini-embedding-001": {
1686
1728
  "description": "نموذج تضمين متقدم يقدم أداءً ممتازًا في مهام اللغة الإنجليزية، متعددة اللغات، والبرمجة."
1687
1729
  },
@@ -2057,21 +2099,36 @@
2057
2099
  "inception/mercury-coder-small": {
2058
2100
  "description": "Mercury Coder Small هو الخيار المثالي لمهام توليد الكود، وتصحيح الأخطاء، وإعادة الهيكلة، مع أدنى تأخير."
2059
2101
  },
2060
- "inclusionAI/Ling-1T": {
2061
- "description": "Ling-1T هو أول نموذج رائد من سلسلة \"Ling 2.0\" غير المعتمد على التفكير، يحتوي على تريليون معلمة إجمالية و50 مليار معلمة نشطة لكل رمز. تم بناؤه على بنية Ling 2.0، ويهدف إلى تجاوز حدود الاستدلال الفعال والإدراك القابل للتوسع. تم تدريب Ling-1T-base على أكثر من 200 تريليون رمز عالي الجودة وغني بالاستدلال."
2062
- },
2063
2102
  "inclusionAI/Ling-flash-2.0": {
2064
2103
  "description": "Ling-flash-2.0 هو النموذج الثالث في سلسلة بنية Ling 2.0 التي أصدرها فريق Bailing في مجموعة Ant. هو نموذج خبراء مختلط (MoE) بحجم إجمالي 100 مليار معلمة، لكنه ينشط فقط 6.1 مليار معلمة لكل رمز (غير متضمنة تمثيلات الكلمات 4.8 مليار). كنموذج خفيف الوزن، أظهر Ling-flash-2.0 أداءً يضاهي أو يتفوق على نماذج كثيفة بحجم 40 مليار معلمة ونماذج MoE أكبر في عدة تقييمات موثوقة. يهدف النموذج إلى استكشاف مسارات عالية الكفاءة من خلال تصميم معماري واستراتيجيات تدريب متقدمة، في ظل القناعة بأن \"النموذج الكبير يعني معلمات كثيرة\"."
2065
2104
  },
2066
2105
  "inclusionAI/Ling-mini-2.0": {
2067
2106
  "description": "Ling-mini-2.0 هو نموذج لغة كبير صغير الحجم وعالي الأداء مبني على بنية MoE. يحتوي على 16 مليار معلمة إجمالية، لكنه ينشط فقط 1.4 مليار معلمة لكل رمز (غير متضمنة التضمين 789 مليون)، مما يحقق سرعة توليد عالية جدًا. بفضل تصميم MoE الفعال وبيانات تدريب ضخمة وعالية الجودة، رغم تنشيط معلمات قليلة، يظهر Ling-mini-2.0 أداءً متقدمًا في المهام اللاحقة يضاهي نماذج LLM كثيفة أقل من 10 مليارات معلمة ونماذج MoE أكبر."
2068
2107
  },
2069
- "inclusionAI/Ring-1T": {
2070
- "description": "Ring-1T هو نموذج تفكير مفتوح المصدر بحجم تريليون معلمة، أطلقه فريق Bailing. يعتمد على بنية Ling 2.0 ونموذج Ling-1T-base، ويحتوي على تريليون معلمة إجمالية و50 مليار معلمة نشطة، ويدعم نافذة سياق تصل إلى 128 ألف. تم تحسينه من خلال تعلم التعزيز القابل للتحقق على نطاق واسع."
2071
- },
2072
2108
  "inclusionAI/Ring-flash-2.0": {
2073
2109
  "description": "Ring-flash-2.0 هو نموذج تفكير عالي الأداء محسّن بعمق بناءً على Ling-flash-2.0-base. يستخدم بنية خبراء مختلط (MoE) بحجم إجمالي 100 مليار معلمة، لكنه ينشط فقط 6.1 مليار معلمة في كل استدلال. يحل النموذج من خلال خوارزمية icepop المبتكرة مشكلة عدم استقرار نماذج MoE الكبيرة في تدريب التعلم المعزز (RL)، مما يسمح بتحسين مستمر لقدرات الاستدلال المعقدة خلال التدريب طويل الأمد. حقق Ring-flash-2.0 تقدمًا ملحوظًا في مسابقات الرياضيات، توليد الشيفرة، والاستدلال المنطقي، متفوقًا على أفضل النماذج الكثيفة التي تقل عن 40 مليار معلمة، وقريبًا من نماذج MoE مفتوحة المصدر الأكبر ونماذج التفكير عالية الأداء المغلقة المصدر. رغم تركيزه على الاستدلال المعقد، يظهر أداءً ممتازًا في مهام الكتابة الإبداعية. بالإضافة إلى ذلك، وبفضل تصميمه المعماري الفعال، يوفر Ring-flash-2.0 أداءً قويًا مع استدلال عالي السرعة، مما يقلل بشكل كبير من تكلفة نشر نماذج التفكير في بيئات ذات حمل عالٍ."
2074
2110
  },
2111
+ "inclusionai/ling-1t": {
2112
+ "description": "Ling-1T هو نموذج MoE بسعة 1 تريليون من inclusionAI، محسن للمهام الاستدلالية المكثفة والسياقات الواسعة."
2113
+ },
2114
+ "inclusionai/ling-flash-2.0": {
2115
+ "description": "Ling-flash-2.0 هو نموذج MoE من inclusionAI، محسن من حيث الكفاءة وأداء الاستدلال، مناسب للمهام المتوسطة إلى الكبيرة."
2116
+ },
2117
+ "inclusionai/ling-mini-2.0": {
2118
+ "description": "Ling-mini-2.0 هو نموذج MoE خفيف الوزن من inclusionAI، يقلل التكاليف بشكل كبير مع الحفاظ على قدرات الاستدلال."
2119
+ },
2120
+ "inclusionai/ming-flash-omini-preview": {
2121
+ "description": "Ming-flash-omni Preview هو نموذج متعدد الوسائط من inclusionAI، يدعم إدخال الصوت، الصور والفيديو، مع تحسينات في عرض الصور والتعرف على الصوت."
2122
+ },
2123
+ "inclusionai/ring-1t": {
2124
+ "description": "Ring-1T هو نموذج MoE بسعة تريليون من inclusionAI، مصمم للمهام الاستدلالية واسعة النطاق والبحثية."
2125
+ },
2126
+ "inclusionai/ring-flash-2.0": {
2127
+ "description": "Ring-flash-2.0 هو إصدار من نموذج Ring من inclusionAI موجه لسيناريوهات الإنتاجية العالية، يركز على السرعة وكفاءة التكلفة."
2128
+ },
2129
+ "inclusionai/ring-mini-2.0": {
2130
+ "description": "Ring-mini-2.0 هو إصدار خفيف الوزن عالي الإنتاجية من نموذج MoE من inclusionAI، مخصص لسيناريوهات التوازي العالي."
2131
+ },
2075
2132
  "internlm/internlm2_5-7b-chat": {
2076
2133
  "description": "InternLM2.5 يوفر حلول حوار ذكية في عدة سيناريوهات."
2077
2134
  },
@@ -2123,6 +2180,12 @@
2123
2180
  "kimi-k2-instruct": {
2124
2181
  "description": "Kimi K2 Instruct، نموذج الاستدلال الرسمي من Kimi، يدعم السياق الطويل، البرمجة، الأسئلة والأجوبة، وغيرها من السيناريوهات."
2125
2182
  },
2183
+ "kimi-k2-thinking": {
2184
+ "description": "نموذج التفكير طويل المدى K2، يدعم سياق 256k، واستدعاء الأدوات المتعدد الخطوات والتفكير، بارع في حل المشكلات المعقدة."
2185
+ },
2186
+ "kimi-k2-thinking-turbo": {
2187
+ "description": "الإصدار السريع من نموذج التفكير طويل المدى K2، يدعم سياق 256k، بارع في الاستدلال العميق، وسرعة إخراج تصل إلى 60-100 رمز في الثانية."
2188
+ },
2126
2189
  "kimi-k2-turbo-preview": {
2127
2190
  "description": "kimi-k2 هو نموذج أساسي بمعمارية MoE يتمتع بقدرات قوية للغاية في البرمجة وقدرات الوكيل (Agent)، بإجمالي معلمات يبلغ 1 تريليون والمعلمات المُفعَّلة 32 مليار. في اختبارات الأداء المعيارية للفئات الرئيسية مثل الاستدلال المعرفي العام والبرمجة والرياضيات والوكلاء (Agent)، تفوق أداء نموذج K2 على النماذج المفتوحة المصدر السائدة الأخرى."
2128
2191
  },
@@ -2135,6 +2198,9 @@
2135
2198
  "kimi-thinking-preview": {
2136
2199
  "description": "نموذج kimi-thinking-preview هو نموذج تفكير متعدد الوسائط يتمتع بقدرات استدلال متعددة الوسائط وعامة، مقدم من الجانب المظلم للقمر، يتقن الاستدلال العميق ويساعد في حل المزيد من المسائل الصعبة."
2137
2200
  },
2201
+ "kuaishou/kat-coder-pro-v1": {
2202
+ "description": "KAT-Coder-Pro-V1 (مجاني لفترة محدودة) يركز على فهم الشيفرة والبرمجة التلقائية، مخصص لمهام البرمجة الفعالة."
2203
+ },
2138
2204
  "learnlm-1.5-pro-experimental": {
2139
2205
  "description": "LearnLM هو نموذج لغوي تجريبي محدد المهام، تم تدريبه ليتماشى مع مبادئ علوم التعلم، يمكنه اتباع التعليمات النظامية في سيناريوهات التعليم والتعلم، ويعمل كمدرب خبير."
2140
2206
  },
@@ -2466,7 +2532,7 @@
2466
2532
  "description": "MiniMax M2 هو نموذج لغوي كبير وفعّال، تم تطويره خصيصًا لتلبية احتياجات الترميز وتدفقات عمل الوكلاء."
2467
2533
  },
2468
2534
  "minimax/minimax-m2": {
2469
- "description": "مصمم خصيصًا للترميز الفعّال وتدفقات عمل الوكلاء."
2535
+ "description": "MiniMax-M2 هو نموذج عالي الكفاءة في البرمجة ومهام الوكلاء، مناسب لمجموعة متنوعة من السيناريوهات الهندسية."
2470
2536
  },
2471
2537
  "minimaxai/minimax-m2": {
2472
2538
  "description": "MiniMax-M2 هو نموذج خبراء مختلط (MoE) مدمج وسريع وفعّال من حيث التكلفة، يحتوي على 230 مليار معلمة إجمالية و10 مليارات معلمة نشطة، صُمم لتحقيق أداء فائق في مهام الترميز والوكالة، مع الحفاظ على ذكاء عام قوي. يتميز هذا النموذج بأداء ممتاز في تحرير الملفات المتعددة، ودورة الترميز-التنفيذ-الإصلاح، والتحقق من الاختبارات والإصلاح، وسلاسل الأدوات المعقدة ذات الروابط الطويلة، مما يجعله خيارًا مثاليًا لسير عمل المطورين."
@@ -2615,12 +2681,21 @@
2615
2681
  "moonshotai/kimi-k2": {
2616
2682
  "description": "Kimi K2 هو نموذج لغة كبير مختلط الخبراء (MoE) ضخم طورته Moonshot AI، يحتوي على تريليون معلمة إجمالية و32 مليار معلمة نشطة في كل تمرير أمامي. مُحسّن لقدرات الوكيل، بما في ذلك استخدام الأدوات المتقدمة، الاستدلال، وتركيب الكود."
2617
2683
  },
2684
+ "moonshotai/kimi-k2-0711": {
2685
+ "description": "Kimi K2 0711 هو إصدار Instruct من سلسلة Kimi، مناسب لسيناريوهات الشيفرة عالية الجودة واستدعاء الأدوات."
2686
+ },
2618
2687
  "moonshotai/kimi-k2-0905": {
2619
- "description": "نموذج kimi-k2-0905-preview يدعم طول سياق 256k، يتمتع بقدرات ترميز وكيل أقوى، وجمالية وعملية أفضل في الشيفرة الأمامية، وفهم سياق محسن."
2688
+ "description": "Kimi K2 0905 هو تحديث لسلسلة Kimi، يعزز السياق وقدرات الاستدلال، ومحسن لسيناريوهات البرمجة."
2620
2689
  },
2621
2690
  "moonshotai/kimi-k2-instruct-0905": {
2622
2691
  "description": "نموذج kimi-k2-0905-preview يدعم طول سياق 256k، يتمتع بقدرات ترميز وكيل أقوى، وجمالية وعملية أفضل في الشيفرة الأمامية، وفهم سياق محسن."
2623
2692
  },
2693
+ "moonshotai/kimi-k2-thinking": {
2694
+ "description": "Kimi K2 Thinking هو نموذج تفكير من Moonshot محسن لمهام الاستدلال العميق، يتمتع بقدرات وكيل عامة."
2695
+ },
2696
+ "moonshotai/kimi-k2-thinking-turbo": {
2697
+ "description": "Kimi K2 Thinking Turbo هو الإصدار السريع من Kimi K2 Thinking، يقلل بشكل كبير من زمن الاستجابة مع الحفاظ على قدرات الاستدلال العميق."
2698
+ },
2624
2699
  "morph/morph-v3-fast": {
2625
2700
  "description": "Morph يقدم نموذج ذكاء اصطناعي مخصص يطبق تغييرات الكود المقترحة من نماذج متقدمة مثل Claude أو GPT-4o على ملفات الكود الحالية بسرعة فائقة - أكثر من 4500 رمز في الثانية. يعمل كخطوة نهائية في سير عمل الترميز بالذكاء الاصطناعي. يدعم 16k رمز إدخال و16k رمز إخراج."
2626
2701
  },
@@ -2702,30 +2777,14 @@
2702
2777
  "openai/gpt-4-turbo": {
2703
2778
  "description": "gpt-4-turbo من OpenAI يمتلك معرفة عامة واسعة وخبرة ميدانية، مما يمكنه من اتباع تعليمات اللغة الطبيعية المعقدة وحل المشكلات بدقة. تاريخ المعرفة حتى أبريل 2023، ونافذة سياق تصل إلى 128,000 رمز."
2704
2779
  },
2705
- "openai/gpt-4.1": {
2706
- "description": "GPT 4.1 هو النموذج الرائد من OpenAI، مناسب للمهام المعقدة. مثالي لحل المشكلات متعددة المجالات."
2707
- },
2708
- "openai/gpt-4.1-mini": {
2709
- "description": "GPT 4.1 mini يوازن بين الذكاء والسرعة والتكلفة، مما يجعله نموذجًا جذابًا للعديد من حالات الاستخدام."
2710
- },
2711
- "openai/gpt-4.1-nano": {
2712
- "description": "GPT-4.1 nano هو أسرع وأكفأ نموذج GPT 4.1 من حيث التكلفة."
2713
- },
2714
- "openai/gpt-4o": {
2715
- "description": "GPT-4o من OpenAI يمتلك معرفة عامة واسعة وخبرة ميدانية، قادر على اتباع تعليمات اللغة الطبيعية المعقدة وحل المشكلات بدقة. يقدم أداءً مماثلًا لـ GPT-4 Turbo عبر API أسرع وأرخص."
2716
- },
2717
- "openai/gpt-4o-mini": {
2718
- "description": "GPT-4o mini من OpenAI هو أصغر نموذج متقدم وأكثر كفاءة من حيث التكلفة. متعدد الوسائط (يقبل نصوصًا أو صورًا ويخرج نصًا)، وأكثر ذكاءً من gpt-3.5-turbo، مع سرعة مماثلة."
2719
- },
2720
- "openai/gpt-5": {
2721
- "description": "GPT-5 هو النموذج الرائد من OpenAI، يتفوق في الاستدلال المعقد، المعرفة الواقعية الواسعة، المهام المكثفة للكود، والوكالة متعددة الخطوات."
2722
- },
2723
- "openai/gpt-5-mini": {
2724
- "description": "GPT-5 mini هو نموذج محسّن من حيث التكلفة، يقدم أداءً ممتازًا في مهام الاستدلال والدردشة. يوفر توازنًا مثاليًا بين السرعة والتكلفة والقدرة."
2725
- },
2726
- "openai/gpt-5-nano": {
2727
- "description": "GPT-5 nano هو نموذج عالي الإنتاجية، يتفوق في المهام البسيطة مثل التعليمات أو التصنيف."
2728
- },
2780
+ "openai/gpt-4.1": {},
2781
+ "openai/gpt-4.1-mini": {},
2782
+ "openai/gpt-4.1-nano": {},
2783
+ "openai/gpt-4o": {},
2784
+ "openai/gpt-4o-mini": {},
2785
+ "openai/gpt-5": {},
2786
+ "openai/gpt-5-mini": {},
2787
+ "openai/gpt-5-nano": {},
2729
2788
  "openai/gpt-oss-120b": {
2730
2789
  "description": "نموذج لغة كبير عام عالي الكفاءة، يتمتع بقدرات استدلال قوية وقابلة للتحكم."
2731
2790
  },
@@ -2750,9 +2809,7 @@
2750
2809
  "openai/o3-mini-high": {
2751
2810
  "description": "o3-mini عالي المستوى من حيث الاستدلال، يقدم ذكاءً عاليًا بنفس تكلفة وأهداف التأخير مثل o1-mini."
2752
2811
  },
2753
- "openai/o4-mini": {
2754
- "description": "o4-mini من OpenAI يقدم استدلالًا سريعًا وفعالًا من حيث التكلفة، مع أداء ممتاز بالنسبة لحجمه، خاصة في الرياضيات (الأفضل في اختبار AIME)، الترميز، والمهام البصرية."
2755
- },
2812
+ "openai/o4-mini": {},
2756
2813
  "openai/o4-mini-high": {
2757
2814
  "description": "o4-mini إصدار عالي من حيث مستوى الاستدلال، تم تحسينه للاستدلال السريع والفعال، ويظهر كفاءة وأداء عاليين في المهام البرمجية والرؤية."
2758
2815
  },
@@ -2954,9 +3011,7 @@
2954
3011
  "qwen/qwen2.5-coder-7b-instruct": {
2955
3012
  "description": "نموذج قوي للبرمجة متوسطة الحجم، يدعم طول سياق يصل إلى 32K، بارع في البرمجة متعددة اللغات."
2956
3013
  },
2957
- "qwen/qwen3-14b": {
2958
- "description": "Qwen3-14B هو نموذج لغوي سببي مكثف يحتوي على 14.8 مليار معلمة، مصمم للاستدلال المعقد والحوار الفعال. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الرياضيات، والبرمجة، والاستدلال المنطقي، ونمط \"غير التفكير\" المستخدم في الحوار العام. تم ضبط هذا النموذج ليكون مناسبًا للامتثال للتعليمات، واستخدام أدوات الوكلاء، والكتابة الإبداعية، واستخدامه عبر أكثر من 100 لغة ولهجة. يدعم بشكل أصلي معالجة 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
2959
- },
3014
+ "qwen/qwen3-14b": {},
2960
3015
  "qwen/qwen3-14b:free": {
2961
3016
  "description": "Qwen3-14B هو نموذج لغوي سببي مكثف يحتوي على 14.8 مليار معلمة، مصمم للاستدلال المعقد والحوار الفعال. يدعم التبديل بسلاسة بين نمط \"التفكير\" المستخدم في الرياضيات، والبرمجة، والاستدلال المنطقي، ونمط \"غير التفكير\" المستخدم في الحوار العام. تم ضبط هذا النموذج ليكون مناسبًا للامتثال للتعليمات، واستخدام أدوات الوكلاء، والكتابة الإبداعية، واستخدامه عبر أكثر من 100 لغة ولهجة. يدعم بشكل أصلي معالجة 32K رمز، ويمكن توسيعها باستخدام التمديد القائم على YaRN إلى 131K رمز."
2962
3017
  },
@@ -3275,9 +3330,6 @@
3275
3330
  "step-r1-v-mini": {
3276
3331
  "description": "هذا النموذج هو نموذج استدلال كبير يتمتع بقدرة قوية على فهم الصور، يمكنه معالجة المعلومات النصية والصورية، ويخرج نصوصًا بعد تفكير عميق. يظهر هذا النموذج أداءً بارزًا في مجال الاستدلال البصري، كما يمتلك قدرات رياضية، برمجية، ونصية من الدرجة الأولى. طول السياق هو 100k."
3277
3332
  },
3278
- "step3": {
3279
- "description": "Step3 هو نموذج متعدد الوسائط أطلقته Jiexue Xingchen، يتمتع بقدرات قوية في الفهم البصري."
3280
- },
3281
3333
  "stepfun-ai/step3": {
3282
3334
  "description": "Step3 هو نموذج استدلال متعدد الوسائط متقدم أصدرته شركة 阶跃星辰 (StepFun). بُني على بنية مزيج الخبراء (MoE) التي تضم 321 مليار معلمة إجمالية و38 مليار معلمة تنشيط. صُمم النموذج بنهج من الطرف إلى الطرف ليقلل تكلفة فك الترميز، مع تقديم أداء رائد في الاستدلال البصري-اللغوي. من خلال التصميم التعاوني لآلية انتباه تفكيك متعدد المصفوفات (MFA) وفصل الانتباه عن شبكة التغذية الأمامية (AFD)، يحافظ Step3 على كفاءة ممتازة على كل من المسرعات الرائدة والمسرعات منخفضة التكلفة. في مرحلة ما قبل التدريب عالج Step3 أكثر من 20 تريليون توكن نصي و4 تريليون توكن مختلط نص-صورة، مغطياً أكثر من عشر لغات. حقق النموذج أداءً متقدماً بين نماذج المصدر المفتوح في عدة معايير قياسية تشمل الرياضيات والبرمجة والمهام متعددة الوسائط."
3283
3335
  },
@@ -3386,12 +3438,8 @@
3386
3438
  "wizardlm2:8x22b": {
3387
3439
  "description": "WizardLM 2 هو نموذج لغوي تقدمه Microsoft AI، يتميز بأداء ممتاز في الحوار المعقد، واللغات المتعددة، والاستدلال، والمساعدين الذكيين."
3388
3440
  },
3389
- "x-ai/grok-4-fast": {
3390
- "description": "يسعدنا أن نعلن عن إصدار Grok 4 Fast، وهو أحدث تقدم لنا في نماذج الاستدلال الفعّالة من حيث التكلفة."
3391
- },
3392
- "x-ai/grok-code-fast-1": {
3393
- "description": "يسعدنا إطلاق grok-code-fast-1، وهو نموذج استدلال سريع وفعّال من حيث التكلفة يتميز في ترميز الوكلاء."
3394
- },
3441
+ "x-ai/grok-4-fast": {},
3442
+ "x-ai/grok-code-fast-1": {},
3395
3443
  "x1": {
3396
3444
  "description": "سيتم ترقية نموذج Spark X1 بشكل أكبر، حيث ستحقق المهام العامة مثل الاستدلال، وتوليد النصوص، وفهم اللغة نتائج تتماشى مع OpenAI o1 و DeepSeek R1."
3397
3445
  },
@@ -3452,9 +3500,7 @@
3452
3500
  "yi-vision-v2": {
3453
3501
  "description": "نموذج مهام بصرية معقدة، يوفر فهمًا عالي الأداء وقدرات تحليلية بناءً على صور متعددة."
3454
3502
  },
3455
- "z-ai/glm-4.6": {
3456
- "description": "GLM-4.6 هو النموذج الرائد الأحدث من Zhipu، ويتفوق على الجيل السابق في الترميز المتقدم، ومعالجة النصوص الطويلة، والاستدلال، وقدرات الوكلاء الذكيين."
3457
- },
3503
+ "z-ai/glm-4.6": {},
3458
3504
  "zai-org/GLM-4.5": {
3459
3505
  "description": "GLM-4.5 هو نموذج أساسي مصمم لتطبيقات الوكلاء الذكية، يستخدم بنية Mixture-of-Experts (MoE). تم تحسينه بعمق في مجالات استدعاء الأدوات، تصفح الويب، هندسة البرمجيات، وبرمجة الواجهة الأمامية، ويدعم التكامل السلس مع وكلاء الكود مثل Claude Code وRoo Code. يستخدم وضع استدلال مختلط ليتكيف مع سيناريوهات الاستدلال المعقدة والاستخدام اليومي."
3460
3506
  },
@@ -191,6 +191,9 @@
191
191
  "xinference": {
192
192
  "description": "Xorbits Inference (Xinference) هو منصة مفتوحة المصدر مصممة لتبسيط تشغيل ودمج نماذج الذكاء الاصطناعي المتنوعة. باستخدام Xinference، يمكنك تشغيل الاستدلال على نماذج LLM مفتوحة المصدر، ونماذج التضمين، والنماذج متعددة الوسائط سواء في السحابة أو في البيئات المحلية، وإنشاء تطبيقات ذكاء اصطناعي قوية."
193
193
  },
194
+ "zenmux": {
195
+ "description": "ZenMux هو منصة موحدة لتجميع خدمات الذكاء الاصطناعي، تدعم العديد من واجهات خدمات الذكاء الاصطناعي الرائدة مثل OpenAI وAnthropic وGoogle VertexAI. توفر قدرة توجيه مرنة تتيح لك التبديل وإدارة نماذج الذكاء الاصطناعي المختلفة بسهولة."
196
+ },
194
197
  "zeroone": {
195
198
  "description": "01.AI تركز على تقنيات الذكاء الاصطناعي في عصر الذكاء الاصطناعي 2.0، وتعزز الابتكار والتطبيقات \"الإنسان + الذكاء الاصطناعي\"، باستخدام نماذج قوية وتقنيات ذكاء اصطناعي متقدمة لتعزيز إنتاجية البشر وتحقيق تمكين التكنولوجيا."
196
199
  },
@@ -37,6 +37,14 @@
37
37
  "standard": "Стандартно"
38
38
  }
39
39
  },
40
+ "resolution": {
41
+ "label": "Резолюция",
42
+ "options": {
43
+ "1K": "1K",
44
+ "2K": "2K",
45
+ "4K": "4K"
46
+ }
47
+ },
40
48
  "seed": {
41
49
  "label": "Семена",
42
50
  "random": "Случаен семенен код"