@lobehub/lobehub 2.0.0-next.104 → 2.0.0-next.106
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/apps/desktop/package.json +2 -2
- package/changelog/v1.json +14 -0
- package/locales/ar/image.json +8 -0
- package/locales/ar/models.json +110 -64
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/image.json +8 -0
- package/locales/bg-BG/models.json +98 -68
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/image.json +8 -0
- package/locales/de-DE/models.json +176 -38
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/image.json +8 -0
- package/locales/en-US/models.json +176 -38
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/image.json +8 -0
- package/locales/es-ES/models.json +176 -38
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/image.json +8 -0
- package/locales/fa-IR/models.json +110 -64
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/image.json +8 -0
- package/locales/fr-FR/models.json +110 -64
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/image.json +8 -0
- package/locales/it-IT/models.json +176 -38
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/image.json +8 -0
- package/locales/ja-JP/models.json +110 -64
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/image.json +8 -0
- package/locales/ko-KR/models.json +110 -64
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/image.json +8 -0
- package/locales/nl-NL/models.json +176 -38
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/image.json +8 -0
- package/locales/pl-PL/models.json +110 -64
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/image.json +8 -0
- package/locales/pt-BR/models.json +176 -38
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/image.json +8 -0
- package/locales/ru-RU/models.json +98 -68
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/image.json +8 -0
- package/locales/tr-TR/models.json +110 -64
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/image.json +8 -0
- package/locales/vi-VN/models.json +176 -38
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/image.json +8 -0
- package/locales/zh-CN/models.json +179 -38
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/image.json +8 -0
- package/locales/zh-TW/models.json +176 -38
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +9 -3
- package/packages/database/src/repositories/knowledge/index.ts +5 -8
- package/packages/model-bank/src/aiModels/moonshot.ts +46 -0
- package/packages/model-runtime/src/core/contextBuilders/openai.ts +1 -1
- package/packages/model-runtime/src/providers/moonshot/index.ts +17 -4
- package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
- package/packages/types/src/user/settings/keyVaults.ts +0 -68
- package/packages/utils/src/client/parserPlaceholder.ts +1 -1
- package/src/services/__tests__/_auth.test.ts +1 -4
- package/src/services/_auth.ts +2 -3
- package/src/services/_header.ts +1 -8
- package/src/store/chat/agents/__tests__/createAgentExecutors/call-llm.test.ts +18 -0
- package/src/store/chat/agents/__tests__/createAgentExecutors/call-tool.test.ts +40 -11
- package/src/store/chat/agents/__tests__/createAgentExecutors/helpers/assertions.ts +3 -0
- package/src/store/chat/agents/__tests__/createAgentExecutors/request-human-approve.test.ts +15 -0
- package/src/store/chat/agents/__tests__/createAgentExecutors/resolve-aborted-tools.test.ts +37 -11
- package/src/store/chat/agents/createAgentExecutors.ts +22 -13
- package/src/store/chat/slices/aiChat/actions/conversationLifecycle.ts +4 -8
- package/src/store/chat/slices/builtinTool/actions/__tests__/search.test.ts +16 -2
- package/src/store/chat/slices/builtinTool/actions/localSystem.ts +5 -1
- package/src/store/chat/slices/builtinTool/actions/search.ts +5 -1
- package/src/store/chat/slices/message/actions/publicApi.ts +10 -2
- package/src/store/chat/slices/message/actions/query.ts +17 -4
- package/src/store/chat/slices/operation/__tests__/selectors.test.ts +93 -5
- package/src/store/chat/slices/operation/selectors.ts +16 -3
- package/src/store/chat/slices/plugin/actions/optimisticUpdate.ts +24 -18
- package/src/store/user/slices/settings/selectors/keyVaults.ts +0 -5
- package/src/features/ChatList/Error/AccessCodeForm.tsx +0 -63
- package/src/services/__tests__/share.test.ts +0 -61
|
@@ -720,25 +720,28 @@
|
|
|
720
720
|
"description": "Claude 3 Opus는 Anthropic의 가장 지능적인 모델로, 매우 복잡한 작업에서 시장 선도적인 성능을 보입니다. 탁월한 유창성과 인간과 유사한 이해력을 바탕으로 개방형 프롬프트와 전례 없는 시나리오를 능숙하게 처리합니다."
|
|
721
721
|
},
|
|
722
722
|
"anthropic/claude-3.5-haiku": {
|
|
723
|
-
"description": "Claude 3.5 Haiku는
|
|
723
|
+
"description": "Claude 3.5 Haiku는 속도, 코딩 정확도 및 도구 사용 능력이 향상된 모델로, 빠른 응답과 도구 상호작용이 중요한 상황에 적합합니다."
|
|
724
724
|
},
|
|
725
725
|
"anthropic/claude-3.5-sonnet": {
|
|
726
|
-
"description": "Claude 3.5 Sonnet은
|
|
726
|
+
"description": "Claude 3.5 Sonnet은 Sonnet 계열의 빠르고 효율적인 모델로, 향상된 코딩 및 추론 성능을 제공합니다. 일부 버전은 Sonnet 3.7 등으로 점진적으로 대체될 예정입니다."
|
|
727
727
|
},
|
|
728
728
|
"anthropic/claude-3.7-sonnet": {
|
|
729
|
-
"description": "Claude 3.7 Sonnet은
|
|
729
|
+
"description": "Claude 3.7 Sonnet은 Sonnet 시리즈의 업그레이드 버전으로, 더욱 강력한 추론 및 코딩 능력을 제공하며, 기업용 복잡한 작업에 적합합니다."
|
|
730
|
+
},
|
|
731
|
+
"anthropic/claude-haiku-4.5": {
|
|
732
|
+
"description": "Claude Haiku 4.5는 높은 정확도를 유지하면서도 매우 낮은 지연 시간을 자랑하는 Anthropic의 고성능 고속 모델입니다."
|
|
730
733
|
},
|
|
731
734
|
"anthropic/claude-opus-4": {
|
|
732
|
-
"description": "
|
|
735
|
+
"description": "Opus 4는 복잡한 작업과 기업용 애플리케이션을 위해 설계된 Anthropic의 플래그십 모델입니다."
|
|
733
736
|
},
|
|
734
737
|
"anthropic/claude-opus-4.1": {
|
|
735
|
-
"description": "
|
|
738
|
+
"description": "Opus 4.1은 프로그래밍, 복잡한 추론 및 지속적인 작업에 최적화된 Anthropic의 고급 모델입니다."
|
|
736
739
|
},
|
|
737
740
|
"anthropic/claude-sonnet-4": {
|
|
738
|
-
"description": "Claude Sonnet 4는
|
|
741
|
+
"description": "Claude Sonnet 4는 사고 기반과 비사고 기반 기능을 결합한 Anthropic의 하이브리드 추론 모델입니다."
|
|
739
742
|
},
|
|
740
743
|
"anthropic/claude-sonnet-4.5": {
|
|
741
|
-
"description": "Claude Sonnet 4.5는 Anthropic의
|
|
744
|
+
"description": "Claude Sonnet 4.5는 복잡한 추론과 코딩에 최적화된 Anthropic의 최신 하이브리드 추론 모델입니다."
|
|
742
745
|
},
|
|
743
746
|
"ascend-tribe/pangu-pro-moe": {
|
|
744
747
|
"description": "Pangu-Pro-MoE 72B-A16B는 720억 개의 파라미터와 160억 활성 파라미터를 가진 희소 대형 언어 모델로, 그룹 혼합 전문가(MoGE) 아키텍처를 기반으로 합니다. 전문가 선택 단계에서 전문가를 그룹화하고 각 그룹 내에서 토큰이 동일 수의 전문가를 활성화하도록 제한하여 전문가 부하 균형을 달성함으로써 Ascend 플랫폼에서의 모델 배포 효율성을 크게 향상시켰습니다."
|
|
@@ -761,6 +764,9 @@
|
|
|
761
764
|
"baidu/ERNIE-4.5-300B-A47B": {
|
|
762
765
|
"description": "ERNIE-4.5-300B-A47B는 바이두에서 개발한 혼합 전문가(MoE) 아키텍처 기반의 대형 언어 모델입니다. 총 3천억 개의 파라미터를 보유하지만 추론 시 각 토큰당 470억 파라미터만 활성화하여 강력한 성능과 계산 효율성을 동시에 달성합니다. ERNIE 4.5 시리즈의 핵심 모델 중 하나로, 텍스트 이해, 생성, 추론 및 프로그래밍 작업에서 뛰어난 능력을 보여줍니다. 이 모델은 텍스트와 시각 모달리티의 공동 학습을 통한 혁신적인 다중 모달 이기종 MoE 사전학습 방식을 채택하여, 특히 명령 준수와 세계 지식 기억 측면에서 탁월한 성능을 발휘합니다."
|
|
763
766
|
},
|
|
767
|
+
"baidu/ernie-5.0-thinking-preview": {
|
|
768
|
+
"description": "ERNIE 5.0 Thinking Preview는 바이두의 차세대 멀티모달 원어 모델로, 멀티모달 이해, 명령 수행, 창작, 사실 기반 질의응답 및 도구 호출에 능숙합니다."
|
|
769
|
+
},
|
|
764
770
|
"c4ai-aya-expanse-32b": {
|
|
765
771
|
"description": "Aya Expanse는 지시 조정, 데이터 차익 거래, 선호 훈련 및 모델 통합의 혁신을 통해 단일 언어 모델의 성능에 도전하는 고성능 32B 다국어 모델입니다. 23개 언어를 지원합니다."
|
|
766
772
|
},
|
|
@@ -869,6 +875,9 @@
|
|
|
869
875
|
"codex-mini-latest": {
|
|
870
876
|
"description": "codex-mini-latest는 o4-mini의 미세 조정 버전으로, Codex CLI 전용입니다. API를 통해 직접 사용하려면 gpt-4.1부터 시작하는 것을 권장합니다."
|
|
871
877
|
},
|
|
878
|
+
"cogito-2.1:671b": {
|
|
879
|
+
"description": "Cogito v2.1 671B는 미국에서 오픈소스로 제공되는 무료 상업용 대형 언어 모델로, 최고 수준의 성능, 높은 토큰 추론 효율, 128k 긴 문맥 처리 및 강력한 종합 능력을 갖추고 있습니다."
|
|
880
|
+
},
|
|
872
881
|
"cogview-4": {
|
|
873
882
|
"description": "CogView-4는 지푸가 처음으로 한자 생성을 지원하는 오픈 소스 텍스트-이미지 생성 모델로, 의미 이해, 이미지 생성 품질, 중영 문자 생성 능력 등 여러 측면에서 전면적으로 향상되었으며, 임의 길이의 중영 이중 언어 입력을 지원하고 주어진 범위 내에서 임의 해상도의 이미지를 생성할 수 있습니다."
|
|
874
883
|
},
|
|
@@ -1139,6 +1148,9 @@
|
|
|
1139
1148
|
"deepseek-vl2-small": {
|
|
1140
1149
|
"description": "DeepSeek VL2 Small, 경량 멀티모달 버전으로, 자원이 제한되거나 고동시 환경에 적합합니다."
|
|
1141
1150
|
},
|
|
1151
|
+
"deepseek/deepseek-chat": {
|
|
1152
|
+
"description": "DeepSeek-V3는 DeepSeek 팀이 개발한 고성능 하이브리드 추론 모델로, 복잡한 작업 및 도구 통합에 적합합니다."
|
|
1153
|
+
},
|
|
1142
1154
|
"deepseek/deepseek-chat-v3-0324": {
|
|
1143
1155
|
"description": "DeepSeek V3는 685B 매개변수를 가진 전문가 혼합 모델로, DeepSeek 팀의 플래그십 채팅 모델 시리즈의 최신 반복입니다.\n\n이 모델은 [DeepSeek V3](/deepseek/deepseek-chat-v3) 모델을 계승하며 다양한 작업에서 뛰어난 성능을 보입니다."
|
|
1144
1156
|
},
|
|
@@ -1146,13 +1158,13 @@
|
|
|
1146
1158
|
"description": "DeepSeek V3는 685B 매개변수를 가진 전문가 혼합 모델로, DeepSeek 팀의 플래그십 채팅 모델 시리즈의 최신 반복입니다.\n\n이 모델은 [DeepSeek V3](/deepseek/deepseek-chat-v3) 모델을 계승하며 다양한 작업에서 뛰어난 성능을 보입니다."
|
|
1147
1159
|
},
|
|
1148
1160
|
"deepseek/deepseek-chat-v3.1": {
|
|
1149
|
-
"description": "DeepSeek-V3.1은
|
|
1161
|
+
"description": "DeepSeek-V3.1은 긴 문맥을 지원하는 DeepSeek의 하이브리드 추론 모델로, 사고/비사고 모드와 도구 통합을 지원합니다."
|
|
1150
1162
|
},
|
|
1151
1163
|
"deepseek/deepseek-r1": {
|
|
1152
1164
|
"description": "DeepSeek R1 모델은 소규모 버전 업그레이드를 거쳐 현재 버전은 DeepSeek-R1-0528입니다. 최신 업데이트에서 DeepSeek R1은 증가된 계산 자원과 학습 후 도입된 알고리즘 최적화 메커니즘을 활용하여 추론 깊이와 능력을 크게 향상시켰습니다. 이 모델은 수학, 프로그래밍 및 일반 논리 등 여러 벤치마크에서 뛰어난 성능을 보이며, 전체 성능은 현재 O3 및 Gemini 2.5 Pro와 같은 선도 모델에 근접합니다."
|
|
1153
1165
|
},
|
|
1154
1166
|
"deepseek/deepseek-r1-0528": {
|
|
1155
|
-
"description": "DeepSeek
|
|
1167
|
+
"description": "DeepSeek R1 0528은 DeepSeek의 최신 변형 모델로, 오픈소스 활용성과 깊이 있는 추론에 중점을 두었습니다."
|
|
1156
1168
|
},
|
|
1157
1169
|
"deepseek/deepseek-r1-0528:free": {
|
|
1158
1170
|
"description": "DeepSeek-R1은 매우 적은 라벨 데이터만으로도 모델 추론 능력을 크게 향상시켰습니다. 최종 답변 출력 전에 모델이 사고 과정(chain-of-thought)을 먼저 출력하여 최종 답변의 정확도를 높입니다."
|
|
@@ -1175,6 +1187,9 @@
|
|
|
1175
1187
|
"deepseek/deepseek-r1:free": {
|
|
1176
1188
|
"description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
|
|
1177
1189
|
},
|
|
1190
|
+
"deepseek/deepseek-reasoner": {
|
|
1191
|
+
"description": "DeepSeek-V3 Thinking(reasoner)는 DeepSeek의 실험적 추론 모델로, 고난이도 추론 작업에 적합합니다."
|
|
1192
|
+
},
|
|
1178
1193
|
"deepseek/deepseek-v3": {
|
|
1179
1194
|
"description": "향상된 추론 능력을 갖춘 빠르고 범용적인 대형 언어 모델입니다."
|
|
1180
1195
|
},
|
|
@@ -1523,8 +1538,14 @@
|
|
|
1523
1538
|
"gemini-2.5-pro-preview-06-05": {
|
|
1524
1539
|
"description": "Gemini 2.5 Pro Preview는 구글의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론할 수 있으며, 긴 문맥을 활용해 대규모 데이터셋, 코드베이스 및 문서를 분석합니다."
|
|
1525
1540
|
},
|
|
1541
|
+
"gemini-3-pro-image-preview": {
|
|
1542
|
+
"description": "Gemini 3 Pro Image(Nano Banana Pro)는 Google의 이미지 생성 모델로, 멀티모달 대화를 지원합니다."
|
|
1543
|
+
},
|
|
1544
|
+
"gemini-3-pro-image-preview:image": {
|
|
1545
|
+
"description": "Gemini 3 Pro Image(Nano Banana Pro)는 Google의 이미지 생성 모델로, 멀티모달 대화를 지원합니다."
|
|
1546
|
+
},
|
|
1526
1547
|
"gemini-3-pro-preview": {
|
|
1527
|
-
"description": "Gemini 3 Pro는
|
|
1548
|
+
"description": "Gemini 3 Pro는 세계 최고 수준의 멀티모달 이해 모델로, Google이 개발한 가장 강력한 에이전트 및 분위기 기반 프로그래밍 모델입니다. 풍부한 시각 효과와 깊이 있는 상호작용을 제공하며, 최첨단 추론 능력을 기반으로 합니다."
|
|
1528
1549
|
},
|
|
1529
1550
|
"gemini-flash-latest": {
|
|
1530
1551
|
"description": "Gemini Flash 최신 버전"
|
|
@@ -1650,7 +1671,7 @@
|
|
|
1650
1671
|
"description": "GLM-Zero-Preview는 강력한 복잡한 추론 능력을 갖추고 있으며, 논리 추론, 수학, 프로그래밍 등 분야에서 우수한 성능을 발휘합니다."
|
|
1651
1672
|
},
|
|
1652
1673
|
"google/gemini-2.0-flash": {
|
|
1653
|
-
"description": "Gemini 2.0 Flash는
|
|
1674
|
+
"description": "Gemini 2.0 Flash는 Google의 고성능 추론 모델로, 확장된 멀티모달 작업에 적합합니다."
|
|
1654
1675
|
},
|
|
1655
1676
|
"google/gemini-2.0-flash-001": {
|
|
1656
1677
|
"description": "Gemini 2.0 Flash는 뛰어난 속도, 원주율 도구 사용, 다중 모달 생성 및 1M 토큰 문맥 창을 포함한 차세대 기능과 개선 사항을 제공합니다."
|
|
@@ -1661,14 +1682,23 @@
|
|
|
1661
1682
|
"google/gemini-2.0-flash-lite": {
|
|
1662
1683
|
"description": "Gemini 2.0 Flash Lite는 차세대 기능과 개선된 성능을 제공하며, 뛰어난 속도, 내장 도구 사용, 멀티모달 생성 및 100만 토큰의 컨텍스트 윈도우를 지원합니다."
|
|
1663
1684
|
},
|
|
1685
|
+
"google/gemini-2.0-flash-lite-001": {
|
|
1686
|
+
"description": "Gemini 2.0 Flash Lite는 Gemini 시리즈의 경량 버전으로, 기본적으로 사고 기능이 비활성화되어 지연 시간과 비용 효율이 향상되며, 매개변수를 통해 활성화할 수 있습니다."
|
|
1687
|
+
},
|
|
1664
1688
|
"google/gemini-2.5-flash": {
|
|
1665
|
-
"description": "Gemini 2.5 Flash
|
|
1689
|
+
"description": "Gemini 2.5 Flash(Lite/Pro/Flash) 시리즈는 Google의 중저지연부터 고성능까지 아우르는 추론 모델입니다."
|
|
1690
|
+
},
|
|
1691
|
+
"google/gemini-2.5-flash-image": {
|
|
1692
|
+
"description": "Gemini 2.5 Flash Image(Nano Banana)는 Google의 이미지 생성 모델로, 멀티모달 대화를 지원합니다."
|
|
1693
|
+
},
|
|
1694
|
+
"google/gemini-2.5-flash-image-free": {
|
|
1695
|
+
"description": "Gemini 2.5 Flash Image 무료 버전은 제한된 용량의 멀티모달 생성을 지원합니다."
|
|
1666
1696
|
},
|
|
1667
1697
|
"google/gemini-2.5-flash-image-preview": {
|
|
1668
1698
|
"description": "Gemini 2.5 Flash 실험 모델로, 이미지 생성을 지원합니다."
|
|
1669
1699
|
},
|
|
1670
1700
|
"google/gemini-2.5-flash-lite": {
|
|
1671
|
-
"description": "Gemini 2.5 Flash
|
|
1701
|
+
"description": "Gemini 2.5 Flash Lite는 Gemini 2.5의 경량 버전으로, 지연 시간과 비용을 최적화하여 고처리량 환경에 적합합니다."
|
|
1672
1702
|
},
|
|
1673
1703
|
"google/gemini-2.5-flash-preview": {
|
|
1674
1704
|
"description": "Gemini 2.5 Flash는 Google의 최첨단 주력 모델로, 고급 추론, 코딩, 수학 및 과학 작업을 위해 설계되었습니다. 내장된 '사고' 능력을 포함하고 있어 더 높은 정확성과 세밀한 맥락 처리를 통해 응답을 제공합니다.\n\n주의: 이 모델에는 두 가지 변형이 있습니다: 사고 및 비사고. 출력 가격은 사고 능력이 활성화되었는지 여부에 따라 크게 다릅니다. 표준 변형(‘:thinking’ 접미사가 없는)을 선택하면 모델이 사고 토큰 생성을 명확히 피합니다.\n\n사고 능력을 활용하고 사고 토큰을 수신하려면 ‘:thinking’ 변형을 선택해야 하며, 이는 더 높은 사고 출력 가격을 발생시킵니다.\n\n또한, Gemini 2.5 Flash는 문서에 설명된 대로 '추론 최대 토큰 수' 매개변수를 통해 구성할 수 있습니다 (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
|
@@ -1677,11 +1707,23 @@
|
|
|
1677
1707
|
"description": "Gemini 2.5 Flash는 Google의 최첨단 주력 모델로, 고급 추론, 코딩, 수학 및 과학 작업을 위해 설계되었습니다. 내장된 '사고' 능력을 포함하고 있어 더 높은 정확성과 세밀한 맥락 처리를 통해 응답을 제공합니다.\n\n주의: 이 모델에는 두 가지 변형이 있습니다: 사고 및 비사고. 출력 가격은 사고 능력이 활성화되었는지 여부에 따라 크게 다릅니다. 표준 변형(‘:thinking’ 접미사가 없는)을 선택하면 모델이 사고 토큰 생성을 명확히 피합니다.\n\n사고 능력을 활용하고 사고 토큰을 수신하려면 ‘:thinking’ 변형을 선택해야 하며, 이는 더 높은 사고 출력 가격을 발생시킵니다.\n\n또한, Gemini 2.5 Flash는 문서에 설명된 대로 '추론 최대 토큰 수' 매개변수를 통해 구성할 수 있습니다 (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
|
|
1678
1708
|
},
|
|
1679
1709
|
"google/gemini-2.5-pro": {
|
|
1680
|
-
"description": "Gemini 2.5 Pro는
|
|
1710
|
+
"description": "Gemini 2.5 Pro는 Google의 플래그십 추론 모델로, 긴 문맥과 복잡한 작업을 지원합니다."
|
|
1711
|
+
},
|
|
1712
|
+
"google/gemini-2.5-pro-free": {
|
|
1713
|
+
"description": "Gemini 2.5 Pro 무료 버전은 제한된 용량의 멀티모달 긴 문맥을 지원하며, 체험 및 경량 워크플로우에 적합합니다."
|
|
1681
1714
|
},
|
|
1682
1715
|
"google/gemini-2.5-pro-preview": {
|
|
1683
1716
|
"description": "Gemini 2.5 Pro Preview는 Google의 최첨단 사고 모델로, 코드, 수학 및 STEM 분야의 복잡한 문제를 추론할 수 있으며, 긴 문맥을 사용하여 대규모 데이터 세트, 코드베이스 및 문서를 분석할 수 있습니다."
|
|
1684
1717
|
},
|
|
1718
|
+
"google/gemini-3-pro-image-preview-free": {
|
|
1719
|
+
"description": "Gemini 3 Pro Image 무료 버전은 제한된 용량의 멀티모달 생성을 지원합니다."
|
|
1720
|
+
},
|
|
1721
|
+
"google/gemini-3-pro-preview": {
|
|
1722
|
+
"description": "Gemini 3 Pro는 Gemini 시리즈의 차세대 멀티모달 추론 모델로, 텍스트, 오디오, 이미지, 비디오 등 다양한 입력을 이해하고 복잡한 작업 및 대규모 코드베이스를 처리할 수 있습니다."
|
|
1723
|
+
},
|
|
1724
|
+
"google/gemini-3-pro-preview-free": {
|
|
1725
|
+
"description": "Gemini 3 Pro 무료 프리뷰 버전은 표준 버전과 동일한 멀티모달 이해 및 추론 능력을 갖추고 있으나, 무료 용량 및 속도 제한이 있어 체험 및 저빈도 사용에 적합합니다."
|
|
1726
|
+
},
|
|
1685
1727
|
"google/gemini-embedding-001": {
|
|
1686
1728
|
"description": "최첨단 임베딩 모델로, 영어, 다국어 및 코드 작업에서 뛰어난 성능을 보입니다."
|
|
1687
1729
|
},
|
|
@@ -2057,21 +2099,36 @@
|
|
|
2057
2099
|
"inception/mercury-coder-small": {
|
|
2058
2100
|
"description": "Mercury Coder Small은 코드 생성, 디버깅 및 리팩토링 작업에 이상적이며, 최소 지연 시간을 자랑합니다."
|
|
2059
2101
|
},
|
|
2060
|
-
"inclusionAI/Ling-1T": {
|
|
2061
|
-
"description": "Ling-1T는 'Ling 2.0' 시리즈의 첫 번째 플래그십 non-thinking 모델로, 총 1조 개의 파라미터와 토큰당 약 500억 개의 활성 파라미터를 보유하고 있습니다. Ling 2.0 아키텍처를 기반으로 구축되었으며, 효율적인 추론과 확장 가능한 인지 능력의 한계를 돌파하는 것을 목표로 합니다. Ling-1T-base는 200조 개 이상의 고품질 추론 중심 토큰으로 학습되었습니다."
|
|
2062
|
-
},
|
|
2063
2102
|
"inclusionAI/Ling-flash-2.0": {
|
|
2064
2103
|
"description": "Ling-flash-2.0은 앤트 그룹 백령 팀이 발표한 Ling 2.0 아키텍처 시리즈의 세 번째 모델입니다. 혼합 전문가(MoE) 모델로 총 파라미터 수는 1000억에 달하지만, 각 토큰당 61억 파라미터만 활성화(비임베딩 48억)됩니다. 경량 구성 모델로서 여러 권위 있는 평가에서 400억 규모의 밀집(Dense) 모델 및 더 큰 규모의 MoE 모델과 견줄 만한 성능을 보여줍니다. 이 모델은 '대형 모델 = 대형 파라미터'라는 공감대 하에 극대화된 아키텍처 설계와 학습 전략을 통해 고효율 경로를 탐색하는 것을 목표로 합니다."
|
|
2065
2104
|
},
|
|
2066
2105
|
"inclusionAI/Ling-mini-2.0": {
|
|
2067
2106
|
"description": "Ling-mini-2.0은 MoE 아키텍처 기반의 소형 고성능 대형 언어 모델입니다. 총 160억 파라미터를 보유하지만 각 토큰당 14억(비임베딩 7억 8천 9백만) 파라미터만 활성화하여 매우 빠른 생성 속도를 실현합니다. 효율적인 MoE 설계와 대규모 고품질 학습 데이터 덕분에, 활성화 파라미터가 14억에 불과함에도 불구하고 Ling-mini-2.0은 하위 작업에서 100억 이하의 밀집 LLM 및 더 큰 규모의 MoE 모델과 견줄 수 있는 최상위 성능을 보여줍니다."
|
|
2068
2107
|
},
|
|
2069
|
-
"inclusionAI/Ring-1T": {
|
|
2070
|
-
"description": "Ring-1T는 백링(Bailing) 팀이 공개한 1조 파라미터 규모의 오픈소스 사고 모델입니다. Ling 2.0 아키텍처와 Ling-1T-base 모델을 기반으로 학습되었으며, 총 파라미터 수는 1조, 활성 파라미터는 500억 개에 달합니다. 최대 128K의 컨텍스트 윈도우를 지원하며, 대규모 검증 가능한 보상 강화 학습을 통해 최적화되었습니다."
|
|
2071
|
-
},
|
|
2072
2108
|
"inclusionAI/Ring-flash-2.0": {
|
|
2073
2109
|
"description": "Ring-flash-2.0은 Ling-flash-2.0-base를 기반으로 깊이 최적화된 고성능 사고 모델입니다. 혼합 전문가(MoE) 아키텍처를 채택하여 총 1000억 파라미터를 보유하지만, 추론 시에는 61억 파라미터만 활성화합니다. 독창적인 icepop 알고리즘을 통해 MoE 대형 모델의 강화 학습(RL) 훈련 중 불안정성 문제를 해결하여 복잡한 추론 능력을 장기 훈련 동안 지속적으로 향상시켰습니다. 수학 경시대회, 코드 생성, 논리 추론 등 여러 고난도 벤치마크에서 뛰어난 성과를 거두었으며, 400억 파라미터 이하의 최상위 밀집 모델을 능가하고 더 큰 규모의 오픈소스 MoE 모델 및 폐쇄형 고성능 사고 모델과 견줄 만한 성능을 자랑합니다. 복잡한 추론에 집중하면서도 창의적 글쓰기 작업에서도 우수한 성능을 보입니다. 또한 효율적인 아키텍처 설계 덕분에 강력한 성능과 함께 고속 추론을 실현하여 고부하 환경에서 사고 모델의 배포 비용을 크게 절감합니다."
|
|
2074
2110
|
},
|
|
2111
|
+
"inclusionai/ling-1t": {
|
|
2112
|
+
"description": "Ling-1T는 inclusionAI의 1T MoE 대형 모델로, 고강도 추론 작업과 대규모 문맥에 최적화되어 있습니다."
|
|
2113
|
+
},
|
|
2114
|
+
"inclusionai/ling-flash-2.0": {
|
|
2115
|
+
"description": "Ling-flash-2.0은 inclusionAI의 MoE 모델로, 효율성과 추론 성능을 최적화하여 중대형 작업에 적합합니다."
|
|
2116
|
+
},
|
|
2117
|
+
"inclusionai/ling-mini-2.0": {
|
|
2118
|
+
"description": "Ling-mini-2.0은 inclusionAI의 경량화된 MoE 모델로, 추론 능력을 유지하면서도 비용을 크게 절감합니다."
|
|
2119
|
+
},
|
|
2120
|
+
"inclusionai/ming-flash-omini-preview": {
|
|
2121
|
+
"description": "Ming-flash-omni Preview는 inclusionAI의 멀티모달 모델로, 음성, 이미지, 비디오 입력을 지원하며 이미지 렌더링 및 음성 인식 능력을 최적화했습니다."
|
|
2122
|
+
},
|
|
2123
|
+
"inclusionai/ring-1t": {
|
|
2124
|
+
"description": "Ring-1T는 inclusionAI의 조 단위 파라미터를 가진 MoE 사고 모델로, 대규모 추론 및 연구 중심 작업에 적합합니다."
|
|
2125
|
+
},
|
|
2126
|
+
"inclusionai/ring-flash-2.0": {
|
|
2127
|
+
"description": "Ring-flash-2.0은 고처리량 환경을 위한 inclusionAI의 Ring 모델 변형으로, 속도와 비용 효율성을 강조합니다."
|
|
2128
|
+
},
|
|
2129
|
+
"inclusionai/ring-mini-2.0": {
|
|
2130
|
+
"description": "Ring-mini-2.0은 inclusionAI의 고처리량 경량화 MoE 버전으로, 동시 처리 환경에 주로 사용됩니다."
|
|
2131
|
+
},
|
|
2075
2132
|
"internlm/internlm2_5-7b-chat": {
|
|
2076
2133
|
"description": "InternLM2.5는 다양한 시나리오에서 스마트 대화 솔루션을 제공합니다."
|
|
2077
2134
|
},
|
|
@@ -2123,6 +2180,12 @@
|
|
|
2123
2180
|
"kimi-k2-instruct": {
|
|
2124
2181
|
"description": "Kimi K2 Instruct, Kimi 공식 추론 모델로, 장기 컨텍스트, 코드, 질의응답 등 다양한 시나리오를 지원합니다."
|
|
2125
2182
|
},
|
|
2183
|
+
"kimi-k2-thinking": {
|
|
2184
|
+
"description": "K2 장기 사고 모델은 256k 문맥을 지원하며, 다단계 도구 호출과 사고를 통해 복잡한 문제 해결에 능숙합니다."
|
|
2185
|
+
},
|
|
2186
|
+
"kimi-k2-thinking-turbo": {
|
|
2187
|
+
"description": "K2 장기 사고 모델의 고속 버전으로, 256k 문맥을 지원하며, 심층 추론에 능하고 초당 60~100 토큰의 출력 속도를 자랑합니다."
|
|
2188
|
+
},
|
|
2126
2189
|
"kimi-k2-turbo-preview": {
|
|
2127
2190
|
"description": "kimi-k2는 강력한 코드 처리 및 에이전트(Agent) 기능을 갖춘 MoE(혼합 전문가) 아키텍처 기반 모델로, 총 파라미터 수는 1T(1조), 활성화 파라미터는 32B(320억)입니다. 일반 지식 추론, 프로그래밍, 수학, 에이전트 등 주요 분야의 벤치마크 성능 테스트에서 K2 모델은 다른 주요 오픈 소스 모델들을 능가합니다."
|
|
2128
2191
|
},
|
|
@@ -2135,6 +2198,9 @@
|
|
|
2135
2198
|
"kimi-thinking-preview": {
|
|
2136
2199
|
"description": "kimi-thinking-preview 모델은 월면의 어두운 면에서 제공하는 다중 모달 추론 능력과 범용 추론 능력을 갖춘 다중 모달 사고 모델로, 심층 추론에 능하며 더 어렵고 복잡한 문제 해결을 돕습니다."
|
|
2137
2200
|
},
|
|
2201
|
+
"kuaishou/kat-coder-pro-v1": {
|
|
2202
|
+
"description": "KAT-Coder-Pro-V1(한시적 무료)은 코드 이해 및 자동화 프로그래밍에 특화되어 있으며, 효율적인 프로그래밍 에이전트 작업에 사용됩니다."
|
|
2203
|
+
},
|
|
2138
2204
|
"learnlm-1.5-pro-experimental": {
|
|
2139
2205
|
"description": "LearnLM은 학습 과학 원칙에 맞춰 훈련된 실험적이고 특정 작업에 특화된 언어 모델로, 교육 및 학습 환경에서 시스템 지침을 따르며 전문가 멘토 역할을 수행합니다."
|
|
2140
2206
|
},
|
|
@@ -2466,7 +2532,7 @@
|
|
|
2466
2532
|
"description": "MiniMax M2는 코딩 및 에이전트 워크플로우를 위해 설계된 효율적인 대형 언어 모델입니다."
|
|
2467
2533
|
},
|
|
2468
2534
|
"minimax/minimax-m2": {
|
|
2469
|
-
"description": "
|
|
2535
|
+
"description": "MiniMax-M2는 코딩 및 에이전트 작업에서 뛰어난 성능을 보이는 고성능 대비 가성비 모델로, 다양한 엔지니어링 환경에 적합합니다."
|
|
2470
2536
|
},
|
|
2471
2537
|
"minimaxai/minimax-m2": {
|
|
2472
2538
|
"description": "MiniMax-M2는 2,300억 개의 총 파라미터와 100억 개의 활성 파라미터를 갖춘 컴팩트하고 빠르며 경제적인 혼합 전문가(MoE) 모델로, 코딩 및 에이전트 작업에서 최고의 성능을 발휘하도록 설계되었으며, 강력한 범용 인공지능을 유지합니다. 이 모델은 다중 파일 편집, 코드 실행-수정의 루프, 테스트 기반 검증 및 수정, 복잡한 장기 연결 툴체인 등에서 뛰어난 성능을 보여주며, 개발자 워크플로우에 이상적인 선택입니다."
|
|
@@ -2615,12 +2681,21 @@
|
|
|
2615
2681
|
"moonshotai/kimi-k2": {
|
|
2616
2682
|
"description": "Kimi K2는 Moonshot AI가 개발한 대규모 혼합 전문가(MoE) 언어 모델로, 총 1조 매개변수와 한 번의 순전파당 320억 활성 매개변수를 갖추고 있습니다. 고급 도구 사용, 추론 및 코드 합성을 포함한 에이전트 능력에 최적화되어 있습니다."
|
|
2617
2683
|
},
|
|
2684
|
+
"moonshotai/kimi-k2-0711": {
|
|
2685
|
+
"description": "Kimi K2 0711은 Kimi 시리즈의 Instruct 버전으로, 고품질 코드 및 도구 호출 환경에 적합합니다."
|
|
2686
|
+
},
|
|
2618
2687
|
"moonshotai/kimi-k2-0905": {
|
|
2619
|
-
"description": "
|
|
2688
|
+
"description": "Kimi K2 0905는 Kimi 시리즈의 0905 업데이트 버전으로, 문맥 길이와 추론 성능이 향상되었으며, 코딩 환경에 최적화되었습니다."
|
|
2620
2689
|
},
|
|
2621
2690
|
"moonshotai/kimi-k2-instruct-0905": {
|
|
2622
2691
|
"description": "kimi-k2-0905-preview 모델은 256k 문맥 길이를 가지며, 더욱 강력한 에이전틱 코딩(Agentic Coding) 능력, 뛰어난 프론트엔드 코드의 미적 감각과 실용성, 그리고 향상된 문맥 이해 능력을 갖추고 있습니다."
|
|
2623
2692
|
},
|
|
2693
|
+
"moonshotai/kimi-k2-thinking": {
|
|
2694
|
+
"description": "Kimi K2 Thinking은 Moonshot이 심층 추론 작업을 위해 최적화한 사고 모델로, 범용 에이전트 기능을 갖추고 있습니다."
|
|
2695
|
+
},
|
|
2696
|
+
"moonshotai/kimi-k2-thinking-turbo": {
|
|
2697
|
+
"description": "Kimi K2 Thinking Turbo는 Kimi K2 Thinking의 고속 버전으로, 심층 추론 능력을 유지하면서 응답 지연을 크게 줄였습니다."
|
|
2698
|
+
},
|
|
2624
2699
|
"morph/morph-v3-fast": {
|
|
2625
2700
|
"description": "Morph는 Claude 또는 GPT-4o와 같은 최첨단 모델이 제안하는 코드 변경 사항을 기존 코드 파일에 빠르게 적용하는 전문 AI 모델입니다. 초당 4500+ 토큰 처리 속도를 자랑하며, AI 코딩 워크플로우의 마지막 단계를 담당합니다. 16k 입력 토큰과 16k 출력 토큰을 지원합니다."
|
|
2626
2701
|
},
|
|
@@ -2702,30 +2777,14 @@
|
|
|
2702
2777
|
"openai/gpt-4-turbo": {
|
|
2703
2778
|
"description": "OpenAI의 gpt-4-turbo는 광범위한 일반 지식과 도메인 전문성을 갖추어 자연어의 복잡한 지시를 따르고 어려운 문제를 정확히 해결할 수 있습니다. 지식 컷오프는 2023년 4월이며, 컨텍스트 윈도우는 128,000 토큰입니다."
|
|
2704
2779
|
},
|
|
2705
|
-
"openai/gpt-4.1": {
|
|
2706
|
-
|
|
2707
|
-
},
|
|
2708
|
-
"openai/gpt-
|
|
2709
|
-
|
|
2710
|
-
},
|
|
2711
|
-
"openai/gpt-
|
|
2712
|
-
|
|
2713
|
-
},
|
|
2714
|
-
"openai/gpt-4o": {
|
|
2715
|
-
"description": "OpenAI의 GPT-4o는 광범위한 일반 지식과 도메인 전문성을 갖추어 자연어의 복잡한 지시를 따르고 어려운 문제를 정확히 해결할 수 있습니다. GPT-4 Turbo와 동등한 성능을 더 빠르고 저렴한 API로 제공합니다."
|
|
2716
|
-
},
|
|
2717
|
-
"openai/gpt-4o-mini": {
|
|
2718
|
-
"description": "OpenAI의 GPT-4o mini는 가장 진보되고 비용 효율적인 소형 모델입니다. 멀티모달(텍스트 또는 이미지 입력을 받아 텍스트 출력)이며, gpt-3.5-turbo보다 더 높은 지능을 가지면서도 동일한 속도를 유지합니다."
|
|
2719
|
-
},
|
|
2720
|
-
"openai/gpt-5": {
|
|
2721
|
-
"description": "GPT-5는 OpenAI의 플래그십 언어 모델로, 복잡한 추론, 광범위한 현실 세계 지식, 코드 집약적 및 다단계 에이전트 작업에서 뛰어난 성능을 보입니다."
|
|
2722
|
-
},
|
|
2723
|
-
"openai/gpt-5-mini": {
|
|
2724
|
-
"description": "GPT-5 mini는 비용 최적화된 모델로, 추론 및 채팅 작업에서 우수한 성능을 보이며 속도, 비용 및 능력 사이에서 최적의 균형을 제공합니다."
|
|
2725
|
-
},
|
|
2726
|
-
"openai/gpt-5-nano": {
|
|
2727
|
-
"description": "GPT-5 nano는 높은 처리량을 제공하는 모델로, 간단한 지시나 분류 작업에 적합합니다."
|
|
2728
|
-
},
|
|
2780
|
+
"openai/gpt-4.1": {},
|
|
2781
|
+
"openai/gpt-4.1-mini": {},
|
|
2782
|
+
"openai/gpt-4.1-nano": {},
|
|
2783
|
+
"openai/gpt-4o": {},
|
|
2784
|
+
"openai/gpt-4o-mini": {},
|
|
2785
|
+
"openai/gpt-5": {},
|
|
2786
|
+
"openai/gpt-5-mini": {},
|
|
2787
|
+
"openai/gpt-5-nano": {},
|
|
2729
2788
|
"openai/gpt-oss-120b": {
|
|
2730
2789
|
"description": "강력하고 제어 가능한 추론 능력을 갖춘 매우 유능한 범용 대형 언어 모델입니다."
|
|
2731
2790
|
},
|
|
@@ -2750,9 +2809,7 @@
|
|
|
2750
2809
|
"openai/o3-mini-high": {
|
|
2751
2810
|
"description": "o3-mini 고급 추론 버전은 o1-mini와 동일한 비용 및 지연 목표에서 높은 지능을 제공합니다."
|
|
2752
2811
|
},
|
|
2753
|
-
"openai/o4-mini": {
|
|
2754
|
-
"description": "OpenAI의 o4-mini는 빠르고 비용 효율적인 추론을 제공하며, 특히 수학(AIME 벤치마크 최고 성능), 코딩 및 시각 작업에서 뛰어난 성능을 보입니다."
|
|
2755
|
-
},
|
|
2812
|
+
"openai/o4-mini": {},
|
|
2756
2813
|
"openai/o4-mini-high": {
|
|
2757
2814
|
"description": "o4-mini 고급 추론 버전으로, 빠르고 효율적인 추론을 위해 최적화되어 있으며, 코딩 및 시각적 작업에서 매우 높은 효율성과 성능을 자랑합니다."
|
|
2758
2815
|
},
|
|
@@ -2954,9 +3011,7 @@
|
|
|
2954
3011
|
"qwen/qwen2.5-coder-7b-instruct": {
|
|
2955
3012
|
"description": "32K 컨텍스트 길이를 지원하는 강력한 중형 코드 모델로, 다국어 프로그래밍에 능숙합니다."
|
|
2956
3013
|
},
|
|
2957
|
-
"qwen/qwen3-14b": {
|
|
2958
|
-
"description": "Qwen3-14B는 Qwen3 시리즈의 밀집형 148억 매개변수 인과 언어 모델로, 복잡한 추론과 효율적인 대화를 위해 설계되었습니다. 수학, 프로그래밍 및 논리 추론과 같은 작업을 위한 '사고' 모드와 일반 대화를 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 지침 준수, 에이전트 도구 사용, 창의적 글쓰기 및 100개 이상의 언어와 방언에서의 다국어 작업을 위해 미세 조정되었습니다. 기본적으로 32K 토큰 컨텍스트를 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
|
|
2959
|
-
},
|
|
3014
|
+
"qwen/qwen3-14b": {},
|
|
2960
3015
|
"qwen/qwen3-14b:free": {
|
|
2961
3016
|
"description": "Qwen3-14B는 Qwen3 시리즈의 밀집형 148억 매개변수 인과 언어 모델로, 복잡한 추론과 효율적인 대화를 위해 설계되었습니다. 수학, 프로그래밍 및 논리 추론과 같은 작업을 위한 '사고' 모드와 일반 대화를 위한 '비사고' 모드 간의 원활한 전환을 지원합니다. 이 모델은 지침 준수, 에이전트 도구 사용, 창의적 글쓰기 및 100개 이상의 언어와 방언에서의 다국어 작업을 위해 미세 조정되었습니다. 기본적으로 32K 토큰 컨텍스트를 처리하며, YaRN 기반 확장을 통해 131K 토큰으로 확장할 수 있습니다."
|
|
2962
3017
|
},
|
|
@@ -3275,9 +3330,6 @@
|
|
|
3275
3330
|
"step-r1-v-mini": {
|
|
3276
3331
|
"description": "이 모델은 강력한 이미지 이해 능력을 갖춘 추론 대모델로, 이미지와 텍스트 정보를 처리하며, 깊은 사고 후 텍스트를 생성합니다. 이 모델은 시각적 추론 분야에서 두드러진 성능을 보이며, 1차 대열의 수학, 코드, 텍스트 추론 능력을 갖추고 있습니다. 문맥 길이는 100k입니다."
|
|
3277
3332
|
},
|
|
3278
|
-
"step3": {
|
|
3279
|
-
"description": "Step3는 Jieyue Xingchen에서 출시한 멀티모달 모델로, 강력한 시각 이해 능력을 갖추고 있습니다."
|
|
3280
|
-
},
|
|
3281
3333
|
"stepfun-ai/step3": {
|
|
3282
3334
|
"description": "Step3은 StepFun(중국명: 阶跃星辰)이 발표한 최첨단 멀티모달 추론 모델로, 총 321B의 파라미터와 38B의 활성화 파라미터를 가진 전문가 혼합(MoE) 아키텍처를 기반으로 합니다. 이 모델은 엔드투엔드 설계를 채택해 디코딩 비용을 최소화하는 동시에 시각-언어 추론에서 최상급 성능을 제공합니다. 다중 행렬 분해 어텐션(MFA)과 어텐션-FFN 디커플링(AFD)의 결합 설계를 통해 Step3은 플래그십급 및 저사양 가속기 모두에서 탁월한 효율을 유지합니다. 사전학습 단계에서 Step3은 20조개 이상의 텍스트 토큰(20T)과 4조개 이상의 이미지-텍스트 혼합 토큰(4T)을 처리했으며, 10여 개 언어를 포괄합니다. 이 모델은 수학, 코드 및 멀티모달을 포함한 여러 벤치마크에서 오픈소스 모델 중 선도적인 수준의 성능을 달성했습니다."
|
|
3283
3335
|
},
|
|
@@ -3386,12 +3438,8 @@
|
|
|
3386
3438
|
"wizardlm2:8x22b": {
|
|
3387
3439
|
"description": "WizardLM 2는 Microsoft AI에서 제공하는 언어 모델로, 복잡한 대화, 다국어, 추론 및 스마트 어시스턴트 분야에서 특히 뛰어난 성능을 발휘합니다."
|
|
3388
3440
|
},
|
|
3389
|
-
"x-ai/grok-4-fast": {
|
|
3390
|
-
|
|
3391
|
-
},
|
|
3392
|
-
"x-ai/grok-code-fast-1": {
|
|
3393
|
-
"description": "grok-code-fast-1을 출시하게 되어 기쁩니다. 이 모델은 빠르고 경제적인 추론 성능을 제공하며, 에이전트 기반 코딩 작업에서 탁월한 성능을 보입니다."
|
|
3394
|
-
},
|
|
3441
|
+
"x-ai/grok-4-fast": {},
|
|
3442
|
+
"x-ai/grok-code-fast-1": {},
|
|
3395
3443
|
"x1": {
|
|
3396
3444
|
"description": "Spark X1 모델은 추가 업그레이드를 통해 기존의 수학 과제에서 국내 선두를 유지하며, 추론, 텍스트 생성, 언어 이해 등 일반 과제에서 OpenAI o1 및 DeepSeek R1과 동등한 성과를 달성합니다."
|
|
3397
3445
|
},
|
|
@@ -3452,9 +3500,7 @@
|
|
|
3452
3500
|
"yi-vision-v2": {
|
|
3453
3501
|
"description": "복잡한 시각적 작업 모델로, 여러 이미지를 기반으로 한 고성능 이해 및 분석 능력을 제공합니다."
|
|
3454
3502
|
},
|
|
3455
|
-
"z-ai/glm-4.6": {
|
|
3456
|
-
"description": "Zhipu의 최신 플래그십 모델 GLM-4.6은 고급 코딩, 장문 처리, 추론 및 에이전트 능력에서 전 세대를 뛰어넘는 성능을 자랑합니다."
|
|
3457
|
-
},
|
|
3503
|
+
"z-ai/glm-4.6": {},
|
|
3458
3504
|
"zai-org/GLM-4.5": {
|
|
3459
3505
|
"description": "GLM-4.5는 에이전트 애플리케이션을 위해 설계된 기본 모델로, 혼합 전문가(Mixture-of-Experts) 아키텍처를 사용합니다. 도구 호출, 웹 브라우징, 소프트웨어 엔지니어링, 프론트엔드 프로그래밍 분야에서 깊이 최적화되었으며, Claude Code, Roo Code 등 코드 에이전트에 원활히 통합될 수 있습니다. GLM-4.5는 혼합 추론 모드를 채택하여 복잡한 추론과 일상 사용 등 다양한 응용 시나리오에 적응할 수 있습니다."
|
|
3460
3506
|
},
|
|
@@ -191,6 +191,9 @@
|
|
|
191
191
|
"xinference": {
|
|
192
192
|
"description": "Xorbits 추론(Xinference)은 다양한 AI 모델의 실행 및 통합을 단순화하기 위한 오픈소스 플랫폼입니다. Xinference를 사용하면 클라우드 또는 로컬 환경에서 오픈소스 LLM, 임베딩 모델 및 멀티모달 모델을 활용하여 추론을 실행하고 강력한 AI 애플리케이션을 구축할 수 있습니다."
|
|
193
193
|
},
|
|
194
|
+
"zenmux": {
|
|
195
|
+
"description": "ZenMux는 OpenAI, Anthropic, Google VertexAI 등 다양한 주요 AI 서비스 인터페이스를 지원하는 통합 AI 서비스 집약 플랫폼입니다. 유연한 라우팅 기능을 제공하여 다양한 AI 모델을 손쉽게 전환하고 관리할 수 있습니다."
|
|
196
|
+
},
|
|
194
197
|
"zeroone": {
|
|
195
198
|
"description": "01.AI는 AI 2.0 시대의 인공지능 기술에 집중하며, '인간 + 인공지능'의 혁신과 응용을 적극적으로 추진하고, 초강력 모델과 고급 AI 기술을 활용하여 인간의 생산성을 향상시키고 기술의 힘을 실현합니다."
|
|
196
199
|
},
|
package/locales/nl-NL/image.json
CHANGED