@lobehub/lobehub 2.0.0-next.105 → 2.0.0-next.106

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. package/CHANGELOG.md +25 -0
  2. package/changelog/v1.json +9 -0
  3. package/locales/ar/image.json +8 -0
  4. package/locales/ar/models.json +110 -64
  5. package/locales/ar/providers.json +3 -0
  6. package/locales/bg-BG/image.json +8 -0
  7. package/locales/bg-BG/models.json +98 -68
  8. package/locales/bg-BG/providers.json +3 -0
  9. package/locales/de-DE/image.json +8 -0
  10. package/locales/de-DE/models.json +176 -38
  11. package/locales/de-DE/providers.json +3 -0
  12. package/locales/en-US/image.json +8 -0
  13. package/locales/en-US/models.json +176 -38
  14. package/locales/en-US/providers.json +3 -0
  15. package/locales/es-ES/image.json +8 -0
  16. package/locales/es-ES/models.json +176 -38
  17. package/locales/es-ES/providers.json +3 -0
  18. package/locales/fa-IR/image.json +8 -0
  19. package/locales/fa-IR/models.json +110 -64
  20. package/locales/fa-IR/providers.json +3 -0
  21. package/locales/fr-FR/image.json +8 -0
  22. package/locales/fr-FR/models.json +110 -64
  23. package/locales/fr-FR/providers.json +3 -0
  24. package/locales/it-IT/image.json +8 -0
  25. package/locales/it-IT/models.json +176 -38
  26. package/locales/it-IT/providers.json +3 -0
  27. package/locales/ja-JP/image.json +8 -0
  28. package/locales/ja-JP/models.json +110 -64
  29. package/locales/ja-JP/providers.json +3 -0
  30. package/locales/ko-KR/image.json +8 -0
  31. package/locales/ko-KR/models.json +110 -64
  32. package/locales/ko-KR/providers.json +3 -0
  33. package/locales/nl-NL/image.json +8 -0
  34. package/locales/nl-NL/models.json +176 -38
  35. package/locales/nl-NL/providers.json +3 -0
  36. package/locales/pl-PL/image.json +8 -0
  37. package/locales/pl-PL/models.json +110 -64
  38. package/locales/pl-PL/providers.json +3 -0
  39. package/locales/pt-BR/image.json +8 -0
  40. package/locales/pt-BR/models.json +176 -38
  41. package/locales/pt-BR/providers.json +3 -0
  42. package/locales/ru-RU/image.json +8 -0
  43. package/locales/ru-RU/models.json +98 -68
  44. package/locales/ru-RU/providers.json +3 -0
  45. package/locales/tr-TR/image.json +8 -0
  46. package/locales/tr-TR/models.json +110 -64
  47. package/locales/tr-TR/providers.json +3 -0
  48. package/locales/vi-VN/image.json +8 -0
  49. package/locales/vi-VN/models.json +176 -38
  50. package/locales/vi-VN/providers.json +3 -0
  51. package/locales/zh-CN/image.json +8 -0
  52. package/locales/zh-CN/models.json +179 -38
  53. package/locales/zh-CN/providers.json +3 -0
  54. package/locales/zh-TW/image.json +8 -0
  55. package/locales/zh-TW/models.json +176 -38
  56. package/locales/zh-TW/providers.json +3 -0
  57. package/package.json +1 -1
  58. package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
@@ -720,25 +720,28 @@
720
720
  "description": "Claude 3 Opus est le modèle le plus intelligent d'Anthropic, offrant des performances de pointe sur des tâches très complexes. Il maîtrise avec fluidité et compréhension humaine les invites ouvertes et les scénarios inédits."
721
721
  },
722
722
  "anthropic/claude-3.5-haiku": {
723
- "description": "Claude 3.5 Haiku est la nouvelle génération de notre modèle le plus rapide. Avec une vitesse comparable à Claude 3 Haiku, il améliore chaque compétence et dépasse dans de nombreux benchmarks intelligents notre plus grand modèle précédent, Claude 3 Opus."
723
+ "description": "Claude 3.5 Haiku offre des performances améliorées en vitesse, précision de codage et utilisation d’outils. Idéal pour les scénarios exigeant une grande rapidité et une interaction fluide avec les outils."
724
724
  },
725
725
  "anthropic/claude-3.5-sonnet": {
726
- "description": "Claude 3.5 Sonnet atteint un équilibre idéal entre intelligence et vitesse, particulièrement adapté aux charges de travail d'entreprise. Par rapport à ses pairs, il offre des performances puissantes à moindre coût, conçu pour une haute durabilité dans les déploiements d'IA à grande échelle."
726
+ "description": "Claude 3.5 Sonnet est un modèle rapide et efficace de la famille Sonnet, offrant de meilleures performances en codage et en raisonnement. Certaines versions seront progressivement remplacées par Sonnet 3.7 et autres."
727
727
  },
728
728
  "anthropic/claude-3.7-sonnet": {
729
- "description": "Claude 3.7 Sonnet est le premier modèle hybride de raisonnement et le plus intelligent d'Anthropic à ce jour. Il offre des performances de pointe en codage, génération de contenu, analyse de données et planification, s'appuyant sur les capacités en ingénierie logicielle et informatique de son prédécesseur Claude 3.5 Sonnet."
729
+ "description": "Claude 3.7 Sonnet est une version améliorée de la série Sonnet, avec des capacités renforcées en raisonnement et en codage, adaptée aux tâches complexes de niveau entreprise."
730
+ },
731
+ "anthropic/claude-haiku-4.5": {
732
+ "description": "Claude Haiku 4.5 est un modèle rapide et performant d’Anthropic, combinant haute précision et très faible latence."
730
733
  },
731
734
  "anthropic/claude-opus-4": {
732
- "description": "Claude Opus 4 est le modèle le plus puissant d'Anthropic et le meilleur modèle de codage au monde, en tête sur SWE-bench (72,5 %) et Terminal-bench (43,2 %). Il assure des performances durables pour des tâches longues nécessitant concentration et milliers d'étapes, capable de fonctionner plusieurs heures d'affilée, étendant significativement les capacités des agents IA."
735
+ "description": "Opus 4 est le modèle phare dAnthropic, conçu pour les tâches complexes et les applications de niveau entreprise."
733
736
  },
734
737
  "anthropic/claude-opus-4.1": {
735
- "description": "Claude Opus 4.1 est une alternative plug-and-play à Opus 4, offrant des performances et une précision exceptionnelles pour les tâches de codage et d'agent. Il porte la performance de codage à 74,5 % sur SWE-bench Verified, traitant les problèmes complexes à plusieurs étapes avec rigueur et souci du détail accrus."
738
+ "description": "Opus 4.1 est un modèle haut de gamme d’Anthropic, optimisé pour la programmation, le raisonnement complexe et les tâches continues."
736
739
  },
737
740
  "anthropic/claude-sonnet-4": {
738
- "description": "Claude Sonnet 4 améliore significativement les capacités de Sonnet 3.7, excelle en codage avec un score de pointe de 72,7 % sur SWE-bench. Ce modèle équilibre performance et efficacité, adapté aux cas d'usage internes et externes, avec un contrôle accru grâce à une meilleure contrôlabilité."
741
+ "description": "Claude Sonnet 4 est une version hybride de raisonnement d’Anthropic, combinant capacités cognitives et non cognitives."
739
742
  },
740
743
  "anthropic/claude-sonnet-4.5": {
741
- "description": "Claude Sonnet 4.5 est le modèle le plus intelligent d'Anthropic à ce jour."
744
+ "description": "Claude Sonnet 4.5 est le dernier modèle hybride de raisonnement dAnthropic, optimisé pour le raisonnement complexe et le codage."
742
745
  },
743
746
  "ascend-tribe/pangu-pro-moe": {
744
747
  "description": "Pangu-Pro-MoE 72B-A16B est un grand modèle de langage sparse à 72 milliards de paramètres, avec 16 milliards de paramètres activés. Il repose sur une architecture Mixture of Experts groupée (MoGE), qui regroupe les experts lors de la sélection et contraint chaque token à activer un nombre égal d'experts dans chaque groupe, assurant ainsi un équilibre de charge entre les experts et améliorant considérablement l'efficacité de déploiement sur la plateforme Ascend."
@@ -761,6 +764,9 @@
761
764
  "baidu/ERNIE-4.5-300B-A47B": {
762
765
  "description": "ERNIE-4.5-300B-A47B est un grand modèle de langage développé par Baidu, basé sur une architecture Mixture of Experts (MoE). Avec un total de 300 milliards de paramètres, il n'active que 47 milliards de paramètres par token lors de l'inférence, garantissant ainsi une performance puissante tout en optimisant l'efficacité de calcul. En tant que modèle central de la série ERNIE 4.5, il excelle dans la compréhension, la génération, le raisonnement textuel et la programmation. Ce modèle utilise une méthode innovante de pré-entraînement multimodal hétérogène MoE, combinant entraînement sur texte et vision, ce qui améliore ses capacités globales, notamment dans le suivi des instructions et la mémoire des connaissances mondiales."
763
766
  },
767
+ "baidu/ernie-5.0-thinking-preview": {
768
+ "description": "ERNIE 5.0 Thinking Preview est le nouveau modèle multimodal natif de Baidu, performant en compréhension multimodale, exécution d’instructions, création, questions factuelles et appel d’outils."
769
+ },
764
770
  "c4ai-aya-expanse-32b": {
765
771
  "description": "Aya Expanse est un modèle multilingue haute performance de 32B, conçu pour défier les performances des modèles monolingues grâce à des innovations en matière d'optimisation par instructions, d'arbitrage de données, d'entraînement de préférences et de fusion de modèles. Il prend en charge 23 langues."
766
772
  },
@@ -869,6 +875,9 @@
869
875
  "codex-mini-latest": {
870
876
  "description": "codex-mini-latest est une version affinée de o4-mini, spécialement conçue pour Codex CLI. Pour une utilisation directe via l'API, nous recommandons de commencer par gpt-4.1."
871
877
  },
878
+ "cogito-2.1:671b": {
879
+ "description": "Cogito v2.1 671B est un grand modèle de langage open source américain à usage commercial gratuit, offrant des performances comparables aux meilleurs modèles, une efficacité de raisonnement par token élevée, un contexte long de 128k et de solides capacités générales."
880
+ },
872
881
  "cogview-4": {
873
882
  "description": "CogView-4 est le premier modèle open source de génération d'images à partir de texte de Zhizhu, prenant en charge la génération de caractères chinois. Il offre une amélioration globale en compréhension sémantique, qualité de génération d'images, et capacité de génération de textes en chinois et en anglais. Il supporte une entrée bilingue chinois-anglais de longueur arbitraire et peut générer des images à n'importe quelle résolution dans une plage donnée."
874
883
  },
@@ -1139,6 +1148,9 @@
1139
1148
  "deepseek-vl2-small": {
1140
1149
  "description": "DeepSeek VL2 Small, version multimodale légère, adaptée aux environnements à ressources limitées et aux scénarios à forte concurrence."
1141
1150
  },
1151
+ "deepseek/deepseek-chat": {
1152
+ "description": "DeepSeek-V3 est un modèle hybride de raisonnement haute performance développé par l’équipe DeepSeek, adapté aux tâches complexes et à l’intégration d’outils."
1153
+ },
1142
1154
  "deepseek/deepseek-chat-v3-0324": {
1143
1155
  "description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
1144
1156
  },
@@ -1146,13 +1158,13 @@
1146
1158
  "description": "DeepSeek V3 est un modèle hybride d'experts avec 685B de paramètres, représentant la dernière itération de la série de modèles de chat phare de l'équipe DeepSeek.\n\nIl hérite du modèle [DeepSeek V3](/deepseek/deepseek-chat-v3) et excelle dans diverses tâches."
1147
1159
  },
1148
1160
  "deepseek/deepseek-chat-v3.1": {
1149
- "description": "DeepSeek-V3.1 est un grand modèle d'inférence hybride supportant un contexte long de 128K et un changement de mode efficace, offrant des performances et une rapidité exceptionnelles dans l'appel d'outils, la génération de code et les tâches de raisonnement complexes."
1161
+ "description": "DeepSeek-V3.1 est un modèle hybride de raisonnement à long contexte de DeepSeek, prenant en charge les modes de raisonnement mixte et l’intégration doutils."
1150
1162
  },
1151
1163
  "deepseek/deepseek-r1": {
1152
1164
  "description": "Le modèle DeepSeek R1 a bénéficié d'une mise à jour mineure, version actuelle DeepSeek-R1-0528. Cette mise à jour améliore significativement la profondeur et la capacité de raisonnement grâce à des ressources de calcul accrues et des optimisations algorithmiques post-entraînement. Il excelle dans plusieurs benchmarks en mathématiques, programmation et logique générale, approchant les performances des modèles leaders comme O3 et Gemini 2.5 Pro."
1153
1165
  },
1154
1166
  "deepseek/deepseek-r1-0528": {
1155
- "description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère une chaîne de pensée pour améliorer la précision de la réponse."
1167
+ "description": "DeepSeek R1 0528 est une variante mise à jour de DeepSeek, axée sur l’open source et la profondeur de raisonnement."
1156
1168
  },
1157
1169
  "deepseek/deepseek-r1-0528:free": {
1158
1170
  "description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère une chaîne de pensée pour améliorer la précision de la réponse."
@@ -1175,6 +1187,9 @@
1175
1187
  "deepseek/deepseek-r1:free": {
1176
1188
  "description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
1177
1189
  },
1190
+ "deepseek/deepseek-reasoner": {
1191
+ "description": "DeepSeek-V3 Thinking (reasoner) est un modèle expérimental de raisonnement de DeepSeek, conçu pour les tâches de raisonnement à haute complexité."
1192
+ },
1178
1193
  "deepseek/deepseek-v3": {
1179
1194
  "description": "Un grand modèle de langage universel rapide avec des capacités de raisonnement améliorées."
1180
1195
  },
@@ -1523,8 +1538,14 @@
1523
1538
  "gemini-2.5-pro-preview-06-05": {
1524
1539
  "description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes en code, mathématiques et domaines STEM, ainsi que d'analyser de grands ensembles de données, bibliothèques de code et documents avec un contexte étendu."
1525
1540
  },
1541
+ "gemini-3-pro-image-preview": {
1542
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) est un modèle de génération d’images de Google, prenant également en charge les dialogues multimodaux."
1543
+ },
1544
+ "gemini-3-pro-image-preview:image": {
1545
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) est un modèle de génération d’images de Google, prenant également en charge les dialogues multimodaux."
1546
+ },
1526
1547
  "gemini-3-pro-preview": {
1527
- "description": "Gemini 3 Pro est le modèle le plus intelligent de Google, doté d’un raisonnement de pointe, d’une compréhension multimodale, ainsi que de puissantes capacités d’agent et de codage d’ambiance."
1548
+ "description": "Gemini 3 Pro est le meilleur modèle de compréhension multimodale au monde, et le plus puissant agent intelligent et modèle de programmation contextuelle de Google à ce jour, offrant des effets visuels riches et une interactivité approfondie, le tout reposant sur des capacités de raisonnement de pointe."
1528
1549
  },
1529
1550
  "gemini-flash-latest": {
1530
1551
  "description": "Dernière version de Gemini Flash"
@@ -1650,7 +1671,7 @@
1650
1671
  "description": "GLM-Zero-Preview possède de puissantes capacités de raisonnement complexe, se distinguant dans les domaines du raisonnement logique, des mathématiques et de la programmation."
1651
1672
  },
1652
1673
  "google/gemini-2.0-flash": {
1653
- "description": "Gemini 2.0 Flash offre des fonctionnalités de nouvelle génération et des améliorations, incluant une vitesse exceptionnelle, l'utilisation d'outils intégrés, la génération multimodale et une fenêtre de contexte de 1 million de tokens."
1674
+ "description": "Gemini 2.0 Flash est un modèle de raisonnement haute performance de Google, adapté aux tâches multimodales étendues."
1654
1675
  },
1655
1676
  "google/gemini-2.0-flash-001": {
1656
1677
  "description": "Gemini 2.0 Flash propose des fonctionnalités et des améliorations de nouvelle génération, y compris une vitesse exceptionnelle, l'utilisation d'outils natifs, la génération multimodale et une fenêtre de contexte de 1M tokens."
@@ -1661,14 +1682,23 @@
1661
1682
  "google/gemini-2.0-flash-lite": {
1662
1683
  "description": "Gemini 2.0 Flash Lite offre des fonctionnalités de nouvelle génération et des améliorations, incluant une vitesse exceptionnelle, l'utilisation d'outils intégrés, la génération multimodale et une fenêtre de contexte de 1 million de tokens."
1663
1684
  },
1685
+ "google/gemini-2.0-flash-lite-001": {
1686
+ "description": "Gemini 2.0 Flash Lite est une version allégée de la famille Gemini, désactivant par défaut le raisonnement pour améliorer la latence et les coûts, mais pouvant être activé via des paramètres."
1687
+ },
1664
1688
  "google/gemini-2.5-flash": {
1665
- "description": "Gemini 2.5 Flash est un modèle de réflexion offrant d'excellentes capacités globales. Il vise un équilibre entre prix et performance, supportant le multimodal et une fenêtre de contexte de 1 million de tokens."
1689
+ "description": "La série Gemini 2.5 Flash (Lite/Pro/Flash) regroupe les modèles de raisonnement de Google allant de faible latence à haute performance."
1690
+ },
1691
+ "google/gemini-2.5-flash-image": {
1692
+ "description": "Gemini 2.5 Flash Image (Nano Banana) est un modèle de génération d’images de Google, prenant également en charge les dialogues multimodaux."
1693
+ },
1694
+ "google/gemini-2.5-flash-image-free": {
1695
+ "description": "Version gratuite de Gemini 2.5 Flash Image, prenant en charge une génération multimodale avec quota limité."
1666
1696
  },
1667
1697
  "google/gemini-2.5-flash-image-preview": {
1668
1698
  "description": "Modèle expérimental Gemini 2.5 Flash, supportant la génération d'images."
1669
1699
  },
1670
1700
  "google/gemini-2.5-flash-lite": {
1671
- "description": "Gemini 2.5 Flash-Lite est un modèle équilibré à faible latence, avec un budget de réflexion configurable et une connectivité aux outils (par exemple, recherche Google ancrée et exécution de code). Il supporte les entrées multimodales et offre une fenêtre de contexte de 1 million de tokens."
1701
+ "description": "Gemini 2.5 Flash Lite est une version allégée de Gemini 2.5, optimisée pour la latence et les coûts, idéale pour les scénarios à haut débit."
1672
1702
  },
1673
1703
  "google/gemini-2.5-flash-preview": {
1674
1704
  "description": "Gemini 2.5 Flash est le modèle phare le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il comprend des capacités de 'pensée' intégrées, lui permettant de fournir des réponses avec une plus grande précision et un traitement contextuel détaillé.\n\nRemarque : ce modèle a deux variantes : pensée et non-pensée. La tarification de sortie varie considérablement en fonction de l'activation de la capacité de pensée. Si vous choisissez la variante standard (sans le suffixe ':thinking'), le modèle évitera explicitement de générer des jetons de pensée.\n\nPour tirer parti de la capacité de pensée et recevoir des jetons de pensée, vous devez choisir la variante ':thinking', ce qui entraînera une tarification de sortie de pensée plus élevée.\n\nDe plus, Gemini 2.5 Flash peut être configuré via le paramètre 'nombre maximal de jetons de raisonnement', comme décrit dans la documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
@@ -1677,11 +1707,23 @@
1677
1707
  "description": "Gemini 2.5 Flash est le modèle phare le plus avancé de Google, conçu pour des tâches de raisonnement avancé, de codage, de mathématiques et de sciences. Il comprend des capacités de 'pensée' intégrées, lui permettant de fournir des réponses avec une plus grande précision et un traitement contextuel détaillé.\n\nRemarque : ce modèle a deux variantes : pensée et non-pensée. La tarification de sortie varie considérablement en fonction de l'activation de la capacité de pensée. Si vous choisissez la variante standard (sans le suffixe ':thinking'), le modèle évitera explicitement de générer des jetons de pensée.\n\nPour tirer parti de la capacité de pensée et recevoir des jetons de pensée, vous devez choisir la variante ':thinking', ce qui entraînera une tarification de sortie de pensée plus élevée.\n\nDe plus, Gemini 2.5 Flash peut être configuré via le paramètre 'nombre maximal de jetons de raisonnement', comme décrit dans la documentation (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1678
1708
  },
1679
1709
  "google/gemini-2.5-pro": {
1680
- "description": "Gemini 2.5 Pro est notre modèle Gemini de raisonnement le plus avancé, capable de résoudre des problèmes complexes. Il dispose d'une fenêtre de contexte de 2 millions de tokens et supporte des entrées multimodales incluant texte, images, audio, vidéo et documents PDF."
1710
+ "description": "Gemini 2.5 Pro est le modèle de raisonnement phare de Google, prenant en charge les longs contextes et les tâches complexes."
1711
+ },
1712
+ "google/gemini-2.5-pro-free": {
1713
+ "description": "Version gratuite de Gemini 2.5 Pro, prenant en charge un contexte long multimodal avec quota limité, idéale pour les essais et les flux de travail légers."
1681
1714
  },
1682
1715
  "google/gemini-2.5-pro-preview": {
1683
1716
  "description": "Gemini 2.5 Pro Preview est le modèle de pensée le plus avancé de Google, capable de raisonner sur des problèmes complexes en code, mathématiques et domaines STEM, ainsi que d'analyser de grands ensembles de données, des bases de code et des documents en utilisant un contexte étendu."
1684
1717
  },
1718
+ "google/gemini-3-pro-image-preview-free": {
1719
+ "description": "Version gratuite de Gemini 3 Pro Image, prenant en charge une génération multimodale avec quota limité."
1720
+ },
1721
+ "google/gemini-3-pro-preview": {
1722
+ "description": "Gemini 3 Pro est le modèle de raisonnement multimodal de nouvelle génération de la série Gemini, capable de comprendre du texte, de l’audio, des images, des vidéos, et de traiter des tâches complexes ainsi que de vastes bases de code."
1723
+ },
1724
+ "google/gemini-3-pro-preview-free": {
1725
+ "description": "Version d’aperçu gratuite de Gemini 3 Pro, avec les mêmes capacités de compréhension et de raisonnement multimodal que la version standard, mais soumise à des limites de quota et de débit, idéale pour l’expérimentation et les usages peu fréquents."
1726
+ },
1685
1727
  "google/gemini-embedding-001": {
1686
1728
  "description": "Modèle d'embedding de pointe, performant en anglais, multilingue et tâches de code."
1687
1729
  },
@@ -2057,21 +2099,36 @@
2057
2099
  "inception/mercury-coder-small": {
2058
2100
  "description": "Mercury Coder Small est idéal pour les tâches de génération, débogage et refactorisation de code, avec une latence minimale."
2059
2101
  },
2060
- "inclusionAI/Ling-1T": {
2061
- "description": "Ling-1T est le premier modèle phare de la série \"Ling 2.0\", un modèle non-réfléchissant doté de 1 000 milliards de paramètres totaux et environ 50 milliards de paramètres actifs par token. Construit sur l'architecture Ling 2.0, Ling-1T vise à repousser les limites du raisonnement efficace et de la cognition évolutive. Ling-1T-base a été entraîné sur plus de 20 000 milliards de tokens de haute qualité et riches en raisonnement."
2062
- },
2063
2102
  "inclusionAI/Ling-flash-2.0": {
2064
2103
  "description": "Ling-flash-2.0 est le troisième modèle de la série d'architectures Ling 2.0 publié par l'équipe Bailing du groupe Ant. C'est un modèle d'experts mixtes (MoE) avec un total de 100 milliards de paramètres, mais n'activant que 6,1 milliards de paramètres par token (dont 4,8 milliards hors embeddings). En tant que modèle léger, Ling-flash-2.0 affiche des performances comparables voire supérieures à celles des modèles denses de 40 milliards de paramètres et des modèles MoE de plus grande taille dans plusieurs évaluations de référence reconnues. Ce modèle vise à explorer des voies d'efficacité sous le consensus « grand modèle = grand nombre de paramètres » grâce à une conception d'architecture et des stratégies d'entraînement optimales."
2065
2104
  },
2066
2105
  "inclusionAI/Ling-mini-2.0": {
2067
2106
  "description": "Ling-mini-2.0 est un modèle de langage de grande taille compact et performant basé sur l'architecture MoE. Il possède 16 milliards de paramètres au total, mais n'active que 1,4 milliard par token (789 millions hors embeddings), permettant une vitesse de génération très élevée. Grâce à une conception MoE efficace et à un entraînement massif sur des données de haute qualité, Ling-mini-2.0 offre des performances de pointe sur les tâches en aval, comparables à celles des modèles denses de moins de 10 milliards de paramètres et des modèles MoE plus grands."
2068
2107
  },
2069
- "inclusionAI/Ring-1T": {
2070
- "description": "Ring-1T est un modèle open source à l’échelle du billion de paramètres, développé par l’équipe Bailing. Il est basé sur l’architecture Ling 2.0 et le modèle de base Ling-1T, avec un total de 1 000 milliards de paramètres et 50 milliards de paramètres actifs. Il prend en charge une fenêtre de contexte allant jusqu’à 128K et a été optimisé via un apprentissage par renforcement avec récompenses vérifiables à grande échelle."
2071
- },
2072
2108
  "inclusionAI/Ring-flash-2.0": {
2073
2109
  "description": "Ring-flash-2.0 est un modèle de réflexion haute performance profondément optimisé à partir de Ling-flash-2.0-base. Il utilise une architecture d'experts mixtes (MoE) avec un total de 100 milliards de paramètres, mais n'active que 6,1 milliards de paramètres à chaque inférence. Ce modèle résout, grâce à l'algorithme innovant icepop, l'instabilité des grands modèles MoE lors de l'entraînement par apprentissage par renforcement (RL), permettant une amélioration continue des capacités de raisonnement complexe sur de longues périodes d'entraînement. Ring-flash-2.0 a réalisé des avancées significatives dans plusieurs benchmarks difficiles tels que les compétitions mathématiques, la génération de code et le raisonnement logique. Ses performances surpassent non seulement les meilleurs modèles denses de moins de 40 milliards de paramètres, mais rivalisent aussi avec des modèles MoE open source plus grands et des modèles de réflexion propriétaires haute performance. Bien que focalisé sur le raisonnement complexe, il excelle également dans les tâches de création littéraire. De plus, grâce à sa conception efficace, Ring-flash-2.0 offre des performances puissantes tout en assurant une inférence rapide, réduisant considérablement les coûts de déploiement dans des scénarios à forte concurrence."
2074
2110
  },
2111
+ "inclusionai/ling-1t": {
2112
+ "description": "Ling-1T est le modèle MoE 1T d’inclusionAI, optimisé pour les tâches de raisonnement intensif et les contextes à grande échelle."
2113
+ },
2114
+ "inclusionai/ling-flash-2.0": {
2115
+ "description": "Ling-flash-2.0 est un modèle MoE d’inclusionAI, optimisé pour l’efficacité et les performances de raisonnement, adapté aux tâches de taille moyenne à grande."
2116
+ },
2117
+ "inclusionai/ling-mini-2.0": {
2118
+ "description": "Ling-mini-2.0 est un modèle MoE allégé d’inclusionAI, réduisant considérablement les coûts tout en conservant de bonnes capacités de raisonnement."
2119
+ },
2120
+ "inclusionai/ming-flash-omini-preview": {
2121
+ "description": "Ming-flash-omni Preview est un modèle multimodal d’inclusionAI, prenant en charge les entrées vocales, visuelles et vidéo, avec des capacités optimisées de rendu d’image et de reconnaissance vocale."
2122
+ },
2123
+ "inclusionai/ring-1t": {
2124
+ "description": "Ring-1T est un modèle MoE à un billion de paramètres d’inclusionAI, conçu pour les tâches de raisonnement à grande échelle et la recherche."
2125
+ },
2126
+ "inclusionai/ring-flash-2.0": {
2127
+ "description": "Ring-flash-2.0 est une variante du modèle Ring d’inclusionAI, conçue pour les scénarios à haut débit, mettant l’accent sur la vitesse et l’efficacité des coûts."
2128
+ },
2129
+ "inclusionai/ring-mini-2.0": {
2130
+ "description": "Ring-mini-2.0 est une version allégée à haut débit du modèle MoE d’inclusionAI, principalement utilisée dans des contextes de forte concurrence."
2131
+ },
2075
2132
  "internlm/internlm2_5-7b-chat": {
2076
2133
  "description": "InternLM2.5 fournit des solutions de dialogue intelligent dans divers scénarios."
2077
2134
  },
@@ -2123,6 +2180,12 @@
2123
2180
  "kimi-k2-instruct": {
2124
2181
  "description": "Kimi K2 Instruct, modèle d'inférence officiel de Kimi, prenant en charge le long contexte, le code, les questions-réponses et d'autres scénarios."
2125
2182
  },
2183
+ "kimi-k2-thinking": {
2184
+ "description": "Le modèle de raisonnement long K2 prend en charge un contexte de 256k, les appels d’outils multi-étapes et le raisonnement, idéal pour résoudre des problèmes complexes."
2185
+ },
2186
+ "kimi-k2-thinking-turbo": {
2187
+ "description": "Version rapide du modèle de raisonnement long K2, avec un contexte de 256k, spécialisé dans le raisonnement profond et une vitesse de sortie de 60 à 100 tokens par seconde."
2188
+ },
2126
2189
  "kimi-k2-turbo-preview": {
2127
2190
  "description": "kimi-k2 est un modèle de base à architecture MoE doté de capacités remarquables en programmation et en agents autonomes, avec 1T de paramètres au total et 32B de paramètres activés. Dans les principaux tests de référence couvrant le raisonnement général, la programmation, les mathématiques et les agents, le modèle K2 surpasse les autres modèles open source majeurs."
2128
2191
  },
@@ -2135,6 +2198,9 @@
2135
2198
  "kimi-thinking-preview": {
2136
2199
  "description": "Le modèle kimi-thinking-preview, fourni par Moon's Dark Side, est un modèle de réflexion multimodal doté de capacités de raisonnement général et multimodal. Il excelle dans le raisonnement approfondi, aidant à résoudre des problèmes plus complexes."
2137
2200
  },
2201
+ "kuaishou/kat-coder-pro-v1": {
2202
+ "description": "KAT-Coder-Pro-V1 (gratuit pour une durée limitée) se concentre sur la compréhension du code et la programmation automatisée, pour des tâches d’agent de codage efficaces."
2203
+ },
2138
2204
  "learnlm-1.5-pro-experimental": {
2139
2205
  "description": "LearnLM est un modèle de langage expérimental, spécifique à des tâches, formé pour respecter les principes des sciences de l'apprentissage, capable de suivre des instructions systématiques dans des contextes d'enseignement et d'apprentissage, agissant comme un mentor expert, entre autres."
2140
2206
  },
@@ -2466,7 +2532,7 @@
2466
2532
  "description": "MiniMax M2 est un modèle de langage de grande taille, efficace et conçu pour les flux de travail en codage et en automatisation."
2467
2533
  },
2468
2534
  "minimax/minimax-m2": {
2469
- "description": "Conçu pour un codage efficace et des flux de travail d'agents performants."
2535
+ "description": "MiniMax-M2 est un modèle performant et économique pour les tâches de codage et d’agent, adapté à divers scénarios d’ingénierie."
2470
2536
  },
2471
2537
  "minimaxai/minimax-m2": {
2472
2538
  "description": "MiniMax-M2 est un modèle MoE (Mixture of Experts) compact, rapide et économique, doté de 230 milliards de paramètres totaux et de 10 milliards de paramètres actifs. Il est conçu pour offrir des performances optimales dans les tâches de codage et d'agents, tout en maintenant une intelligence générale robuste. Ce modèle excelle dans l'édition multi-fichiers, les boucles de codage-exécution-correction, la vérification et la correction de tests, ainsi que dans les chaînes d'outils complexes à long terme, ce qui en fait un choix idéal pour les flux de travail des développeurs."
@@ -2615,12 +2681,21 @@
2615
2681
  "moonshotai/kimi-k2": {
2616
2682
  "description": "Kimi K2 est un modèle de langage à experts hybrides (MoE) à grande échelle développé par Moonshot AI, avec un total de 1 000 milliards de paramètres et 32 milliards de paramètres activés par passage avant. Il est optimisé pour les capacités d'agent, incluant l'utilisation avancée d'outils, le raisonnement et la synthèse de code."
2617
2683
  },
2684
+ "moonshotai/kimi-k2-0711": {
2685
+ "description": "Kimi K2 0711 est la version Instruct de la série Kimi, adaptée aux scénarios de codage de haute qualité et d’appel d’outils."
2686
+ },
2618
2687
  "moonshotai/kimi-k2-0905": {
2619
- "description": "Le modèle kimi-k2-0905-preview dispose d'une longueur de contexte de 256k, offrant une capacité renforcée de codage agentique, une meilleure esthétique et utilité du code front-end, ainsi qu'une compréhension contextuelle améliorée."
2688
+ "description": "Kimi K2 0905 est la mise à jour 0905 de la série Kimi, avec un contexte étendu et des performances de raisonnement améliorées, optimisée pour les scénarios de codage."
2620
2689
  },
2621
2690
  "moonshotai/kimi-k2-instruct-0905": {
2622
2691
  "description": "Le modèle kimi-k2-0905-preview dispose d'une longueur de contexte de 256k, offrant une capacité renforcée de codage agentique, une meilleure esthétique et utilité du code front-end, ainsi qu'une compréhension contextuelle améliorée."
2623
2692
  },
2693
+ "moonshotai/kimi-k2-thinking": {
2694
+ "description": "Kimi K2 Thinking est un modèle de raisonnement optimisé par Moonshot pour les tâches de raisonnement profond, avec des capacités d’agent généralistes."
2695
+ },
2696
+ "moonshotai/kimi-k2-thinking-turbo": {
2697
+ "description": "Kimi K2 Thinking Turbo est la version rapide de Kimi K2 Thinking, conservant les capacités de raisonnement profond tout en réduisant considérablement la latence de réponse."
2698
+ },
2624
2699
  "morph/morph-v3-fast": {
2625
2700
  "description": "Morph propose un modèle IA spécialisé qui applique rapidement les modifications de code suggérées par des modèles de pointe (comme Claude ou GPT-4o) à vos fichiers de code existants - RAPIDE - plus de 4500 tokens/seconde. Il agit comme la dernière étape dans le flux de travail de codage IA. Supporte 16k tokens d'entrée et 16k tokens de sortie."
2626
2701
  },
@@ -2702,30 +2777,14 @@
2702
2777
  "openai/gpt-4-turbo": {
2703
2778
  "description": "gpt-4-turbo d'OpenAI possède une vaste connaissance générale et une expertise sectorielle, capable de suivre des instructions complexes en langage naturel et de résoudre précisément des problèmes difficiles. Sa date de coupure des connaissances est avril 2023, avec une fenêtre de contexte de 128 000 tokens."
2704
2779
  },
2705
- "openai/gpt-4.1": {
2706
- "description": "GPT 4.1 est le modèle phare d'OpenAI, adapté aux tâches complexes. Il excelle dans la résolution de problèmes interdomaines."
2707
- },
2708
- "openai/gpt-4.1-mini": {
2709
- "description": "GPT 4.1 mini équilibre intelligence, vitesse et coût, en faisant un modèle attractif pour de nombreux cas d'usage."
2710
- },
2711
- "openai/gpt-4.1-nano": {
2712
- "description": "GPT-4.1 nano est le modèle GPT 4.1 le plus rapide et le plus rentable."
2713
- },
2714
- "openai/gpt-4o": {
2715
- "description": "GPT-4o d'OpenAI possède une vaste connaissance générale et une expertise sectorielle, capable de suivre des instructions complexes en langage naturel et de résoudre précisément des problèmes difficiles. Il offre des performances équivalentes à GPT-4 Turbo avec une API plus rapide et moins coûteuse."
2716
- },
2717
- "openai/gpt-4o-mini": {
2718
- "description": "GPT-4o mini d'OpenAI est leur modèle petit, avancé et rentable. Il est multimodal (accepte texte ou image en entrée et produit du texte), plus intelligent que gpt-3.5-turbo tout en étant aussi rapide."
2719
- },
2720
- "openai/gpt-5": {
2721
- "description": "GPT-5 est le modèle de langage phare d'OpenAI, excellent en raisonnement complexe, vaste connaissance du monde réel, tâches intensives en code et agents multi-étapes."
2722
- },
2723
- "openai/gpt-5-mini": {
2724
- "description": "GPT-5 mini est un modèle optimisé pour le coût, performant en raisonnement et tâches de chat. Il offre un équilibre optimal entre vitesse, coût et capacité."
2725
- },
2726
- "openai/gpt-5-nano": {
2727
- "description": "GPT-5 nano est un modèle à haut débit, performant pour les instructions simples ou les tâches de classification."
2728
- },
2780
+ "openai/gpt-4.1": {},
2781
+ "openai/gpt-4.1-mini": {},
2782
+ "openai/gpt-4.1-nano": {},
2783
+ "openai/gpt-4o": {},
2784
+ "openai/gpt-4o-mini": {},
2785
+ "openai/gpt-5": {},
2786
+ "openai/gpt-5-mini": {},
2787
+ "openai/gpt-5-nano": {},
2729
2788
  "openai/gpt-oss-120b": {
2730
2789
  "description": "Modèle de langage général extrêmement performant avec des capacités de raisonnement puissantes et contrôlables."
2731
2790
  },
@@ -2750,9 +2809,7 @@
2750
2809
  "openai/o3-mini-high": {
2751
2810
  "description": "o3-mini haute version de raisonnement, offrant une grande intelligence avec les mêmes objectifs de coût et de latence que o1-mini."
2752
2811
  },
2753
- "openai/o4-mini": {
2754
- "description": "o4-mini d'OpenAI offre un raisonnement rapide et rentable, avec des performances exceptionnelles pour sa taille, notamment en mathématiques (meilleur sur le benchmark AIME), codage et tâches visuelles."
2755
- },
2812
+ "openai/o4-mini": {},
2756
2813
  "openai/o4-mini-high": {
2757
2814
  "description": "Version à haut niveau d'inférence d'o4-mini, optimisée pour une inférence rapide et efficace, offrant une grande efficacité et performance dans les tâches de codage et visuelles."
2758
2815
  },
@@ -2954,9 +3011,7 @@
2954
3011
  "qwen/qwen2.5-coder-7b-instruct": {
2955
3012
  "description": "Modèle de code puissant de taille moyenne, prenant en charge une longueur de contexte de 32K, spécialisé dans la programmation multilingue."
2956
3013
  },
2957
- "qwen/qwen3-14b": {
2958
- "description": "Qwen3-14B est un modèle de langage causal dense de 14 milliards de paramètres dans la série Qwen3, conçu pour un raisonnement complexe et des dialogues efficaces. Il permet un passage sans effort entre un mode de pensée pour des tâches telles que les mathématiques, la programmation et le raisonnement logique, et un mode non-pensant pour des dialogues généraux. Ce modèle a été affiné pour le suivi des instructions, l'utilisation d'outils d'agents, l'écriture créative et des tâches multilingues dans plus de 100 langues et dialectes. Il gère nativement un contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
2959
- },
3014
+ "qwen/qwen3-14b": {},
2960
3015
  "qwen/qwen3-14b:free": {
2961
3016
  "description": "Qwen3-14B est un modèle de langage causal dense de 14 milliards de paramètres dans la série Qwen3, conçu pour un raisonnement complexe et des dialogues efficaces. Il permet un passage sans effort entre un mode de pensée pour des tâches telles que les mathématiques, la programmation et le raisonnement logique, et un mode non-pensant pour des dialogues généraux. Ce modèle a été affiné pour le suivi des instructions, l'utilisation d'outils d'agents, l'écriture créative et des tâches multilingues dans plus de 100 langues et dialectes. Il gère nativement un contexte de 32K tokens et peut être étendu à 131K tokens via une extension basée sur YaRN."
2962
3017
  },
@@ -3275,9 +3330,6 @@
3275
3330
  "step-r1-v-mini": {
3276
3331
  "description": "Ce modèle est un grand modèle de raisonnement avec de puissantes capacités de compréhension d'image, capable de traiter des informations visuelles et textuelles, produisant du texte après une réflexion approfondie. Ce modèle se distingue dans le domaine du raisonnement visuel, tout en possédant des capacités de raisonnement mathématique, de code et de texte de premier plan. La longueur du contexte est de 100k."
3277
3332
  },
3278
- "step3": {
3279
- "description": "Step3 est un modèle multimodal développé par StepStar, doté de puissantes capacités de compréhension visuelle."
3280
- },
3281
3333
  "stepfun-ai/step3": {
3282
3334
  "description": "Step3 est un modèle de raisonnement multimodal de pointe publié par StepFun (阶跃星辰). Il est construit sur une architecture Mixture-of-Experts (MoE) comportant 321 milliards de paramètres au total et 38 milliards de paramètres d'activation. Le modèle adopte une conception bout en bout visant à minimiser le coût de décodage tout en offrant des performances de premier plan en raisonnement visuel et linguistique. Grâce à la conception synergique de l'attention par décomposition multi-matrice (MFA) et du découplage attention‑FFN (AFD), Step3 conserve une grande efficacité aussi bien sur des accélérateurs haut de gamme que sur des accélérateurs d'entrée de gamme. Lors de la pré‑entraînement, Step3 a traité plus de 20 000 milliards de tokens textuels et 4 000 milliards de tokens mixtes image‑texte, couvrant une dizaine de langues. Le modèle atteint des niveaux de référence parmi les meilleurs des modèles open source sur plusieurs benchmarks, notamment en mathématiques, en code et en multimodalité."
3283
3335
  },
@@ -3386,12 +3438,8 @@
3386
3438
  "wizardlm2:8x22b": {
3387
3439
  "description": "WizardLM 2 est un modèle de langage proposé par Microsoft AI, particulièrement performant dans les domaines des dialogues complexes, du multilinguisme, du raisonnement et des assistants intelligents."
3388
3440
  },
3389
- "x-ai/grok-4-fast": {
3390
- "description": "Nous sommes ravis de présenter Grok 4 Fast, notre dernière avancée en matière de modèles de raisonnement rentables."
3391
- },
3392
- "x-ai/grok-code-fast-1": {
3393
- "description": "Nous sommes heureux de lancer grok-code-fast-1, un modèle de raisonnement rapide et économique, particulièrement performant pour le codage assisté par agent."
3394
- },
3441
+ "x-ai/grok-4-fast": {},
3442
+ "x-ai/grok-code-fast-1": {},
3395
3443
  "x1": {
3396
3444
  "description": "Le modèle Spark X1 sera mis à niveau, et sur la base de ses performances déjà leaders dans les tâches mathématiques, il atteindra des résultats comparables dans des tâches générales telles que le raisonnement, la génération de texte et la compréhension du langage, en se mesurant à OpenAI o1 et DeepSeek R1."
3397
3445
  },
@@ -3452,9 +3500,7 @@
3452
3500
  "yi-vision-v2": {
3453
3501
  "description": "Modèle pour des tâches visuelles complexes, offrant des capacités de compréhension et d'analyse de haute performance basées sur plusieurs images."
3454
3502
  },
3455
- "z-ai/glm-4.6": {
3456
- "description": "GLM-4.6, le tout dernier modèle phare de Zhipu, surpasse son prédécesseur dans les domaines du codage avancé, du traitement de longs textes, du raisonnement et des capacités d'agents intelligents."
3457
- },
3503
+ "z-ai/glm-4.6": {},
3458
3504
  "zai-org/GLM-4.5": {
3459
3505
  "description": "GLM-4.5 est un modèle de base conçu pour les applications d'agents intelligents, utilisant une architecture Mixture-of-Experts (MoE). Il est profondément optimisé pour l'appel d'outils, la navigation web, l'ingénierie logicielle et la programmation front-end, supportant une intégration transparente avec des agents de code tels que Claude Code et Roo Code. GLM-4.5 utilise un mode d'inférence hybride, adapté à des scénarios variés allant du raisonnement complexe à l'usage quotidien."
3460
3506
  },
@@ -191,6 +191,9 @@
191
191
  "xinference": {
192
192
  "description": "Xorbits Inference (Xinference) est une plateforme open source conçue pour simplifier l'exécution et l'intégration de divers modèles d'IA. Grâce à Xinference, vous pouvez utiliser n'importe quel LLM open source, modèle d'embedding ou modèle multimodal pour effectuer des inférences dans le cloud ou en local, et créer des applications IA puissantes."
193
193
  },
194
+ "zenmux": {
195
+ "description": "ZenMux est une plateforme unifiée d’agrégation de services d’IA, compatible avec les principales interfaces de services d’IA telles que OpenAI, Anthropic, Google VertexAI, etc. Elle offre une capacité de routage flexible, vous permettant de basculer et de gérer facilement différents modèles d’IA."
196
+ },
194
197
  "zeroone": {
195
198
  "description": "01.AI se concentre sur les technologies d'intelligence artificielle de l'ère IA 2.0, promouvant activement l'innovation et l'application de \"l'homme + l'intelligence artificielle\", utilisant des modèles puissants et des technologies IA avancées pour améliorer la productivité humaine et réaliser l'autonomisation technologique."
196
199
  },
@@ -37,6 +37,14 @@
37
37
  "standard": "Standard"
38
38
  }
39
39
  },
40
+ "resolution": {
41
+ "label": "Risoluzione",
42
+ "options": {
43
+ "1K": "1K",
44
+ "2K": "2K",
45
+ "4K": "4K"
46
+ }
47
+ },
40
48
  "seed": {
41
49
  "label": "Seed",
42
50
  "random": "Seme casuale"