@lobehub/lobehub 2.0.0-next.104 → 2.0.0-next.106

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/apps/desktop/package.json +2 -2
  3. package/changelog/v1.json +14 -0
  4. package/locales/ar/image.json +8 -0
  5. package/locales/ar/models.json +110 -64
  6. package/locales/ar/providers.json +3 -0
  7. package/locales/bg-BG/image.json +8 -0
  8. package/locales/bg-BG/models.json +98 -68
  9. package/locales/bg-BG/providers.json +3 -0
  10. package/locales/de-DE/image.json +8 -0
  11. package/locales/de-DE/models.json +176 -38
  12. package/locales/de-DE/providers.json +3 -0
  13. package/locales/en-US/image.json +8 -0
  14. package/locales/en-US/models.json +176 -38
  15. package/locales/en-US/providers.json +3 -0
  16. package/locales/es-ES/image.json +8 -0
  17. package/locales/es-ES/models.json +176 -38
  18. package/locales/es-ES/providers.json +3 -0
  19. package/locales/fa-IR/image.json +8 -0
  20. package/locales/fa-IR/models.json +110 -64
  21. package/locales/fa-IR/providers.json +3 -0
  22. package/locales/fr-FR/image.json +8 -0
  23. package/locales/fr-FR/models.json +110 -64
  24. package/locales/fr-FR/providers.json +3 -0
  25. package/locales/it-IT/image.json +8 -0
  26. package/locales/it-IT/models.json +176 -38
  27. package/locales/it-IT/providers.json +3 -0
  28. package/locales/ja-JP/image.json +8 -0
  29. package/locales/ja-JP/models.json +110 -64
  30. package/locales/ja-JP/providers.json +3 -0
  31. package/locales/ko-KR/image.json +8 -0
  32. package/locales/ko-KR/models.json +110 -64
  33. package/locales/ko-KR/providers.json +3 -0
  34. package/locales/nl-NL/image.json +8 -0
  35. package/locales/nl-NL/models.json +176 -38
  36. package/locales/nl-NL/providers.json +3 -0
  37. package/locales/pl-PL/image.json +8 -0
  38. package/locales/pl-PL/models.json +110 -64
  39. package/locales/pl-PL/providers.json +3 -0
  40. package/locales/pt-BR/image.json +8 -0
  41. package/locales/pt-BR/models.json +176 -38
  42. package/locales/pt-BR/providers.json +3 -0
  43. package/locales/ru-RU/image.json +8 -0
  44. package/locales/ru-RU/models.json +98 -68
  45. package/locales/ru-RU/providers.json +3 -0
  46. package/locales/tr-TR/image.json +8 -0
  47. package/locales/tr-TR/models.json +110 -64
  48. package/locales/tr-TR/providers.json +3 -0
  49. package/locales/vi-VN/image.json +8 -0
  50. package/locales/vi-VN/models.json +176 -38
  51. package/locales/vi-VN/providers.json +3 -0
  52. package/locales/zh-CN/image.json +8 -0
  53. package/locales/zh-CN/models.json +179 -38
  54. package/locales/zh-CN/providers.json +3 -0
  55. package/locales/zh-TW/image.json +8 -0
  56. package/locales/zh-TW/models.json +176 -38
  57. package/locales/zh-TW/providers.json +3 -0
  58. package/package.json +9 -3
  59. package/packages/database/src/repositories/knowledge/index.ts +5 -8
  60. package/packages/model-bank/src/aiModels/moonshot.ts +46 -0
  61. package/packages/model-runtime/src/core/contextBuilders/openai.ts +1 -1
  62. package/packages/model-runtime/src/providers/moonshot/index.ts +17 -4
  63. package/packages/model-runtime/src/utils/postProcessModelList.ts +15 -13
  64. package/packages/types/src/user/settings/keyVaults.ts +0 -68
  65. package/packages/utils/src/client/parserPlaceholder.ts +1 -1
  66. package/src/services/__tests__/_auth.test.ts +1 -4
  67. package/src/services/_auth.ts +2 -3
  68. package/src/services/_header.ts +1 -8
  69. package/src/store/chat/agents/__tests__/createAgentExecutors/call-llm.test.ts +18 -0
  70. package/src/store/chat/agents/__tests__/createAgentExecutors/call-tool.test.ts +40 -11
  71. package/src/store/chat/agents/__tests__/createAgentExecutors/helpers/assertions.ts +3 -0
  72. package/src/store/chat/agents/__tests__/createAgentExecutors/request-human-approve.test.ts +15 -0
  73. package/src/store/chat/agents/__tests__/createAgentExecutors/resolve-aborted-tools.test.ts +37 -11
  74. package/src/store/chat/agents/createAgentExecutors.ts +22 -13
  75. package/src/store/chat/slices/aiChat/actions/conversationLifecycle.ts +4 -8
  76. package/src/store/chat/slices/builtinTool/actions/__tests__/search.test.ts +16 -2
  77. package/src/store/chat/slices/builtinTool/actions/localSystem.ts +5 -1
  78. package/src/store/chat/slices/builtinTool/actions/search.ts +5 -1
  79. package/src/store/chat/slices/message/actions/publicApi.ts +10 -2
  80. package/src/store/chat/slices/message/actions/query.ts +17 -4
  81. package/src/store/chat/slices/operation/__tests__/selectors.test.ts +93 -5
  82. package/src/store/chat/slices/operation/selectors.ts +16 -3
  83. package/src/store/chat/slices/plugin/actions/optimisticUpdate.ts +24 -18
  84. package/src/store/user/slices/settings/selectors/keyVaults.ts +0 -5
  85. package/src/features/ChatList/Error/AccessCodeForm.tsx +0 -63
  86. package/src/services/__tests__/share.test.ts +0 -61
@@ -720,25 +720,28 @@
720
720
  "description": "Claude 3 Opus is het slimste model van Anthropic met marktleidende prestaties bij zeer complexe taken. Het kan open prompts en ongeziene scenario's met uitstekende vloeiendheid en mensachtige begrip hanteren."
721
721
  },
722
722
  "anthropic/claude-3.5-haiku": {
723
- "description": "Claude 3.5 Haiku is de volgende generatie van ons snelste model. Met een vergelijkbare snelheid als Claude 3 Haiku, is Claude 3.5 Haiku verbeterd in elke vaardigheid en overtreft het in veel intelligentie benchmarks ons vorige grootste model Claude 3 Opus."
723
+ "description": "Claude 3.5 Haiku biedt verbeterde snelheid, nauwkeurigheid in codering en gebruik van tools. Geschikt voor scenario's met hoge eisen aan snelheid en interactie met hulpmiddelen."
724
724
  },
725
725
  "anthropic/claude-3.5-sonnet": {
726
- "description": "Claude 3.5 Sonnet bereikt een ideale balans tussen intelligentie en snelheid, vooral voor bedrijfsworkloads. Het levert krachtige prestaties tegen lagere kosten dan vergelijkbare producten en is ontworpen voor hoge duurzaamheid in grootschalige AI-implementaties."
726
+ "description": "Claude 3.5 Sonnet is een snel en efficiënt model uit de Sonnet-familie, met verbeterde prestaties op het gebied van codering en redeneren. Sommige versies zullen geleidelijk worden vervangen door onder andere Sonnet 3.7."
727
727
  },
728
728
  "anthropic/claude-3.7-sonnet": {
729
- "description": "Claude 3.7 Sonnet is het eerste hybride redeneermodel en het slimste model van Anthropic tot nu toe. Het biedt geavanceerde prestaties in codering, contentgeneratie, data-analyse en planningsopdrachten, voortbouwend op de software-engineering en computergebruikcapaciteiten van zijn voorganger Claude 3.5 Sonnet."
729
+ "description": "Claude 3.7 Sonnet is een geüpgradede versie binnen de Sonnet-serie, met krachtigere redenerings- en coderingsmogelijkheden, geschikt voor complexe taken op ondernemingsniveau."
730
+ },
731
+ "anthropic/claude-haiku-4.5": {
732
+ "description": "Claude Haiku 4.5 is een krachtig en snel model van Anthropic, met extreem lage latentie en hoge nauwkeurigheid."
730
733
  },
731
734
  "anthropic/claude-opus-4": {
732
- "description": "Claude Opus 4 is het krachtigste model van Anthropic tot nu toe en het beste codemodel ter wereld, leidend op SWE-bench (72,5%) en Terminal-bench (43,2%). Het levert consistente prestaties voor langdurige taken die focus en duizenden stappen vereisen, en kan urenlang onafgebroken werken – wat de capaciteiten van AI-agenten aanzienlijk uitbreidt."
735
+ "description": "Opus 4 is het vlaggenschipmodel van Anthropic, ontworpen voor complexe taken en toepassingen op ondernemingsniveau."
733
736
  },
734
737
  "anthropic/claude-opus-4.1": {
735
- "description": "Claude Opus 4.1 is een plug-and-play alternatief voor Opus 4, dat uitstekende prestaties en nauwkeurigheid biedt voor praktische codeer- en agenttaken. Opus 4.1 verhoogt de geavanceerde codeerprestaties tot 74,5% op SWE-bench Verified en behandelt complexe meerstapsproblemen met grotere nauwkeurigheid en aandacht voor detail."
738
+ "description": "Opus 4.1 is een geavanceerd model van Anthropic, geoptimaliseerd voor programmeren, complexe redenering en langdurige taken."
736
739
  },
737
740
  "anthropic/claude-sonnet-4": {
738
- "description": "Claude Sonnet 4 bouwt voort op de toonaangevende capaciteiten van Sonnet 3.7 en blinkt uit in codering met een geavanceerde score van 72,7% op SWE-bench. Het model balanceert prestaties en efficiëntie, geschikt voor interne en externe toepassingen, en biedt grotere controle via verbeterde beheersbaarheid."
741
+ "description": "Claude Sonnet 4 is een hybride redeneermodel van Anthropic, dat zowel denkende als niet-denkende capaciteiten combineert."
739
742
  },
740
743
  "anthropic/claude-sonnet-4.5": {
741
- "description": "Claude Sonnet 4.5 is het slimste model van Anthropic tot nu toe."
744
+ "description": "Claude Sonnet 4.5 is het nieuwste hybride redeneermodel van Anthropic, geoptimaliseerd voor complexe redenering en codering."
742
745
  },
743
746
  "ascend-tribe/pangu-pro-moe": {
744
747
  "description": "Pangu-Pro-MoE 72B-A16B is een sparsely activated groot taalmodel met 72 miljard parameters en 16 miljard geactiveerde parameters. Het is gebaseerd op de Group Mixture of Experts (MoGE) architectuur, waarbij experts worden gegroepeerd tijdens de selectie en tokens binnen elke groep een gelijk aantal experts activeren, wat zorgt voor een gebalanceerde expertbelasting en de efficiëntie van modelimplementatie op het Ascend-platform aanzienlijk verbetert."
@@ -761,6 +764,9 @@
761
764
  "baidu/ERNIE-4.5-300B-A47B": {
762
765
  "description": "ERNIE-4.5-300B-A47B is een groot taalmodel ontwikkeld door Baidu, gebaseerd op een hybride expert (MoE) architectuur. Het model heeft in totaal 300 miljard parameters, maar activeert slechts 47 miljard parameters per token tijdens inferentie, wat krachtige prestaties combineert met rekenefficiëntie. Als een kernmodel van de ERNIE 4.5-serie toont het uitstekende capaciteiten in tekstbegrip, generatie, redenering en programmeren. Het model gebruikt een innovatieve multimodale heterogene MoE pre-trainingsmethode, waarbij tekst- en visuele modaliteiten gezamenlijk worden getraind, wat de algehele prestaties verbetert, vooral in instructienaleving en wereldkennis."
763
766
  },
767
+ "baidu/ernie-5.0-thinking-preview": {
768
+ "description": "ERNIE 5.0 Thinking Preview is het nieuwe generatie native multimodale Wenxin-model van Baidu, gespecialiseerd in multimodale interpretatie, instructieopvolging, creatie, feitelijke Q&A en toolgebruik."
769
+ },
764
770
  "c4ai-aya-expanse-32b": {
765
771
  "description": "Aya Expanse is een hoogwaardig 32B meertalig model, ontworpen om de prestaties van eentalige modellen uit te dagen door middel van instructietuning, data-arbitrage, voorkeurstraining en modelintegratie. Het ondersteunt 23 talen."
766
772
  },
@@ -869,6 +875,9 @@
869
875
  "codex-mini-latest": {
870
876
  "description": "codex-mini-latest is een fijn afgestemde versie van o4-mini, speciaal ontworpen voor Codex CLI. Voor direct gebruik via de API raden we aan te beginnen met gpt-4.1."
871
877
  },
878
+ "cogito-2.1:671b": {
879
+ "description": "Cogito v2.1 671B is een open-source groot taalmodel uit de VS dat gratis commercieel gebruikt mag worden. Het biedt prestaties vergelijkbaar met topmodellen, hogere token-redeneerefficiëntie, 128k context en sterke algemene capaciteiten."
880
+ },
872
881
  "cogview-4": {
873
882
  "description": "CogView-4 is het eerste open-source tekst-naar-beeldmodel van Zhipu dat Chinese karakters ondersteunt. Het biedt een algehele verbetering in semantisch begrip, beeldgeneratiekwaliteit en de mogelijkheid om zowel Chinese als Engelse teksten te genereren. Het ondersteunt tweetalige invoer van willekeurige lengte in het Chinees en Engels en kan afbeeldingen genereren met elke resolutie binnen het opgegeven bereik."
874
883
  },
@@ -1139,6 +1148,9 @@
1139
1148
  "deepseek-vl2-small": {
1140
1149
  "description": "DeepSeek VL2 Small, een lichtgewicht multimodale versie, geschikt voor omgevingen met beperkte middelen en hoge gelijktijdigheid."
1141
1150
  },
1151
+ "deepseek/deepseek-chat": {
1152
+ "description": "DeepSeek-V3 is een krachtig hybride redeneermodel van het DeepSeek-team, geschikt voor complexe taken en toolintegratie."
1153
+ },
1142
1154
  "deepseek/deepseek-chat-v3-0324": {
1143
1155
  "description": "DeepSeek V3 is een expert gemengd model met 685B parameters, de nieuwste iteratie van de vlaggenschip chatmodelreeks van het DeepSeek-team.\n\nHet is een opvolger van het [DeepSeek V3](/deepseek/deepseek-chat-v3) model en presteert uitstekend in verschillende taken."
1144
1156
  },
@@ -1146,13 +1158,13 @@
1146
1158
  "description": "DeepSeek V3 is een expert gemengd model met 685B parameters, de nieuwste iteratie van de vlaggenschip chatmodelreeks van het DeepSeek-team.\n\nHet is een opvolger van het [DeepSeek V3](/deepseek/deepseek-chat-v3) model en presteert uitstekend in verschillende taken."
1147
1159
  },
1148
1160
  "deepseek/deepseek-chat-v3.1": {
1149
- "description": "DeepSeek-V3.1 is een groot hybride redeneermodel dat 128K lange context ondersteunt en efficiënte moduswisselingen mogelijk maakt. Het levert uitstekende prestaties en snelheid bij toolaanroepen, codegeneratie en complexe redeneertaken."
1161
+ "description": "DeepSeek-V3.1 is een hybride redeneermodel met lange context van DeepSeek, dat denken/niet-denken modi en toolintegratie ondersteunt."
1150
1162
  },
1151
1163
  "deepseek/deepseek-r1": {
1152
1164
  "description": "Het DeepSeek R1-model heeft een kleine versie-upgrade ondergaan, momenteel DeepSeek-R1-0528. In de nieuwste update verbetert DeepSeek R1 aanzienlijk de diepte en capaciteit van redeneren door gebruik te maken van verhoogde rekenkracht en na training geïntroduceerde algoritmische optimalisaties. Het model presteert uitstekend op benchmarks voor wiskunde, programmeren en algemene logica, en nadert nu de prestaties van toonaangevende modellen zoals O3 en Gemini 2.5 Pro."
1153
1165
  },
1154
1166
  "deepseek/deepseek-r1-0528": {
1155
- "description": "DeepSeek-R1 verbetert de redeneercapaciteit van het model aanzienlijk, zelfs met zeer weinig gelabelde data. Voor het geven van het uiteindelijke antwoord genereert het model eerst een keten van gedachten om de nauwkeurigheid van het antwoord te verhogen."
1167
+ "description": "DeepSeek R1 0528 is een bijgewerkte variant van DeepSeek, met focus op open-source bruikbaarheid en diepgang in redenering."
1156
1168
  },
1157
1169
  "deepseek/deepseek-r1-0528:free": {
1158
1170
  "description": "DeepSeek-R1 verbetert de redeneercapaciteit van het model aanzienlijk, zelfs met zeer weinig gelabelde data. Voor het geven van het uiteindelijke antwoord genereert het model eerst een keten van gedachten om de nauwkeurigheid van het antwoord te verhogen."
@@ -1175,6 +1187,9 @@
1175
1187
  "deepseek/deepseek-r1:free": {
1176
1188
  "description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
1177
1189
  },
1190
+ "deepseek/deepseek-reasoner": {
1191
+ "description": "DeepSeek-V3 Thinking (reasoner) is een experimenteel redeneermodel van DeepSeek, geschikt voor zeer complexe redeneertaken."
1192
+ },
1178
1193
  "deepseek/deepseek-v3": {
1179
1194
  "description": "Snel en universeel groot taalmodel met verbeterde redeneercapaciteiten."
1180
1195
  },
@@ -1523,8 +1538,14 @@
1523
1538
  "gemini-2.5-pro-preview-06-05": {
1524
1539
  "description": "Gemini 2.5 Pro Preview is Google's meest geavanceerde denkwijze-model, in staat om complexe problemen op het gebied van code, wiskunde en STEM te redeneren, en grote datasets, codebases en documenten te analyseren met lange context."
1525
1540
  },
1541
+ "gemini-3-pro-image-preview": {
1542
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) is het beeldgeneratiemodel van Google, met ondersteuning voor multimodale interactie."
1543
+ },
1544
+ "gemini-3-pro-image-preview:image": {
1545
+ "description": "Gemini 3 Pro Image (Nano Banana Pro) is het beeldgeneratiemodel van Google, met ondersteuning voor multimodale interactie."
1546
+ },
1526
1547
  "gemini-3-pro-preview": {
1527
- "description": "Gemini 3 Pro is het meest geavanceerde model van Google, met state-of-the-art redeneringsvermogen en multimodale interpretatie, evenals krachtige agent- en contextcodering."
1548
+ "description": "Gemini 3 Pro is het beste multimodale interpretatiemodel ter wereld, en het krachtigste agent- en sfeerprogrammeerplatform van Google tot nu toe. Het biedt rijke visuele output en diepgaande interactie, gebaseerd op geavanceerde redeneercapaciteiten."
1528
1549
  },
1529
1550
  "gemini-flash-latest": {
1530
1551
  "description": "Laatste release van Gemini Flash"
@@ -1650,7 +1671,7 @@
1650
1671
  "description": "GLM-Zero-Preview heeft krachtige complexe redeneercapaciteiten en presteert uitstekend in logische redenering, wiskunde en programmeren."
1651
1672
  },
1652
1673
  "google/gemini-2.0-flash": {
1653
- "description": "Gemini 2.0 Flash biedt next-generation functies en verbeteringen, waaronder uitstekende snelheid, ingebouwde toolintegratie, multimodale generatie en een contextvenster van 1 miljoen tokens."
1674
+ "description": "Gemini 2.0 Flash is een krachtig redeneermodel van Google, geschikt voor uitgebreide multimodale taken."
1654
1675
  },
1655
1676
  "google/gemini-2.0-flash-001": {
1656
1677
  "description": "Gemini 2.0 Flash biedt next-gen functies en verbeteringen, waaronder uitstekende snelheid, native toolgebruik, multimodale generatie en een contextvenster van 1M tokens."
@@ -1661,14 +1682,23 @@
1661
1682
  "google/gemini-2.0-flash-lite": {
1662
1683
  "description": "Gemini 2.0 Flash Lite biedt next-generation functies en verbeteringen, waaronder uitstekende snelheid, ingebouwde toolintegratie, multimodale generatie en een contextvenster van 1 miljoen tokens."
1663
1684
  },
1685
+ "google/gemini-2.0-flash-lite-001": {
1686
+ "description": "Gemini 2.0 Flash Lite is een lichtgewicht versie binnen de Gemini-familie. Standaard is denken uitgeschakeld om latentie en kosten te optimaliseren, maar dit kan via parameters worden ingeschakeld."
1687
+ },
1664
1688
  "google/gemini-2.5-flash": {
1665
- "description": "Gemini 2.5 Flash is een denkmodel met uitstekende allround capaciteiten. Het is ontworpen om een balans te vinden tussen prijs en prestaties, ondersteunt multimodale input en een contextvenster van 1 miljoen tokens."
1689
+ "description": "De Gemini 2.5 Flash-serie (Lite/Pro/Flash) omvat modellen van lage tot hoge prestaties met variërende latentie, ontwikkeld door Google."
1690
+ },
1691
+ "google/gemini-2.5-flash-image": {
1692
+ "description": "Gemini 2.5 Flash Image (Nano Banana) is het beeldgeneratiemodel van Google, met ondersteuning voor multimodale interactie."
1693
+ },
1694
+ "google/gemini-2.5-flash-image-free": {
1695
+ "description": "Gratis versie van Gemini 2.5 Flash Image, met beperkte capaciteit voor multimodale generatie."
1666
1696
  },
1667
1697
  "google/gemini-2.5-flash-image-preview": {
1668
1698
  "description": "Gemini 2.5 Flash experimenteel model, ondersteunt beeldgeneratie"
1669
1699
  },
1670
1700
  "google/gemini-2.5-flash-lite": {
1671
- "description": "Gemini 2.5 Flash-Lite is een gebalanceerd, laag-latentie model met configureerbaar denkbudget en toolconnectiviteit (zoals Google Search grounding en code-executie). Het ondersteunt multimodale input en biedt een contextvenster van 1 miljoen tokens."
1701
+ "description": "Gemini 2.5 Flash Lite is een lichtgewicht versie van Gemini 2.5, geoptimaliseerd voor lage latentie en kosten, geschikt voor scenario's met hoge doorvoer."
1672
1702
  },
1673
1703
  "google/gemini-2.5-flash-preview": {
1674
1704
  "description": "Gemini 2.5 Flash is Google's meest geavanceerde hoofmodel, ontworpen voor geavanceerde redenering, codering, wiskunde en wetenschappelijke taken. Het bevat ingebouwde 'denkkracht', waardoor het in staat is om antwoorden te geven met een hogere nauwkeurigheid en gedetailleerde contextverwerking.\n\nLet op: dit model heeft twee varianten: denken en niet-denken. De outputprijs verschilt aanzienlijk afhankelijk van of de denkkracht is geactiveerd. Als u de standaardvariant kiest (zonder de ':thinking' suffix), zal het model expliciet vermijden om denk-tokens te genereren.\n\nOm gebruik te maken van de denkkracht en denk-tokens te ontvangen, moet u de ':thinking' variant kiezen, wat resulteert in hogere prijzen voor denk-output.\n\nBovendien kan Gemini 2.5 Flash worden geconfigureerd via de parameter 'max tokens for reasoning', zoals beschreven in de documentatie (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
@@ -1677,11 +1707,23 @@
1677
1707
  "description": "Gemini 2.5 Flash is Google's meest geavanceerde hoofmodel, ontworpen voor geavanceerde redenering, codering, wiskunde en wetenschappelijke taken. Het bevat ingebouwde 'denkkracht', waardoor het in staat is om antwoorden te geven met een hogere nauwkeurigheid en gedetailleerde contextverwerking.\n\nLet op: dit model heeft twee varianten: denken en niet-denken. De outputprijs verschilt aanzienlijk afhankelijk van of de denkkracht is geactiveerd. Als u de standaardvariant kiest (zonder de ':thinking' suffix), zal het model expliciet vermijden om denk-tokens te genereren.\n\nOm gebruik te maken van de denkkracht en denk-tokens te ontvangen, moet u de ':thinking' variant kiezen, wat resulteert in hogere prijzen voor denk-output.\n\nBovendien kan Gemini 2.5 Flash worden geconfigureerd via de parameter 'max tokens for reasoning', zoals beschreven in de documentatie (https://openrouter.ai/docs/use-cases/reasoning-tokens#max-tokens-for-reasoning)."
1678
1708
  },
1679
1709
  "google/gemini-2.5-pro": {
1680
- "description": "Gemini 2.5 Pro is ons meest geavanceerde redeneermodel, in staat om complexe problemen op te lossen. Het heeft een contextvenster van 2 miljoen tokens en ondersteunt multimodale input, waaronder tekst, afbeeldingen, audio, video en PDF-documenten."
1710
+ "description": "Gemini 2.5 Pro is het vlaggenschip redeneermodel van Google, met ondersteuning voor lange context en complexe taken."
1711
+ },
1712
+ "google/gemini-2.5-pro-free": {
1713
+ "description": "Gratis versie van Gemini 2.5 Pro, met beperkte multimodale lange contextcapaciteit, geschikt voor testen en lichte workflows."
1681
1714
  },
1682
1715
  "google/gemini-2.5-pro-preview": {
1683
1716
  "description": "Gemini 2.5 Pro Preview is het meest geavanceerde denkkader van Google, dat in staat is om complexe problemen op het gebied van code, wiskunde en STEM te redeneren, en grote datasets, codebases en documenten te analyseren met behulp van lange context."
1684
1717
  },
1718
+ "google/gemini-3-pro-image-preview-free": {
1719
+ "description": "Gratis versie van Gemini 3 Pro Image, met beperkte capaciteit voor multimodale generatie."
1720
+ },
1721
+ "google/gemini-3-pro-preview": {
1722
+ "description": "Gemini 3 Pro is de volgende generatie multimodale redeneermodel binnen de Gemini-serie, met ondersteuning voor tekst, audio, beeld, video en complexe taken zoals grote codebases."
1723
+ },
1724
+ "google/gemini-3-pro-preview-free": {
1725
+ "description": "Gratis preview van Gemini 3 Pro, met dezelfde multimodale interpretatie- en redeneercapaciteiten als de standaardversie, maar met beperkingen in gebruik en snelheid. Ideaal voor kennismaking en laagfrequent gebruik."
1726
+ },
1685
1727
  "google/gemini-embedding-001": {
1686
1728
  "description": "State-of-the-art embed-model met uitstekende prestaties in Engels, meertalige en codeertaken."
1687
1729
  },
@@ -2057,21 +2099,36 @@
2057
2099
  "inception/mercury-coder-small": {
2058
2100
  "description": "Mercury Coder Small is ideaal voor codegeneratie, debugging en refactoring taken met minimale latentie."
2059
2101
  },
2060
- "inclusionAI/Ling-1T": {
2061
- "description": "Ling-1T is het eerste vlaggenschipmodel uit de 'Ling 2.0'-serie zonder denkvermogen, met in totaal 1 biljoen parameters en ongeveer 50 miljard actieve parameters per token. Gebouwd op de Ling 2.0-architectuur, is Ling-1T ontworpen om de grenzen van efficiënte redenering en schaalbare cognitie te verleggen. Ling-1T-base is getraind op meer dan 20 biljoen hoogwaardige, redeneerintensieve tokens."
2062
- },
2063
2102
  "inclusionAI/Ling-flash-2.0": {
2064
2103
  "description": "Ling-flash-2.0 is het derde model in de Ling 2.0 architectuurserie uitgebracht door het Bailing-team van Ant Group. Het is een Mixture of Experts (MoE) model met in totaal 100 miljard parameters, maar activeert slechts 6,1 miljard parameters per token (waarvan 4,8 miljard niet-embedding). Als een lichtgewicht configuratie toont Ling-flash-2.0 in meerdere gezaghebbende evaluaties prestaties die vergelijkbaar zijn met of beter dan 40 miljard dense modellen en grotere MoE modellen. Dit model is ontworpen om via ultieme architectuurontwerpen en trainingsstrategieën een efficiënte weg te verkennen binnen de consensus dat grote modellen gelijkstaan aan veel parameters."
2065
2104
  },
2066
2105
  "inclusionAI/Ling-mini-2.0": {
2067
2106
  "description": "Ling-mini-2.0 is een klein maar hoogpresterend groot taalmodel gebaseerd op de MoE-architectuur. Het heeft 16 miljard totale parameters, maar activeert slechts 1,4 miljard per token (789 miljoen niet-embedding), wat een zeer hoge generatie snelheid mogelijk maakt. Dankzij het efficiënte MoE-ontwerp en grootschalige hoogwaardige trainingsdata levert Ling-mini-2.0, ondanks de beperkte geactiveerde parameters, topprestaties die vergelijkbaar zijn met dense LLM's onder 10 miljard en grotere MoE modellen in downstream taken."
2068
2107
  },
2069
- "inclusionAI/Ring-1T": {
2070
- "description": "Ring-1T is een open-source denkmodel op biljoenschaal, uitgebracht door het Bailing-team. Het is gebaseerd op de Ling 2.0-architectuur en het Ling-1T-base model, met in totaal 1 biljoen parameters en 50 miljard actieve parameters. Het ondersteunt contextvensters tot 128K en is geoptimaliseerd via grootschalige, verifieerbare beloningsversterkende training."
2071
- },
2072
2108
  "inclusionAI/Ring-flash-2.0": {
2073
2109
  "description": "Ring-flash-2.0 is een diep geoptimaliseerd hoogpresterend denkmodel gebaseerd op Ling-flash-2.0-base. Het gebruikt een Mixture of Experts (MoE) architectuur met in totaal 100 miljard parameters, maar activeert slechts 6,1 miljard parameters per inferentie. Dit model lost met het unieke icepop-algoritme de instabiliteitsproblemen van grote MoE modellen tijdens reinforcement learning (RL) training op, waardoor de complexe redeneercapaciteit continu verbetert bij langdurige training. Ring-flash-2.0 behaalde significante doorbraken in uitdagende benchmarks zoals wiskundewedstrijden, codegeneratie en logische redenering. Het presteert niet alleen beter dan top dense modellen onder 40 miljard parameters, maar kan ook concurreren met grotere open-source MoE modellen en gesloten hoogpresterende denkmodellen. Hoewel het model zich richt op complexe redenering, presteert het ook uitstekend in creatieve schrijfopdrachten. Dankzij het efficiënte architectuurontwerp biedt Ring-flash-2.0 krachtige prestaties met hoge inferentiesnelheid, wat de implementatiekosten in scenario's met hoge gelijktijdigheid aanzienlijk verlaagt."
2074
2110
  },
2111
+ "inclusionai/ling-1t": {
2112
+ "description": "Ling-1T is het 1T MoE-model van inclusionAI, geoptimaliseerd voor intensieve redeneertaken en grootschalige context."
2113
+ },
2114
+ "inclusionai/ling-flash-2.0": {
2115
+ "description": "Ling-flash-2.0 is een MoE-model van inclusionAI, geoptimaliseerd voor efficiëntie en redeneerprestaties, geschikt voor middelgrote tot grote taken."
2116
+ },
2117
+ "inclusionai/ling-mini-2.0": {
2118
+ "description": "Ling-mini-2.0 is een lichtgewicht MoE-model van inclusionAI, dat de kosten aanzienlijk verlaagt terwijl het redeneringsvermogen behouden blijft."
2119
+ },
2120
+ "inclusionai/ming-flash-omini-preview": {
2121
+ "description": "Ming-flash-omni Preview is een multimodaal model van inclusionAI, met ondersteuning voor spraak-, beeld- en video-invoer, geoptimaliseerd voor beeldweergave en spraakherkenning."
2122
+ },
2123
+ "inclusionai/ring-1t": {
2124
+ "description": "Ring-1T is het triljoen-parameter MoE-denkmodel van inclusionAI, geschikt voor grootschalige redeneer- en onderzoeksopdrachten."
2125
+ },
2126
+ "inclusionai/ring-flash-2.0": {
2127
+ "description": "Ring-flash-2.0 is een variant van het Ring-model van inclusionAI, gericht op scenario's met hoge doorvoer, met nadruk op snelheid en kostenefficiëntie."
2128
+ },
2129
+ "inclusionai/ring-mini-2.0": {
2130
+ "description": "Ring-mini-2.0 is een lichtgewicht MoE-versie van inclusionAI met hoge doorvoer, voornamelijk bedoeld voor gelijktijdige toepassingen."
2131
+ },
2075
2132
  "internlm/internlm2_5-7b-chat": {
2076
2133
  "description": "InternLM2.5 biedt intelligente gespreksoplossingen voor meerdere scenario's."
2077
2134
  },
@@ -2123,6 +2180,12 @@
2123
2180
  "kimi-k2-instruct": {
2124
2181
  "description": "Kimi K2 Instruct, het officiële redeneermodel van Kimi, ondersteunt lange context, code, Q&A en meer."
2125
2182
  },
2183
+ "kimi-k2-thinking": {
2184
+ "description": "K2 Thinking-model met lange context, ondersteunt 256k context, meervoudige toolaanroepen en denkstappen, en blinkt uit in het oplossen van complexe problemen."
2185
+ },
2186
+ "kimi-k2-thinking-turbo": {
2187
+ "description": "Snelle versie van het K2 Thinking-model, ondersteunt 256k context, geoptimaliseerd voor diepgaande redenering met een uitvoersnelheid van 60-100 tokens per seconde."
2188
+ },
2126
2189
  "kimi-k2-turbo-preview": {
2127
2190
  "description": "kimi-k2 is een basismodel met een MoE-architectuur dat beschikt over zeer sterke codeer- en agentcapaciteiten. Het heeft in totaal 1T parameters en 32B actieve parameters. In benchmarktests op belangrijke categorieën zoals algemene kennisredenering, programmeren, wiskunde en agenttaken overtreft het K2-model de prestaties van andere gangbare open-sourcemodellen."
2128
2191
  },
@@ -2135,6 +2198,9 @@
2135
2198
  "kimi-thinking-preview": {
2136
2199
  "description": "kimi-thinking-preview model is een multimodaal denkmodel met multimodale en algemene redeneervaardigheden, aangeboden door de donkere zijde van de maan. Het blinkt uit in diep redeneren en helpt bij het oplossen van complexere problemen."
2137
2200
  },
2201
+ "kuaishou/kat-coder-pro-v1": {
2202
+ "description": "KAT-Coder-Pro-V1 (tijdelijk gratis) richt zich op codebegrip en geautomatiseerd programmeren, geschikt voor efficiënte programmeeragent-taken."
2203
+ },
2138
2204
  "learnlm-1.5-pro-experimental": {
2139
2205
  "description": "LearnLM is een experimenteel, taak-specifiek taalmodel dat is getraind volgens de principes van de leerwetenschap, en kan systeeminstructies volgen in onderwijs- en leeromgevingen, en fungeert als een expertmentor."
2140
2206
  },
@@ -2466,7 +2532,7 @@
2466
2532
  "description": "MiniMax M2 is een efficiënt groot taalmodel dat speciaal is ontwikkeld voor programmeer- en agentworkflows."
2467
2533
  },
2468
2534
  "minimax/minimax-m2": {
2469
- "description": "Speciaal ontworpen voor efficiënte codering en agent-workflows."
2535
+ "description": "MiniMax-M2 is een kosteneffectief model met uitstekende prestaties in codering en agenttaken, geschikt voor diverse technische scenario's."
2470
2536
  },
2471
2537
  "minimaxai/minimax-m2": {
2472
2538
  "description": "MiniMax-M2 is een compact, snel en kosteneffectief Mixture-of-Experts (MoE) model met 230 miljard totale parameters en 10 miljard actieve parameters. Het is ontworpen voor topprestaties bij codering en agenttaken, terwijl het een sterke algemene intelligentie behoudt. Het model blinkt uit in bewerkingen met meerdere bestanden, de code-run-fix-cyclus, testvalidatie en -correctie, en complexe langetermijn toolchains, waardoor het een ideale keuze is voor ontwikkelaarsworkflows."
@@ -2615,12 +2681,21 @@
2615
2681
  "moonshotai/kimi-k2": {
2616
2682
  "description": "Kimi K2 is een grootschalig hybride expert (MoE) taalmodel ontwikkeld door Moonshot AI, met in totaal 1 biljoen parameters en 32 miljard actieve parameters per voorwaartse pass. Het is geoptimaliseerd voor agentcapaciteiten, waaronder geavanceerd toolgebruik, redeneren en code-synthese."
2617
2683
  },
2684
+ "moonshotai/kimi-k2-0711": {
2685
+ "description": "Kimi K2 0711 is de Instruct-versie van de Kimi-serie, geschikt voor hoogwaardige code- en toolgebruikscenario's."
2686
+ },
2618
2687
  "moonshotai/kimi-k2-0905": {
2619
- "description": "Het kimi-k2-0905-preview model heeft een contextlengte van 256k, beschikt over sterkere Agentic Coding-capaciteiten, een opvallender esthetiek en bruikbaarheid van frontend-code, en een beter contextbegrip."
2688
+ "description": "Kimi K2 0905 is de 0905-update van de Kimi-serie, met verbeterde contextcapaciteit en redeneervermogen, geoptimaliseerd voor coderingsscenario's."
2620
2689
  },
2621
2690
  "moonshotai/kimi-k2-instruct-0905": {
2622
2691
  "description": "Het kimi-k2-0905-preview model heeft een contextlengte van 256k, beschikt over sterkere Agentic Coding-capaciteiten, een opvallender esthetiek en bruikbaarheid van frontend-code, en een beter contextbegrip."
2623
2692
  },
2693
+ "moonshotai/kimi-k2-thinking": {
2694
+ "description": "Kimi K2 Thinking is een denkmodel van Moonshot, geoptimaliseerd voor diepgaande redeneertaken, met algemene agentcapaciteiten."
2695
+ },
2696
+ "moonshotai/kimi-k2-thinking-turbo": {
2697
+ "description": "Kimi K2 Thinking Turbo is de snelle versie van Kimi K2 Thinking, met behoud van diepgaande redeneercapaciteiten en aanzienlijk lagere responstijd."
2698
+ },
2624
2699
  "morph/morph-v3-fast": {
2625
2700
  "description": "Morph biedt een gespecialiseerd AI-model dat codewijzigingen, voorgesteld door toonaangevende modellen zoals Claude of GPT-4o, snel toepast op uw bestaande codebestanden - FAST - meer dan 4500 tokens per seconde. Het fungeert als de laatste stap in AI-codeerworkflows. Ondersteunt 16k input tokens en 16k output tokens."
2626
2701
  },
@@ -2703,28 +2778,49 @@
2703
2778
  "description": "OpenAI's gpt-4-turbo beschikt over uitgebreide algemene kennis en domeinspecialisatie, waardoor het complexe natuurlijke taalopdrachten kan volgen en moeilijke problemen nauwkeurig kan oplossen. De kennisdatum is april 2023 en het contextvenster is 128.000 tokens."
2704
2779
  },
2705
2780
  "openai/gpt-4.1": {
2706
- "description": "GPT 4.1 is het vlaggenschipmodel van OpenAI, geschikt voor complexe taken. Het is uitstekend in het oplossen van problemen over verschillende domeinen heen."
2781
+ "description": "De GPT-4.1-serie biedt uitgebreidere context en sterkere technische en redeneercapaciteiten."
2707
2782
  },
2708
2783
  "openai/gpt-4.1-mini": {
2709
- "description": "GPT 4.1 mini balanceert intelligentie, snelheid en kosten, waardoor het een aantrekkelijk model is voor veel toepassingen."
2784
+ "description": "GPT-4.1 Mini biedt lagere latentie en betere kostenefficiëntie, geschikt voor middellange contextscenario's."
2710
2785
  },
2711
2786
  "openai/gpt-4.1-nano": {
2712
- "description": "GPT-4.1 nano is het snelste en meest kosteneffectieve GPT 4.1-model."
2787
+ "description": "GPT-4.1 Nano is een uiterst kosteneffectieve en snelle optie, geschikt voor korte, frequente gesprekken of classificatietaken."
2713
2788
  },
2714
2789
  "openai/gpt-4o": {
2715
- "description": "GPT-4o van OpenAI heeft uitgebreide algemene kennis en domeinspecialisatie, kan complexe natuurlijke taalopdrachten volgen en moeilijke problemen nauwkeurig oplossen. Het biedt prestaties vergelijkbaar met GPT-4 Turbo via een snellere en goedkopere API."
2790
+ "description": "De GPT-4o-serie is het Omni-model van OpenAI, met ondersteuning voor tekst- en beeldinvoer en tekstuitvoer."
2716
2791
  },
2717
2792
  "openai/gpt-4o-mini": {
2718
- "description": "GPT-4o mini van OpenAI is hun meest geavanceerde en kosteneffectieve kleine model. Het is multimodaal (accepteert tekst- of beeldinvoer en genereert tekst) en intelligenter dan gpt-3.5-turbo, met vergelijkbare snelheid."
2793
+ "description": "GPT-4o-mini is de snelle, compacte versie van GPT-4o, geschikt voor scenario's met lage latentie en gemengde tekst-beeldinvoer."
2719
2794
  },
2720
2795
  "openai/gpt-5": {
2721
- "description": "GPT-5 is het vlaggenschip taalmodel van OpenAI, uitmuntend in complex redeneren, uitgebreide wereldkennis, code-intensieve en meerstaps agenttaken."
2796
+ "description": "GPT-5 is het krachtige model van OpenAI, geschikt voor een breed scala aan productie- en onderzoekstoepassingen."
2797
+ },
2798
+ "openai/gpt-5-chat": {
2799
+ "description": "GPT-5 Chat is een submodel van GPT-5, geoptimaliseerd voor conversaties met lagere latentie voor een betere interactie-ervaring."
2800
+ },
2801
+ "openai/gpt-5-codex": {
2802
+ "description": "GPT-5-Codex is een variant van GPT-5, verder geoptimaliseerd voor coderingsscenario's en geschikt voor grootschalige codeworkflows."
2722
2803
  },
2723
2804
  "openai/gpt-5-mini": {
2724
- "description": "GPT-5 mini is een kosten-geoptimaliseerd model dat uitblinkt in redeneer- en chattaken. Het biedt de beste balans tussen snelheid, kosten en capaciteit."
2805
+ "description": "GPT-5 Mini is een compacte versie binnen de GPT-5-familie, geschikt voor scenario's met lage latentie en lage kosten."
2725
2806
  },
2726
2807
  "openai/gpt-5-nano": {
2727
- "description": "GPT-5 nano is een model met hoge doorvoer, uitstekend in eenvoudige instructies of classificatietaken."
2808
+ "description": "GPT-5 Nano is de ultracompacte versie binnen de familie, ideaal voor toepassingen met zeer strikte eisen op het gebied van kosten en latentie."
2809
+ },
2810
+ "openai/gpt-5-pro": {
2811
+ "description": "GPT-5 Pro is het vlaggenschipmodel van OpenAI, met geavanceerde redeneercapaciteiten, codegeneratie en functies op ondernemingsniveau. Ondersteunt routering tijdens testen en strengere beveiligingsstrategieën."
2812
+ },
2813
+ "openai/gpt-5.1": {
2814
+ "description": "GPT-5.1 is het nieuwste vlaggenschipmodel binnen de GPT-5-serie, met aanzienlijke verbeteringen in algemene redenering, instructieopvolging en natuurlijke conversatie. Geschikt voor uiteenlopende taken."
2815
+ },
2816
+ "openai/gpt-5.1-chat": {
2817
+ "description": "GPT-5.1 Chat is een lichtgewicht lid van de GPT-5.1-familie, geoptimaliseerd voor gesprekken met lage latentie, met behoud van sterke redeneer- en instructiecapaciteiten."
2818
+ },
2819
+ "openai/gpt-5.1-codex": {
2820
+ "description": "GPT-5.1-Codex is een variant van GPT-5.1, geoptimaliseerd voor softwareontwikkeling en coderingsworkflows, geschikt voor grootschalige refactoring, complexe debugging en langdurige autonome coderingstaken."
2821
+ },
2822
+ "openai/gpt-5.1-codex-mini": {
2823
+ "description": "GPT-5.1-Codex-Mini is een kleine, versnelde versie van GPT-5.1-Codex, beter geschikt voor coderingsscenario's met hoge eisen aan latentie en kosten."
2728
2824
  },
2729
2825
  "openai/gpt-oss-120b": {
2730
2826
  "description": "Een uiterst capabel universeel groot taalmodel met krachtige, controleerbare redeneercapaciteiten."
@@ -2751,7 +2847,7 @@
2751
2847
  "description": "o3-mini high is een versie met een hoog redeneerniveau die hoge intelligentie biedt met dezelfde kosten- en vertragingdoelen als o1-mini."
2752
2848
  },
2753
2849
  "openai/o4-mini": {
2754
- "description": "OpenAI's o4-mini biedt snelle, kosteneffectieve redeneermogelijkheden met uitstekende prestaties voor zijn formaat, vooral in wiskunde (beste in AIME benchmark), codering en visuele taken."
2850
+ "description": "OpenAI o4-mini is een klein, efficiënt redeneermodel van OpenAI, geschikt voor toepassingen met lage latentie."
2755
2851
  },
2756
2852
  "openai/o4-mini-high": {
2757
2853
  "description": "o4-mini high inference level versie, geoptimaliseerd voor snelle en efficiënte inferentie, met hoge efficiëntie en prestaties in codering en visuele taken."
@@ -2955,7 +3051,7 @@
2955
3051
  "description": "Krachtig middelgroot codeermodel, ondersteunt 32K contextlengte, gespecialiseerd in meertalige programmering."
2956
3052
  },
2957
3053
  "qwen/qwen3-14b": {
2958
- "description": "Qwen3-14B is een dichte causale taalmodel met 14 miljard parameters in de Qwen3 serie, speciaal ontworpen voor complexe redenering en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, programmeren en logische redenering en de 'niet-denk' modus voor algemene gesprekken. Dit model is fijn afgesteld voor het volgen van instructies, het gebruik van agenttools, creatieve schrijfopdrachten en meertalige taken in meer dan 100 talen en dialecten. Het verwerkt van nature 32K tokens context en kan worden uitgebreid tot 131K tokens met YaRN."
3054
+ "description": "Qwen3-14B is de 14B-versie binnen de Qwen-serie, geschikt voor algemene redeneer- en conversatiescenario's."
2959
3055
  },
2960
3056
  "qwen/qwen3-14b:free": {
2961
3057
  "description": "Qwen3-14B is een dichte causale taalmodel met 14 miljard parameters in de Qwen3 serie, speciaal ontworpen voor complexe redenering en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, programmeren en logische redenering en de 'niet-denk' modus voor algemene gesprekken. Dit model is fijn afgesteld voor het volgen van instructies, het gebruik van agenttools, creatieve schrijfopdrachten en meertalige taken in meer dan 100 talen en dialecten. Het verwerkt van nature 32K tokens context en kan worden uitgebreid tot 131K tokens met YaRN."
@@ -2963,6 +3059,12 @@
2963
3059
  "qwen/qwen3-235b-a22b": {
2964
3060
  "description": "Qwen3-235B-A22B is een 235B parameters expert-meng (MoE) model ontwikkeld door Qwen, dat 22B parameters activeert bij elke voorwaartse doorgang. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor complexe redenering, wiskunde en code taken en de 'niet-denk' modus voor algemene gespreks efficiëntie. Dit model toont krachtige redeneringscapaciteiten, meertalige ondersteuning (meer dan 100 talen en dialecten), geavanceerd volgen van instructies en het aanroepen van agenttools. Het verwerkt van nature een contextvenster van 32K tokens en kan worden uitgebreid tot 131K tokens met YaRN."
2965
3061
  },
3062
+ "qwen/qwen3-235b-a22b-2507": {
3063
+ "description": "Qwen3-235B-A22B-Instruct-2507 is een instructiemodel binnen de Qwen3-serie, geschikt voor meertalige instructies en lange contextscenario's."
3064
+ },
3065
+ "qwen/qwen3-235b-a22b-thinking-2507": {
3066
+ "description": "Qwen3-235B-A22B-Thinking-2507 is een Thinking-variant van Qwen3, versterkt voor complexe wiskundige en redeneertaken."
3067
+ },
2966
3068
  "qwen/qwen3-235b-a22b:free": {
2967
3069
  "description": "Qwen3-235B-A22B is een 235B parameters expert-meng (MoE) model ontwikkeld door Qwen, dat 22B parameters activeert bij elke voorwaartse doorgang. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor complexe redenering, wiskunde en code taken en de 'niet-denk' modus voor algemene gespreks efficiëntie. Dit model toont krachtige redeneringscapaciteiten, meertalige ondersteuning (meer dan 100 talen en dialecten), geavanceerd volgen van instructies en het aanroepen van agenttools. Het verwerkt van nature een contextvenster van 32K tokens en kan worden uitgebreid tot 131K tokens met YaRN."
2968
3070
  },
@@ -2981,6 +3083,21 @@
2981
3083
  "qwen/qwen3-8b:free": {
2982
3084
  "description": "Qwen3-8B is een dichte causale taalmodel met 8 miljard parameters in de Qwen3 serie, speciaal ontworpen voor redeneringsintensieve taken en efficiënte gesprekken. Het ondersteunt naadloze overgangen tussen de 'denk' modus voor wiskunde, codering en logische redenering en de 'niet-denk' modus voor algemene gesprekken. Dit model is fijn afgesteld voor het volgen van instructies, agentintegratie, creatieve schrijfopdrachten en meertalig gebruik in meer dan 100 talen en dialecten. Het ondersteunt van nature een contextvenster van 32K tokens en kan worden uitgebreid tot 131K tokens via YaRN."
2983
3085
  },
3086
+ "qwen/qwen3-coder": {
3087
+ "description": "Qwen3-Coder is een codegeneratiemodel binnen de Qwen3-serie, gespecialiseerd in codebegrip en -generatie binnen lange documenten."
3088
+ },
3089
+ "qwen/qwen3-coder-plus": {
3090
+ "description": "Qwen3-Coder-Plus is een speciaal geoptimaliseerd coderingsagentmodel binnen de Qwen-serie, met ondersteuning voor complexe toolaanroepen en langdurige sessies."
3091
+ },
3092
+ "qwen/qwen3-max": {
3093
+ "description": "Qwen3 Max is het high-end redeneermodel binnen de Qwen3-serie, geschikt voor meertalige redenering en toolintegratie."
3094
+ },
3095
+ "qwen/qwen3-max-preview": {
3096
+ "description": "Qwen3 Max (preview) is de previewversie van het Max-model binnen de Qwen-serie, gericht op geavanceerde redenering en toolintegratie."
3097
+ },
3098
+ "qwen/qwen3-vl-plus": {
3099
+ "description": "Qwen3 VL-Plus is de visueel verbeterde versie van Qwen3, met verbeterde multimodale redeneercapaciteiten en videobehandeling."
3100
+ },
2984
3101
  "qwen2": {
2985
3102
  "description": "Qwen2 is Alibaba's nieuwe generatie grootschalig taalmodel, ondersteunt diverse toepassingsbehoeften met uitstekende prestaties."
2986
3103
  },
@@ -3275,9 +3392,6 @@
3275
3392
  "step-r1-v-mini": {
3276
3393
  "description": "Dit model is een krachtig redeneringsmodel met sterke beeldbegripcapaciteiten, in staat om beeld- en tekstinformatie te verwerken en tekstinhoud te genereren na diep nadenken. Dit model presteert uitstekend in visuele redenering en heeft eersteklas wiskundige, code- en tekstredeneringscapaciteiten. De contextlengte is 100k."
3277
3394
  },
3278
- "step3": {
3279
- "description": "Step3 is een multimodaal model ontwikkeld door StepStar, met krachtige visuele begripscapaciteiten."
3280
- },
3281
3395
  "stepfun-ai/step3": {
3282
3396
  "description": "Step3 is een geavanceerd multimodaal redeneermodel uitgebracht door StepFun (阶跃星辰). Het is gebouwd op een Mixture-of-Experts (MoE)-architectuur met in totaal 321 miljard (321B) parameters en 38 miljard (38B) actieve parameters. Het model heeft een end-to-end ontwerp dat gericht is op het minimaliseren van decodeerkosten, terwijl het topniveau-prestaties levert bij vision-language redenering. Dankzij de synergie tussen Multi-Matrix Factorized Attention (MFA) en Attention-FFN Decoupling (AFD) behoudt Step3 uitstekende efficiëntie zowel op high-end als low-end accelerators. Tijdens de voortraining verwerkte Step3 meer dan 20 biljoen (20T) teksttokens en 4 biljoen (4T) gecombineerde beeld-tekst-tokens, en bestrijkt daarmee meer dan tien talen. Het model behaalt leidende resultaten onder open-sourcemodellen op verschillende benchmarks, waaronder wiskunde, code en multimodaal."
3283
3397
  },
@@ -3359,6 +3473,9 @@
3359
3473
  "vercel/v0-1.5-md": {
3360
3474
  "description": "Toegang tot het model achter v0 voor het genereren, repareren en optimaliseren van moderne webapplicaties, met framework-specifieke redenering en up-to-date kennis."
3361
3475
  },
3476
+ "volcengine/doubao-seed-code": {
3477
+ "description": "Doubao-Seed-Code is een groot model van Byte Volcengine, geoptimaliseerd voor Agentic Programming, met uitstekende prestaties op meerdere programmeer- en agentbenchmarks. Ondersteunt 256K context."
3478
+ },
3362
3479
  "wan2.2-t2i-flash": {
3363
3480
  "description": "Wanxiang 2.2 Flash-versie, het nieuwste model. Volledige upgrades in creativiteit, stabiliteit en realistische textuur, met snelle generatie en hoge kosteneffectiviteit."
3364
3481
  },
@@ -3386,11 +3503,23 @@
3386
3503
  "wizardlm2:8x22b": {
3387
3504
  "description": "WizardLM 2 is een taalmodel van Microsoft AI dat uitblinkt in complexe gesprekken, meertaligheid, inferentie en intelligente assistentie."
3388
3505
  },
3506
+ "x-ai/grok-4": {
3507
+ "description": "Grok 4 is het vlaggenschip redeneermodel van xAI, met krachtige redeneer- en multimodale capaciteiten."
3508
+ },
3389
3509
  "x-ai/grok-4-fast": {
3390
- "description": "We zijn verheugd om Grok 4 Fast te introduceren, onze nieuwste vooruitgang op het gebied van kostenefficiënte redeneermodellen."
3510
+ "description": "Grok 4 Fast is een model van xAI met hoge doorvoer en lage kosten (ondersteunt 2M contextvenster), geschikt voor toepassingen met hoge gelijktijdigheid en lange context."
3511
+ },
3512
+ "x-ai/grok-4-fast-non-reasoning": {
3513
+ "description": "Grok 4 Fast (Non-Reasoning) is een multimodaal model van xAI met hoge doorvoer en lage kosten (ondersteunt 2M contextvenster), bedoeld voor scenario's die gevoelig zijn voor latentie en kosten, maar geen interne redenering vereisen. Redenering kan worden ingeschakeld via de API-parameter reasoning enable. Prompts en completions kunnen worden gebruikt door xAI of OpenRouter om toekomstige modellen te verbeteren."
3514
+ },
3515
+ "x-ai/grok-4.1-fast": {
3516
+ "description": "Grok 4 Fast is een model van xAI met hoge doorvoer en lage kosten (ondersteunt 2M contextvenster), geschikt voor toepassingen met hoge gelijktijdigheid en lange context."
3517
+ },
3518
+ "x-ai/grok-4.1-fast-non-reasoning": {
3519
+ "description": "Grok 4 Fast (Non-Reasoning) is een multimodaal model van xAI met hoge doorvoer en lage kosten (ondersteunt 2M contextvenster), bedoeld voor scenario's die gevoelig zijn voor latentie en kosten, maar geen interne redenering vereisen. Redenering kan worden ingeschakeld via de API-parameter reasoning enable. Prompts en completions kunnen worden gebruikt door xAI of OpenRouter om toekomstige modellen te verbeteren."
3391
3520
  },
3392
3521
  "x-ai/grok-code-fast-1": {
3393
- "description": "We zijn trots om grok-code-fast-1 te lanceren, een snel en kostenefficiënt redeneermodel dat uitblinkt in agentgebaseerde codering."
3522
+ "description": "Grok Code Fast 1 is het snelle codemodel van xAI, met output die goed leesbaar is en geschikt voor engineeringtoepassingen."
3394
3523
  },
3395
3524
  "x1": {
3396
3525
  "description": "Het Spark X1-model zal verder worden geüpgraded, met verbeterde prestaties in redenering, tekstgeneratie en taalbegrip, ter vergelijking met OpenAI o1 en DeepSeek R1."
@@ -3452,8 +3581,14 @@
3452
3581
  "yi-vision-v2": {
3453
3582
  "description": "Complex visietakenmodel dat hoge prestaties biedt in begrip en analyse op basis van meerdere afbeeldingen."
3454
3583
  },
3584
+ "z-ai/glm-4.5": {
3585
+ "description": "GLM 4.5 is het vlaggenschipmodel van Z.AI, met ondersteuning voor hybride redeneermodi en geoptimaliseerd voor technische en lange contexttaken."
3586
+ },
3587
+ "z-ai/glm-4.5-air": {
3588
+ "description": "GLM 4.5 Air is de lichtgewicht versie van GLM 4.5, geschikt voor kostenbewuste scenario's met behoud van sterke redeneercapaciteiten."
3589
+ },
3455
3590
  "z-ai/glm-4.6": {
3456
- "description": "GLM-4.6 is het nieuwste vlaggenschipmodel van Zhipu AI en overtreft zijn voorgangers op het gebied van geavanceerde codering, lange tekstverwerking, redeneren en agentcapaciteiten."
3591
+ "description": "GLM 4.6 is het vlaggenschipmodel van Z.AI, met uitgebreide contextlengte en verbeterde coderingscapaciteiten."
3457
3592
  },
3458
3593
  "zai-org/GLM-4.5": {
3459
3594
  "description": "GLM-4.5 is een basis model speciaal ontworpen voor agenttoepassingen, gebruikmakend van een Mixture-of-Experts (MoE) architectuur. Het is diep geoptimaliseerd voor toolaanroepen, web browsing, software engineering en frontend programmeren, en ondersteunt naadloze integratie met code-agents zoals Claude Code en Roo Code. GLM-4.5 gebruikt een hybride redeneermodus en is geschikt voor complexe redenering en dagelijks gebruik."
@@ -3475,5 +3610,8 @@
3475
3610
  },
3476
3611
  "zai/glm-4.5v": {
3477
3612
  "description": "GLM-4.5V is gebouwd op het GLM-4.5-Air basismodel, erft de bewezen technologie van GLM-4.1V-Thinking en realiseert efficiënte schaalvergroting via een krachtige MoE-architectuur met 106 miljard parameters."
3613
+ },
3614
+ "zenmux/auto": {
3615
+ "description": "De automatische routeringsfunctie van ZenMux kiest automatisch het best presterende en meest kosteneffectieve model op basis van je verzoekinhoud, uit de ondersteunde modellen."
3478
3616
  }
3479
3617
  }
@@ -191,6 +191,9 @@
191
191
  "xinference": {
192
192
  "description": "Xorbits Inference (Xinference) is een open-source platform dat is ontworpen om de uitvoering en integratie van verschillende AI-modellen te vereenvoudigen. Met Xinference kunt u inferentie uitvoeren met behulp van elke open-source LLM, embeddingsmodel of multimodaal model in een cloud- of lokale omgeving, en krachtige AI-toepassingen creëren."
193
193
  },
194
+ "zenmux": {
195
+ "description": "ZenMux is een geïntegreerd platform voor AI-diensten dat ondersteuning biedt voor diverse toonaangevende AI-serviceinterfaces zoals OpenAI, Anthropic en Google VertexAI. Het biedt flexibele routeringsmogelijkheden, zodat u eenvoudig kunt schakelen tussen en beheren van verschillende AI-modellen."
196
+ },
194
197
  "zeroone": {
195
198
  "description": "01.AI richt zich op kunstmatige intelligentietechnologie in het tijdperk van AI 2.0, en bevordert sterk de innovatie en toepassing van 'mens + kunstmatige intelligentie', met behulp van krachtige modellen en geavanceerde AI-technologie om de productiviteit van de mens te verbeteren en technologische capaciteiten te realiseren."
196
199
  },
@@ -37,6 +37,14 @@
37
37
  "standard": "Standardowa"
38
38
  }
39
39
  },
40
+ "resolution": {
41
+ "label": "Rozdzielczość",
42
+ "options": {
43
+ "1K": "1K",
44
+ "2K": "2K",
45
+ "4K": "4K"
46
+ }
47
+ },
40
48
  "seed": {
41
49
  "label": "Ziarno",
42
50
  "random": "Losowy seed"