@lobehub/lobehub 2.0.0-next.105 → 2.0.0-next.106

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. package/CHANGELOG.md +25 -0
  2. package/changelog/v1.json +9 -0
  3. package/locales/ar/image.json +8 -0
  4. package/locales/ar/models.json +110 -64
  5. package/locales/ar/providers.json +3 -0
  6. package/locales/bg-BG/image.json +8 -0
  7. package/locales/bg-BG/models.json +98 -68
  8. package/locales/bg-BG/providers.json +3 -0
  9. package/locales/de-DE/image.json +8 -0
  10. package/locales/de-DE/models.json +176 -38
  11. package/locales/de-DE/providers.json +3 -0
  12. package/locales/en-US/image.json +8 -0
  13. package/locales/en-US/models.json +176 -38
  14. package/locales/en-US/providers.json +3 -0
  15. package/locales/es-ES/image.json +8 -0
  16. package/locales/es-ES/models.json +176 -38
  17. package/locales/es-ES/providers.json +3 -0
  18. package/locales/fa-IR/image.json +8 -0
  19. package/locales/fa-IR/models.json +110 -64
  20. package/locales/fa-IR/providers.json +3 -0
  21. package/locales/fr-FR/image.json +8 -0
  22. package/locales/fr-FR/models.json +110 -64
  23. package/locales/fr-FR/providers.json +3 -0
  24. package/locales/it-IT/image.json +8 -0
  25. package/locales/it-IT/models.json +176 -38
  26. package/locales/it-IT/providers.json +3 -0
  27. package/locales/ja-JP/image.json +8 -0
  28. package/locales/ja-JP/models.json +110 -64
  29. package/locales/ja-JP/providers.json +3 -0
  30. package/locales/ko-KR/image.json +8 -0
  31. package/locales/ko-KR/models.json +110 -64
  32. package/locales/ko-KR/providers.json +3 -0
  33. package/locales/nl-NL/image.json +8 -0
  34. package/locales/nl-NL/models.json +176 -38
  35. package/locales/nl-NL/providers.json +3 -0
  36. package/locales/pl-PL/image.json +8 -0
  37. package/locales/pl-PL/models.json +110 -64
  38. package/locales/pl-PL/providers.json +3 -0
  39. package/locales/pt-BR/image.json +8 -0
  40. package/locales/pt-BR/models.json +176 -38
  41. package/locales/pt-BR/providers.json +3 -0
  42. package/locales/ru-RU/image.json +8 -0
  43. package/locales/ru-RU/models.json +98 -68
  44. package/locales/ru-RU/providers.json +3 -0
  45. package/locales/tr-TR/image.json +8 -0
  46. package/locales/tr-TR/models.json +110 -64
  47. package/locales/tr-TR/providers.json +3 -0
  48. package/locales/vi-VN/image.json +8 -0
  49. package/locales/vi-VN/models.json +176 -38
  50. package/locales/vi-VN/providers.json +3 -0
  51. package/locales/zh-CN/image.json +8 -0
  52. package/locales/zh-CN/models.json +179 -38
  53. package/locales/zh-CN/providers.json +3 -0
  54. package/locales/zh-TW/image.json +8 -0
  55. package/locales/zh-TW/models.json +176 -38
  56. package/locales/zh-TW/providers.json +3 -0
  57. package/package.json +1 -1
  58. package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
@@ -720,25 +720,28 @@
720
720
  "description": "Claude 3 Opus е най-интелигентният модел на Anthropic с водещи на пазара резултати при изключително сложни задачи. Той се справя с отворени подсказки и непознати сценарии с изключителна плавност и човешко разбиране."
721
721
  },
722
722
  "anthropic/claude-3.5-haiku": {
723
- "description": "Claude 3.5 Haiku е следващото поколение на нашия най-бърз модел. Със скорост, подобна на Claude 3 Haiku, той подобрява всяка компетентност и надминава предишния ни най-голям модел Claude 3 Opus в много интелигентни бенчмаркове."
723
+ "description": "Claude 3.5 Haiku предлага подобрени възможности за скорост, точност при програмиране и използване на инструменти. Подходящ за сценарии с високи изисквания към бързодействие и взаимодействие с инструменти."
724
724
  },
725
725
  "anthropic/claude-3.5-sonnet": {
726
- "description": "Claude 3.5 Sonnet постига идеален баланс между интелигентност и скорост особено за корпоративни натоварвания. Той предлага мощна производителност на по-ниска цена в сравнение с конкурентите и е проектиран за висока издръжливост при мащабни AI внедрявания."
726
+ "description": "Claude 3.5 Sonnet е бърз и ефективен модел от семейството Sonnet, предлагащ по-добра производителност при програмиране и логическо разсъждение. Някои версии постепенно ще бъдат заменени от Sonnet 3.7 и други."
727
727
  },
728
728
  "anthropic/claude-3.7-sonnet": {
729
- "description": "Claude 3.7 Sonnet е първият хибриден разсъдъчен модел и най-интелигентният модел на Anthropic досега. Той предлага водещи резултати в кодиране, генериране на съдържание, анализ на данни и планиране, изграждайки се върху софтуерните инженерни и компютърни умения на предшественика си Claude 3.5 Sonnet."
729
+ "description": "Claude 3.7 Sonnet е надградена версия от серията Sonnet, предлагаща по-силни възможности за логическо разсъждение и програмиране, подходяща за сложни корпоративни задачи."
730
+ },
731
+ "anthropic/claude-haiku-4.5": {
732
+ "description": "Claude Haiku 4.5 е високопроизводителен и бърз модел на Anthropic, който съчетава висока точност с изключително ниска латентност."
730
733
  },
731
734
  "anthropic/claude-opus-4": {
732
- "description": "Claude Opus 4 е най-мощният модел на Anthropic досега и най-добрият кодов модел в света, водещ в SWE-bench (72.5%) и Terminal-bench (43.2%). Той осигурява устойчива производителност за дългосрочни задачи, изискващи фокус и хиляди стъпки, като може да работи непрекъснато часове — значително разширявайки възможностите на AI агентите."
735
+ "description": "Opus 4 е флагманският модел на Anthropic, проектиран за сложни задачи и корпоративни приложения."
733
736
  },
734
737
  "anthropic/claude-opus-4.1": {
735
- "description": "Claude Opus 4.1 е plug-and-play алтернатива на Opus 4, осигуряваща изключителна производителност и точност за реални кодови и агентски задачи. Opus 4.1 повишава водещата кодова производителност до 74.5% в SWE-bench Verified и обработва сложни многостъпкови проблеми с по-голяма прецизност и внимание към детайлите."
738
+ "description": "Opus 4.1 е висок клас модел на Anthropic, оптимизиран за програмиране, сложни логически задачи и продължителни процеси."
736
739
  },
737
740
  "anthropic/claude-sonnet-4": {
738
- "description": "Claude Sonnet 4 значително подобрява водещите в индустрията възможности на Sonnet 3.7, с отлични резултати в кодиране и постига водещи 72.7% в SWE-bench. Моделът балансира производителност и ефективност, подходящ е за вътрешни и външни случаи и предлага по-голям контрол чрез подобрена управляемост."
741
+ "description": "Claude Sonnet 4 е хибриден модел за разсъждение от Anthropic, предлагащ комбинирани възможности за мисловни и немисловни задачи."
739
742
  },
740
743
  "anthropic/claude-sonnet-4.5": {
741
- "description": "Claude Sonnet 4.5 е най-интелигентният модел на Anthropic досега."
744
+ "description": "Claude Sonnet 4.5 е най-новият хибриден модел за разсъждение на Anthropic, оптимизиран за сложни логически задачи и програмиране."
742
745
  },
743
746
  "ascend-tribe/pangu-pro-moe": {
744
747
  "description": "Pangu-Pro-MoE 72B-A16B е голям езиков модел с 72 милиарда параметри и 16 милиарда активирани параметри, базиран на архитектурата с групирани смесени експерти (MoGE). Той групира експертите по време на избора им и ограничава активацията на токените да активират равен брой експерти във всяка група, което осигурява балансирано натоварване на експертите и значително подобрява ефективността на разгръщане на модела на платформата Ascend."
@@ -761,6 +764,9 @@
761
764
  "baidu/ERNIE-4.5-300B-A47B": {
762
765
  "description": "ERNIE-4.5-300B-A47B е голям езиков модел, разработен от Baidu, базиран на архитектурата с хибридни експерти (MoE). Моделът има общо 300 милиарда параметри, но при инференция активира само 47 милиарда параметри на токен, което осигурява висока производителност и изчислителна ефективност. Като един от основните модели в серията ERNIE 4.5, той демонстрира изключителни способности в задачи като разбиране на текст, генериране, разсъждение и програмиране. Моделът използва иновативен мултимодален хетерогенен MoE метод за предварително обучение, който чрез съвместно обучение на текстови и визуални модалности значително подобрява цялостните му възможности, особено в следването на инструкции и запаметяването на световни знания."
763
766
  },
767
+ "baidu/ernie-5.0-thinking-preview": {
768
+ "description": "ERNIE 5.0 Thinking Preview е ново поколение мултимодален модел на Baidu, способен на разбиране на различни модалности, следване на инструкции, творчество, отговаряне на фактически въпроси и използване на инструменти."
769
+ },
764
770
  "c4ai-aya-expanse-32b": {
765
771
  "description": "Aya Expanse е високопроизводителен многоезичен модел с 32B, проектиран да предизвика представянето на едноезични модели чрез иновации в настройката на инструкции, арбитраж на данни, обучение на предпочитания и комбиниране на модели. Той поддържа 23 езика."
766
772
  },
@@ -869,6 +875,9 @@
869
875
  "codex-mini-latest": {
870
876
  "description": "codex-mini-latest е фина настройка на o4-mini, специално предназначена за Codex CLI. За директна употреба чрез API препоръчваме да започнете с gpt-4.1."
871
877
  },
878
+ "cogito-2.1:671b": {
879
+ "description": "Cogito v2.1 671B е американски отворен езиков модел с безплатна търговска употреба, отличаващ се с производителност, съпоставима с водещите модели, по-висока ефективност при обработка на токени, 128k дълъг контекст и мощни общи способности."
880
+ },
872
881
  "cogview-4": {
873
882
  "description": "CogView-4 е първият отворен модел за генериране на изображения с текст на китайски, разработен от Zhipu, който значително подобрява разбирането на семантиката, качеството на генериране на изображения и способността за генериране на текст на китайски и английски език. Поддържа двуезичен вход на произволна дължина на китайски и английски и може да генерира изображения с произволна резолюция в зададения диапазон."
874
883
  },
@@ -1139,6 +1148,9 @@
1139
1148
  "deepseek-vl2-small": {
1140
1149
  "description": "DeepSeek VL2 Small, олекотена мултимодална версия, подходяща за среди с ограничени ресурси и висока едновременност."
1141
1150
  },
1151
+ "deepseek/deepseek-chat": {
1152
+ "description": "DeepSeek-V3 е високопроизводителен хибриден модел за разсъждение от екипа на DeepSeek, подходящ за сложни задачи и интеграция с инструменти."
1153
+ },
1142
1154
  "deepseek/deepseek-chat-v3-0324": {
1143
1155
  "description": "DeepSeek V3 е експертен смесен модел с 685B параметри, последната итерация на флагманската серия чат модели на екипа DeepSeek.\n\nТой наследява модела [DeepSeek V3](/deepseek/deepseek-chat-v3) и показва отлични резултати в различни задачи."
1144
1156
  },
@@ -1146,13 +1158,13 @@
1146
1158
  "description": "DeepSeek V3 е експертен смесен модел с 685B параметри, последната итерация на флагманската серия чат модели на екипа DeepSeek.\n\nТой наследява модела [DeepSeek V3](/deepseek/deepseek-chat-v3) и показва отлични резултати в различни задачи."
1147
1159
  },
1148
1160
  "deepseek/deepseek-chat-v3.1": {
1149
- "description": "DeepSeek-V3.1 е голям хибриден модел за разсъждение, който поддържа 128K дълъг контекст и ефективно превключване на режими, постигащ изключителна производителност и скорост при използване на инструменти, генериране на код и сложни задачи за разсъждение."
1161
+ "description": "DeepSeek-V3.1 е хибриден модел за разсъждение с дълъг контекст от DeepSeek, поддържащ комбинирани мисловни и немисловни режими и интеграция с инструменти."
1150
1162
  },
1151
1163
  "deepseek/deepseek-r1": {
1152
1164
  "description": "DeepSeek R1 моделът е получил малка версия ъпгрейд, текущата версия е DeepSeek-R1-0528. В последната актуализация DeepSeek R1 значително подобри дълбочината и способността за разсъждение чрез използване на увеличени изчислителни ресурси и въвеждане на алгоритмични оптимизации след обучението. Моделът постига отлични резултати в множество бенчмаркове като математика, програмиране и обща логика, като общата му производителност вече се доближава до водещи модели като O3 и Gemini 2.5 Pro."
1153
1165
  },
1154
1166
  "deepseek/deepseek-r1-0528": {
1155
- "description": "DeepSeek-R1 значително подобрява способността за разсъждение на модела дори с много малко анотирани данни. Преди да изведе окончателния отговор, моделът първо генерира мисловна верига, за да повиши точността на крайния отговор."
1167
+ "description": "DeepSeek R1 0528 е обновен вариант на DeepSeek, фокусиран върху отвореност и дълбочина на разсъждение."
1156
1168
  },
1157
1169
  "deepseek/deepseek-r1-0528:free": {
1158
1170
  "description": "DeepSeek-R1 значително подобрява способността за разсъждение на модела дори с много малко анотирани данни. Преди да изведе окончателния отговор, моделът първо генерира мисловна верига, за да повиши точността на крайния отговор."
@@ -1175,6 +1187,9 @@
1175
1187
  "deepseek/deepseek-r1:free": {
1176
1188
  "description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
1177
1189
  },
1190
+ "deepseek/deepseek-reasoner": {
1191
+ "description": "DeepSeek-V3 Thinking (reasoner) е експериментален модел за разсъждение от DeepSeek, подходящ за задачи с висока сложност."
1192
+ },
1178
1193
  "deepseek/deepseek-v3": {
1179
1194
  "description": "Бърз универсален голям езиков модел с подобрени способности за разсъждение."
1180
1195
  },
@@ -1523,8 +1538,14 @@
1523
1538
  "gemini-2.5-pro-preview-06-05": {
1524
1539
  "description": "Gemini 2.5 Pro Preview е най-напредналият мисловен модел на Google, способен да разсъждава върху сложни проблеми в областта на кодирането, математиката и STEM, както и да анализира големи набори от данни, кодови бази и документи с дълъг контекст."
1525
1540
  },
1541
+ "gemini-3-pro-image-preview": {
1542
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) е модел за генериране на изображения от Google, който поддържа и мултимодален диалог."
1543
+ },
1544
+ "gemini-3-pro-image-preview:image": {
1545
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) е модел за генериране на изображения от Google, който поддържа и мултимодален диалог."
1546
+ },
1526
1547
  "gemini-3-pro-preview": {
1527
- "description": "Gemini 3 Pro е най-интелигентният модел на Google, с най-съвременно извеждане на заключения и мултимодално разбиране, както и с мощни възможности за агентно поведение и кодиране на контекста."
1548
+ "description": "Gemini 3 Pro е най-добрият в света модел за мултимодално разбиране, както и най-мощният интелигентен агент и модел за програмиране на атмосфера от Google досега. Предлага богати визуални ефекти и дълбока интерактивност, базирани на най-съвременни логически способности."
1528
1549
  },
1529
1550
  "gemini-flash-latest": {
1530
1551
  "description": "Последно издание на Gemini Flash"
@@ -1650,7 +1671,7 @@
1650
1671
  "description": "GLM-Zero-Preview притежава мощни способности за сложни разсъждения, показвайки отлични резултати в логическото разсъждение, математиката и програмирането."
1651
1672
  },
1652
1673
  "google/gemini-2.0-flash": {
1653
- "description": "Gemini 2.0 Flash предлага следващо поколение функции и подобрения, включително изключителна скорост, вградена употреба на инструменти, мултимодално генериране и контекстен прозорец от 1 милион токена."
1674
+ "description": "Gemini 2.0 Flash е високопроизводителен модел за разсъждение от Google, подходящ за разширени мултимодални задачи."
1654
1675
  },
1655
1676
  "google/gemini-2.0-flash-001": {
1656
1677
  "description": "Gemini 2.0 Flash предлага следващо поколение функции и подобрения, включително изключителна скорост, нативна употреба на инструменти, многомодално генериране и контекстен прозорец от 1M токена."
@@ -1661,14 +1682,23 @@
1661
1682
  "google/gemini-2.0-flash-lite": {
1662
1683
  "description": "Gemini 2.0 Flash Lite предлага следващо поколение функции и подобрения, включително изключителна скорост, вградена употреба на инструменти, мултимодално генериране и контекстен прозорец от 1 милион токена."
1663
1684
  },
1685
+ "google/gemini-2.0-flash-lite-001": {
1686
+ "description": "Gemini 2.0 Flash Lite е олекотена версия от семейството Gemini, по подразбиране без активирано разсъждение за по-ниска латентност и разходи, но може да бъде активирано чрез параметри."
1687
+ },
1664
1688
  "google/gemini-2.5-flash": {
1665
- "description": "Gemini 2.5 Flash е мислещ модел, който предлага отлични всеобхватни възможности. Той е проектиран да балансира цена и производителност, поддържайки мултимодалност и контекстен прозорец от 1 милион токена."
1689
+ "description": "Серията Gemini 2.5 Flash (Lite/Pro/Flash) са модели на Google с ниска до висока латентност и производителност за разсъждение."
1690
+ },
1691
+ "google/gemini-2.5-flash-image": {
1692
+ "description": "Gemini 2.5 Flash Image (Nano Banana) е модел за генериране на изображения от Google, който поддържа и мултимодален диалог."
1693
+ },
1694
+ "google/gemini-2.5-flash-image-free": {
1695
+ "description": "Безплатна версия на Gemini 2.5 Flash Image, поддържа ограничено количество мултимодално генериране."
1666
1696
  },
1667
1697
  "google/gemini-2.5-flash-image-preview": {
1668
1698
  "description": "Gemini 2.5 Flash експериментален модел, поддържащ генериране на изображения."
1669
1699
  },
1670
1700
  "google/gemini-2.5-flash-lite": {
1671
- "description": "Gemini 2.5 Flash-Lite е балансиран, с ниска латентност модел с конфигурируем бюджет за мислене и свързаност с инструменти (например Google Search grounding и изпълнение на код). Поддържа мултимодален вход и предлага контекстен прозорец от 1 милион токена."
1701
+ "description": "Gemini 2.5 Flash Lite е олекотена версия на Gemini 2.5, оптимизирана за ниска латентност и разходи, подходяща за сценарии с висок трафик."
1672
1702
  },
1673
1703
  "google/gemini-2.5-flash-preview": {
1674
1704
  "description": "Gemini 2.5 Flash е най-напредналият основен модел на Google, проектиран за напреднали разсъждения, кодиране, математика и научни задачи. Той включва вградена способност за \"мислене\", което му позволява да предоставя отговори с по-висока точност и детайлна обработка на контекста.\n\nЗабележка: Този модел има два варианта: с мислене и без мислене. Цените на изхода значително варират в зависимост от активирането на способността за мислене. Ако изберете стандартния вариант (без суфикс \":thinking\"), моделът ще избягва генерирането на токени за мислене.\n\nЗа да се възползвате от способността за мислене и да получите токени за мислене, трябва да изберете варианта \":thinking\", което ще доведе до по-високи цени на изхода за мислене.\n\nОсвен това, Gemini 2.5 Flash може да бъде конфигуриран чрез параметъра \"максимален брой токени за разсъждение\", както е описано в документацията (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
@@ -1677,11 +1707,23 @@
1677
1707
  "description": "Gemini 2.5 Flash е най-напредналият основен модел на Google, проектиран за напреднали разсъждения, кодиране, математика и научни задачи. Той включва вградена способност за \"мислене\", което му позволява да предоставя отговори с по-висока точност и детайлна обработка на контекста.\n\nЗабележка: Този модел има два варианта: с мислене и без мислене. Цените на изхода значително варират в зависимост от активирането на способността за мислене. Ако изберете стандартния вариант (без суфикс \":thinking\"), моделът ще избягва генерирането на токени за мислене.\n\nЗа да се възползвате от способността за мислене и да получите токени за мислене, трябва да изберете варианта \":thinking\", което ще доведе до по-високи цени на изхода за мислене.\n\nОсвен това, Gemini 2.5 Flash може да бъде конфигуриран чрез параметъра \"максимален брой токени за разсъждение\", както е описано в документацията (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1678
1708
  },
1679
1709
  "google/gemini-2.5-pro": {
1680
- "description": "Gemini 2.5 Pro е нашият най-напреднал разсъдъчен Gemini модел, способен да решава сложни проблеми. Той разполага с контекстен прозорец от 2 милиона токена и поддържа мултимодален вход, включително текст, изображения, аудио, видео и PDF документи."
1710
+ "description": "Gemini 2.5 Pro е флагманският модел за разсъждение на Google, поддържащ дълъг контекст и сложни задачи."
1711
+ },
1712
+ "google/gemini-2.5-pro-free": {
1713
+ "description": "Безплатна версия на Gemini 2.5 Pro, поддържа ограничен мултимодален дълъг контекст, подходяща за тестване и леки работни потоци."
1681
1714
  },
1682
1715
  "google/gemini-2.5-pro-preview": {
1683
1716
  "description": "Gemini 2.5 Pro Preview е най-усъвършенстваният мисловен модел на Google, способен да извършва разсъждения върху сложни проблеми в областта на кодирането, математиката и STEM, както и да анализира големи набори от данни, кодови бази и документи с дълъг контекст."
1684
1717
  },
1718
+ "google/gemini-3-pro-image-preview-free": {
1719
+ "description": "Безплатна версия на Gemini 3 Pro Image, поддържа ограничено количество мултимодално генериране."
1720
+ },
1721
+ "google/gemini-3-pro-preview": {
1722
+ "description": "Gemini 3 Pro е следващото поколение мултимодален модел за разсъждение от серията Gemini, способен да разбира текст, аудио, изображения, видео и други входове, и да обработва сложни задачи и големи кодови бази."
1723
+ },
1724
+ "google/gemini-3-pro-preview-free": {
1725
+ "description": "Безплатна предварителна версия на Gemini 3 Pro, предлага същите мултимодални възможности за разбиране и разсъждение като стандартната версия, но с ограничения в безплатния лимит и скорост, по-подходяща за тестване и нискочестотна употреба."
1726
+ },
1685
1727
  "google/gemini-embedding-001": {
1686
1728
  "description": "Водещ модел за вграждане с отлична производителност при задачи на английски, многоезични и кодови задачи."
1687
1729
  },
@@ -2057,21 +2099,36 @@
2057
2099
  "inception/mercury-coder-small": {
2058
2100
  "description": "Mercury Coder Small е идеален за задачи по генериране, отстраняване на грешки и рефакториране на код с минимална латентност."
2059
2101
  },
2060
- "inclusionAI/Ling-1T": {
2061
- "description": "Ling-1T е първият флагмански non-thinking модел от серията „Ling 2.0“, с общо 1 трилион параметри и около 50 милиарда активни параметри на токен. Изграден върху архитектурата Ling 2.0, Ling-1T цели да преодолее границите на ефективното разсъждение и мащабируемото познание. Ling-1T-base е обучен върху над 20 трилиона висококачествени, интензивно логически токени."
2062
- },
2063
2102
  "inclusionAI/Ling-flash-2.0": {
2064
2103
  "description": "Ling-flash-2.0 е третият модел от серията Ling 2.0 архитектури, публикуван от екипа на Ant Group Bailing. Това е модел с хибридни експерти (MoE) с общо 100 милиарда параметри, но при всеки токен активира само 6.1 милиарда параметри (без вграждания – 4.8 милиарда). Като леко конфигуриран модел, Ling-flash-2.0 показва в множество авторитетни оценки производителност, сравнима или дори превъзхождаща плътни (Dense) модели с 40 милиарда параметри и по-големи MoE модели. Моделът е предназначен да изследва пътища за висока ефективност чрез изключителен дизайн на архитектурата и стратегии за обучение, в контекста на общоприетото схващане, че „големият модел е равен на големи параметри“."
2065
2104
  },
2066
2105
  "inclusionAI/Ling-mini-2.0": {
2067
2106
  "description": "Ling-mini-2.0 е малък, но високопроизводителен голям езиков модел, базиран на MoE архитектура. Той има общо 16 милиарда параметри, но при всеки токен активира само 1.4 милиарда (без вграждания – 789 милиона), което осигурява изключително бърза генерация. Благодарение на ефективния MoE дизайн и големия обем висококачествени тренировъчни данни, въпреки че активираните параметри са само 1.4 милиарда, Ling-mini-2.0 демонстрира върхова производителност в downstream задачи, сравнима с плътни LLM под 10 милиарда параметри и по-големи MoE модели."
2068
2107
  },
2069
- "inclusionAI/Ring-1T": {
2070
- "description": "Ring-1T е отворен модел за мислене с трилион параметри, разработен от екипа на Bailing. Базиран е на архитектурата Ling 2.0 и основния модел Ling-1T-base, с общо 1 трилион параметри и 50 милиарда активни параметри, поддържащ контекстуален прозорец до 128K. Моделът е оптимизиран чрез мащабно обучение с проверими награди и подсилено обучение."
2071
- },
2072
2108
  "inclusionAI/Ring-flash-2.0": {
2073
2109
  "description": "Ring-flash-2.0 е високопроизводителен мисловен модел, дълбоко оптимизиран на базата на Ling-flash-2.0-base. Той използва MoE архитектура с общо 100 милиарда параметри, но при всяко извод активира само 6.1 милиарда параметри. Моделът решава нестабилността на големите MoE модели при обучение с подсилено учене (RL) чрез уникалния алгоритъм icepop, което позволява непрекъснато подобряване на сложните разсъждения при дългосрочно обучение. Ring-flash-2.0 постига значителни пробиви в множество трудни бенчмаркове като математически състезания, генериране на код и логически разсъждения. Неговата производителност не само превъзхожда топ плътни модели с по-малко от 40 милиарда параметри, но и се сравнява с по-големи отворени MoE модели и затворени високопроизводителни мисловни модели. Въпреки че е фокусиран върху сложни разсъждения, моделът се представя отлично и в творческо писане. Благодарение на ефективния си архитектурен дизайн, Ring-flash-2.0 осигурява висока производителност и бърз извод, значително намалявайки разходите за внедряване на мисловни модели при висока паралелност."
2074
2110
  },
2111
+ "inclusionai/ling-1t": {
2112
+ "description": "Ling-1T е MoE модел с 1 трилион параметъра от inclusionAI, оптимизиран за интензивни логически задачи и мащабен контекст."
2113
+ },
2114
+ "inclusionai/ling-flash-2.0": {
2115
+ "description": "Ling-flash-2.0 е MoE модел от inclusionAI, оптимизиран за ефективност и логическа производителност, подходящ за средни и големи задачи."
2116
+ },
2117
+ "inclusionai/ling-mini-2.0": {
2118
+ "description": "Ling-mini-2.0 е олекотен MoE модел от inclusionAI, който значително намалява разходите, като запазва логическите си способности."
2119
+ },
2120
+ "inclusionai/ming-flash-omini-preview": {
2121
+ "description": "Ming-flash-omni Preview е мултимодален модел от inclusionAI, поддържащ вход от глас, изображения и видео, с подобрени възможности за визуализация и разпознаване на реч."
2122
+ },
2123
+ "inclusionai/ring-1t": {
2124
+ "description": "Ring-1T е MoE модел за разсъждение с трилион параметри от inclusionAI, подходящ за мащабни логически и изследователски задачи."
2125
+ },
2126
+ "inclusionai/ring-flash-2.0": {
2127
+ "description": "Ring-flash-2.0 е вариант на модела Ring от inclusionAI, насочен към сценарии с висок трафик, с акцент върху скорост и разходна ефективност."
2128
+ },
2129
+ "inclusionai/ring-mini-2.0": {
2130
+ "description": "Ring-mini-2.0 е олекотена версия на MoE модела от inclusionAI с висока пропускателна способност, предназначена за паралелни сценарии."
2131
+ },
2075
2132
  "internlm/internlm2_5-7b-chat": {
2076
2133
  "description": "InternLM2.5 предлага интелигентни решения за диалог в множество сценарии."
2077
2134
  },
@@ -2123,6 +2180,12 @@
2123
2180
  "kimi-k2-instruct": {
2124
2181
  "description": "Kimi K2 Instruct, официален модел за извеждане от Kimi, поддържащ дълъг контекст, програмиране, въпроси и отговори и други сценарии."
2125
2182
  },
2183
+ "kimi-k2-thinking": {
2184
+ "description": "K2 е модел за дълбоко разсъждение, поддържащ 256k контекст, многократни стъпки за използване на инструменти и мисловни процеси, способен да решава по-сложни проблеми."
2185
+ },
2186
+ "kimi-k2-thinking-turbo": {
2187
+ "description": "Ускорена версия на модела K2 за дълбоко разсъждение, поддържа 256k контекст и предлага скорост на изход от 60–100 токена в секунда при запазване на дълбоките логически способности."
2188
+ },
2126
2189
  "kimi-k2-turbo-preview": {
2127
2190
  "description": "Kimi-k2 е базов модел с MoE архитектура, който притежава изключителни възможности за работа с код и агентни функции. Общият брой параметри е 1T, а активните параметри са 32B. В бенчмарковете за основни категории като общо знание и разсъждение, програмиране, математика и агентни задачи, моделът K2 превъзхожда другите водещи отворени модели."
2128
2191
  },
@@ -2465,9 +2528,7 @@
2465
2528
  "minimax-m2": {
2466
2529
  "description": "MiniMax M2 е ефективен голям езиков модел, създаден специално за кодиране и работни процеси с агенти."
2467
2530
  },
2468
- "minimax/minimax-m2": {
2469
- "description": "Създаден специално за ефективно кодиране и работни потоци с агенти."
2470
- },
2531
+ "minimax/minimax-m2": {},
2471
2532
  "minimaxai/minimax-m2": {
2472
2533
  "description": "MiniMax-M2 е компактен, бърз и икономичен хибриден експертен (MoE) модел с общо 230 милиарда параметъра и 10 милиарда активни параметъра, създаден за постигане на върхова производителност при кодиране и задачи, свързани с интелигентни агенти, като същевременно поддържа силен общ интелект. Моделът се отличава с отлична работа при редактиране на множество файлове, затворен цикъл кодиране-изпълнение-поправка, тестване и валидиране на поправки, както и при сложни дълговерижни инструментални процеси, което го прави идеален избор за работния процес на разработчиците."
2473
2534
  },
@@ -2615,9 +2676,7 @@
2615
2676
  "moonshotai/kimi-k2": {
2616
2677
  "description": "Kimi K2 е голям смесен експертен (MoE) езиков модел с 1 трилион общи параметри и 32 милиарда активни параметри на преден проход, разработен от Moonshot AI. Оптимизиран е за агентски способности, включително усъвършенствано използване на инструменти, разсъждения и синтез на код."
2617
2678
  },
2618
- "moonshotai/kimi-k2-0905": {
2619
- "description": "Моделът kimi-k2-0905-preview има контекстна дължина от 256k, с по-силни способности за агентно кодиране, по-изразителна естетика и практичност на фронтенд кода, както и по-добро разбиране на контекста."
2620
- },
2679
+ "moonshotai/kimi-k2-0905": {},
2621
2680
  "moonshotai/kimi-k2-instruct-0905": {
2622
2681
  "description": "Моделът kimi-k2-0905-preview има контекстна дължина от 256k, с по-силни способности за агентно кодиране, по-изразителна естетика и практичност на фронтенд кода, както и по-добро разбиране на контекста."
2623
2682
  },
@@ -2702,30 +2761,14 @@
2702
2761
  "openai/gpt-4-turbo": {
2703
2762
  "description": "gpt-4-turbo от OpenAI притежава обширни общи знания и експертиза в различни области, което му позволява да следва сложни инструкции на естествен език и да решава точно трудни проблеми. Знанията му са актуални до април 2023 г., а контекстният прозорец е 128 000 токена."
2704
2763
  },
2705
- "openai/gpt-4.1": {
2706
- "description": "GPT 4.1 е водещият модел на OpenAI, подходящ за сложни задачи. Изключително подходящ за решаване на проблеми в различни области."
2707
- },
2708
- "openai/gpt-4.1-mini": {
2709
- "description": "GPT 4.1 mini постига баланс между интелигентност, скорост и цена, което го прави привлекателен модел за много случаи на употреба."
2710
- },
2711
- "openai/gpt-4.1-nano": {
2712
- "description": "GPT-4.1 nano е най-бързият и икономичен модел от серията GPT 4.1."
2713
- },
2714
- "openai/gpt-4o": {
2715
- "description": "GPT-4o от OpenAI притежава обширни общи знания и експертиза в различни области, способен да следва сложни инструкции на естествен език и да решава точно трудни проблеми. Предлага производителност, съпоставима с GPT-4 Turbo, но с по-бърз и по-евтин API."
2716
- },
2717
- "openai/gpt-4o-mini": {
2718
- "description": "GPT-4o mini от OpenAI е техният най-напреднал и икономичен малък модел. Той е мултимодален (приема текст или изображения като вход и генерира текст) и е по-интелигентен от gpt-3.5-turbo, като същевременно е също толкова бърз."
2719
- },
2720
- "openai/gpt-5": {
2721
- "description": "GPT-5 е водещият езиков модел на OpenAI, отличаващ се в сложни разсъждения, обширни знания за реалния свят, задачи с интензивен код и многостъпкови агентски задачи."
2722
- },
2723
- "openai/gpt-5-mini": {
2724
- "description": "GPT-5 mini е оптимизиран по отношение на разходите модел, който се представя отлично при задачи за разсъждение и чат. Предлага най-добрия баланс между скорост, цена и способности."
2725
- },
2726
- "openai/gpt-5-nano": {
2727
- "description": "GPT-5 nano е модел с висок пропускателен капацитет, който се справя отлично с прости инструкции или задачи за класификация."
2728
- },
2764
+ "openai/gpt-4.1": {},
2765
+ "openai/gpt-4.1-mini": {},
2766
+ "openai/gpt-4.1-nano": {},
2767
+ "openai/gpt-4o": {},
2768
+ "openai/gpt-4o-mini": {},
2769
+ "openai/gpt-5": {},
2770
+ "openai/gpt-5-mini": {},
2771
+ "openai/gpt-5-nano": {},
2729
2772
  "openai/gpt-oss-120b": {
2730
2773
  "description": "Изключително способен универсален голям езиков модел с мощни и контролируеми способности за разсъждение."
2731
2774
  },
@@ -2750,9 +2793,7 @@
2750
2793
  "openai/o3-mini-high": {
2751
2794
  "description": "o3-mini high е версия с високо ниво на разсъждение, която предлага висока интелигентност при същите разходи и цели за закъснение като o1-mini."
2752
2795
  },
2753
- "openai/o4-mini": {
2754
- "description": "o4-mini на OpenAI предлага бързо и икономично разсъждение с отлична производителност за своя размер, особено в математика (най-добър в AIME бенчмарка), кодиране и визуални задачи."
2755
- },
2796
+ "openai/o4-mini": {},
2756
2797
  "openai/o4-mini-high": {
2757
2798
  "description": "o4-mini версия с високо ниво на извеждане, оптимизирана за бързо и ефективно извеждане, показваща изключителна ефективност и производителност в задачи по кодиране и визуализация."
2758
2799
  },
@@ -2954,9 +2995,7 @@
2954
2995
  "qwen/qwen2.5-coder-7b-instruct": {
2955
2996
  "description": "Мощен среден модел за код, поддържащ 32K дължина на контекста, специализиран в многоезично програмиране."
2956
2997
  },
2957
- "qwen/qwen3-14b": {
2958
- "description": "Qwen3-14B е плътен езиков модел с 14.8 милиарда параметри от серията Qwen3, проектиран за сложни разсъждения и ефективен диалог. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за математика, програмиране и логическо разсъждение и режим на \"неразсъждение\" за общи разговори. Моделът е фино настроен за следване на инструкции, използване на инструменти за агенти, креативно писане и многоезични задачи на над 100 езика и диалекта. Той нативно обработва контекст от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
2959
- },
2998
+ "qwen/qwen3-14b": {},
2960
2999
  "qwen/qwen3-14b:free": {
2961
3000
  "description": "Qwen3-14B е плътен езиков модел с 14.8 милиарда параметри от серията Qwen3, проектиран за сложни разсъждения и ефективен диалог. Той поддържа безпроблемно преминаване между режим на \"разсъждение\" за математика, програмиране и логическо разсъждение и режим на \"неразсъждение\" за общи разговори. Моделът е фино настроен за следване на инструкции, използване на инструменти за агенти, креативно писане и многоезични задачи на над 100 езика и диалекта. Той нативно обработва контекст от 32K токена и може да бъде разширен до 131K токена с помощта на разширение, базирано на YaRN."
2962
3001
  },
@@ -3275,9 +3314,6 @@
3275
3314
  "step-r1-v-mini": {
3276
3315
  "description": "Този модел е мощен модел за разсъждение с отлични способности за разбиране на изображения, способен да обработва информация от изображения и текст, и след дълбочинно разсъждение да генерира текстово съдържание. Моделът показва изключителни резултати в областта на визуалните разсъждения, като същевременно притежава първокласни способности в математиката, кода и текстовите разсъждения. Дължината на контекста е 100k."
3277
3316
  },
3278
- "step3": {
3279
- "description": "Step3 е мултимодален модел, разработен от StepStar, с мощни способности за визуално разбиране."
3280
- },
3281
3317
  "stepfun-ai/step3": {
3282
3318
  "description": "Step3 е авангарден мултимодален модел за разсъждение, публикуван от StepFun (阶跃星辰). Той е изграден върху архитектура на смес от експерти (MoE) с общо 321 милиарда параметъра и 38 милиарда активни параметъра. Моделът е с енд-ту-енд дизайн, целящ минимизиране на разходите за декодиране, като същевременно предоставя водещи резултати във визуално-лингвистичното разсъждение. Чрез кооперативния дизайн на многоматрично факторизирано внимание (MFA) и декуплиране на внимание и FFN (AFD), Step3 поддържа отлична ефективност както на флагмански, така и на по-бюджетни ускорители. По време на предварителното обучение Step3 е обработил над 20 трилиона текстови токена и 4 трилиона смесени текстово-изображенчески токена, обхващайки повече от десет езика. Моделът постига водещи резултати сред отворените модели в множество бенчмаркове, включително математика, код и мултимодални задачи."
3283
3319
  },
@@ -3386,12 +3422,8 @@
3386
3422
  "wizardlm2:8x22b": {
3387
3423
  "description": "WizardLM 2 е езиков модел, предоставен от Microsoft AI, който се отличава в сложни диалози, многоезичност, разсъждение и интелигентни асистенти."
3388
3424
  },
3389
- "x-ai/grok-4-fast": {
3390
- "description": "С радост представяме Grok 4 Fast — нашият най-нов напредък в модели за ефективно и икономично извеждане."
3391
- },
3392
- "x-ai/grok-code-fast-1": {
3393
- "description": "С гордост представяме grok-code-fast-1 — бърз и икономичен модел за извеждане, който се отличава в агентно кодиране."
3394
- },
3425
+ "x-ai/grok-4-fast": {},
3426
+ "x-ai/grok-code-fast-1": {},
3395
3427
  "x1": {
3396
3428
  "description": "Моделът Spark X1 ще бъде допълнително обновен, като на базата на водещите в страната резултати в математически задачи, ще постигне ефекти в общи задачи като разсъждение, генериране на текст и разбиране на език, сравними с OpenAI o1 и DeepSeek R1."
3397
3429
  },
@@ -3452,9 +3484,7 @@
3452
3484
  "yi-vision-v2": {
3453
3485
  "description": "Модел за сложни визуални задачи, предлагащ висока производителност в разбирането и анализа на базата на множество изображения."
3454
3486
  },
3455
- "z-ai/glm-4.6": {
3456
- "description": "GLM-4.6 е най-новият флагмански модел на Zhipu, който значително надминава предшествениците си в напреднало кодиране, обработка на дълги текстове, извеждане и способности на интелигентни агенти."
3457
- },
3487
+ "z-ai/glm-4.6": {},
3458
3488
  "zai-org/GLM-4.5": {
3459
3489
  "description": "GLM-4.5 е базов модел, специално създаден за интелигентни агенти, използващ архитектура с микс от експерти (Mixture-of-Experts). Той е дълбоко оптимизиран за използване на инструменти, уеб браузване, софтуерно инженерство и фронтенд програмиране, и поддържа безпроблемна интеграция с кодови агенти като Claude Code и Roo Code. GLM-4.5 използва смесен режим на разсъждение, подходящ за сложни и ежедневни приложения."
3460
3490
  },
@@ -191,6 +191,9 @@
191
191
  "xinference": {
192
192
  "description": "Xorbits Inference (Xinference) е платформа с отворен код, предназначена да опрости изпълнението и интегрирането на различни AI модели. С Xinference можете да използвате всякакви LLM с отворен код, модели за вграждане и мултимодални модели за извършване на изводи в облак или локална среда, както и да създавате мощни AI приложения."
193
193
  },
194
+ "zenmux": {
195
+ "description": "ZenMux е унифицирана платформа за агрегиране на AI услуги, поддържаща множество водещи AI интерфейси като OpenAI, Anthropic, Google VertexAI и други. Тя предлага гъвкави възможности за маршрутизиране, които ви позволяват лесно да превключвате и управлявате различни AI модели."
196
+ },
194
197
  "zeroone": {
195
198
  "description": "01.AI се фокусира върху технологии за изкуствен интелект от ерата на AI 2.0, активно насърчавайки иновации и приложения на \"човек + изкуствен интелект\", използвайки мощни модели и напреднали AI технологии за повишаване на производителността на човека и реализиране на технологично овластяване."
196
199
  },
@@ -37,6 +37,14 @@
37
37
  "standard": "Standard"
38
38
  }
39
39
  },
40
+ "resolution": {
41
+ "label": "Auflösung",
42
+ "options": {
43
+ "1K": "1K",
44
+ "2K": "2K",
45
+ "4K": "4K"
46
+ }
47
+ },
40
48
  "seed": {
41
49
  "label": "Seed",
42
50
  "random": "Zufälliger Seed"