@lobehub/lobehub 2.0.0-next.104 → 2.0.0-next.106

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/apps/desktop/package.json +2 -2
  3. package/changelog/v1.json +14 -0
  4. package/locales/ar/image.json +8 -0
  5. package/locales/ar/models.json +110 -64
  6. package/locales/ar/providers.json +3 -0
  7. package/locales/bg-BG/image.json +8 -0
  8. package/locales/bg-BG/models.json +98 -68
  9. package/locales/bg-BG/providers.json +3 -0
  10. package/locales/de-DE/image.json +8 -0
  11. package/locales/de-DE/models.json +176 -38
  12. package/locales/de-DE/providers.json +3 -0
  13. package/locales/en-US/image.json +8 -0
  14. package/locales/en-US/models.json +176 -38
  15. package/locales/en-US/providers.json +3 -0
  16. package/locales/es-ES/image.json +8 -0
  17. package/locales/es-ES/models.json +176 -38
  18. package/locales/es-ES/providers.json +3 -0
  19. package/locales/fa-IR/image.json +8 -0
  20. package/locales/fa-IR/models.json +110 -64
  21. package/locales/fa-IR/providers.json +3 -0
  22. package/locales/fr-FR/image.json +8 -0
  23. package/locales/fr-FR/models.json +110 -64
  24. package/locales/fr-FR/providers.json +3 -0
  25. package/locales/it-IT/image.json +8 -0
  26. package/locales/it-IT/models.json +176 -38
  27. package/locales/it-IT/providers.json +3 -0
  28. package/locales/ja-JP/image.json +8 -0
  29. package/locales/ja-JP/models.json +110 -64
  30. package/locales/ja-JP/providers.json +3 -0
  31. package/locales/ko-KR/image.json +8 -0
  32. package/locales/ko-KR/models.json +110 -64
  33. package/locales/ko-KR/providers.json +3 -0
  34. package/locales/nl-NL/image.json +8 -0
  35. package/locales/nl-NL/models.json +176 -38
  36. package/locales/nl-NL/providers.json +3 -0
  37. package/locales/pl-PL/image.json +8 -0
  38. package/locales/pl-PL/models.json +110 -64
  39. package/locales/pl-PL/providers.json +3 -0
  40. package/locales/pt-BR/image.json +8 -0
  41. package/locales/pt-BR/models.json +176 -38
  42. package/locales/pt-BR/providers.json +3 -0
  43. package/locales/ru-RU/image.json +8 -0
  44. package/locales/ru-RU/models.json +98 -68
  45. package/locales/ru-RU/providers.json +3 -0
  46. package/locales/tr-TR/image.json +8 -0
  47. package/locales/tr-TR/models.json +110 -64
  48. package/locales/tr-TR/providers.json +3 -0
  49. package/locales/vi-VN/image.json +8 -0
  50. package/locales/vi-VN/models.json +176 -38
  51. package/locales/vi-VN/providers.json +3 -0
  52. package/locales/zh-CN/image.json +8 -0
  53. package/locales/zh-CN/models.json +179 -38
  54. package/locales/zh-CN/providers.json +3 -0
  55. package/locales/zh-TW/image.json +8 -0
  56. package/locales/zh-TW/models.json +176 -38
  57. package/locales/zh-TW/providers.json +3 -0
  58. package/package.json +9 -3
  59. package/packages/database/src/repositories/knowledge/index.ts +5 -8
  60. package/packages/model-bank/src/aiModels/moonshot.ts +46 -0
  61. package/packages/model-runtime/src/core/contextBuilders/openai.ts +1 -1
  62. package/packages/model-runtime/src/providers/moonshot/index.ts +17 -4
  63. package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
  64. package/packages/types/src/user/settings/keyVaults.ts +0 -68
  65. package/packages/utils/src/client/parserPlaceholder.ts +1 -1
  66. package/src/services/__tests__/_auth.test.ts +1 -4
  67. package/src/services/_auth.ts +2 -3
  68. package/src/services/_header.ts +1 -8
  69. package/src/store/chat/agents/__tests__/createAgentExecutors/call-llm.test.ts +18 -0
  70. package/src/store/chat/agents/__tests__/createAgentExecutors/call-tool.test.ts +40 -11
  71. package/src/store/chat/agents/__tests__/createAgentExecutors/helpers/assertions.ts +3 -0
  72. package/src/store/chat/agents/__tests__/createAgentExecutors/request-human-approve.test.ts +15 -0
  73. package/src/store/chat/agents/__tests__/createAgentExecutors/resolve-aborted-tools.test.ts +37 -11
  74. package/src/store/chat/agents/createAgentExecutors.ts +22 -13
  75. package/src/store/chat/slices/aiChat/actions/conversationLifecycle.ts +4 -8
  76. package/src/store/chat/slices/builtinTool/actions/__tests__/search.test.ts +16 -2
  77. package/src/store/chat/slices/builtinTool/actions/localSystem.ts +5 -1
  78. package/src/store/chat/slices/builtinTool/actions/search.ts +5 -1
  79. package/src/store/chat/slices/message/actions/publicApi.ts +10 -2
  80. package/src/store/chat/slices/message/actions/query.ts +17 -4
  81. package/src/store/chat/slices/operation/__tests__/selectors.test.ts +93 -5
  82. package/src/store/chat/slices/operation/selectors.ts +16 -3
  83. package/src/store/chat/slices/plugin/actions/optimisticUpdate.ts +24 -18
  84. package/src/store/user/slices/settings/selectors/keyVaults.ts +0 -5
  85. package/src/features/ChatList/Error/AccessCodeForm.tsx +0 -63
  86. package/src/services/__tests__/share.test.ts +0 -61
@@ -720,25 +720,28 @@
720
720
  "description": "Claude 3 Opus — самая интеллектуальная модель Anthropic с лидирующей на рынке производительностью в сложных задачах. Она демонстрирует выдающуюся плавность и человекоподобное понимание при работе с открытыми подсказками и новыми сценариями."
721
721
  },
722
722
  "anthropic/claude-3.5-haiku": {
723
- "description": "Claude 3.5 Haiku следующее поколение нашей самой быстрой модели. При скорости, сопоставимой с Claude 3 Haiku, она улучшена по всем навыкам и превосходит нашего предыдущего крупнейшего Claude 3 Opus во многих интеллектуальных тестах."
723
+ "description": "Claude 3.5 Haiku обладает улучшенными возможностями в скорости, точности кодирования и использовании инструментов. Подходит для сценариев с высокими требованиями к скорости и взаимодействию с инструментами."
724
724
  },
725
725
  "anthropic/claude-3.5-sonnet": {
726
- "description": "Claude 3.5 Sonnet достигает идеального баланса между интеллектом и скоростью, особенно для корпоративных нагрузок. По сравнению с аналогами, он обеспечивает мощную производительность при меньших затратах и разработан для высокой надежности в масштабных развертываниях ИИ."
726
+ "description": "Claude 3.5 Sonnet это быстрый и эффективный представитель семейства Sonnet, обеспечивающий улучшенную производительность в кодировании и рассуждении. Некоторые версии постепенно заменяются на Sonnet 3.7 и другие."
727
727
  },
728
728
  "anthropic/claude-3.7-sonnet": {
729
- "description": "Claude 3.7 Sonnet — первая гибридная модель вывода и самая интеллектуальная модель Anthropic на сегодняшний день. Она обеспечивает передовые возможности в кодировании, генерации контента, анализе данных и планировании, построена на базе программных и вычислительных способностей предшественника Claude 3.5 Sonnet."
729
+ "description": "Claude 3.7 Sonnet — усовершенствованная версия серии Sonnet с более мощными возможностями рассуждения и кодирования, предназначенная для сложных корпоративных задач."
730
+ },
731
+ "anthropic/claude-haiku-4.5": {
732
+ "description": "Claude Haiku 4.5 — это высокопроизводительная и быстрая модель от Anthropic с минимальной задержкой при сохранении высокой точности."
730
733
  },
731
734
  "anthropic/claude-opus-4": {
732
- "description": "Claude Opus 4 — самая мощная модель Anthropic и лучший в мире кодовый модель, лидирующий в SWE-bench (72,5%) и Terminal-bench (43,2%). Обеспечивает устойчивую производительность для длительных задач, требующих сосредоточенности и тысяч шагов, способна работать непрерывно в течение нескольких часов, значительно расширяя возможности ИИ-агентов."
735
+ "description": "Opus 4 — флагманская модель от Anthropic, разработанная для сложных задач и корпоративных приложений."
733
736
  },
734
737
  "anthropic/claude-opus-4.1": {
735
- "description": "Claude Opus 4.1 — готовая к использованию альтернатива Opus 4, обеспечивающая выдающуюся производительность и точность для реальных задач кодирования и агентных операций. Opus 4.1 повышает передовые показатели кодирования до 74,5% в SWE-bench Verified и с большей тщательностью и вниманием к деталям решает сложные многошаговые задачи."
738
+ "description": "Opus 4.1 — высококлассная модель от Anthropic, оптимизированная для программирования, сложного рассуждения и длительных задач."
736
739
  },
737
740
  "anthropic/claude-sonnet-4": {
738
- "description": "Claude Sonnet 4 значительно улучшен по сравнению с Sonnet 3.7, демонстрируя выдающиеся результаты в кодировании с передовым показателем 72,7% в SWE-bench. Модель сбалансирована по производительности и эффективности, подходит для внутренних и внешних сценариев и обеспечивает большую управляемость благодаря расширенным возможностям контроля."
741
+ "description": "Claude Sonnet 4 гибридная модель рассуждения от Anthropic, сочетающая когнитивные и некогнитивные способности."
739
742
  },
740
743
  "anthropic/claude-sonnet-4.5": {
741
- "description": "Claude Sonnet 4.5 — самая интеллектуальная модель Anthropic на сегодняшний день."
744
+ "description": "Claude Sonnet 4.5 — новейшая гибридная модель рассуждения от Anthropic, оптимизированная для сложного анализа и кодирования."
742
745
  },
743
746
  "ascend-tribe/pangu-pro-moe": {
744
747
  "description": "Pangu-Pro-MoE 72B-A16B — это разреженная большая языковая модель с 72 миллиардами параметров и 16 миллиардами активных параметров, основанная на архитектуре группового смешанного эксперта (MoGE). В фазе выбора экспертов эксперты группируются, и токен активирует равное количество экспертов в каждой группе, что обеспечивает баланс нагрузки между экспертами и значительно повышает эффективность развертывания модели на платформе Ascend."
@@ -761,6 +764,9 @@
761
764
  "baidu/ERNIE-4.5-300B-A47B": {
762
765
  "description": "ERNIE-4.5-300B-A47B — большая языковая модель, разработанная компанией Baidu на основе архитектуры смешанных экспертов (MoE). Общий объём параметров модели составляет 300 миллиардов, однако при выводе активируется только 47 миллиардов параметров на токен, что обеспечивает высокую производительность при оптимальной вычислительной эффективности. Как одна из ключевых моделей серии ERNIE 4.5, она демонстрирует выдающиеся способности в задачах понимания текста, генерации, рассуждения и программирования. Модель использует инновационный метод предварительного обучения с мультимодальным гетерогенным MoE, объединяющий текстовые и визуальные модальности, что значительно повышает её универсальные возможности, особенно в следовании инструкциям и запоминании знаний о мире."
763
766
  },
767
+ "baidu/ernie-5.0-thinking-preview": {
768
+ "description": "ERNIE 5.0 Thinking Preview — это новое поколение мультимодальной модели Wenxin от Baidu, специализирующееся на понимании мультимодальных данных, следовании инструкциям, творчестве, фактических вопросах и вызове инструментов."
769
+ },
764
770
  "c4ai-aya-expanse-32b": {
765
771
  "description": "Aya Expanse — это высокопроизводительная многоязычная модель 32B, созданная для того, чтобы бросить вызов производительности одноязычных моделей с помощью инноваций в области настройки по инструкциям, арбитража данных, обучения предпочтениям и объединения моделей. Она поддерживает 23 языка."
766
772
  },
@@ -869,6 +875,9 @@
869
875
  "codex-mini-latest": {
870
876
  "description": "codex-mini-latest — это доработанная версия o4-mini, специально предназначенная для Codex CLI. Для прямого использования через API мы рекомендуем начинать с gpt-4.1."
871
877
  },
878
+ "cogito-2.1:671b": {
879
+ "description": "Cogito v2.1 671B — это американская открытая языковая модель, доступная для коммерческого использования, с производительностью, сопоставимой с ведущими моделями, высокой эффективностью обработки токенов, поддержкой 128k контекста и мощными универсальными возможностями."
880
+ },
872
881
  "cogview-4": {
873
882
  "description": "CogView-4 — это первая в истории Zhipu открытая модель текст-в-изображение, поддерживающая генерацию китайских иероглифов. Она значительно улучшена в понимании семантики, качестве генерации изображений и способности создавать тексты на китайском и английском языках. Модель поддерживает двуязычный ввод любой длины и может генерировать изображения с любым разрешением в заданных пределах."
874
883
  },
@@ -1139,6 +1148,9 @@
1139
1148
  "deepseek-vl2-small": {
1140
1149
  "description": "DeepSeek VL2 Small — облегчённая мультимодальная версия, подходящая для ограниченных по ресурсам и высоконагруженных сценариев."
1141
1150
  },
1151
+ "deepseek/deepseek-chat": {
1152
+ "description": "DeepSeek-V3 — высокопроизводительная гибридная модель рассуждения от команды DeepSeek, подходящая для сложных задач и интеграции с инструментами."
1153
+ },
1142
1154
  "deepseek/deepseek-chat-v3-0324": {
1143
1155
  "description": "DeepSeek V3 — это экспертная смешанная модель с 685B параметрами, являющаяся последней итерацией флагманской серии чат-моделей команды DeepSeek.\n\nОна унаследовала модель [DeepSeek V3](/deepseek/deepseek-chat-v3) и демонстрирует отличные результаты в различных задачах."
1144
1156
  },
@@ -1146,13 +1158,13 @@
1146
1158
  "description": "DeepSeek V3 — это экспертная смешанная модель с 685B параметрами, являющаяся последней итерацией флагманской серии чат-моделей команды DeepSeek.\n\nОна унаследовала модель [DeepSeek V3](/deepseek/deepseek-chat-v3) и демонстрирует отличные результаты в различных задачах."
1147
1159
  },
1148
1160
  "deepseek/deepseek-chat-v3.1": {
1149
- "description": "DeepSeek-V3.1 — крупная гибридная модель рассуждений с поддержкой длинного контекста до 128K и эффективным переключением режимов, демонстрирующая выдающуюся производительность и скорость при вызове инструментов, генерации кода и выполнении сложных задач рассуждений."
1161
+ "description": "DeepSeek-V3.1 — гибридная модель рассуждения с поддержкой длинного контекста от DeepSeek, поддерживает смешанный режим мышления и интеграцию инструментов."
1150
1162
  },
1151
1163
  "deepseek/deepseek-r1": {
1152
1164
  "description": "Модель DeepSeek R1 получила небольшое обновление до версии DeepSeek-R1-0528. В последнем обновлении DeepSeek R1 значительно улучшила глубину и качество вывода за счет увеличения вычислительных ресурсов и внедрения алгоритмических оптимизаций после обучения. Модель демонстрирует отличные результаты в математике, программировании и общей логике, приближаясь по производительности к лидерам, таким как O3 и Gemini 2.5 Pro."
1153
1165
  },
1154
1166
  "deepseek/deepseek-r1-0528": {
1155
- "description": "DeepSeek-R1 значительно улучшил способность модели к рассуждению при минимальном количестве размеченных данных. Перед выводом окончательного ответа модель сначала генерирует цепочку рассуждений для повышения точности ответа."
1167
+ "description": "DeepSeek R1 0528 обновлённый вариант от DeepSeek с акцентом на открытость и глубину рассуждения."
1156
1168
  },
1157
1169
  "deepseek/deepseek-r1-0528:free": {
1158
1170
  "description": "DeepSeek-R1 значительно улучшил способность модели к рассуждению при минимальном количестве размеченных данных. Перед выводом окончательного ответа модель сначала генерирует цепочку рассуждений для повышения точности ответа."
@@ -1175,6 +1187,9 @@
1175
1187
  "deepseek/deepseek-r1:free": {
1176
1188
  "description": "DeepSeek-R1 значительно улучшила способности модели к рассуждению при наличии лишь очень ограниченных размеченных данных. Перед тем как предоставить окончательный ответ, модель сначала выводит цепочку размышлений, чтобы повысить точность окончательного ответа."
1177
1189
  },
1190
+ "deepseek/deepseek-reasoner": {
1191
+ "description": "DeepSeek-V3 Thinking (reasoner) — экспериментальная модель рассуждения от DeepSeek, предназначенная для задач высокой сложности."
1192
+ },
1178
1193
  "deepseek/deepseek-v3": {
1179
1194
  "description": "Быстрая универсальная крупномасштабная языковая модель с улучшенными возможностями вывода."
1180
1195
  },
@@ -1523,8 +1538,14 @@
1523
1538
  "gemini-2.5-pro-preview-06-05": {
1524
1539
  "description": "Gemini 2.5 Pro Preview — передовая модель мышления от Google, способная рассуждать над сложными задачами в области кода, математики и STEM, а также анализировать большие наборы данных, кодовые базы и документы с использованием длинного контекста."
1525
1540
  },
1541
+ "gemini-3-pro-image-preview": {
1542
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) — модель генерации изображений от Google с поддержкой мультимодального диалога."
1543
+ },
1544
+ "gemini-3-pro-image-preview:image": {
1545
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) — модель генерации изображений от Google с поддержкой мультимодального диалога."
1546
+ },
1526
1547
  "gemini-3-pro-preview": {
1527
- "description": "Gemini 3 Pro — самая интеллектуальная модель от Google с передовыми возможностями рассуждения, мультимодального понимания, а также мощными функциями агента и кодирования контекста."
1548
+ "description": "Gemini 3 Pro — лучшая в мире модель мультимодального понимания, а также самая мощная интеллектуальная и атмосферная программируемая модель от Google, обеспечивающая богатую визуализацию и глубокое взаимодействие на основе передовых возможностей рассуждения."
1528
1549
  },
1529
1550
  "gemini-flash-latest": {
1530
1551
  "description": "Последний релиз Gemini Flash"
@@ -1650,7 +1671,7 @@
1650
1671
  "description": "GLM-Zero-Preview обладает мощными способностями к сложному выводу, демонстрируя отличные результаты в области логического вывода, математики и программирования."
1651
1672
  },
1652
1673
  "google/gemini-2.0-flash": {
1653
- "description": "Gemini 2.0 Flash предлагает функции следующего поколения и улучшенные возможности, включая выдающуюся скорость, встроенное использование инструментов, мультимодальную генерацию и контекстное окно на 1 миллион токенов."
1674
+ "description": "Gemini 2.0 Flash высокопроизводительная модель рассуждения от Google, подходящая для расширенных мультимодальных задач."
1654
1675
  },
1655
1676
  "google/gemini-2.0-flash-001": {
1656
1677
  "description": "Gemini 2.0 Flash предлагает функции следующего поколения и улучшения, включая выдающуюся скорость, использование встроенных инструментов, многомодальную генерацию и контекстное окно на 1M токенов."
@@ -1661,14 +1682,23 @@
1661
1682
  "google/gemini-2.0-flash-lite": {
1662
1683
  "description": "Gemini 2.0 Flash Lite предлагает функции следующего поколения и улучшенные возможности, включая выдающуюся скорость, встроенное использование инструментов, мультимодальную генерацию и контекстное окно на 1 миллион токенов."
1663
1684
  },
1685
+ "google/gemini-2.0-flash-lite-001": {
1686
+ "description": "Gemini 2.0 Flash Lite — облегчённая версия семейства Gemini, по умолчанию отключает мышление для повышения производительности и снижения затрат, но может быть активирована параметрами."
1687
+ },
1664
1688
  "google/gemini-2.5-flash": {
1665
- "description": "Gemini 2.5 Flash — модель для размышлений с выдающимися всесторонними возможностями. Она сбалансирована по цене и производительности, поддерживает мультимодальность и контекстное окно на 1 миллион токенов."
1689
+ "description": "Серия Gemini 2.5 Flash (Lite/Pro/Flash) это модели от Google с низкой задержкой до высокой производительности для задач рассуждения."
1690
+ },
1691
+ "google/gemini-2.5-flash-image": {
1692
+ "description": "Gemini 2.5 Flash Image (Nano Banana) — модель генерации изображений от Google с поддержкой мультимодального диалога."
1693
+ },
1694
+ "google/gemini-2.5-flash-image-free": {
1695
+ "description": "Бесплатная версия Gemini 2.5 Flash Image с ограниченным объёмом мультимодальной генерации."
1666
1696
  },
1667
1697
  "google/gemini-2.5-flash-image-preview": {
1668
1698
  "description": "Экспериментальная модель Gemini 2.5 Flash, поддерживающая генерацию изображений."
1669
1699
  },
1670
1700
  "google/gemini-2.5-flash-lite": {
1671
- "description": "Gemini 2.5 Flash-Lite — сбалансированная модель с низкой задержкой, с настраиваемым бюджетом размышлений и подключением инструментов (например, Google Search и выполнение кода). Поддерживает мультимодальный ввод и контекстное окно на 1 миллион токенов."
1701
+ "description": "Gemini 2.5 Flash Lite — облегчённая версия Gemini 2.5, оптимизированная по задержке и стоимости, подходит для сценариев с высокой пропускной способностью."
1672
1702
  },
1673
1703
  "google/gemini-2.5-flash-preview": {
1674
1704
  "description": "Gemini 2.5 Flash — это самая современная основная модель от Google, разработанная для сложного рассуждения, кодирования, математических и научных задач. Она включает встроенную способность \"думать\", что позволяет ей давать ответы с более высокой точностью и детализированной обработкой контекста.\n\nОбратите внимание: эта модель имеет два варианта: с \"думанием\" и без. Цены на вывод значительно различаются в зависимости от того, активирована ли способность думать. Если вы выберете стандартный вариант (без суффикса \":thinking\"), модель явно избегает генерации токенов для размышлений.\n\nЧтобы воспользоваться способностью думать и получать токены для размышлений, вы должны выбрать вариант \":thinking\", что приведет к более высокой цене на вывод размышлений.\n\nКроме того, Gemini 2.5 Flash можно настроить с помощью параметра \"максимальное количество токенов для рассуждения\", как указано в документации (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
@@ -1677,11 +1707,23 @@
1677
1707
  "description": "Gemini 2.5 Flash — это самая современная основная модель от Google, разработанная для сложного рассуждения, кодирования, математических и научных задач. Она включает встроенную способность \"думать\", что позволяет ей давать ответы с более высокой точностью и детализированной обработкой контекста.\n\nОбратите внимание: эта модель имеет два варианта: с \"думанием\" и без. Цены на вывод значительно различаются в зависимости от того, активирована ли способность думать. Если вы выберете стандартный вариант (без суффикса \":thinking\"), модель явно избегает генерации токенов для размышлений.\n\nЧтобы воспользоваться способностью думать и получать токены для размышлений, вы должны выбрать вариант \":thinking\", что приведет к более высокой цене на вывод размышлений.\n\nКроме того, Gemini 2.5 Flash можно настроить с помощью параметра \"максимальное количество токенов для рассуждения\", как указано в документации (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1678
1708
  },
1679
1709
  "google/gemini-2.5-pro": {
1680
- "description": "Gemini 2.5 Pro — наш самый продвинутый модель Gemini для вывода, способная решать сложные задачи. Имеет контекстное окно на 2 миллиона токенов и поддерживает мультимодальный ввод, включая текст, изображения, аудио, видео и PDF-документы."
1710
+ "description": "Gemini 2.5 Pro — флагманская модель рассуждения от Google с поддержкой длинного контекста и сложных задач."
1711
+ },
1712
+ "google/gemini-2.5-pro-free": {
1713
+ "description": "Бесплатная версия Gemini 2.5 Pro с ограниченной мультимодальной генерацией и поддержкой длинного контекста, подходит для тестирования и лёгких рабочих процессов."
1681
1714
  },
1682
1715
  "google/gemini-2.5-pro-preview": {
1683
1716
  "description": "Gemini 2.5 Pro Preview — это самая передовая модель мышления от Google, способная рассуждать над сложными задачами в области кода, математики и STEM, а также анализировать большие наборы данных, кодовые базы и документы с использованием длинного контекста."
1684
1717
  },
1718
+ "google/gemini-3-pro-image-preview-free": {
1719
+ "description": "Бесплатная версия Gemini 3 Pro Image с ограниченным объёмом мультимодальной генерации."
1720
+ },
1721
+ "google/gemini-3-pro-preview": {
1722
+ "description": "Gemini 3 Pro — следующее поколение мультимодальной модели рассуждения в серии Gemini, способное обрабатывать текст, аудио, изображения, видео и другие типы ввода, а также решать сложные задачи и работать с большими кодовыми базами."
1723
+ },
1724
+ "google/gemini-3-pro-preview-free": {
1725
+ "description": "Бесплатная предварительная версия Gemini 3 Pro с теми же возможностями мультимодального понимания и рассуждения, что и стандартная версия, но с ограничениями по объёму и скорости, лучше всего подходит для ознакомления и нерегулярного использования."
1726
+ },
1685
1727
  "google/gemini-embedding-001": {
1686
1728
  "description": "Передовая модель встраивания с отличной производительностью в задачах на английском, многоязычных и кодовых задачах."
1687
1729
  },
@@ -2057,21 +2099,36 @@
2057
2099
  "inception/mercury-coder-small": {
2058
2100
  "description": "Mercury Coder Small — идеальный выбор для задач генерации, отладки и рефакторинга кода с минимальной задержкой."
2059
2101
  },
2060
- "inclusionAI/Ling-1T": {
2061
- "description": "Ling-1T — флагманская модель без рассуждения (non-thinking) из серии «Ling 2.0», обладающая общим числом параметров в 1 триллион и около 50 миллиардов активных параметров на каждый токен. Построена на архитектуре Ling 2.0, Ling-1T стремится преодолеть границы эффективного вывода и масштабируемого когнитивного понимания. Модель Ling-1T-base обучена на более чем 20 триллионах высококачественных токенов с интенсивным рассуждением."
2062
- },
2063
2102
  "inclusionAI/Ling-flash-2.0": {
2064
2103
  "description": "Ling-flash-2.0 — третья модель серии Ling 2.0, выпущенная командой Ant Group Bailing. Это модель смешанных экспертов (MoE) с общим числом параметров 100 миллиардов, при этом для каждого токена активируется всего 6.1 миллиарда параметров (без учета эмбеддингов — 4.8 миллиарда). Как легковесная конфигурация, Ling-flash-2.0 демонстрирует в нескольких авторитетных тестах производительность, сопоставимую или превосходящую модели плотного типа (Dense) с 40 миллиардами параметров и более крупные MoE-модели. Модель направлена на исследование эффективных путей при концепции «большая модель равна большому числу параметров» через продуманный дизайн архитектуры и стратегии обучения."
2065
2104
  },
2066
2105
  "inclusionAI/Ling-mini-2.0": {
2067
2106
  "description": "Ling-mini-2.0 — компактная высокопроизводительная большая языковая модель на базе архитектуры MoE. Она содержит 16 миллиардов параметров, при этом для каждого токена активируется всего 1.4 миллиарда параметров (без эмбеддингов — 789 миллионов), что обеспечивает очень высокую скорость генерации. Благодаря эффективному дизайну MoE и масштабным качественным тренировочным данным, несмотря на низкое число активируемых параметров, Ling-mini-2.0 демонстрирует в downstream-задачах производительность, сопоставимую с плотными LLM менее 10 миллиардов параметров и более крупными MoE-моделями."
2068
2107
  },
2069
- "inclusionAI/Ring-1T": {
2070
- "description": "Ring-1T — открытая модель мышления триллионного масштаба, выпущенная командой Bailing. Построена на архитектуре Ling 2.0 и базовой модели Ling-1T-base, содержит 1 триллион общих параметров и 50 миллиардов активных параметров, поддерживает контекстное окно до 128K. Оптимизирована с использованием масштабного обучения с подкреплением и проверяемыми наградами."
2071
- },
2072
2108
  "inclusionAI/Ring-flash-2.0": {
2073
2109
  "description": "Ring-flash-2.0 — высокопроизводительная модель для рассуждений, глубоко оптимизированная на базе Ling-flash-2.0-base. Она использует архитектуру смешанных экспертов (MoE) с общим числом параметров 100 миллиардов, при этом при каждом выводе активируется только 6.1 миллиарда параметров. Модель решает проблему нестабильности MoE-моделей при обучении с подкреплением (RL) с помощью уникального алгоритма icepop, что позволяет постоянно улучшать сложные способности рассуждения в долгосрочном обучении. Ring-flash-2.0 достигла значительных прорывов в сложных бенчмарках, таких как математические соревнования, генерация кода и логическое рассуждение. Ее производительность превосходит лучшие плотные модели с числом параметров менее 40 миллиардов и сопоставима с более крупными открытыми MoE-моделями и закрытыми высокопроизводительными моделями для рассуждений. Несмотря на фокус на сложных рассуждениях, модель также отлично справляется с творческим письмом. Благодаря эффективному дизайну архитектуры Ring-flash-2.0 обеспечивает высокую скорость вывода и значительно снижает затраты на развертывание моделей рассуждений в условиях высокой нагрузки."
2074
2110
  },
2111
+ "inclusionai/ling-1t": {
2112
+ "description": "Ling-1T — модель MoE с 1 триллионом параметров от inclusionAI, оптимизированная для интенсивных задач рассуждения и работы с большим контекстом."
2113
+ },
2114
+ "inclusionai/ling-flash-2.0": {
2115
+ "description": "Ling-flash-2.0 — модель MoE от inclusionAI, оптимизированная по эффективности и производительности рассуждения, подходит для средних и крупных задач."
2116
+ },
2117
+ "inclusionai/ling-mini-2.0": {
2118
+ "description": "Ling-mini-2.0 — облегчённая модель MoE от inclusionAI, значительно снижает затраты при сохранении способности к рассуждению."
2119
+ },
2120
+ "inclusionai/ming-flash-omini-preview": {
2121
+ "description": "Ming-flash-omni Preview — мультимодальная модель от inclusionAI с поддержкой ввода речи, изображений и видео, оптимизированная для рендеринга изображений и распознавания речи."
2122
+ },
2123
+ "inclusionai/ring-1t": {
2124
+ "description": "Ring-1T — модель MoE с триллионом параметров от inclusionAI, предназначенная для масштабного рассуждения и исследовательских задач."
2125
+ },
2126
+ "inclusionai/ring-flash-2.0": {
2127
+ "description": "Ring-flash-2.0 — вариант модели Ring от inclusionAI, ориентированный на высокую пропускную способность, с акцентом на скорость и эффективность затрат."
2128
+ },
2129
+ "inclusionai/ring-mini-2.0": {
2130
+ "description": "Ring-mini-2.0 — облегчённая версия модели MoE от inclusionAI с высокой пропускной способностью, предназначенная для параллельных сценариев."
2131
+ },
2075
2132
  "internlm/internlm2_5-7b-chat": {
2076
2133
  "description": "InternLM2.5 предлагает интеллектуальные решения для диалогов в различных сценариях."
2077
2134
  },
@@ -2123,6 +2180,12 @@
2123
2180
  "kimi-k2-instruct": {
2124
2181
  "description": "Kimi K2 Instruct — официальная модель вывода Kimi, поддерживающая длинный контекст, программирование, вопросы-ответы и другие сценарии."
2125
2182
  },
2183
+ "kimi-k2-thinking": {
2184
+ "description": "K2 — модель длительного рассуждения с поддержкой 256k контекста, многократного вызова инструментов и мышления, хорошо справляется с решением сложных задач."
2185
+ },
2186
+ "kimi-k2-thinking-turbo": {
2187
+ "description": "Ускоренная версия модели длительного рассуждения K2 с поддержкой 256k контекста, оптимизирована для глубокого анализа и обеспечивает скорость вывода 60–100 токенов в секунду."
2188
+ },
2126
2189
  "kimi-k2-turbo-preview": {
2127
2190
  "description": "kimi-k2 — это базовая модель архитектуры MoE с выдающимися возможностями в области программирования и агентов. Общий объём параметров — 1 трлн, активируемые параметры — 32 млрд. В бенчмарках по основным категориям (общее знание и рассуждение, программирование, математика, агенты и пр.) модель K2 демонстрирует результаты выше, чем у других ведущих открытых моделей."
2128
2191
  },
@@ -2465,9 +2528,7 @@
2465
2528
  "minimax-m2": {
2466
2529
  "description": "MiniMax M2 — это высокоэффективная крупная языковая модель, созданная специально для задач программирования и автоматизации рабочих процессов."
2467
2530
  },
2468
- "minimax/minimax-m2": {
2469
- "description": "Создана для эффективного кодирования и рабочих процессов агентов."
2470
- },
2531
+ "minimax/minimax-m2": {},
2471
2532
  "minimaxai/minimax-m2": {
2472
2533
  "description": "MiniMax-M2 — это компактная, быстрая и экономичная модель с архитектурой смешанных экспертов (MoE), обладающая 230 миллиардами общих параметров и 10 миллиардами активных параметров. Она разработана для достижения выдающейся производительности в задачах кодирования и работы агентов, при этом сохраняя мощную общую интеллектуальность. Модель демонстрирует отличные результаты в редактировании нескольких файлов, замкнутом цикле кодирования-запуска-исправления, проверке и исправлении тестов, а также в сложных цепочках инструментов с длинными связями, что делает её идеальным выбором для рабочих процессов разработчиков."
2473
2534
  },
@@ -2615,9 +2676,7 @@
2615
2676
  "moonshotai/kimi-k2": {
2616
2677
  "description": "Kimi K2 — крупномасштабная смешанная экспертная (MoE) языковая модель с триллионом параметров и 32 миллиардами активных параметров на проход. Оптимизирована для агентных возможностей, включая продвинутое использование инструментов, рассуждения и синтез кода."
2617
2678
  },
2618
- "moonshotai/kimi-k2-0905": {
2619
- "description": "Модель kimi-k2-0905-preview с длиной контекста 256k обладает более сильными возможностями агентного кодирования, улучшенной эстетикой и практичностью фронтенд-кода, а также лучшим пониманием контекста."
2620
- },
2679
+ "moonshotai/kimi-k2-0905": {},
2621
2680
  "moonshotai/kimi-k2-instruct-0905": {
2622
2681
  "description": "Модель kimi-k2-0905-preview с длиной контекста 256k обладает более сильными возможностями агентного кодирования, улучшенной эстетикой и практичностью фронтенд-кода, а также лучшим пониманием контекста."
2623
2682
  },
@@ -2702,30 +2761,14 @@
2702
2761
  "openai/gpt-4-turbo": {
2703
2762
  "description": "gpt-4-turbo от OpenAI обладает обширными универсальными знаниями и экспертными областями, позволяя следовать сложным инструкциям на естественном языке и точно решать сложные задачи. Дата отсечения знаний — апрель 2023 года, окно контекста — 128 000 токенов."
2704
2763
  },
2705
- "openai/gpt-4.1": {
2706
- "description": "GPT 4.1 — флагманская модель OpenAI для сложных задач. Отлично подходит для междисциплинарного решения проблем."
2707
- },
2708
- "openai/gpt-4.1-mini": {
2709
- "description": "GPT 4.1 mini сбалансирована по интеллекту, скорости и стоимости, что делает её привлекательной моделью для многих сценариев."
2710
- },
2711
- "openai/gpt-4.1-nano": {
2712
- "description": "GPT-4.1 nano — самая быстрая и экономичная модель GPT 4.1."
2713
- },
2714
- "openai/gpt-4o": {
2715
- "description": "GPT-4o от OpenAI обладает обширными универсальными знаниями и экспертными областями, способен следовать сложным инструкциям на естественном языке и точно решать сложные задачи. Обеспечивает производительность, сопоставимую с GPT-4 Turbo, при более высокой скорости и меньшей стоимости API."
2716
- },
2717
- "openai/gpt-4o-mini": {
2718
- "description": "GPT-4o mini от OpenAI — их самая передовая и экономичная компактная модель. Мультимодальная (принимает текст или изображения на вход и выдает текст), умнее, чем gpt-3.5-turbo, при такой же скорости."
2719
- },
2720
- "openai/gpt-5": {
2721
- "description": "GPT-5 — флагманская языковая модель OpenAI, демонстрирующая выдающиеся способности в сложных рассуждениях, обширных знаниях о реальном мире, задачах с интенсивным кодированием и многошаговых агентных задачах."
2722
- },
2723
- "openai/gpt-5-mini": {
2724
- "description": "GPT-5 mini — оптимизированная по стоимости модель с отличной производительностью в задачах рассуждений и диалогов. Обеспечивает лучший баланс скорости, стоимости и возможностей."
2725
- },
2726
- "openai/gpt-5-nano": {
2727
- "description": "GPT-5 nano — высокопроизводительная модель, отлично справляющаяся с простыми инструкциями и задачами классификации."
2728
- },
2764
+ "openai/gpt-4.1": {},
2765
+ "openai/gpt-4.1-mini": {},
2766
+ "openai/gpt-4.1-nano": {},
2767
+ "openai/gpt-4o": {},
2768
+ "openai/gpt-4o-mini": {},
2769
+ "openai/gpt-5": {},
2770
+ "openai/gpt-5-mini": {},
2771
+ "openai/gpt-5-nano": {},
2729
2772
  "openai/gpt-oss-120b": {
2730
2773
  "description": "Чрезвычайно мощная универсальная крупномасштабная языковая модель с сильными и управляемыми возможностями рассуждения."
2731
2774
  },
@@ -2750,9 +2793,7 @@
2750
2793
  "openai/o3-mini-high": {
2751
2794
  "description": "o3-mini high — версия с высоким уровнем вывода, которая обеспечивает высокий интеллект при тех же целях по стоимости и задержке, что и o1-mini."
2752
2795
  },
2753
- "openai/o4-mini": {
2754
- "description": "o4-mini от OpenAI обеспечивает быстрый и экономичный вывод с выдающейся производительностью для своего размера, особенно в математике (лучшие результаты в тесте AIME), кодировании и визуальных задачах."
2755
- },
2796
+ "openai/o4-mini": {},
2756
2797
  "openai/o4-mini-high": {
2757
2798
  "description": "o4-mini версия с высоким уровнем вывода, оптимизированная для быстрого и эффективного вывода, демонстрирующая высокую эффективность и производительность в задачах кодирования и визуализации."
2758
2799
  },
@@ -2954,9 +2995,7 @@
2954
2995
  "qwen/qwen2.5-coder-7b-instruct": {
2955
2996
  "description": "Мощная средняя модель кода, поддерживающая контекст длиной 32K, специализирующаяся на многоязычном программировании."
2956
2997
  },
2957
- "qwen/qwen3-14b": {
2958
- "description": "Qwen3-14B — это компактная языковая модель с 14 миллиардами параметров из серии Qwen3, специально разработанная для сложного вывода и эффективного диалога. Она поддерживает бесшовное переключение между режимом размышления для задач, таких как математика, программирование и логический вывод, и неразмышляющим режимом для общего диалога. Эта модель была дообучена для выполнения инструкций, использования инструментов агентов, креативного письма и многоязычных задач на более чем 100 языках и диалектах. Она изначально обрабатывает контекст в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
2959
- },
2998
+ "qwen/qwen3-14b": {},
2960
2999
  "qwen/qwen3-14b:free": {
2961
3000
  "description": "Qwen3-14B — это компактная языковая модель с 14 миллиардами параметров из серии Qwen3, специально разработанная для сложного вывода и эффективного диалога. Она поддерживает бесшовное переключение между режимом размышления для задач, таких как математика, программирование и логический вывод, и неразмышляющим режимом для общего диалога. Эта модель была дообучена для выполнения инструкций, использования инструментов агентов, креативного письма и многоязычных задач на более чем 100 языках и диалектах. Она изначально обрабатывает контекст в 32K токенов и может быть расширена до 131K токенов с помощью YaRN."
2962
3001
  },
@@ -3275,9 +3314,6 @@
3275
3314
  "step-r1-v-mini": {
3276
3315
  "description": "Эта модель является мощной моделью вывода с сильными способностями к пониманию изображений, способной обрабатывать информацию из изображений и текста, выводя текст после глубокого размышления. Эта модель демонстрирует выдающиеся результаты в области визуального вывода, а также обладает первоклассными способностями в математике, коде и текстовом выводе. Длина контекста составляет 100k."
3277
3316
  },
3278
- "step3": {
3279
- "description": "Step3 — это мультимодальная модель от StepStar, обладающая мощными возможностями визуального восприятия."
3280
- },
3281
3317
  "stepfun-ai/step3": {
3282
3318
  "description": "Step3 — передовая мультимодальная модель рассуждения, выпущенная компанией StepFun. Она построена на архитектуре mixture-of-experts (MoE) с общим числом параметров 321 млрд и 38 млрд активных параметров. Модель реализована по энд‑ту‑энд схеме и нацелена на минимизацию затрат на декодирование при обеспечении высочайшей производительности в задачах визуально‑языкового рассуждения. Благодаря совместному дизайну многоматричного разложения внимания (MFA) и декуплинга внимания и FFN (AFD), Step3 демонстрирует отличную эффективность как на флагманских, так и на бюджетных ускорителях. На этапе предобучения модель обработала более 20 трлн текстовых токенов и 4 трлн смешанных токенов «текст+изображение», охватив более десяти языков. Step3 показывает лидирующие результаты среди открытых моделей по множеству бенчмарков, включая задачи по математике, коду и мультимодальные задачи."
3283
3319
  },
@@ -3386,12 +3422,8 @@
3386
3422
  "wizardlm2:8x22b": {
3387
3423
  "description": "WizardLM 2 — это языковая модель, предоставляемая Microsoft AI, которая особенно хорошо проявляет себя в сложных диалогах, многоязычных задачах, выводе и интеллектуальных помощниках."
3388
3424
  },
3389
- "x-ai/grok-4-fast": {
3390
- "description": "Мы рады представить Grok 4 Fast — наш последний прорыв в области экономически эффективных моделей рассуждения."
3391
- },
3392
- "x-ai/grok-code-fast-1": {
3393
- "description": "С радостью представляем grok-code-fast-1 — быструю и экономичную модель рассуждения, отлично подходящую для кодирования с помощью агентов."
3394
- },
3425
+ "x-ai/grok-4-fast": {},
3426
+ "x-ai/grok-code-fast-1": {},
3395
3427
  "x1": {
3396
3428
  "description": "Модель Spark X1 будет дополнительно обновлена, и на основе уже существующих лидерских позиций в математических задачах, достигнет сопоставимых результатов в общих задачах, таких как рассуждение, генерация текста и понимание языка, с OpenAI o1 и DeepSeek R1."
3397
3429
  },
@@ -3452,9 +3484,7 @@
3452
3484
  "yi-vision-v2": {
3453
3485
  "description": "Модель для сложных визуальных задач, обеспечивающая высокопроизводительное понимание и анализ на основе нескольких изображений."
3454
3486
  },
3455
- "z-ai/glm-4.6": {
3456
- "description": "Флагманская модель нового поколения от Zhipu — GLM-4.6, значительно превосходящая предыдущую версию в продвинутом кодировании, обработке длинных текстов, рассуждении и возможностях интеллектуальных агентов."
3457
- },
3487
+ "z-ai/glm-4.6": {},
3458
3488
  "zai-org/GLM-4.5": {
3459
3489
  "description": "GLM-4.5 — базовая модель, специально созданная для приложений с агентами, использующая архитектуру смешанных экспертов (Mixture-of-Experts). Модель глубоко оптимизирована для вызова инструментов, веб-браузинга, программной инженерии и фронтенд-разработки, поддерживает бесшовную интеграцию с кодовыми агентами, такими как Claude Code и Roo Code. GLM-4.5 использует смешанный режим вывода, адаптируясь к сложным рассуждениям и повседневным задачам."
3460
3490
  },
@@ -191,6 +191,9 @@
191
191
  "xinference": {
192
192
  "description": "Xorbits Inference (Xinference) — это открытая платформа, предназначенная для упрощения запуска и интеграции различных моделей искусственного интеллекта. С помощью Xinference вы можете использовать любые открытые LLM, модели эмбеддингов и мультимодальные модели для выполнения логического вывода в облаке или локальной среде, а также создавать мощные приложения на основе ИИ."
193
193
  },
194
+ "zenmux": {
195
+ "description": "ZenMux — это унифицированная платформа агрегации AI-сервисов, поддерживающая интерфейсы таких популярных AI-провайдеров, как OpenAI, Anthropic, Google VertexAI и других. Она предоставляет гибкие возможности маршрутизации, позволяя легко переключаться между различными AI-моделями и управлять ими."
196
+ },
194
197
  "zeroone": {
195
198
  "description": "01.AI сосредоточен на технологиях искусственного интеллекта 2.0, активно продвигая инновации и применение \"человек + искусственный интеллект\", используя мощные модели и передовые AI-технологии для повышения производительности человека и реализации технологического потенциала."
196
199
  },
@@ -37,6 +37,14 @@
37
37
  "standard": "Standart"
38
38
  }
39
39
  },
40
+ "resolution": {
41
+ "label": "Çözünürlük",
42
+ "options": {
43
+ "1K": "1K",
44
+ "2K": "2K",
45
+ "4K": "4K"
46
+ }
47
+ },
40
48
  "seed": {
41
49
  "label": "Tohum",
42
50
  "random": "Rastgele Tohum"