@lobehub/lobehub 2.0.0-next.104 → 2.0.0-next.106
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/apps/desktop/package.json +2 -2
- package/changelog/v1.json +14 -0
- package/locales/ar/image.json +8 -0
- package/locales/ar/models.json +110 -64
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/image.json +8 -0
- package/locales/bg-BG/models.json +98 -68
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/image.json +8 -0
- package/locales/de-DE/models.json +176 -38
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/image.json +8 -0
- package/locales/en-US/models.json +176 -38
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/image.json +8 -0
- package/locales/es-ES/models.json +176 -38
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/image.json +8 -0
- package/locales/fa-IR/models.json +110 -64
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/image.json +8 -0
- package/locales/fr-FR/models.json +110 -64
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/image.json +8 -0
- package/locales/it-IT/models.json +176 -38
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/image.json +8 -0
- package/locales/ja-JP/models.json +110 -64
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/image.json +8 -0
- package/locales/ko-KR/models.json +110 -64
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/image.json +8 -0
- package/locales/nl-NL/models.json +176 -38
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/image.json +8 -0
- package/locales/pl-PL/models.json +110 -64
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/image.json +8 -0
- package/locales/pt-BR/models.json +176 -38
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/image.json +8 -0
- package/locales/ru-RU/models.json +98 -68
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/image.json +8 -0
- package/locales/tr-TR/models.json +110 -64
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/image.json +8 -0
- package/locales/vi-VN/models.json +176 -38
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/image.json +8 -0
- package/locales/zh-CN/models.json +179 -38
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/image.json +8 -0
- package/locales/zh-TW/models.json +176 -38
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +9 -3
- package/packages/database/src/repositories/knowledge/index.ts +5 -8
- package/packages/model-bank/src/aiModels/moonshot.ts +46 -0
- package/packages/model-runtime/src/core/contextBuilders/openai.ts +1 -1
- package/packages/model-runtime/src/providers/moonshot/index.ts +17 -4
- package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
- package/packages/types/src/user/settings/keyVaults.ts +0 -68
- package/packages/utils/src/client/parserPlaceholder.ts +1 -1
- package/src/services/__tests__/_auth.test.ts +1 -4
- package/src/services/_auth.ts +2 -3
- package/src/services/_header.ts +1 -8
- package/src/store/chat/agents/__tests__/createAgentExecutors/call-llm.test.ts +18 -0
- package/src/store/chat/agents/__tests__/createAgentExecutors/call-tool.test.ts +40 -11
- package/src/store/chat/agents/__tests__/createAgentExecutors/helpers/assertions.ts +3 -0
- package/src/store/chat/agents/__tests__/createAgentExecutors/request-human-approve.test.ts +15 -0
- package/src/store/chat/agents/__tests__/createAgentExecutors/resolve-aborted-tools.test.ts +37 -11
- package/src/store/chat/agents/createAgentExecutors.ts +22 -13
- package/src/store/chat/slices/aiChat/actions/conversationLifecycle.ts +4 -8
- package/src/store/chat/slices/builtinTool/actions/__tests__/search.test.ts +16 -2
- package/src/store/chat/slices/builtinTool/actions/localSystem.ts +5 -1
- package/src/store/chat/slices/builtinTool/actions/search.ts +5 -1
- package/src/store/chat/slices/message/actions/publicApi.ts +10 -2
- package/src/store/chat/slices/message/actions/query.ts +17 -4
- package/src/store/chat/slices/operation/__tests__/selectors.test.ts +93 -5
- package/src/store/chat/slices/operation/selectors.ts +16 -3
- package/src/store/chat/slices/plugin/actions/optimisticUpdate.ts +24 -18
- package/src/store/user/slices/settings/selectors/keyVaults.ts +0 -5
- package/src/features/ChatList/Error/AccessCodeForm.tsx +0 -63
- package/src/services/__tests__/share.test.ts +0 -61
|
@@ -720,25 +720,28 @@
|
|
|
720
720
|
"description": "Claude 3 Opus to najbardziej inteligentny model Anthropic, oferujący wiodącą na rynku wydajność w bardzo złożonych zadaniach. Potrafi płynnie i z ludzkim zrozumieniem radzić sobie z otwartymi podpowiedziami i nieznanymi wcześniej scenariuszami."
|
|
721
721
|
},
|
|
722
722
|
"anthropic/claude-3.5-haiku": {
|
|
723
|
-
"description": "Claude 3.5 Haiku
|
|
723
|
+
"description": "Claude 3.5 Haiku oferuje ulepszone możliwości w zakresie szybkości, dokładności kodowania i obsługi narzędzi. Idealny do scenariuszy wymagających wysokiej wydajności i interakcji z narzędziami."
|
|
724
724
|
},
|
|
725
725
|
"anthropic/claude-3.5-sonnet": {
|
|
726
|
-
"description": "Claude 3.5 Sonnet
|
|
726
|
+
"description": "Claude 3.5 Sonnet to szybki i wydajny model z rodziny Sonnet, zapewniający lepszą wydajność kodowania i wnioskowania. Niektóre wersje będą stopniowo zastępowane przez Sonnet 3.7 i nowsze."
|
|
727
727
|
},
|
|
728
728
|
"anthropic/claude-3.7-sonnet": {
|
|
729
|
-
"description": "Claude 3.7 Sonnet to
|
|
729
|
+
"description": "Claude 3.7 Sonnet to ulepszona wersja z serii Sonnet, oferująca zwiększoną moc wnioskowania i kodowania, przeznaczona do złożonych zadań na poziomie korporacyjnym."
|
|
730
|
+
},
|
|
731
|
+
"anthropic/claude-haiku-4.5": {
|
|
732
|
+
"description": "Claude Haiku 4.5 to wysokowydajny, szybki model firmy Anthropic, łączący wysoką dokładność z bardzo niskim opóźnieniem."
|
|
730
733
|
},
|
|
731
734
|
"anthropic/claude-opus-4": {
|
|
732
|
-
"description": "
|
|
735
|
+
"description": "Opus 4 to flagowy model firmy Anthropic, zaprojektowany z myślą o złożonych zadaniach i zastosowaniach korporacyjnych."
|
|
733
736
|
},
|
|
734
737
|
"anthropic/claude-opus-4.1": {
|
|
735
|
-
"description": "
|
|
738
|
+
"description": "Opus 4.1 to zaawansowany model firmy Anthropic, zoptymalizowany pod kątem programowania, złożonego wnioskowania i długotrwałych zadań."
|
|
736
739
|
},
|
|
737
740
|
"anthropic/claude-sonnet-4": {
|
|
738
|
-
"description": "Claude Sonnet 4 to
|
|
741
|
+
"description": "Claude Sonnet 4 to hybrydowy model wnioskowania firmy Anthropic, łączący zdolności myślenia i działania bez myślenia."
|
|
739
742
|
},
|
|
740
743
|
"anthropic/claude-sonnet-4.5": {
|
|
741
|
-
"description": "Claude Sonnet 4.5 to
|
|
744
|
+
"description": "Claude Sonnet 4.5 to najnowszy hybrydowy model wnioskowania firmy Anthropic, zoptymalizowany pod kątem złożonego wnioskowania i kodowania."
|
|
742
745
|
},
|
|
743
746
|
"ascend-tribe/pangu-pro-moe": {
|
|
744
747
|
"description": "Pangu-Pro-MoE 72B-A16B to rzadki, duży model językowy o 72 miliardach parametrów i 16 miliardach aktywowanych parametrów, oparty na architekturze grupowanych ekspertów (MoGE). W fazie wyboru ekspertów model grupuje ekspertów i ogranicza aktywację tokenów do równej liczby ekspertów w każdej grupie, co zapewnia równomierne obciążenie ekspertów i znacznie poprawia efektywność wdrożenia modelu na platformie Ascend."
|
|
@@ -761,6 +764,9 @@
|
|
|
761
764
|
"baidu/ERNIE-4.5-300B-A47B": {
|
|
762
765
|
"description": "ERNIE-4.5-300B-A47B to duży model językowy opracowany przez firmę Baidu, oparty na hybrydowej architekturze ekspertów (MoE). Model ma 300 miliardów parametrów, ale podczas inferencji aktywuje tylko 47 miliardów parametrów na token, co zapewnia doskonałą wydajność przy efektywności obliczeniowej. Jako jeden z kluczowych modeli serii ERNIE 4.5, wykazuje znakomite zdolności w rozumieniu tekstu, generowaniu, wnioskowaniu i programowaniu. Model wykorzystuje innowacyjną metodę pretrenowania multimodalnego heterogenicznego MoE, łącząc trening tekstu i wizji, co skutecznie zwiększa jego zdolności, zwłaszcza w zakresie przestrzegania instrukcji i pamięci wiedzy o świecie."
|
|
763
766
|
},
|
|
767
|
+
"baidu/ernie-5.0-thinking-preview": {
|
|
768
|
+
"description": "ERNIE 5.0 Thinking Preview to nowej generacji natywny multimodalny model Wenxin firmy Baidu, specjalizujący się w rozumieniu multimodalnym, wykonywaniu poleceń, tworzeniu treści, odpowiadaniu na pytania faktograficzne i obsłudze narzędzi."
|
|
769
|
+
},
|
|
764
770
|
"c4ai-aya-expanse-32b": {
|
|
765
771
|
"description": "Aya Expanse to model wielojęzyczny o wysokiej wydajności 32B, zaprojektowany w celu wyzwania wydajności modeli jednolanguage poprzez innowacje w zakresie dostosowywania instrukcji, arbitrażu danych, treningu preferencji i łączenia modeli. Obsługuje 23 języki."
|
|
766
772
|
},
|
|
@@ -869,6 +875,9 @@
|
|
|
869
875
|
"codex-mini-latest": {
|
|
870
876
|
"description": "codex-mini-latest to wersja dostrojona o4-mini, specjalnie zaprojektowana do Codex CLI. Do bezpośredniego użycia przez API zalecamy rozpoczęcie od gpt-4.1."
|
|
871
877
|
},
|
|
878
|
+
"cogito-2.1:671b": {
|
|
879
|
+
"description": "Cogito v2.1 671B to amerykański otwartoźródłowy duży model językowy dostępny do bezpłatnego użytku komercyjnego. Oferuje wydajność porównywalną z czołowymi modelami, wyższą efektywność wnioskowania tokenów, kontekst długości 128k i silne możliwości ogólne."
|
|
880
|
+
},
|
|
872
881
|
"cogview-4": {
|
|
873
882
|
"description": "CogView-4 to pierwszy otwartoźródłowy model generowania obrazów tekstowych firmy Zhipu, który obsługuje generowanie znaków chińskich. Model oferuje kompleksowe ulepszenia w zakresie rozumienia semantycznego, jakości generowanych obrazów oraz zdolności generowania tekstu w języku chińskim i angielskim. Obsługuje dwujęzyczne wejście w dowolnej długości i potrafi generować obrazy o dowolnej rozdzielczości w określonym zakresie."
|
|
874
883
|
},
|
|
@@ -1139,6 +1148,9 @@
|
|
|
1139
1148
|
"deepseek-vl2-small": {
|
|
1140
1149
|
"description": "DeepSeek VL2 Small, lekka wersja multimodalna, odpowiednia do środowisk o ograniczonych zasobach i wysokiej równoczesności."
|
|
1141
1150
|
},
|
|
1151
|
+
"deepseek/deepseek-chat": {
|
|
1152
|
+
"description": "DeepSeek-V3 to wysokowydajny model hybrydowego wnioskowania opracowany przez zespół DeepSeek, odpowiedni do złożonych zadań i integracji z narzędziami."
|
|
1153
|
+
},
|
|
1142
1154
|
"deepseek/deepseek-chat-v3-0324": {
|
|
1143
1155
|
"description": "DeepSeek V3 to model mieszany z 685B parametrami, będący najnowszą iteracją flagowej serii modeli czatu zespołu DeepSeek.\n\nDziedziczy po modelu [DeepSeek V3](/deepseek/deepseek-chat-v3) i wykazuje doskonałe wyniki w różnych zadaniach."
|
|
1144
1156
|
},
|
|
@@ -1146,13 +1158,13 @@
|
|
|
1146
1158
|
"description": "DeepSeek V3 to model mieszany z 685B parametrami, będący najnowszą iteracją flagowej serii modeli czatu zespołu DeepSeek.\n\nDziedziczy po modelu [DeepSeek V3](/deepseek/deepseek-chat-v3) i wykazuje doskonałe wyniki w różnych zadaniach."
|
|
1147
1159
|
},
|
|
1148
1160
|
"deepseek/deepseek-chat-v3.1": {
|
|
1149
|
-
"description": "DeepSeek-V3.1 to
|
|
1161
|
+
"description": "DeepSeek-V3.1 to model hybrydowego wnioskowania z długim kontekstem od DeepSeek, obsługujący tryby myślenia/niemyslenia oraz integrację z narzędziami."
|
|
1150
1162
|
},
|
|
1151
1163
|
"deepseek/deepseek-r1": {
|
|
1152
1164
|
"description": "Model DeepSeek R1 przeszedł drobną aktualizację do wersji DeepSeek-R1-0528. W najnowszej aktualizacji DeepSeek R1 znacznie poprawił głębokość i zdolności wnioskowania dzięki zwiększonym zasobom obliczeniowym i wprowadzeniu optymalizacji algorytmicznych po treningu. Model osiąga znakomite wyniki w benchmarkach matematycznych, programistycznych i ogólnej logiki, zbliżając się do czołowych modeli, takich jak O3 i Gemini 2.5 Pro."
|
|
1153
1165
|
},
|
|
1154
1166
|
"deepseek/deepseek-r1-0528": {
|
|
1155
|
-
"description": "DeepSeek
|
|
1167
|
+
"description": "DeepSeek R1 0528 to zaktualizowany wariant modelu DeepSeek, skoncentrowany na otwartości i głębi wnioskowania."
|
|
1156
1168
|
},
|
|
1157
1169
|
"deepseek/deepseek-r1-0528:free": {
|
|
1158
1170
|
"description": "DeepSeek-R1 znacząco poprawia zdolność wnioskowania modelu nawet przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi model najpierw generuje łańcuch myślowy, co zwiększa dokładność końcowej odpowiedzi."
|
|
@@ -1175,6 +1187,9 @@
|
|
|
1175
1187
|
"deepseek/deepseek-r1:free": {
|
|
1176
1188
|
"description": "DeepSeek-R1 znacznie poprawił zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw wygeneruje fragment myślenia, aby zwiększyć dokładność końcowej odpowiedzi."
|
|
1177
1189
|
},
|
|
1190
|
+
"deepseek/deepseek-reasoner": {
|
|
1191
|
+
"description": "DeepSeek-V3 Thinking (reasoner) to eksperymentalny model wnioskowania firmy DeepSeek, przeznaczony do zadań o wysokiej złożoności."
|
|
1192
|
+
},
|
|
1178
1193
|
"deepseek/deepseek-v3": {
|
|
1179
1194
|
"description": "Szybki, uniwersalny duży model językowy z ulepszonymi zdolnościami wnioskowania."
|
|
1180
1195
|
},
|
|
@@ -1523,8 +1538,14 @@
|
|
|
1523
1538
|
"gemini-2.5-pro-preview-06-05": {
|
|
1524
1539
|
"description": "Gemini 2.5 Pro Preview to najnowocześniejszy model myślowy Google, zdolny do rozumowania nad złożonymi problemami w dziedzinach kodowania, matematyki i STEM oraz do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów z wykorzystaniem długich kontekstów."
|
|
1525
1540
|
},
|
|
1541
|
+
"gemini-3-pro-image-preview": {
|
|
1542
|
+
"description": "Gemini 3 Pro Image (Nano Banana Pro) to model generowania obrazów firmy Google, obsługujący również dialogi multimodalne."
|
|
1543
|
+
},
|
|
1544
|
+
"gemini-3-pro-image-preview:image": {
|
|
1545
|
+
"description": "Gemini 3 Pro Image (Nano Banana Pro) to model generowania obrazów firmy Google, obsługujący również dialogi multimodalne."
|
|
1546
|
+
},
|
|
1526
1547
|
"gemini-3-pro-preview": {
|
|
1527
|
-
"description": "Gemini 3 Pro to
|
|
1548
|
+
"description": "Gemini 3 Pro to najlepszy na świecie model rozumienia multimodalnego, a także najpotężniejszy agent i model programowania kontekstowego Google, oferujący bogatsze efekty wizualne i głębszą interaktywność, wszystko oparte na zaawansowanych możliwościach wnioskowania."
|
|
1528
1549
|
},
|
|
1529
1550
|
"gemini-flash-latest": {
|
|
1530
1551
|
"description": "Najnowsze wydanie Gemini Flash"
|
|
@@ -1650,7 +1671,7 @@
|
|
|
1650
1671
|
"description": "GLM-Zero-Preview posiada silne zdolności do złożonego wnioskowania, wyróżniając się w dziedzinach takich jak wnioskowanie logiczne, matematyka i programowanie."
|
|
1651
1672
|
},
|
|
1652
1673
|
"google/gemini-2.0-flash": {
|
|
1653
|
-
"description": "Gemini 2.0 Flash
|
|
1674
|
+
"description": "Gemini 2.0 Flash to wysokowydajny model wnioskowania firmy Google, odpowiedni do rozszerzonych zadań multimodalnych."
|
|
1654
1675
|
},
|
|
1655
1676
|
"google/gemini-2.0-flash-001": {
|
|
1656
1677
|
"description": "Gemini 2.0 Flash oferuje funkcje i ulepszenia nowej generacji, w tym doskonałą prędkość, natywne korzystanie z narzędzi, generowanie multimodalne oraz okno kontekstowe o długości 1M tokenów."
|
|
@@ -1661,14 +1682,23 @@
|
|
|
1661
1682
|
"google/gemini-2.0-flash-lite": {
|
|
1662
1683
|
"description": "Gemini 2.0 Flash Lite oferuje funkcje nowej generacji i ulepszenia, w tym doskonałą szybkość, wbudowane użycie narzędzi, generowanie multimodalne oraz okno kontekstu o rozmiarze 1 miliona tokenów."
|
|
1663
1684
|
},
|
|
1685
|
+
"google/gemini-2.0-flash-lite-001": {
|
|
1686
|
+
"description": "Gemini 2.0 Flash Lite to lekka wersja z rodziny Gemini, domyślnie bez aktywnego myślenia w celu poprawy opóźnień i kosztów, z możliwością włączenia przez parametry."
|
|
1687
|
+
},
|
|
1664
1688
|
"google/gemini-2.5-flash": {
|
|
1665
|
-
"description": "Gemini 2.5 Flash to
|
|
1689
|
+
"description": "Seria Gemini 2.5 Flash (Lite/Pro/Flash) to modele wnioskowania firmy Google o niskim opóźnieniu i wysokiej wydajności."
|
|
1690
|
+
},
|
|
1691
|
+
"google/gemini-2.5-flash-image": {
|
|
1692
|
+
"description": "Gemini 2.5 Flash Image (Nano Banana) to model generowania obrazów firmy Google, obsługujący również dialogi multimodalne."
|
|
1693
|
+
},
|
|
1694
|
+
"google/gemini-2.5-flash-image-free": {
|
|
1695
|
+
"description": "Gemini 2.5 Flash Image – wersja darmowa, obsługuje ograniczoną liczbę generacji multimodalnych."
|
|
1666
1696
|
},
|
|
1667
1697
|
"google/gemini-2.5-flash-image-preview": {
|
|
1668
1698
|
"description": "Eksperymentalny model Gemini 2.5 Flash, wspierający generowanie obrazów."
|
|
1669
1699
|
},
|
|
1670
1700
|
"google/gemini-2.5-flash-lite": {
|
|
1671
|
-
"description": "Gemini 2.5 Flash
|
|
1701
|
+
"description": "Gemini 2.5 Flash Lite to lekka wersja Gemini 2.5, zoptymalizowana pod kątem opóźnień i kosztów, idealna do scenariuszy o wysokiej przepustowości."
|
|
1672
1702
|
},
|
|
1673
1703
|
"google/gemini-2.5-flash-preview": {
|
|
1674
1704
|
"description": "Gemini 2.5 Flash to najnowocześniejszy model główny Google, zaprojektowany z myślą o zaawansowanym wnioskowaniu, kodowaniu, matematyce i zadaniach naukowych. Zawiera wbudowaną zdolność 'myślenia', co pozwala mu na dostarczanie odpowiedzi z wyższą dokładnością i szczegółowym przetwarzaniem kontekstu.\n\nUwaga: ten model ma dwa warianty: myślenie i niemyslenie. Ceny wyjściowe różnią się znacznie w zależności od tego, czy zdolność myślenia jest aktywowana. Jeśli wybierzesz standardowy wariant (bez sufiksu ':thinking'), model wyraźnie unika generowania tokenów myślenia.\n\nAby skorzystać z zdolności myślenia i otrzymać tokeny myślenia, musisz wybrać wariant ':thinking', co spowoduje wyższe ceny wyjściowe za myślenie.\n\nPonadto Gemini 2.5 Flash można konfigurować za pomocą parametru 'maksymalna liczba tokenów do wnioskowania', jak opisano w dokumentacji (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
|
@@ -1677,11 +1707,23 @@
|
|
|
1677
1707
|
"description": "Gemini 2.5 Flash to najnowocześniejszy model główny Google, zaprojektowany z myślą o zaawansowanym wnioskowaniu, kodowaniu, matematyce i zadaniach naukowych. Zawiera wbudowaną zdolność 'myślenia', co pozwala mu na dostarczanie odpowiedzi z wyższą dokładnością i szczegółowym przetwarzaniem kontekstu.\n\nUwaga: ten model ma dwa warianty: myślenie i niemyslenie. Ceny wyjściowe różnią się znacznie w zależności od tego, czy zdolność myślenia jest aktywowana. Jeśli wybierzesz standardowy wariant (bez sufiksu ':thinking'), model wyraźnie unika generowania tokenów myślenia.\n\nAby skorzystać z zdolności myślenia i otrzymać tokeny myślenia, musisz wybrać wariant ':thinking', co spowoduje wyższe ceny wyjściowe za myślenie.\n\nPonadto Gemini 2.5 Flash można konfigurować za pomocą parametru 'maksymalna liczba tokenów do wnioskowania', jak opisano w dokumentacji (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
|
1678
1708
|
},
|
|
1679
1709
|
"google/gemini-2.5-pro": {
|
|
1680
|
-
"description": "Gemini 2.5 Pro to
|
|
1710
|
+
"description": "Gemini 2.5 Pro to flagowy model wnioskowania firmy Google, obsługujący długi kontekst i złożone zadania."
|
|
1711
|
+
},
|
|
1712
|
+
"google/gemini-2.5-pro-free": {
|
|
1713
|
+
"description": "Gemini 2.5 Pro – wersja darmowa, obsługuje ograniczoną liczbę multimodalnych zadań z długim kontekstem, idealna do testów i lekkich przepływów pracy."
|
|
1681
1714
|
},
|
|
1682
1715
|
"google/gemini-2.5-pro-preview": {
|
|
1683
1716
|
"description": "Gemini 2.5 Pro Preview to najnowocześniejszy model myślowy Google, zdolny do rozumowania nad złożonymi problemami w dziedzinie kodowania, matematyki i STEM oraz do analizy dużych zbiorów danych, repozytoriów kodu i dokumentów przy użyciu długiego kontekstu."
|
|
1684
1717
|
},
|
|
1718
|
+
"google/gemini-3-pro-image-preview-free": {
|
|
1719
|
+
"description": "Gemini 3 Pro Image – wersja darmowa, obsługuje ograniczoną liczbę generacji multimodalnych."
|
|
1720
|
+
},
|
|
1721
|
+
"google/gemini-3-pro-preview": {
|
|
1722
|
+
"description": "Gemini 3 Pro to nowej generacji model multimodalnego wnioskowania z serii Gemini, zdolny do rozumienia tekstu, dźwięku, obrazu, wideo i innych danych wejściowych, obsługujący złożone zadania i duże bazy kodu."
|
|
1723
|
+
},
|
|
1724
|
+
"google/gemini-3-pro-preview-free": {
|
|
1725
|
+
"description": "Gemini 3 Pro – wersja darmowa, oferuje te same możliwości rozumienia i wnioskowania multimodalnego co wersja standardowa, ale z ograniczeniami dotyczącymi limitów i szybkości, idealna do testów i rzadkiego użytku."
|
|
1726
|
+
},
|
|
1685
1727
|
"google/gemini-embedding-001": {
|
|
1686
1728
|
"description": "Najnowocześniejszy model osadzeń, oferujący doskonałą wydajność w zadaniach anglojęzycznych, wielojęzycznych i kodowych."
|
|
1687
1729
|
},
|
|
@@ -2057,21 +2099,36 @@
|
|
|
2057
2099
|
"inception/mercury-coder-small": {
|
|
2058
2100
|
"description": "Mercury Coder Small to idealny wybór do generowania, debugowania i refaktoryzacji kodu, oferujący minimalne opóźnienia."
|
|
2059
2101
|
},
|
|
2060
|
-
"inclusionAI/Ling-1T": {
|
|
2061
|
-
"description": "Ling-1T to flagowy model bez rozumowania (non-thinking) z serii „Ling 2.0”, posiadający 1 bilion parametrów ogólnych i około 50 miliardów aktywnych parametrów na token. Zbudowany na architekturze Ling 2.0, Ling-1T ma na celu przesunięcie granic efektywnego wnioskowania i skalowalnej kognicji. Ling-1T-base został wytrenowany na ponad 20 bilionach wysokiej jakości, intensywnie rozumujących tokenów."
|
|
2062
|
-
},
|
|
2063
2102
|
"inclusionAI/Ling-flash-2.0": {
|
|
2064
2103
|
"description": "Ling-flash-2.0 to trzeci model z serii architektury Ling 2.0 wydany przez zespół Bailing z Ant Group. Jest to model hybrydowy ekspertów (MoE) o łącznej liczbie parametrów 100 miliardów, z aktywacją jedynie 6,1 miliarda parametrów na token (48 miliardów bez uwzględnienia wektorów osadzeń). Jako lekka konfiguracja modelu, Ling-flash-2.0 wykazuje w wielu autorytatywnych testach wydajność porównywalną lub przewyższającą modele gęste (Dense) o wielkości 40 miliardów parametrów oraz większe modele MoE. Model ten ma na celu eksplorację efektywnych ścieżek w kontekście powszechnego przekonania, że „duży model to duża liczba parametrów”, poprzez zaawansowany projekt architektury i strategię treningową."
|
|
2065
2104
|
},
|
|
2066
2105
|
"inclusionAI/Ling-mini-2.0": {
|
|
2067
2106
|
"description": "Ling-mini-2.0 to mały, wysokowydajny duży model językowy oparty na architekturze MoE. Posiada 16 miliardów parametrów, ale aktywuje tylko 1,4 miliarda na token (789 milionów bez osadzeń), co zapewnia bardzo wysoką szybkość generowania. Dzięki efektywnemu projektowi MoE i dużej, wysokiej jakości bazie treningowej, mimo niskiej liczby aktywowanych parametrów, Ling-mini-2.0 osiąga w zadaniach downstream wydajność porównywalną z najlepszymi modelami gęstymi poniżej 10 miliardów parametrów oraz większymi modelami MoE."
|
|
2068
2107
|
},
|
|
2069
|
-
"inclusionAI/Ring-1T": {
|
|
2070
|
-
"description": "Ring-1T to otwartoźródłowy model myślenia o skali biliona parametrów, opracowany przez zespół Bailing. Bazuje na architekturze Ling 2.0 i modelu bazowym Ling-1T-base, z 1 bilionem parametrów ogólnych i 50 miliardami aktywnych parametrów. Obsługuje kontekst do 128K i został zoptymalizowany za pomocą skalowalnego, weryfikowalnego uczenia przez wzmocnienie z nagrodą."
|
|
2071
|
-
},
|
|
2072
2108
|
"inclusionAI/Ring-flash-2.0": {
|
|
2073
2109
|
"description": "Ring-flash-2.0 to wysoko wydajny model myślenia głęboko zoptymalizowany na bazie Ling-flash-2.0-base. Wykorzystuje architekturę hybrydowych ekspertów (MoE) z łączną liczbą parametrów 100 miliardów, aktywując podczas inferencji tylko 6,1 miliarda parametrów. Model rozwiązuje problem niestabilności treningu MoE w uczeniu ze wzmocnieniem (RL) dzięki autorskiej metodzie icepop, co pozwala na ciągłe zwiększanie zdolności do złożonego wnioskowania podczas długotrwałego treningu. Ring-flash-2.0 osiągnął znaczące przełomy w trudnych benchmarkach, takich jak konkursy matematyczne, generowanie kodu i rozumowanie logiczne. Jego wydajność przewyższa najlepsze modele gęste poniżej 40 miliardów parametrów i jest porównywalna z większymi otwartoźródłowymi modelami MoE oraz zamkniętymi modelami myślenia o wysokiej wydajności. Choć skupiony na złożonym wnioskowaniu, model dobrze radzi sobie także z zadaniami kreatywnego pisania. Dzięki efektywnej architekturze Ring-flash-2.0 oferuje wysoką wydajność przy szybkim inferowaniu, co znacząco obniża koszty wdrożenia modeli myślenia w środowiskach o dużej równoczesności."
|
|
2074
2110
|
},
|
|
2111
|
+
"inclusionai/ling-1t": {
|
|
2112
|
+
"description": "Ling-1T to model MoE o parametrach 1T firmy inclusionAI, zoptymalizowany pod kątem intensywnych zadań wnioskowania i dużych kontekstów."
|
|
2113
|
+
},
|
|
2114
|
+
"inclusionai/ling-flash-2.0": {
|
|
2115
|
+
"description": "Ling-flash-2.0 to model MoE firmy inclusionAI, zoptymalizowany pod kątem wydajności i jakości wnioskowania, odpowiedni do średnich i dużych zadań."
|
|
2116
|
+
},
|
|
2117
|
+
"inclusionai/ling-mini-2.0": {
|
|
2118
|
+
"description": "Ling-mini-2.0 to lekki model MoE firmy inclusionAI, który znacząco obniża koszty przy zachowaniu zdolności wnioskowania."
|
|
2119
|
+
},
|
|
2120
|
+
"inclusionai/ming-flash-omini-preview": {
|
|
2121
|
+
"description": "Ming-flash-omni Preview to multimodalny model firmy inclusionAI, obsługujący dane wejściowe w postaci głosu, obrazu i wideo, zoptymalizowany pod kątem renderowania obrazów i rozpoznawania mowy."
|
|
2122
|
+
},
|
|
2123
|
+
"inclusionai/ring-1t": {
|
|
2124
|
+
"description": "Ring-1T to model MoE z bilionem parametrów firmy inclusionAI, przeznaczony do zadań wnioskowania na dużą skalę i badań naukowych."
|
|
2125
|
+
},
|
|
2126
|
+
"inclusionai/ring-flash-2.0": {
|
|
2127
|
+
"description": "Ring-flash-2.0 to wariant modelu Ring firmy inclusionAI, zaprojektowany z myślą o scenariuszach o wysokiej przepustowości, z naciskiem na szybkość i efektywność kosztową."
|
|
2128
|
+
},
|
|
2129
|
+
"inclusionai/ring-mini-2.0": {
|
|
2130
|
+
"description": "Ring-mini-2.0 to lekka wersja modelu MoE firmy inclusionAI o wysokiej przepustowości, przeznaczona głównie do scenariuszy równoległych."
|
|
2131
|
+
},
|
|
2075
2132
|
"internlm/internlm2_5-7b-chat": {
|
|
2076
2133
|
"description": "InternLM2.5 oferuje inteligentne rozwiązania dialogowe w różnych scenariuszach."
|
|
2077
2134
|
},
|
|
@@ -2123,6 +2180,12 @@
|
|
|
2123
2180
|
"kimi-k2-instruct": {
|
|
2124
2181
|
"description": "Kimi K2 Instruct, oficjalny model wnioskowania Kimi, wspierający długi kontekst, kodowanie, pytania i inne scenariusze."
|
|
2125
2182
|
},
|
|
2183
|
+
"kimi-k2-thinking": {
|
|
2184
|
+
"description": "Model długiego myślenia K2, obsługuje kontekst 256k, wieloetapowe wywoływanie narzędzi i myślenie, doskonały w rozwiązywaniu złożonych problemów."
|
|
2185
|
+
},
|
|
2186
|
+
"kimi-k2-thinking-turbo": {
|
|
2187
|
+
"description": "Szybka wersja modelu długiego myślenia K2, obsługuje kontekst 256k, specjalizuje się w głębokim wnioskowaniu, z prędkością generowania 60–100 tokenów na sekundę."
|
|
2188
|
+
},
|
|
2126
2189
|
"kimi-k2-turbo-preview": {
|
|
2127
2190
|
"description": "kimi-k2 to bazowy model z architekturą MoE, dysponujący wyjątkowymi możliwościami w zakresie kodowania i agentów, z łączną liczbą parametrów 1T oraz 32B parametrów aktywacyjnych. W standardowych testach wydajności (benchmarkach) dla głównych kategorii takich jak wnioskowanie z wiedzy ogólnej, programowanie, matematyka i agenty, model K2 przewyższa inne popularne otwarte modele."
|
|
2128
2191
|
},
|
|
@@ -2135,6 +2198,9 @@
|
|
|
2135
2198
|
"kimi-thinking-preview": {
|
|
2136
2199
|
"description": "Model kimi-thinking-preview dostarczany przez Moon’s Dark Side to multimodalny model myślenia z umiejętnościami ogólnego i głębokiego rozumowania, który pomaga rozwiązywać bardziej złożone i trudniejsze problemy."
|
|
2137
2200
|
},
|
|
2201
|
+
"kuaishou/kat-coder-pro-v1": {
|
|
2202
|
+
"description": "KAT-Coder-Pro-V1 (czasowo darmowy) koncentruje się na rozumieniu kodu i automatycznym programowaniu, przeznaczony do wydajnych zadań programistycznych."
|
|
2203
|
+
},
|
|
2138
2204
|
"learnlm-1.5-pro-experimental": {
|
|
2139
2205
|
"description": "LearnLM to eksperymentalny model językowy, specyficzny dla zadań, przeszkolony zgodnie z zasadami nauki o uczeniu się, który może przestrzegać systemowych instrukcji w scenariuszach nauczania i uczenia się, pełniąc rolę eksperta mentora."
|
|
2140
2206
|
},
|
|
@@ -2466,7 +2532,7 @@
|
|
|
2466
2532
|
"description": "MiniMax M2 to wydajny duży model językowy stworzony z myślą o kodowaniu i zautomatyzowanych przepływach pracy."
|
|
2467
2533
|
},
|
|
2468
2534
|
"minimax/minimax-m2": {
|
|
2469
|
-
"description": "
|
|
2535
|
+
"description": "MiniMax-M2 to model o wysokim stosunku jakości do ceny, doskonały w zadaniach kodowania i agentowych, odpowiedni do różnych scenariuszy inżynieryjnych."
|
|
2470
2536
|
},
|
|
2471
2537
|
"minimaxai/minimax-m2": {
|
|
2472
2538
|
"description": "MiniMax-M2 to kompaktowy, szybki i ekonomiczny model MoE (Mixture of Experts) z 230 miliardami całkowitych parametrów i 10 miliardami aktywnych parametrów, zaprojektowany z myślą o najwyższej wydajności w zadaniach kodowania i agentowych, przy jednoczesnym zachowaniu silnej inteligencji ogólnej. Model ten doskonale sprawdza się w edycji wielu plików, zamkniętej pętli kodowanie-uruchamianie-naprawa, testowaniu i weryfikacji poprawek oraz w złożonych, długich łańcuchach narzędziowych, co czyni go idealnym wyborem dla przepływów pracy deweloperów."
|
|
@@ -2615,12 +2681,21 @@
|
|
|
2615
2681
|
"moonshotai/kimi-k2": {
|
|
2616
2682
|
"description": "Kimi K2 to duży model językowy hybrydowych ekspertów (MoE) opracowany przez Moonshot AI, z 1 bilionem parametrów łącznie i 32 miliardami aktywnych parametrów na pojedyncze przejście. Model jest zoptymalizowany pod kątem zdolności agentowych, w tym zaawansowanego użycia narzędzi, wnioskowania i syntezy kodu."
|
|
2617
2683
|
},
|
|
2684
|
+
"moonshotai/kimi-k2-0711": {
|
|
2685
|
+
"description": "Kimi K2 0711 to wersja Instruct z serii Kimi, odpowiednia do wysokiej jakości kodowania i wywoływania narzędzi."
|
|
2686
|
+
},
|
|
2618
2687
|
"moonshotai/kimi-k2-0905": {
|
|
2619
|
-
"description": "
|
|
2688
|
+
"description": "Kimi K2 0905 to aktualizacja z serii Kimi, rozszerzająca kontekst i możliwości wnioskowania, zoptymalizowana pod kątem kodowania."
|
|
2620
2689
|
},
|
|
2621
2690
|
"moonshotai/kimi-k2-instruct-0905": {
|
|
2622
2691
|
"description": "Model kimi-k2-0905-preview obsługuje długość kontekstu do 256k, oferując silniejsze zdolności Agentic Coding, bardziej estetyczny i praktyczny kod frontendowy oraz lepsze rozumienie kontekstu."
|
|
2623
2692
|
},
|
|
2693
|
+
"moonshotai/kimi-k2-thinking": {
|
|
2694
|
+
"description": "Kimi K2 Thinking to model myślenia firmy Moonshot zoptymalizowany pod kątem głębokiego wnioskowania, posiadający ogólne zdolności agenta."
|
|
2695
|
+
},
|
|
2696
|
+
"moonshotai/kimi-k2-thinking-turbo": {
|
|
2697
|
+
"description": "Kimi K2 Thinking Turbo to szybka wersja modelu Kimi K2 Thinking, zachowująca zdolności głębokiego wnioskowania przy znacznie niższym opóźnieniu odpowiedzi."
|
|
2698
|
+
},
|
|
2624
2699
|
"morph/morph-v3-fast": {
|
|
2625
2700
|
"description": "Morph oferuje specjalistyczny model AI, który szybko stosuje zmiany kodu sugerowane przez najnowocześniejsze modele, takie jak Claude czy GPT-4o, do istniejących plików kodu — SZYBKOŚĆ ponad 4500 tokenów/sekundę. Działa jako ostatni krok w przepływie pracy kodowania AI. Obsługuje 16k tokenów wejściowych i 16k tokenów wyjściowych."
|
|
2626
2701
|
},
|
|
@@ -2702,30 +2777,14 @@
|
|
|
2702
2777
|
"openai/gpt-4-turbo": {
|
|
2703
2778
|
"description": "gpt-4-turbo od OpenAI posiada szeroką wiedzę ogólną i specjalistyczną, umożliwiającą wykonywanie złożonych instrukcji w języku naturalnym i precyzyjne rozwiązywanie trudnych problemów. Data zakończenia wiedzy to kwiecień 2023, a okno kontekstu wynosi 128 000 tokenów."
|
|
2704
2779
|
},
|
|
2705
|
-
"openai/gpt-4.1": {
|
|
2706
|
-
|
|
2707
|
-
},
|
|
2708
|
-
"openai/gpt-
|
|
2709
|
-
|
|
2710
|
-
},
|
|
2711
|
-
"openai/gpt-
|
|
2712
|
-
|
|
2713
|
-
},
|
|
2714
|
-
"openai/gpt-4o": {
|
|
2715
|
-
"description": "GPT-4o od OpenAI posiada szeroką wiedzę ogólną i specjalistyczną, umożliwiającą wykonywanie złożonych instrukcji w języku naturalnym i precyzyjne rozwiązywanie trudnych problemów. Oferuje wydajność porównywalną z GPT-4 Turbo, ale z szybszym i tańszym API."
|
|
2716
|
-
},
|
|
2717
|
-
"openai/gpt-4o-mini": {
|
|
2718
|
-
"description": "GPT-4o mini od OpenAI to ich najbardziej zaawansowany i opłacalny mały model. Jest multimodalny (przyjmuje tekst lub obrazy i generuje tekst) oraz inteligentniejszy niż gpt-3.5-turbo, zachowując podobną szybkość."
|
|
2719
|
-
},
|
|
2720
|
-
"openai/gpt-5": {
|
|
2721
|
-
"description": "GPT-5 to flagowy model językowy OpenAI, wyróżniający się w złożonym wnioskowaniu, szerokiej wiedzy o świecie, zadaniach intensywnie kodujących i wieloetapowych zadaniach agentowych."
|
|
2722
|
-
},
|
|
2723
|
-
"openai/gpt-5-mini": {
|
|
2724
|
-
"description": "GPT-5 mini to model zoptymalizowany pod kątem kosztów, oferujący doskonałą wydajność w zadaniach wnioskowania i czatu. Zapewnia najlepszą równowagę między szybkością, kosztami i możliwościami."
|
|
2725
|
-
},
|
|
2726
|
-
"openai/gpt-5-nano": {
|
|
2727
|
-
"description": "GPT-5 nano to model o wysokiej przepustowości, doskonały w prostych zadaniach instrukcyjnych lub klasyfikacyjnych."
|
|
2728
|
-
},
|
|
2780
|
+
"openai/gpt-4.1": {},
|
|
2781
|
+
"openai/gpt-4.1-mini": {},
|
|
2782
|
+
"openai/gpt-4.1-nano": {},
|
|
2783
|
+
"openai/gpt-4o": {},
|
|
2784
|
+
"openai/gpt-4o-mini": {},
|
|
2785
|
+
"openai/gpt-5": {},
|
|
2786
|
+
"openai/gpt-5-mini": {},
|
|
2787
|
+
"openai/gpt-5-nano": {},
|
|
2729
2788
|
"openai/gpt-oss-120b": {
|
|
2730
2789
|
"description": "Niezwykle kompetentny, uniwersalny duży model językowy z potężnymi i kontrolowanymi zdolnościami wnioskowania."
|
|
2731
2790
|
},
|
|
@@ -2750,9 +2809,7 @@
|
|
|
2750
2809
|
"openai/o3-mini-high": {
|
|
2751
2810
|
"description": "o3-mini w wersji o wysokim poziomie rozumowania, oferujący wysoką inteligencję przy tych samych kosztach i celach opóźnienia co o1-mini."
|
|
2752
2811
|
},
|
|
2753
|
-
"openai/o4-mini": {
|
|
2754
|
-
"description": "o4-mini od OpenAI oferuje szybkie i opłacalne wnioskowanie z doskonałą wydajnością w swojej klasie, szczególnie w zadaniach matematycznych (najlepsze wyniki w benchmarku AIME), kodowaniu i zadaniach wizualnych."
|
|
2755
|
-
},
|
|
2812
|
+
"openai/o4-mini": {},
|
|
2756
2813
|
"openai/o4-mini-high": {
|
|
2757
2814
|
"description": "o4-mini w wersji o wysokim poziomie wnioskowania, zoptymalizowany do szybkiego i efektywnego wnioskowania, osiągający wysoką wydajność i efektywność w zadaniach kodowania i wizualnych."
|
|
2758
2815
|
},
|
|
@@ -2954,9 +3011,7 @@
|
|
|
2954
3011
|
"qwen/qwen2.5-coder-7b-instruct": {
|
|
2955
3012
|
"description": "Potężny średniej wielkości model kodu, wspierający długość kontekstu 32K, specjalizujący się w programowaniu wielojęzycznym."
|
|
2956
3013
|
},
|
|
2957
|
-
"qwen/qwen3-14b": {
|
|
2958
|
-
"description": "Qwen3-14B to gęsty model językowy o 14 miliardach parametrów w serii Qwen3, zaprojektowany z myślą o złożonym wnioskowaniu i efektywnych dialogach. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do matematyki, programowania i wnioskowania logicznego a trybem 'nie-myślenia' stosowanym w ogólnych rozmowach. Model został dostosowany do przestrzegania instrukcji, użycia narzędzi agenta, twórczego pisania oraz wielojęzycznych zadań w ponad 100 językach i dialektach. Obsługuje natywnie 32K tokenów kontekstu i może być rozszerzany do 131K tokenów za pomocą YaRN."
|
|
2959
|
-
},
|
|
3014
|
+
"qwen/qwen3-14b": {},
|
|
2960
3015
|
"qwen/qwen3-14b:free": {
|
|
2961
3016
|
"description": "Qwen3-14B to gęsty model językowy o 14 miliardach parametrów w serii Qwen3, zaprojektowany z myślą o złożonym wnioskowaniu i efektywnych dialogach. Obsługuje płynne przełączanie między trybem 'myślenia' używanym do matematyki, programowania i wnioskowania logicznego a trybem 'nie-myślenia' stosowanym w ogólnych rozmowach. Model został dostosowany do przestrzegania instrukcji, użycia narzędzi agenta, twórczego pisania oraz wielojęzycznych zadań w ponad 100 językach i dialektach. Obsługuje natywnie 32K tokenów kontekstu i może być rozszerzany do 131K tokenów za pomocą YaRN."
|
|
2962
3017
|
},
|
|
@@ -3275,9 +3330,6 @@
|
|
|
3275
3330
|
"step-r1-v-mini": {
|
|
3276
3331
|
"description": "Model ten to potężny model wnioskowania z zdolnościami rozumienia obrazów, zdolny do przetwarzania informacji wizualnych i tekstowych, generując tekst po głębokim przemyśleniu. Model ten wyróżnia się w dziedzinie wnioskowania wizualnego, a także posiada pierwszorzędne zdolności wnioskowania matematycznego, kodowania i tekstu. Długość kontekstu wynosi 100k."
|
|
3277
3332
|
},
|
|
3278
|
-
"step3": {
|
|
3279
|
-
"description": "Step3 to multimodalny model opracowany przez StepStar, charakteryzujący się zaawansowanymi zdolnościami rozumienia obrazu."
|
|
3280
|
-
},
|
|
3281
3333
|
"stepfun-ai/step3": {
|
|
3282
3334
|
"description": "Step3 to zaawansowany multimodalny model wnioskowania wydany przez StepFun (阶跃星辰). Został zbudowany na architekturze Mixture of Experts (MoE) z łączną liczbą 321 mld parametrów i 38 mld parametrów aktywacji. Model ma konstrukcję end-to-end, zaprojektowaną tak, aby minimalizować koszty dekodowania, jednocześnie zapewniając najwyższą wydajność w zadaniach wnioskowania wizualno-językowego. Dzięki współdziałaniu mechanizmów Multi-Matrix Factorized Attention (MFA) i Attention-FFN Decoupling (AFD), Step3 zachowuje znakomitą efektywność zarówno na akceleratorach klasy flagowej, jak i na urządzeniach o niższej wydajności. W fazie pretrenowania Step3 przetworzył ponad 20 bilionów tokenów tekstowych oraz 4 biliony tokenów mieszanych tekstowo-obrazowych, obejmujących ponad dziesięć języków. Model osiągnął czołowe wyniki wśród modeli open-source na wielu benchmarkach, w tym w zadaniach z zakresu matematyki, programowania i multimodalu."
|
|
3283
3335
|
},
|
|
@@ -3386,12 +3438,8 @@
|
|
|
3386
3438
|
"wizardlm2:8x22b": {
|
|
3387
3439
|
"description": "WizardLM 2 to model językowy dostarczany przez Microsoft AI, który wyróżnia się w złożonych dialogach, wielojęzyczności, wnioskowaniu i inteligentnych asystentach."
|
|
3388
3440
|
},
|
|
3389
|
-
"x-ai/grok-4-fast": {
|
|
3390
|
-
|
|
3391
|
-
},
|
|
3392
|
-
"x-ai/grok-code-fast-1": {
|
|
3393
|
-
"description": "Z dumą prezentujemy grok-code-fast-1 — szybki i ekonomiczny model wnioskowania, który doskonale sprawdza się w kodowaniu przez agentów."
|
|
3394
|
-
},
|
|
3441
|
+
"x-ai/grok-4-fast": {},
|
|
3442
|
+
"x-ai/grok-code-fast-1": {},
|
|
3395
3443
|
"x1": {
|
|
3396
3444
|
"description": "Model Spark X1 zostanie dalej ulepszony, osiągając wyniki w zadaniach ogólnych, takich jak rozumowanie, generowanie tekstu i rozumienie języka, które będą porównywalne z OpenAI o1 i DeepSeek R1."
|
|
3397
3445
|
},
|
|
@@ -3452,9 +3500,7 @@
|
|
|
3452
3500
|
"yi-vision-v2": {
|
|
3453
3501
|
"description": "Model do złożonych zadań wizualnych, oferujący wysokowydajną zdolność rozumienia i analizy na podstawie wielu obrazów."
|
|
3454
3502
|
},
|
|
3455
|
-
"z-ai/glm-4.6": {
|
|
3456
|
-
"description": "GLM-4.6 to najnowszy flagowy model od Zhipu AI, który znacząco przewyższa poprzednie wersje w zakresie zaawansowanego kodowania, przetwarzania długich tekstów, wnioskowania i zdolności agentowych."
|
|
3457
|
-
},
|
|
3503
|
+
"z-ai/glm-4.6": {},
|
|
3458
3504
|
"zai-org/GLM-4.5": {
|
|
3459
3505
|
"description": "GLM-4.5 to podstawowy model zaprojektowany specjalnie do zastosowań agentowych, wykorzystujący architekturę mieszanych ekspertów (Mixture-of-Experts). Model jest głęboko zoptymalizowany pod kątem wywoływania narzędzi, przeglądania stron internetowych, inżynierii oprogramowania i programowania frontendowego, wspierając bezproblemową integrację z inteligentnymi agentami kodu takimi jak Claude Code i Roo Code. GLM-4.5 stosuje hybrydowy tryb wnioskowania, dostosowując się do złożonych i codziennych scenariuszy użycia."
|
|
3460
3506
|
},
|
|
@@ -191,6 +191,9 @@
|
|
|
191
191
|
"xinference": {
|
|
192
192
|
"description": "Xorbits Inference (Xinference) to otwarty platforma, która ułatwia uruchamianie i integrację różnych modeli AI. Dzięki Xinference możesz wykonywać wnioskowanie za pomocą dowolnego otwartego modelu LLM, modelu osadzania i modelu wielomodalnego w środowisku chmurowym lub lokalnym, tworząc przy tym potężne aplikacje AI."
|
|
193
193
|
},
|
|
194
|
+
"zenmux": {
|
|
195
|
+
"description": "ZenMux to zunifikowana platforma agregująca usługi AI, obsługująca interfejsy wielu wiodących dostawców, takich jak OpenAI, Anthropic, Google VertexAI i inne. Oferuje elastyczne możliwości routingu, umożliwiając łatwe przełączanie i zarządzanie różnymi modelami AI."
|
|
196
|
+
},
|
|
194
197
|
"zeroone": {
|
|
195
198
|
"description": "01.AI koncentruje się na technologiach sztucznej inteligencji w erze AI 2.0, intensywnie promując innowacje i zastosowania „człowiek + sztuczna inteligencja”, wykorzystując potężne modele i zaawansowane technologie AI w celu zwiększenia wydajności ludzkiej produkcji i realizacji technologicznego wsparcia."
|
|
196
199
|
},
|
package/locales/pt-BR/image.json
CHANGED