@lobehub/chat 1.73.2 → 1.74.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (91) hide show
  1. package/.env.example +4 -0
  2. package/CHANGELOG.md +51 -0
  3. package/Dockerfile +5 -1
  4. package/Dockerfile.database +5 -1
  5. package/Dockerfile.pglite +3 -1
  6. package/README.md +4 -2
  7. package/README.zh-CN.md +4 -2
  8. package/changelog/v1.json +18 -0
  9. package/docs/self-hosting/environment-variables/model-provider.mdx +13 -0
  10. package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +14 -0
  11. package/docs/usage/providers/infiniai.mdx +29 -0
  12. package/docs/usage/providers/infiniai.zh-CN.mdx +29 -0
  13. package/locales/ar/models.json +30 -0
  14. package/locales/ar/providers.json +3 -0
  15. package/locales/bg-BG/models.json +30 -0
  16. package/locales/bg-BG/providers.json +3 -0
  17. package/locales/de-DE/models.json +30 -0
  18. package/locales/de-DE/providers.json +3 -0
  19. package/locales/en-US/models.json +30 -0
  20. package/locales/en-US/providers.json +3 -0
  21. package/locales/es-ES/models.json +30 -0
  22. package/locales/es-ES/providers.json +3 -0
  23. package/locales/fa-IR/models.json +30 -0
  24. package/locales/fa-IR/providers.json +3 -0
  25. package/locales/fr-FR/models.json +30 -0
  26. package/locales/fr-FR/providers.json +3 -0
  27. package/locales/it-IT/models.json +30 -0
  28. package/locales/it-IT/providers.json +3 -0
  29. package/locales/ja-JP/models.json +22 -0
  30. package/locales/ja-JP/providers.json +3 -0
  31. package/locales/ko-KR/models.json +30 -0
  32. package/locales/ko-KR/providers.json +3 -0
  33. package/locales/nl-NL/models.json +30 -0
  34. package/locales/nl-NL/providers.json +3 -0
  35. package/locales/pl-PL/models.json +30 -0
  36. package/locales/pl-PL/providers.json +3 -0
  37. package/locales/pt-BR/models.json +30 -0
  38. package/locales/pt-BR/providers.json +3 -0
  39. package/locales/ru-RU/models.json +30 -0
  40. package/locales/ru-RU/providers.json +3 -0
  41. package/locales/tr-TR/models.json +30 -0
  42. package/locales/tr-TR/providers.json +3 -0
  43. package/locales/vi-VN/models.json +30 -0
  44. package/locales/vi-VN/providers.json +3 -0
  45. package/locales/zh-CN/models.json +30 -0
  46. package/locales/zh-CN/providers.json +3 -0
  47. package/locales/zh-TW/models.json +19 -0
  48. package/locales/zh-TW/providers.json +3 -0
  49. package/package.json +3 -3
  50. package/packages/web-crawler/src/utils/htmlToMarkdown.test.ts +1 -1
  51. package/src/app/[variants]/(main)/settings/llm/ProviderList/providers.tsx +5 -1
  52. package/src/config/aiModels/index.ts +6 -0
  53. package/src/config/aiModels/infiniai.ts +307 -0
  54. package/src/config/aiModels/search1api.ts +63 -0
  55. package/src/config/llm.ts +12 -0
  56. package/src/config/modelProviders/index.ts +8 -0
  57. package/src/config/modelProviders/infiniai.ts +184 -0
  58. package/src/config/modelProviders/search1api.ts +58 -0
  59. package/src/database/models/__tests__/knowledgeBase.test.ts +2 -0
  60. package/src/libs/agent-runtime/ai21/index.test.ts +8 -250
  61. package/src/libs/agent-runtime/ai360/index.test.ts +8 -250
  62. package/src/libs/agent-runtime/anthropic/index.ts +5 -1
  63. package/src/libs/agent-runtime/deepseek/index.test.ts +119 -335
  64. package/src/libs/agent-runtime/fireworksai/index.test.ts +8 -247
  65. package/src/libs/agent-runtime/giteeai/index.test.ts +8 -250
  66. package/src/libs/agent-runtime/github/index.test.ts +8 -207
  67. package/src/libs/agent-runtime/infiniai/index.ts +43 -0
  68. package/src/libs/agent-runtime/internlm/index.test.ts +8 -250
  69. package/src/libs/agent-runtime/lmstudio/index.test.ts +8 -247
  70. package/src/libs/agent-runtime/moonshot/index.test.ts +10 -243
  71. package/src/libs/agent-runtime/novita/index.test.ts +9 -221
  72. package/src/libs/agent-runtime/ollama/index.test.ts +4 -4
  73. package/src/libs/agent-runtime/openrouter/index.test.ts +12 -217
  74. package/src/libs/agent-runtime/ppio/index.test.ts +11 -220
  75. package/src/libs/agent-runtime/providerTestUtils.ts +6 -6
  76. package/src/libs/agent-runtime/qwen/index.test.ts +10 -242
  77. package/src/libs/agent-runtime/runtimeMap.ts +4 -0
  78. package/src/libs/agent-runtime/search1api/index.ts +64 -0
  79. package/src/libs/agent-runtime/sensenova/index.test.ts +10 -242
  80. package/src/libs/agent-runtime/spark/index.test.ts +7 -242
  81. package/src/libs/agent-runtime/stepfun/index.test.ts +7 -242
  82. package/src/libs/agent-runtime/taichu/index.test.ts +12 -220
  83. package/src/libs/agent-runtime/types/type.ts +2 -0
  84. package/src/libs/agent-runtime/upstage/index.test.ts +7 -250
  85. package/src/libs/agent-runtime/utils/openaiCompatibleFactory/index.test.ts +2 -2
  86. package/src/libs/agent-runtime/xai/index.test.ts +8 -250
  87. package/src/services/chat.ts +1 -4
  88. package/src/types/user/settings/keyVaults.ts +2 -0
  89. package/src/utils/fetch/__tests__/parseToolCalls.test.ts +9 -11
  90. package/src/utils/server/jwt.test.ts +1 -1
  91. package/vitest.server.config.ts +3 -1
@@ -1,4 +1,5 @@
1
1
  {
2
+ "0": "{",
2
3
  "01-ai/Yi-1.5-34B-Chat-16K": {
3
4
  "description": "Yi-1.5 34B,以豐富的訓練樣本在行業應用中提供優越表現。"
4
5
  },
@@ -521,6 +522,9 @@
521
522
  "charglm-3": {
522
523
  "description": "CharGLM-3專為角色扮演與情感陪伴設計,支持超長多輪記憶與個性化對話,應用廣泛。"
523
524
  },
525
+ "chatglm3": {
526
+ "description": "ChatGLM3 是智譜 AI 與清華 KEG 實驗室發佈的閉源模型,經過海量中英標識符的預訓練與人類偏好對齊訓練,相比一代模型在 MMLU、C-Eval、GSM8K 分別取得了 16%、36%、280% 的提升,並登頂中文任務榜單 C-Eval。適用於對知識量、推理能力、創造力要求較高的場景,比如廣告文案、小說寫作、知識類寫作、代碼生成等。"
527
+ },
524
528
  "chatgpt-4o-latest": {
525
529
  "description": "ChatGPT-4o是一款動態模型,實時更新以保持當前最新版本。它結合了強大的語言理解與生成能力,適合於大規模應用場景,包括客戶服務、教育和技術支持。"
526
530
  },
@@ -1133,6 +1137,9 @@
1133
1137
  "lite": {
1134
1138
  "description": "Spark Lite 是一款輕量級大語言模型,具備極低的延遲與高效的處理能力,完全免費開放,支持即時在線搜索功能。其快速響應的特性使其在低算力設備上的推理應用和模型微調中表現出色,為用戶帶來出色的成本效益和智能體驗,尤其在知識問答、內容生成及搜索場景下表現不俗。"
1135
1139
  },
1140
+ "llama-2-7b-chat": {
1141
+ "description": "Llama2 是由 Meta 開發並開源的大型語言模型(LLM)系列,這是一組從 70 億到 700 億參數不同規模、經過預訓練和微調的生成式文本模型。架構層面,Llama2 是一個使用優化型轉換器架構的自動回歸語言模型。調整後的版本使用有監督的微調(SFT)和帶有人類反饋的強化學習(RLHF)以對齊人類對有用性和安全性的偏好。Llama2 較 Llama 系列在多種學術數據集上有着更加不俗的表現,為大量其他模型提供了設計和開發的思路。"
1142
+ },
1136
1143
  "llama-3.1-70b-versatile": {
1137
1144
  "description": "Llama 3.1 70B 提供更強大的 AI 推理能力,適合複雜應用,支持超多的計算處理並保證高效和準確率。"
1138
1145
  },
@@ -1196,6 +1203,9 @@
1196
1203
  "max-32k": {
1197
1204
  "description": "Spark Max 32K 配置了大上下文處理能力,更強的上下文理解和邏輯推理能力,支持32K tokens的文本輸入,適用於長文檔閱讀、私有知識問答等場景。"
1198
1205
  },
1206
+ "megrez-3b-instruct": {
1207
+ "description": "Megrez-3B-Instruct 是由無問芯穹完全自主訓練的大語言模型。Megrez-3B-Instruct 旨在通過軟硬協同理念,打造一款極速推理、小巧精悍、極易上手的端側智能解決方案。"
1208
+ },
1199
1209
  "meta-llama-3-70b-instruct": {
1200
1210
  "description": "一個強大的70億參數模型,在推理、編碼和廣泛的語言應用中表現出色。"
1201
1211
  },
@@ -1586,6 +1596,12 @@
1586
1596
  "qwen2": {
1587
1597
  "description": "Qwen2 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
1588
1598
  },
1599
+ "qwen2-72b-instruct": {
1600
+ "description": "Qwen2 是 Qwen 團隊推出的新一代大型語言模型系列。它基於 Transformer 架構,並採用 SwiGLU 激活函數、注意力 QKV 偏置(attention QKV bias)、群組查詢注意力(group query attention)、滑動窗口注意力(mixture of sliding window attention)與全注意力的混合等技術。此外,Qwen 團隊還改進了適應多種自然語言和代碼的分詞器。"
1601
+ },
1602
+ "qwen2-7b-instruct": {
1603
+ "description": "Qwen2 是 Qwen 團隊推出的新一代大型語言模型系列。它基於 Transformer 架構,並採用 SwiGLU 激活函數、注意力 QKV 偏置(attention QKV bias)、群組查詢注意力(group query attention)、滑動視窗注意力(mixture of sliding window attention)與全注意力的混合等技術。此外,Qwen 團隊還改進了適應多種自然語言和程式碼的分詞器。"
1604
+ },
1589
1605
  "qwen2.5": {
1590
1606
  "description": "Qwen2.5 是阿里巴巴的新一代大規模語言模型,以優異的性能支持多元化的應用需求。"
1591
1607
  },
@@ -1763,6 +1779,9 @@
1763
1779
  "wizardlm2:8x22b": {
1764
1780
  "description": "WizardLM 2 是微軟 AI 提供的語言模型,在複雜對話、多語言、推理和智能助手領域表現尤為出色。"
1765
1781
  },
1782
+ "yi-1.5-34b-chat": {
1783
+ "description": "Yi-1.5 是 Yi 的升級版本。它使用 500B Tokens 的高品質語料庫在 Yi 上持續進行預訓練,並在 3M 個多樣化的微調樣本上進行微調。"
1784
+ },
1766
1785
  "yi-large": {
1767
1786
  "description": "全新千億參數模型,提供超強問答及文本生成能力。"
1768
1787
  },
@@ -53,6 +53,9 @@
53
53
  "hunyuan": {
54
54
  "description": "由騰訊研發的大語言模型,具備強大的中文創作能力、複雜語境下的邏輯推理能力,以及可靠的任務執行能力"
55
55
  },
56
+ "infiniai": {
57
+ "description": "為應用開發者提供高性能、易上手、安全可靠的大模型服務,覆蓋從大模型開發到大模型服務化部署的全流程。"
58
+ },
56
59
  "internlm": {
57
60
  "description": "致力於大模型研究與開發工具鏈的開源組織。為所有 AI 開發者提供高效、易用的開源平台,讓最前沿的大模型與算法技術觸手可及"
58
61
  },
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@lobehub/chat",
3
- "version": "1.73.2",
3
+ "version": "1.74.1",
4
4
  "description": "Lobe Chat - an open-source, high-performance chatbot framework that supports speech synthesis, multimodal, and extensible Function Call plugin system. Supports one-click free deployment of your private ChatGPT/LLM web application.",
5
5
  "keywords": [
6
6
  "framework",
@@ -286,7 +286,7 @@
286
286
  "@types/unist": "^3.0.3",
287
287
  "@types/uuid": "^10.0.0",
288
288
  "@types/ws": "^8.5.13",
289
- "@vitest/coverage-v8": "~1.2.2",
289
+ "@vitest/coverage-v8": "^3.0.9",
290
290
  "ajv-keywords": "^5.1.0",
291
291
  "commitlint": "^19.6.1",
292
292
  "consola": "^3.3.3",
@@ -327,7 +327,7 @@
327
327
  "unified": "^11.0.5",
328
328
  "unist-util-visit": "^5.0.0",
329
329
  "vite": "^5.4.11",
330
- "vitest": "~1.2.2",
330
+ "vitest": "^3.0.9",
331
331
  "vitest-canvas-mock": "^0.3.3"
332
332
  },
333
333
  "packageManager": "pnpm@9.15.9",
@@ -30,6 +30,6 @@ describe('htmlToMarkdown', () => {
30
30
  const data = htmlToMarkdown(html, { url: item.url, filterOptions: item.filterOptions || {} });
31
31
 
32
32
  expect(data).toMatchSnapshot();
33
- });
33
+ }, 10000);
34
34
  });
35
35
  });
@@ -13,6 +13,7 @@ import {
13
13
  GroqProviderCard,
14
14
  HigressProviderCard,
15
15
  HunyuanProviderCard,
16
+ InfiniAIProviderCard,
16
17
  InternLMProviderCard,
17
18
  JinaProviderCard,
18
19
  MinimaxProviderCard,
@@ -21,10 +22,11 @@ import {
21
22
  NovitaProviderCard,
22
23
  NvidiaProviderCard,
23
24
  OpenRouterProviderCard,
24
- PerplexityProviderCard,
25
25
  PPIOProviderCard,
26
+ PerplexityProviderCard,
26
27
  QwenProviderCard,
27
28
  SambaNovaProviderCard,
29
+ Search1APIProviderCard,
28
30
  SenseNovaProviderCard,
29
31
  SiliconCloudProviderCard,
30
32
  SparkProviderCard,
@@ -83,6 +85,7 @@ export const useProviderList = (): ProviderItem[] => {
83
85
  XAIProviderCard,
84
86
  JinaProviderCard,
85
87
  SambaNovaProviderCard,
88
+ Search1APIProviderCard,
86
89
  CohereProviderCard,
87
90
  QwenProviderCard,
88
91
  WenxinProviderCard,
@@ -102,6 +105,7 @@ export const useProviderList = (): ProviderItem[] => {
102
105
  HigressProviderCard,
103
106
  GiteeAIProviderCard,
104
107
  PPIOProviderCard,
108
+ InfiniAIProviderCard,
105
109
  ],
106
110
  [
107
111
  AzureProvider,
@@ -19,6 +19,7 @@ import { default as groq } from './groq';
19
19
  import { default as higress } from './higress';
20
20
  import { default as huggingface } from './huggingface';
21
21
  import { default as hunyuan } from './hunyuan';
22
+ import { default as infiniai } from './infiniai';
22
23
  import { default as internlm } from './internlm';
23
24
  import { default as jina } from './jina';
24
25
  import { default as lmstudio } from './lmstudio';
@@ -34,6 +35,7 @@ import { default as perplexity } from './perplexity';
34
35
  import { default as ppio } from './ppio';
35
36
  import { default as qwen } from './qwen';
36
37
  import { default as sambanova } from './sambanova';
38
+ import { default as search1api } from './search1api';
37
39
  import { default as sensenova } from './sensenova';
38
40
  import { default as siliconcloud } from './siliconcloud';
39
41
  import { default as spark } from './spark';
@@ -89,6 +91,7 @@ export const LOBE_DEFAULT_MODEL_LIST = buildDefaultModelList({
89
91
  higress,
90
92
  huggingface,
91
93
  hunyuan,
94
+ infiniai,
92
95
  internlm,
93
96
  jina,
94
97
  lmstudio,
@@ -104,6 +107,7 @@ export const LOBE_DEFAULT_MODEL_LIST = buildDefaultModelList({
104
107
  ppio,
105
108
  qwen,
106
109
  sambanova,
110
+ search1api,
107
111
  sensenova,
108
112
  siliconcloud,
109
113
  spark,
@@ -140,6 +144,7 @@ export { default as groq } from './groq';
140
144
  export { default as higress } from './higress';
141
145
  export { default as huggingface } from './huggingface';
142
146
  export { default as hunyuan } from './hunyuan';
147
+ export { default as infiniai } from './infiniai';
143
148
  export { default as internlm } from './internlm';
144
149
  export { default as jina } from './jina';
145
150
  export { default as lmstudio } from './lmstudio';
@@ -155,6 +160,7 @@ export { default as perplexity } from './perplexity';
155
160
  export { default as ppio } from './ppio';
156
161
  export { default as qwen } from './qwen';
157
162
  export { default as sambanova } from './sambanova';
163
+ export { default as search1api } from './search1api';
158
164
  export { default as sensenova } from './sensenova';
159
165
  export { default as siliconcloud } from './siliconcloud';
160
166
  export { default as spark } from './spark';
@@ -0,0 +1,307 @@
1
+ import { AIChatModelCard } from '@/types/aiModel';
2
+
3
+ // https://cloud.infini-ai.com/genstudio/model
4
+ // All models are currently free
5
+
6
+ const infiniaiChatModels: AIChatModelCard[] = [
7
+ {
8
+ abilities: {
9
+ reasoning: true,
10
+ },
11
+ contextWindowTokens: 65_536,
12
+ description:
13
+ 'DeepSeek-R1 是一个专注于推理能力的大语言模型,通过创新的训练流程实现了与 OpenAI-o1 相当的数学、代码和推理任务表现。该模型采用了冷启动数据和大规模强化学习相结合的方式进行训练。',
14
+ displayName: 'DeepSeek R1',
15
+ enabled: true,
16
+ id: 'deepseek-r1',
17
+ pricing: {
18
+ currency: 'CNY',
19
+ input: 0,
20
+ output: 0,
21
+ },
22
+ type: 'chat',
23
+ },
24
+ {
25
+ contextWindowTokens: 65_536,
26
+ description:
27
+ 'DeepSeek-V3 是一个强大的专家混合(MoE)语言模型,总参数量为 671B,每个 Token 激活 37B 参数。该模型采用多头潜在注意力(MLA)和 DeepSeekMoE 架构,实现了高效推理和经济训练。',
28
+ displayName: 'DeepSeek V3',
29
+ enabled: true,
30
+ id: 'deepseek-v3',
31
+ pricing: {
32
+ currency: 'CNY',
33
+ input: 0,
34
+ output: 0,
35
+ },
36
+ type: 'chat',
37
+ },
38
+ {
39
+ contextWindowTokens: 65_536,
40
+ description:
41
+ 'QwQ 是 Qwen 系列的推理模型,相比传统指令调优模型,QwQ 具备思考和推理能力,在下游任务尤其是难题上能取得显著性能提升。QwQ-32B 是一款中等规模的推理模型,其性能可与最先进的推理模型相媲美,例如 DeepSeek-R1 和 o1-mini。',
42
+ displayName: 'QwQ 32B',
43
+ enabled: true,
44
+ id: 'qwq-32b',
45
+ pricing: {
46
+ currency: 'CNY',
47
+ input: 0,
48
+ output: 0,
49
+ },
50
+ type: 'chat',
51
+ },
52
+ {
53
+ contextWindowTokens: 32_768,
54
+ description:
55
+ 'DeepSeek-R1-Distill-Qwen-32B 是基于 DeepSeek-R1 蒸馏而来的模型,在 Qwen2.5-32B 的基础上使用 DeepSeek-R1 生成的样本进行微调。该模型在各种基准测试中表现出色,保持了强大的推理能力。',
56
+ displayName: 'DeepSeek R1 Distill Qwen 32B',
57
+ enabled: true,
58
+ id: 'deepseek-r1-distill-qwen-32b',
59
+ pricing: {
60
+ currency: 'CNY',
61
+ input: 0,
62
+ output: 0,
63
+ },
64
+ type: 'chat',
65
+ },
66
+ {
67
+ contextWindowTokens: 32_768,
68
+ description:
69
+ 'Qwen2.5 是 Qwen 大型语言模型系列的最新成果。Qwen2.5 发布了从 0.5 到 720 亿参数不等的基础语言模型及指令调优语言模型。Qwen2.5 相比 Qwen2 带来了以下改进:\n显著增加知识量,在编程与数学领域的能力得到极大提升。\n在遵循指令、生成长文本、理解结构化数据 (例如,表格) 以及生成结构化输出特别是 JSON 方面有显著提升。对系统提示的多样性更具韧性,增强了聊天机器人中的角色扮演实现和条件设定。\n支持长上下文处理。\n支持超过 29 种语言的多语言功能,包括中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、俄语、日语、韩语、越南语、泰语、阿拉伯语等。',
70
+ displayName: 'Qwen2.5 72B Instruct',
71
+ enabled: true,
72
+ id: 'qwen2.5-72b-instruct',
73
+ pricing: {
74
+ currency: 'CNY',
75
+ input: 0,
76
+ output: 0,
77
+ },
78
+ type: 'chat',
79
+ },
80
+ {
81
+ contextWindowTokens: 32_768,
82
+ description:
83
+ 'Qwen2.5 是 Qwen 大型语言模型系列的最新成果。Qwen2.5 发布了从 0.5 到 720 亿参数不等的基础语言模型及指令调优语言模型。Qwen2.5 相比 Qwen2 带来了以下改进:\n显著增加知识量,在编程与数学领域的能力得到极大提升。\n在遵循指令、生成长文本、理解结构化数据 (例如,表格) 以及生成结构化输出特别是 JSON 方面有显著提升。对系统提示的多样性更具韧性,增强了聊天机器人中的角色扮演实现和条件设定。\n支持长上下文处理。\n支持超过 29 种语言的多语言功能,包括中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、俄语、日语、韩语、越南语、泰语、阿拉伯语等。',
84
+ displayName: 'Qwen2.5 32B Instruct',
85
+ enabled: true,
86
+ id: 'qwen2.5-32b-instruct',
87
+ pricing: {
88
+ currency: 'CNY',
89
+ input: 0,
90
+ output: 0,
91
+ },
92
+ type: 'chat',
93
+ },
94
+ {
95
+ contextWindowTokens: 32_768,
96
+ description:
97
+ 'Qwen2.5-Coder 是最新的代码专用 Qwen 大型语言模型系列。Qwen2.5-Coder 在 CodeQwen1.5 的基础上带来了以下改进:\n显著提升代码生成、代码推理和代码修复能力。\n支持真实世界应用,例如代码代理,增强编码能力和数学及一般能力。\n支持长上下文处理。',
98
+ displayName: 'Qwen2.5 Coder 32B Instruct',
99
+ enabled: true,
100
+ id: 'qwen2.5-coder-32b-instruct',
101
+ pricing: {
102
+ currency: 'CNY',
103
+ input: 0,
104
+ output: 0,
105
+ },
106
+ type: 'chat',
107
+ },
108
+ {
109
+ contextWindowTokens: 32_768,
110
+ description:
111
+ 'Qwen2.5 是 Qwen 大型语言模型系列的最新成果。Qwen2.5 发布了从 0.5 到 720 亿参数不等的基础语言模型及指令调优语言模型。Qwen2.5 相比 Qwen2 带来了以下改进:\n显著增加知识量,在编程与数学领域的能力得到极大提升。\n在遵循指令、生成长文本、理解结构化数据 (例如,表格) 以及生成结构化输出特别是 JSON 方面有显著提升。对系统提示的多样性更具韧性,增强了聊天机器人中的角色扮演实现和条件设定。\n支持长上下文处理。\n支持超过 29 种语言的多语言功能,包括中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、俄语、日语、韩语、越南语、泰语、阿拉伯语等。',
112
+ displayName: 'Qwen2.5 14B Instruct',
113
+ enabled: true,
114
+ id: 'qwen2.5-14b-instruct',
115
+ pricing: {
116
+ currency: 'CNY',
117
+ input: 0,
118
+ output: 0,
119
+ },
120
+ type: 'chat',
121
+ },
122
+ {
123
+ contextWindowTokens: 32_768,
124
+ description:
125
+ 'Qwen2.5 是 Qwen 大型语言模型系列的最新成果。Qwen2.5 发布了从 0.5 到 720 亿参数不等的基础语言模型及指令调优语言模型。Qwen2.5 相比 Qwen2 带来了以下改进:\n显著增加知识量,在编程与数学领域的能力得到极大提升。\n在遵循指令、生成长文本、理解结构化数据 (例如,表格) 以及生成结构化输出特别是 JSON 方面有显著提升。对系统提示的多样性更具韧性,增强了聊天机器人中的角色扮演实现和条件设定。\n支持长上下文处理。\n支持超过 29 种语言的多语言功能,包括中文、英语、法语、西班牙语、葡萄牙语、德语、意大利语、俄语、日语、韩语、越南语、泰语、阿拉伯语等。',
126
+ displayName: 'Qwen2.5 7B Instruct',
127
+ enabled: true,
128
+ id: 'qwen2.5-7b-instruct',
129
+ pricing: {
130
+ currency: 'CNY',
131
+ input: 0,
132
+ output: 0,
133
+ },
134
+ type: 'chat',
135
+ },
136
+ {
137
+ contextWindowTokens: 8192,
138
+ description:
139
+ 'Meta 发布的 LLaMA 3.3 多语言大规模语言模型(LLMs)是一个经过预训练和指令微调的生成模型,提供 70B 规模(文本输入/文本输出)。该模型使用超过 15T 的数据进行训练,支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语,知识更新截止于 2023 年 12 月。',
140
+ displayName: 'LLaMA 3.3 70B',
141
+ enabled: true,
142
+ id: 'llama-3.3-70b-instruct',
143
+ pricing: {
144
+ currency: 'CNY',
145
+ input: 0,
146
+ output: 0,
147
+ },
148
+ type: 'chat',
149
+ },
150
+ {
151
+ contextWindowTokens: 32_768,
152
+ description:
153
+ 'Qwen2 是 Qwen 团队推出的新一代大型语言模型系列。它基于 Transformer 架构,并采用 SwiGLU 激活函数、注意力 QKV 偏置(attention QKV bias)、群组查询注意力(group query attention)、滑动窗口注意力(mixture of sliding window attention)与全注意力的混合等技术。此外,Qwen 团队还改进了适应多种自然语言和代码的分词器。',
154
+ displayName: 'Qwen 2 72B Instruct',
155
+ enabled: true,
156
+ id: 'qwen2-72b-instruct',
157
+ pricing: {
158
+ currency: 'CNY',
159
+ input: 0,
160
+ output: 0,
161
+ },
162
+ type: 'chat',
163
+ },
164
+ {
165
+ contextWindowTokens: 32_768,
166
+ description:
167
+ 'Qwen2 是 Qwen 团队推出的新一代大型语言模型系列。它基于 Transformer 架构,并采用 SwiGLU 激活函数、注意力 QKV 偏置(attention QKV bias)、群组查询注意力(group query attention)、滑动窗口注意力(mixture of sliding window attention)与全注意力的混合等技术。此外,Qwen 团队还改进了适应多种自然语言和代码的分词器。',
168
+ displayName: 'Qwen 2 7B Instruct',
169
+ enabled: true,
170
+ id: 'qwen2-7b-instruct',
171
+ pricing: {
172
+ currency: 'CNY',
173
+ input: 0,
174
+ output: 0,
175
+ },
176
+ type: 'chat',
177
+ },
178
+ {
179
+ contextWindowTokens: 4096,
180
+ description:
181
+ 'Yi-1.5 是 Yi 的升级版本。 它使用 500B Tokens 的高质量语料库在 Yi 上持续进行预训练,并在 3M 个多样化的微调样本上进行微调。',
182
+ displayName: 'Yi-1.5 34B Chat',
183
+ enabled: true,
184
+ id: 'yi-1.5-34b-chat',
185
+ pricing: {
186
+ currency: 'CNY',
187
+ input: 0,
188
+ output: 0,
189
+ },
190
+ type: 'chat',
191
+ },
192
+ {
193
+ contextWindowTokens: 32_768,
194
+ description:
195
+ 'Qwen1.5 系列是 Qwen2 的 Beta 版本,是一个基于 Transformer 的仅解码语言模型,在海量数据上进行预训练。与之前发布的 Qwen 系列版本相比,Qwen1.5 系列 base 与 chat 模型均能支持多种语言,在整体聊天和基础能力上都得到了提升。Qwen1.5-72b-chat 是其中专用于 chat 场景的 720 亿参数的大模型。',
196
+ displayName: 'Qwen1.5 72B Chat',
197
+ enabled: true,
198
+ id: 'qwen1.5-72b-chat',
199
+ pricing: {
200
+ currency: 'CNY',
201
+ input: 0,
202
+ output: 0,
203
+ },
204
+ type: 'chat',
205
+ },
206
+ {
207
+ contextWindowTokens: 32_768,
208
+ description:
209
+ 'Qwen1.5 系列是 Qwen2 的 Beta 版本,是一个基于 Transformer 的仅解码语言模型,在海量数据上进行预训练。与之前发布的 Qwen 系列版本相比,Qwen1.5 系列 base 与 chat 模型均能支持多种语言,在整体聊天和基础能力上都得到了提升。Qwen1.5-32b-chat 是其中专用于 chat 场景的 320 亿参数的大模型,较于 14b 模型在智能体场景更强,较于 72b 模型推理成本更低。',
210
+ displayName: 'Qwen1.5 32B Chat',
211
+ enabled: true,
212
+ id: 'qwen1.5-32b-chat',
213
+ pricing: {
214
+ currency: 'CNY',
215
+ input: 0,
216
+ output: 0,
217
+ },
218
+ type: 'chat',
219
+ },
220
+ {
221
+ contextWindowTokens: 8192,
222
+ description:
223
+ 'Qwen1.5 系列是 Qwen2 的 Beta 版本,是一个基于 Transformer 的仅解码语言模型,在海量数据上进行预训练。与之前发布的 Qwen 系列版本相比,Qwen1.5 系列 base 与 chat 模型均能支持多种语言,在整体聊天和基础能力上都得到了提升。Qwen1.5-14b-chat 是其中专用于 chat 场景的 140 亿参数的主流大小模型。',
224
+ displayName: 'Qwen1.5 14B Chat',
225
+ enabled: true,
226
+ id: 'qwen1.5-14b-chat',
227
+ pricing: {
228
+ currency: 'CNY',
229
+ input: 0,
230
+ output: 0,
231
+ },
232
+ type: 'chat',
233
+ },
234
+ {
235
+ contextWindowTokens: 16_384,
236
+ description: 'GLM-4-9B-Chat 是智谱 AI 推出的最新一代预训练模型 GLM-4-9B 的人类偏好对齐版本。',
237
+ displayName: 'GLM-4 9B Chat',
238
+ enabled: true,
239
+ id: 'glm-4-9b-chat',
240
+ pricing: {
241
+ currency: 'CNY',
242
+ input: 0,
243
+ output: 0,
244
+ },
245
+ type: 'chat',
246
+ },
247
+ {
248
+ contextWindowTokens: 8192,
249
+ description:
250
+ 'ChatGLM3 是智谱 AI 与清华 KEG 实验室发布的闭源模型,经过海量中英标识符的预训练与人类偏好对齐训练,相比一代模型在 MMLU、C-Eval、GSM8K 分别取得了 16%、36%、280% 的提升,并登顶中文任务榜单 C-Eval。适用于对知识量、推理能力、创造力要求较高的场景,比如广告文案、小说写作、知识类写作、代码生成等。',
251
+ displayName: 'ChatGLM3',
252
+ enabled: true,
253
+ id: 'chatglm3',
254
+ pricing: {
255
+ currency: 'CNY',
256
+ input: 0,
257
+ output: 0,
258
+ },
259
+ type: 'chat',
260
+ },
261
+ {
262
+ contextWindowTokens: 32_768,
263
+ description:
264
+ 'ChatGLM3-6b-base 是由智谱开发的 ChatGLM 系列最新一代的 60 亿参数规模的开源的基础模型。',
265
+ displayName: 'ChatGLM3 6B Base',
266
+ enabled: true,
267
+ id: 'chatglm3-6b-base',
268
+ pricing: {
269
+ currency: 'CNY',
270
+ input: 0,
271
+ output: 0,
272
+ },
273
+ type: 'chat',
274
+ },
275
+ {
276
+ contextWindowTokens: 4096,
277
+ description:
278
+ 'Llama2 是由 Meta 开发并开源的大型语言模型(LLM)系列,这是一组从 70 亿到 700 亿参数不同规模、经过预训练和微调的生成式文本模型。架构层面,LLama2 是一个使用优化型转换器架构的自动回归语言模型。调整后的版本使用有监督的微调(SFT)和带有人类反馈的强化学习(RLHF)以对齐人类对有用性和安全性的偏好。Llama2 较 Llama 系列在多种学术数据集上有着更加不俗的表现,为大量其他模型提供了设计和开发的思路。',
279
+ displayName: 'Llama 2 7B Chat',
280
+ enabled: true,
281
+ id: 'llama-2-7b-chat',
282
+ pricing: {
283
+ currency: 'CNY',
284
+ input: 0,
285
+ output: 0,
286
+ },
287
+ type: 'chat',
288
+ },
289
+ {
290
+ contextWindowTokens: 4096,
291
+ description:
292
+ 'Megrez-3B-Instruct 是由无问芯穹完全自主训练的大语言模型。Megrez-3B-Instruct 旨在通过软硬协同理念,打造一款极速推理、小巧精悍、极易上手的端侧智能解决方案。',
293
+ displayName: 'Megrez 3B Instruct',
294
+ enabled: true,
295
+ id: 'megrez-3b-instruct',
296
+ pricing: {
297
+ currency: 'CNY',
298
+ input: 0,
299
+ output: 0,
300
+ },
301
+ type: 'chat',
302
+ },
303
+ ];
304
+
305
+ export const allModels = [...infiniaiChatModels];
306
+
307
+ export default allModels;
@@ -0,0 +1,63 @@
1
+ import { AIChatModelCard } from '@/types/aiModel';
2
+
3
+ const search1apiChatModels: AIChatModelCard[] = [
4
+ {
5
+ abilities: {
6
+ reasoning: true,
7
+ search: true,
8
+ },
9
+ contextWindowTokens: 131_072,
10
+ description: 'DeepSeek R1 70B 标准版,支持实时联网搜索,适合需要最新信息的对话和文本处理任务。',
11
+ displayName: 'DeepSeek R1 70B',
12
+ enabled: true,
13
+ id: 'deepseek-r1-70b-online',
14
+ maxOutput: 16_384,
15
+ type: 'chat',
16
+ },
17
+ {
18
+ abilities: {
19
+ reasoning: true,
20
+ search: true,
21
+ },
22
+ contextWindowTokens: 65_536,
23
+ description:
24
+ 'DeepSeek R1 满血版,拥有 671B 参数,支持实时联网搜索,具有更强大的理解和生成能力。',
25
+ displayName: 'DeepSeek R1',
26
+ enabled: true,
27
+ id: 'deepseek-r1-online',
28
+ maxOutput: 8192,
29
+ type: 'chat',
30
+ },
31
+ {
32
+ abilities: {
33
+ reasoning: true,
34
+ search: true,
35
+ },
36
+ contextWindowTokens: 131_072,
37
+ description:
38
+ 'DeepSeek R1 70B 快速版,支持实时联网搜索,在保持模型性能的同时提供更快的响应速度。',
39
+ displayName: 'DeepSeek R1 70B Fast',
40
+ enabled: true,
41
+ id: 'deepseek-r1-70b-fast-online',
42
+ maxOutput: 16_384,
43
+ type: 'chat',
44
+ },
45
+ {
46
+ abilities: {
47
+ reasoning: true,
48
+ search: true,
49
+ },
50
+ contextWindowTokens: 163_840,
51
+ description:
52
+ 'DeepSeek R1 满血快速版,支持实时联网搜索,结合了 671B 参数的强大能力和更快的响应速度。',
53
+ displayName: 'DeepSeek R1 Fast',
54
+ enabled: true,
55
+ id: 'deepseek-r1-fast-online',
56
+ maxOutput: 16_384,
57
+ type: 'chat',
58
+ },
59
+ ];
60
+
61
+ export const allModels = [...search1apiChatModels];
62
+
63
+ export default allModels;
package/src/config/llm.ts CHANGED
@@ -151,8 +151,14 @@ export const getLLMConfig = () => {
151
151
  ENABLED_PPIO: z.boolean(),
152
152
  PPIO_API_KEY: z.string().optional(),
153
153
 
154
+ ENABLED_SEARCH1API: z.boolean(),
155
+ SEARCH1API_API_KEY: z.string().optional(),
156
+
154
157
  ENABLED_COHERE: z.boolean(),
155
158
  COHERE_API_KEY: z.string().optional(),
159
+
160
+ ENABLED_INFINIAI: z.boolean(),
161
+ INFINIAI_API_KEY: z.string().optional(),
156
162
  },
157
163
  runtimeEnv: {
158
164
  API_KEY_SELECT_MODE: process.env.API_KEY_SELECT_MODE,
@@ -302,8 +308,14 @@ export const getLLMConfig = () => {
302
308
  ENABLED_PPIO: !!process.env.PPIO_API_KEY,
303
309
  PPIO_API_KEY: process.env.PPIO_API_KEY,
304
310
 
311
+ ENABLED_SEARCH1API: !!process.env.SEARCH1API_API_KEY,
312
+ SEARCH1API_API_KEY: process.env.SEARCH1API_API_KEY,
313
+
305
314
  ENABLED_COHERE: !!process.env.COHERE_API_KEY,
306
315
  COHERE_API_KEY: process.env.COHERE_API_KEY,
316
+
317
+ ENABLED_INFINIAI: !!process.env.INFINIAI_API_KEY,
318
+ INFINIAI_API_KEY: process.env.INFINIAI_API_KEY,
307
319
  },
308
320
  });
309
321
  };
@@ -19,6 +19,7 @@ import GroqProvider from './groq';
19
19
  import HigressProvider from './higress';
20
20
  import HuggingFaceProvider from './huggingface';
21
21
  import HunyuanProvider from './hunyuan';
22
+ import InfiniAIProvider from './infiniai';
22
23
  import InternLMProvider from './internlm';
23
24
  import JinaProvider from './jina';
24
25
  import LMStudioProvider from './lmstudio';
@@ -34,6 +35,7 @@ import PerplexityProvider from './perplexity';
34
35
  import PPIOProvider from './ppio';
35
36
  import QwenProvider from './qwen';
36
37
  import SambaNovaProvider from './sambanova';
38
+ import Search1APIProvider from './search1api';
37
39
  import SenseNovaProvider from './sensenova';
38
40
  import SiliconCloudProvider from './siliconcloud';
39
41
  import SparkProvider from './spark';
@@ -96,6 +98,8 @@ export const LOBE_DEFAULT_MODEL_LIST: ChatModelCard[] = [
96
98
  InternLMProvider.chatModels,
97
99
  HigressProvider.chatModels,
98
100
  PPIOProvider.chatModels,
101
+ Search1APIProvider.chatModels,
102
+ InfiniAIProvider.chatModels,
99
103
  ].flat();
100
104
 
101
105
  export const DEFAULT_MODEL_PROVIDER_LIST = [
@@ -149,6 +153,8 @@ export const DEFAULT_MODEL_PROVIDER_LIST = [
149
153
  TaichuProvider,
150
154
  Ai360Provider,
151
155
  DoubaoProvider,
156
+ Search1APIProvider,
157
+ InfiniAIProvider
152
158
  ];
153
159
 
154
160
  export const filterEnabledModels = (provider: ModelProviderCard) => {
@@ -179,6 +185,7 @@ export { default as GroqProviderCard } from './groq';
179
185
  export { default as HigressProviderCard } from './higress';
180
186
  export { default as HuggingFaceProviderCard } from './huggingface';
181
187
  export { default as HunyuanProviderCard } from './hunyuan';
188
+ export { default as InfiniAIProviderCard } from './infiniai';
182
189
  export { default as InternLMProviderCard } from './internlm';
183
190
  export { default as JinaProviderCard } from './jina';
184
191
  export { default as LMStudioProviderCard } from './lmstudio';
@@ -194,6 +201,7 @@ export { default as PerplexityProviderCard } from './perplexity';
194
201
  export { default as PPIOProviderCard } from './ppio';
195
202
  export { default as QwenProviderCard } from './qwen';
196
203
  export { default as SambaNovaProviderCard } from './sambanova';
204
+ export { default as Search1APIProviderCard } from './search1api';
197
205
  export { default as SenseNovaProviderCard } from './sensenova';
198
206
  export { default as SiliconCloudProviderCard } from './siliconcloud';
199
207
  export { default as SparkProviderCard } from './spark';