@lobehub/chat 1.73.2 → 1.74.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.env.example +4 -0
- package/CHANGELOG.md +51 -0
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +3 -1
- package/README.md +4 -2
- package/README.zh-CN.md +4 -2
- package/changelog/v1.json +18 -0
- package/docs/self-hosting/environment-variables/model-provider.mdx +13 -0
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +14 -0
- package/docs/usage/providers/infiniai.mdx +29 -0
- package/docs/usage/providers/infiniai.zh-CN.mdx +29 -0
- package/locales/ar/models.json +30 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +30 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +30 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +30 -0
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +30 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +30 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +30 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +30 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +22 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +30 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +30 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +30 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +30 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +30 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +30 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +30 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +30 -0
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +19 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +3 -3
- package/packages/web-crawler/src/utils/htmlToMarkdown.test.ts +1 -1
- package/src/app/[variants]/(main)/settings/llm/ProviderList/providers.tsx +5 -1
- package/src/config/aiModels/index.ts +6 -0
- package/src/config/aiModels/infiniai.ts +307 -0
- package/src/config/aiModels/search1api.ts +63 -0
- package/src/config/llm.ts +12 -0
- package/src/config/modelProviders/index.ts +8 -0
- package/src/config/modelProviders/infiniai.ts +184 -0
- package/src/config/modelProviders/search1api.ts +58 -0
- package/src/database/models/__tests__/knowledgeBase.test.ts +2 -0
- package/src/libs/agent-runtime/ai21/index.test.ts +8 -250
- package/src/libs/agent-runtime/ai360/index.test.ts +8 -250
- package/src/libs/agent-runtime/anthropic/index.ts +5 -1
- package/src/libs/agent-runtime/deepseek/index.test.ts +119 -335
- package/src/libs/agent-runtime/fireworksai/index.test.ts +8 -247
- package/src/libs/agent-runtime/giteeai/index.test.ts +8 -250
- package/src/libs/agent-runtime/github/index.test.ts +8 -207
- package/src/libs/agent-runtime/infiniai/index.ts +43 -0
- package/src/libs/agent-runtime/internlm/index.test.ts +8 -250
- package/src/libs/agent-runtime/lmstudio/index.test.ts +8 -247
- package/src/libs/agent-runtime/moonshot/index.test.ts +10 -243
- package/src/libs/agent-runtime/novita/index.test.ts +9 -221
- package/src/libs/agent-runtime/ollama/index.test.ts +4 -4
- package/src/libs/agent-runtime/openrouter/index.test.ts +12 -217
- package/src/libs/agent-runtime/ppio/index.test.ts +11 -220
- package/src/libs/agent-runtime/providerTestUtils.ts +6 -6
- package/src/libs/agent-runtime/qwen/index.test.ts +10 -242
- package/src/libs/agent-runtime/runtimeMap.ts +4 -0
- package/src/libs/agent-runtime/search1api/index.ts +64 -0
- package/src/libs/agent-runtime/sensenova/index.test.ts +10 -242
- package/src/libs/agent-runtime/spark/index.test.ts +7 -242
- package/src/libs/agent-runtime/stepfun/index.test.ts +7 -242
- package/src/libs/agent-runtime/taichu/index.test.ts +12 -220
- package/src/libs/agent-runtime/types/type.ts +2 -0
- package/src/libs/agent-runtime/upstage/index.test.ts +7 -250
- package/src/libs/agent-runtime/utils/openaiCompatibleFactory/index.test.ts +2 -2
- package/src/libs/agent-runtime/xai/index.test.ts +8 -250
- package/src/services/chat.ts +1 -4
- package/src/types/user/settings/keyVaults.ts +2 -0
- package/src/utils/fetch/__tests__/parseToolCalls.test.ts +9 -11
- package/src/utils/server/jwt.test.ts +1 -1
- package/vitest.server.config.ts +3 -1
package/.env.example
CHANGED
@@ -131,6 +131,10 @@ OPENAI_API_KEY=sk-xxxxxxxxx
|
|
131
131
|
|
132
132
|
# PPIO_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
133
133
|
|
134
|
+
### INFINI-AI ###
|
135
|
+
|
136
|
+
# INFINIAI_API_KEY=sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
137
|
+
|
134
138
|
########################################
|
135
139
|
############ Market Service ############
|
136
140
|
########################################
|
package/CHANGELOG.md
CHANGED
@@ -2,6 +2,57 @@
|
|
2
2
|
|
3
3
|
# Changelog
|
4
4
|
|
5
|
+
### [Version 1.74.1](https://github.com/lobehub/lobe-chat/compare/v1.74.0...v1.74.1)
|
6
|
+
|
7
|
+
<sup>Released on **2025-03-22**</sup>
|
8
|
+
|
9
|
+
#### 💄 Styles
|
10
|
+
|
11
|
+
- **misc**: Fix `deepseek-r1-70b-online` search tag missing from Search1API.
|
12
|
+
|
13
|
+
<br/>
|
14
|
+
|
15
|
+
<details>
|
16
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
17
|
+
|
18
|
+
#### Styles
|
19
|
+
|
20
|
+
- **misc**: Fix `deepseek-r1-70b-online` search tag missing from Search1API, closes [#7085](https://github.com/lobehub/lobe-chat/issues/7085) ([0a06a7a](https://github.com/lobehub/lobe-chat/commit/0a06a7a))
|
21
|
+
|
22
|
+
</details>
|
23
|
+
|
24
|
+
<div align="right">
|
25
|
+
|
26
|
+
[](#readme-top)
|
27
|
+
|
28
|
+
</div>
|
29
|
+
|
30
|
+
## [Version 1.74.0](https://github.com/lobehub/lobe-chat/compare/v1.73.2...v1.74.0)
|
31
|
+
|
32
|
+
<sup>Released on **2025-03-21**</sup>
|
33
|
+
|
34
|
+
#### ✨ Features
|
35
|
+
|
36
|
+
- **misc**: Add infini-ai provider, add Search1API provider with web search DeepSeek models.
|
37
|
+
|
38
|
+
<br/>
|
39
|
+
|
40
|
+
<details>
|
41
|
+
<summary><kbd>Improvements and Fixes</kbd></summary>
|
42
|
+
|
43
|
+
#### What's improved
|
44
|
+
|
45
|
+
- **misc**: Add infini-ai provider, closes [#7012](https://github.com/lobehub/lobe-chat/issues/7012) ([72d76fe](https://github.com/lobehub/lobe-chat/commit/72d76fe))
|
46
|
+
- **misc**: Add Search1API provider with web search DeepSeek models, closes [#6376](https://github.com/lobehub/lobe-chat/issues/6376) ([3450714](https://github.com/lobehub/lobe-chat/commit/3450714))
|
47
|
+
|
48
|
+
</details>
|
49
|
+
|
50
|
+
<div align="right">
|
51
|
+
|
52
|
+
[](#readme-top)
|
53
|
+
|
54
|
+
</div>
|
55
|
+
|
5
56
|
### [Version 1.73.2](https://github.com/lobehub/lobe-chat/compare/v1.73.1...v1.73.2)
|
6
57
|
|
7
58
|
<sup>Released on **2025-03-21**</sup>
|
package/Dockerfile
CHANGED
@@ -205,6 +205,8 @@ ENV \
|
|
205
205
|
QWEN_API_KEY="" QWEN_MODEL_LIST="" QWEN_PROXY_URL="" \
|
206
206
|
# SambaNova
|
207
207
|
SAMBANOVA_API_KEY="" SAMBANOVA_MODEL_LIST="" \
|
208
|
+
# Search1API
|
209
|
+
SEARCH1API_API_KEY="" SEARCH1API_MODEL_LIST="" \
|
208
210
|
# SenseNova
|
209
211
|
SENSENOVA_API_KEY="" SENSENOVA_MODEL_LIST="" \
|
210
212
|
# SiliconCloud
|
@@ -230,7 +232,9 @@ ENV \
|
|
230
232
|
# Zhipu
|
231
233
|
ZHIPU_API_KEY="" ZHIPU_MODEL_LIST="" \
|
232
234
|
# Tencent Cloud
|
233
|
-
TENCENT_CLOUD_API_KEY="" TENCENT_CLOUD_MODEL_LIST=""
|
235
|
+
TENCENT_CLOUD_API_KEY="" TENCENT_CLOUD_MODEL_LIST="" \
|
236
|
+
# Infini-AI
|
237
|
+
INFINIAI_API_KEY="" INFINIAI_MODEL_LIST=""
|
234
238
|
|
235
239
|
USER nextjs
|
236
240
|
|
package/Dockerfile.database
CHANGED
@@ -248,6 +248,8 @@ ENV \
|
|
248
248
|
QWEN_API_KEY="" QWEN_MODEL_LIST="" QWEN_PROXY_URL="" \
|
249
249
|
# SambaNova
|
250
250
|
SAMBANOVA_API_KEY="" SAMBANOVA_MODEL_LIST="" \
|
251
|
+
# Search1API
|
252
|
+
SEARCH1API_API_KEY="" SEARCH1API_MODEL_LIST="" \
|
251
253
|
# SenseNova
|
252
254
|
SENSENOVA_API_KEY="" SENSENOVA_MODEL_LIST="" \
|
253
255
|
# SiliconCloud
|
@@ -273,7 +275,9 @@ ENV \
|
|
273
275
|
# Zhipu
|
274
276
|
ZHIPU_API_KEY="" ZHIPU_MODEL_LIST="" \
|
275
277
|
# Tencent Cloud
|
276
|
-
TENCENT_CLOUD_API_KEY="" TENCENT_CLOUD_MODEL_LIST=""
|
278
|
+
TENCENT_CLOUD_API_KEY="" TENCENT_CLOUD_MODEL_LIST="" \
|
279
|
+
# Infini-AI
|
280
|
+
INFINIAI_API_KEY="" INFINIAI_MODEL_LIST=""
|
277
281
|
|
278
282
|
USER nextjs
|
279
283
|
|
package/Dockerfile.pglite
CHANGED
@@ -229,7 +229,9 @@ ENV \
|
|
229
229
|
# Zhipu
|
230
230
|
ZHIPU_API_KEY="" ZHIPU_MODEL_LIST="" \
|
231
231
|
# Tencent Cloud
|
232
|
-
TENCENT_CLOUD_API_KEY="" TENCENT_CLOUD_MODEL_LIST=""
|
232
|
+
TENCENT_CLOUD_API_KEY="" TENCENT_CLOUD_MODEL_LIST="" \
|
233
|
+
# Infini-AI
|
234
|
+
INFINIAI_API_KEY="" INFINIAI_MODEL_LIST=""
|
233
235
|
|
234
236
|
USER nextjs
|
235
237
|
|
package/README.md
CHANGED
@@ -196,7 +196,7 @@ We have implemented support for the following model service providers:
|
|
196
196
|
- **[OpenRouter](https://lobechat.com/discover/provider/openrouter)**: OpenRouter is a service platform providing access to various cutting-edge large model interfaces, supporting OpenAI, Anthropic, LLaMA, and more, suitable for diverse development and application needs. Users can flexibly choose the optimal model and pricing based on their requirements, enhancing the AI experience.
|
197
197
|
- **[Cloudflare Workers AI](https://lobechat.com/discover/provider/cloudflare)**: Run serverless GPU-powered machine learning models on Cloudflare's global network.
|
198
198
|
|
199
|
-
<details><summary><kbd>See more providers (+
|
199
|
+
<details><summary><kbd>See more providers (+30)</kbd></summary>
|
200
200
|
|
201
201
|
- **[GitHub](https://lobechat.com/discover/provider/github)**: With GitHub Models, developers can become AI engineers and leverage the industry's leading AI models.
|
202
202
|
- **[Novita](https://lobechat.com/discover/provider/novita)**: Novita AI is a platform providing a variety of large language models and AI image generation API services, flexible, reliable, and cost-effective. It supports the latest open-source models like Llama3 and Mistral, offering a comprehensive, user-friendly, and auto-scaling API solution for generative AI application development, suitable for the rapid growth of AI startups.
|
@@ -226,10 +226,12 @@ We have implemented support for the following model service providers:
|
|
226
226
|
- **[Gitee AI](https://lobechat.com/discover/provider/giteeai)**: Gitee AI's Serverless API provides AI developers with an out of the box large model inference API service.
|
227
227
|
- **[Taichu](https://lobechat.com/discover/provider/taichu)**: The Institute of Automation, Chinese Academy of Sciences, and Wuhan Artificial Intelligence Research Institute have launched a new generation of multimodal large models, supporting comprehensive question-answering tasks such as multi-turn Q\&A, text creation, image generation, 3D understanding, and signal analysis, with stronger cognitive, understanding, and creative abilities, providing a new interactive experience.
|
228
228
|
- **[360 AI](https://lobechat.com/discover/provider/ai360)**: 360 AI is an AI model and service platform launched by 360 Company, offering various advanced natural language processing models, including 360GPT2 Pro, 360GPT Pro, 360GPT Turbo, and 360GPT Turbo Responsibility 8K. These models combine large-scale parameters and multimodal capabilities, widely applied in text generation, semantic understanding, dialogue systems, and code generation. With flexible pricing strategies, 360 AI meets diverse user needs, supports developer integration, and promotes the innovation and development of intelligent applications.
|
229
|
+
- **[Search1API](https://lobechat.com/discover/provider/search1api)**:
|
230
|
+
- **[InfiniAI](https://lobechat.com/discover/provider/infiniai)**: Provides high-performance, easy-to-use, and secure large model services for application developers, covering the entire process from large model development to service deployment.
|
229
231
|
|
230
232
|
</details>
|
231
233
|
|
232
|
-
> 📊 Total providers: [<kbd>**
|
234
|
+
> 📊 Total providers: [<kbd>**40**</kbd>](https://lobechat.com/discover/providers)
|
233
235
|
|
234
236
|
<!-- PROVIDER LIST -->
|
235
237
|
|
package/README.zh-CN.md
CHANGED
@@ -196,7 +196,7 @@ LobeChat 支持文件上传与知识库功能,你可以上传文件、图片
|
|
196
196
|
- **[OpenRouter](https://lobechat.com/discover/provider/openrouter)**: OpenRouter 是一个提供多种前沿大模型接口的服务平台,支持 OpenAI、Anthropic、LLaMA 及更多,适合多样化的开发和应用需求。用户可根据自身需求灵活选择最优的模型和价格,助力 AI 体验的提升。
|
197
197
|
- **[Cloudflare Workers AI](https://lobechat.com/discover/provider/cloudflare)**: 在 Cloudflare 的全球网络上运行由无服务器 GPU 驱动的机器学习模型。
|
198
198
|
|
199
|
-
<details><summary><kbd>See more providers (+
|
199
|
+
<details><summary><kbd>See more providers (+30)</kbd></summary>
|
200
200
|
|
201
201
|
- **[GitHub](https://lobechat.com/discover/provider/github)**: 通过 GitHub 模型,开发人员可以成为 AI 工程师,并使用行业领先的 AI 模型进行构建。
|
202
202
|
- **[Novita](https://lobechat.com/discover/provider/novita)**: Novita AI 是一个提供多种大语言模型与 AI 图像生成的 API 服务的平台,灵活、可靠且具有成本效益。它支持 Llama3、Mistral 等最新的开源模型,并为生成式 AI 应用开发提供了全面、用户友好且自动扩展的 API 解决方案,适合 AI 初创公司的快速发展。
|
@@ -226,10 +226,12 @@ LobeChat 支持文件上传与知识库功能,你可以上传文件、图片
|
|
226
226
|
- **[Gitee AI](https://lobechat.com/discover/provider/giteeai)**: Gitee AI 的 Serverless API 为 AI 开发者提供开箱即用的大模型推理 API 服务。
|
227
227
|
- **[Taichu](https://lobechat.com/discover/provider/taichu)**: 中科院自动化研究所和武汉人工智能研究院推出新一代多模态大模型,支持多轮问答、文本创作、图像生成、3D 理解、信号分析等全面问答任务,拥有更强的认知、理解、创作能力,带来全新互动体验。
|
228
228
|
- **[360 AI](https://lobechat.com/discover/provider/ai360)**: 360 AI 是 360 公司推出的 AI 模型和服务平台,提供多种先进的自然语言处理模型,包括 360GPT2 Pro、360GPT Pro、360GPT Turbo 和 360GPT Turbo Responsibility 8K。这些模型结合了大规模参数和多模态能力,广泛应用于文本生成、语义理解、对话系统与代码生成等领域。通过灵活的定价策略,360 AI 满足多样化用户需求,支持开发者集成,推动智能化应用的革新和发展。
|
229
|
+
- **[Search1API](https://lobechat.com/discover/provider/search1api)**:
|
230
|
+
- **[InfiniAI](https://lobechat.com/discover/provider/infiniai)**: 为应用开发者提供高性能、易上手、安全可靠的大模型服务,覆盖从大模型开发到大模型服务化部署的全流程。
|
229
231
|
|
230
232
|
</details>
|
231
233
|
|
232
|
-
> 📊 Total providers: [<kbd>**
|
234
|
+
> 📊 Total providers: [<kbd>**40**</kbd>](https://lobechat.com/discover/providers)
|
233
235
|
|
234
236
|
<!-- PROVIDER LIST -->
|
235
237
|
|
package/changelog/v1.json
CHANGED
@@ -1,4 +1,22 @@
|
|
1
1
|
[
|
2
|
+
{
|
3
|
+
"children": {
|
4
|
+
"improvements": [
|
5
|
+
"Fix deepseek-r1-70b-online search tag missing from Search1API."
|
6
|
+
]
|
7
|
+
},
|
8
|
+
"date": "2025-03-22",
|
9
|
+
"version": "1.74.1"
|
10
|
+
},
|
11
|
+
{
|
12
|
+
"children": {
|
13
|
+
"features": [
|
14
|
+
"Add infini-ai provider, add Search1API provider with web search DeepSeek models."
|
15
|
+
]
|
16
|
+
},
|
17
|
+
"date": "2025-03-21",
|
18
|
+
"version": "1.74.0"
|
19
|
+
},
|
2
20
|
{
|
3
21
|
"children": {
|
4
22
|
"fixes": [
|
@@ -580,6 +580,19 @@ If you need to use Azure OpenAI to provide model services, you can refer to the
|
|
580
580
|
- Default: `-`
|
581
581
|
- Example: `-all,+deepseek-r1->deepseek-r1-250120,+deepseek-v3->deepseek-v3-241226,+doubao-1.5-pro-256k->doubao-1-5-pro-256k-250115,+doubao-1.5-pro-32k->doubao-1-5-pro-32k-250115,+doubao-1.5-lite-32k->doubao-1-5-lite-32k-250115`
|
582
582
|
|
583
|
+
### `INFINIAI_API_KEY`
|
584
|
+
|
585
|
+
- Type: Required
|
586
|
+
- Description: This is the API key you applied from Infini-AI, you can check it out [here](https://cloud.infini-ai.com)
|
587
|
+
- Default: -
|
588
|
+
- Example: `sk-xxxxxx...xxxxxx`
|
589
|
+
|
590
|
+
### `INFINIAI_MODEL_LIST`
|
591
|
+
|
592
|
+
- Type: Optional
|
593
|
+
- Description: Used to control the model list, use `+` to add a model, use `-` to hide a model, use `model_name->deploymentName=display_name` to customize the display name of a model, separated by commas. Definition syntax rules see [model-list][model-list]
|
594
|
+
- Default: `-`
|
595
|
+
- Example: `-all,+qwq-32b,+deepseek-r1`
|
583
596
|
|
584
597
|
[model-list]: /docs/self-hosting/advanced/model-list
|
585
598
|
|
@@ -579,6 +579,20 @@ LobeChat 在部署时提供了丰富的模型服务商相关的环境变量,
|
|
579
579
|
- 默认值:`-`
|
580
580
|
- 示例:`-all,+deepseek-r1->deepseek-r1-250120,+deepseek-v3->deepseek-v3-241226,+doubao-1.5-pro-256k->doubao-1-5-pro-256k-250115,+doubao-1.5-pro-32k->doubao-1-5-pro-32k-250115,+doubao-1.5-lite-32k->doubao-1-5-lite-32k-250115`
|
581
581
|
|
582
|
+
### `INFINIAI_API_KEY`
|
583
|
+
|
584
|
+
- 类型:必选
|
585
|
+
- 描述:这是你在 [Infini-AI](https://cloud.infini-ai.com) 申请的 API 密钥。
|
586
|
+
- 默认值:-
|
587
|
+
- 示例:`sk-xxxxxx...xxxxxx`
|
588
|
+
|
589
|
+
### `INFINIAI_MODEL_LIST`
|
590
|
+
|
591
|
+
- 类型:可选
|
592
|
+
- 描述:用来控制模型列表,使用 `+` 增加一个模型,使用 `-` 来隐藏一个模型,使用 `模型名->部署名=展示名<扩展配置>` 来自定义模型的展示名,用英文逗号隔开。模型定义语法规则见 [模型列表][model-list]
|
593
|
+
- 默认值:`-`
|
594
|
+
- 示例:`-all,+qwq-32b,+deepseek-r1`
|
595
|
+
|
582
596
|
[model-list]: /zh/docs/self-hosting/advanced/model-list
|
583
597
|
|
584
598
|
### `VOLCENGINE_PROXY_URL`
|
@@ -0,0 +1,29 @@
|
|
1
|
+
---
|
2
|
+
title: Using Infini-AI in LobeChat
|
3
|
+
description: Learn how to configure and utilize Infini-AI's model services in LobeChat.
|
4
|
+
tags:
|
5
|
+
- LobeChat
|
6
|
+
- Infini-AI
|
7
|
+
- API Key
|
8
|
+
- LLM Deployment
|
9
|
+
---
|
10
|
+
|
11
|
+
# Using Infini-AI in LobeChat
|
12
|
+
|
13
|
+
[Infini-AI](https://cloud.infini-ai.com/) is a large model service platform optimized for multiple chip architectures, providing efficient and unified AGI infrastructure solutions.
|
14
|
+
|
15
|
+
This guide will help you quickly integrate Infini-AI's AI capabilities into LobeChat.
|
16
|
+
|
17
|
+
<Steps>
|
18
|
+
### Step 1: Obtain Infini-AI API Key
|
19
|
+
|
20
|
+
- Log in to the [Large Model Service Platform](https://cloud.infini-ai.com/genstudio/model)
|
21
|
+
- Select "API KEY Management" in the left navigation bar
|
22
|
+
- In the newly opened page, click the "Create API KEY" button, enter a name, and click "Create"
|
23
|
+
|
24
|
+
### Step 2: Configure LobeChat Model Service
|
25
|
+
|
26
|
+
- Open LobeChat and go to the "Settings" interface
|
27
|
+
- Select "Infini-AI" in the "Language Model" module
|
28
|
+
- Paste the API key you obtained
|
29
|
+
</Steps>
|
@@ -0,0 +1,29 @@
|
|
1
|
+
---
|
2
|
+
title: 在 LobeChat 中使用无问芯穹
|
3
|
+
description: 学习如何在 LobeChat 中配置和使用无问芯穹的 API Key,实现 AI 对话交互。
|
4
|
+
tags:
|
5
|
+
- LobeChat
|
6
|
+
- 无问芯穹
|
7
|
+
- API密钥
|
8
|
+
- 大模型部署
|
9
|
+
---
|
10
|
+
|
11
|
+
# 在 LobeChat 中使用无问芯穹
|
12
|
+
|
13
|
+
[无问芯穹](https://cloud.infini-ai.com/)是基于多元芯片优化的大模型服务平台,提供高效统一的 AGI 基础设施解决方案。
|
14
|
+
|
15
|
+
本文将指导你如何在 LobeChat 中快速接入无问芯穹的 AI 能力。
|
16
|
+
|
17
|
+
<Steps>
|
18
|
+
### 步骤一:获取无问芯穹 API Key
|
19
|
+
|
20
|
+
- 登录[大模型服务平台](https://cloud.infini-ai.com/genstudio/model)
|
21
|
+
- 在左侧导航栏选择「API KEY 管理」
|
22
|
+
- 在新打开的页面中,点击「创建 API KEY」按钮,填入名称,点击「创建」
|
23
|
+
|
24
|
+
### 步骤二:配置 LobeChat 模型服务
|
25
|
+
|
26
|
+
- 打开 LobeChat 进入「设置」界面
|
27
|
+
- 在「语言模型」模块选择「Infini-AI」
|
28
|
+
- 粘贴已获取的 API 密钥
|
29
|
+
</Steps>
|
package/locales/ar/models.json
CHANGED
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 مصمم خصيصًا للأدوار التفاعلية والمرافقة العاطفية، يدعم ذاكرة متعددة الجولات طويلة الأمد وحوارات مخصصة، ويستخدم على نطاق واسع."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 هو نموذج مغلق المصدر تم إصداره بواسطة مختبر KEG في جامعة تسينغهوا وشركة Zhizhu AI، وقد تم تدريبه مسبقًا على كميات هائلة من المعرفة المعرفية باللغتين الصينية والإنجليزية، وتم تحسينه وفقًا للاختيارات البشرية. مقارنة بالنموذج الأول، حقق تحسينات بنسبة 16٪ و 36٪ و 280٪ في MMLU و C-Eval و GSM8K على التوالي، وتصدر قائمة المهام الصينية C-Eval. يناسب هذا النموذج السيناريوهات التي تتطلب كميات كبيرة من المعرفة وقدرات الاستدلال والإبداع، مثل كتابة النصوص الإعلانية وكتابة الروايات وكتابة المحتوى المعرفي وتكوين الكود."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base هو النموذج الأساسي المفتوح المصدر الأحدث من سلسلة ChatGLM التي طورتها شركة Zhìpǔ، ويحتوي على 6 مليارات معلمة."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o هو نموذج ديناميكي يتم تحديثه في الوقت الحقيقي للحفاظ على أحدث إصدار. يجمع بين فهم اللغة القوي وقدرات التوليد، مما يجعله مناسبًا لمجموعة واسعة من التطبيقات، بما في ذلك خدمة العملاء والتعليم والدعم الفني."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "سبارك لايت هو نموذج لغوي كبير خفيف الوزن، يتميز بتأخير منخفض للغاية وكفاءة عالية في المعالجة، وهو مجاني تمامًا ومفتوح، ويدعم وظيفة البحث عبر الإنترنت في الوقت الحقيقي. تجعل خصائص استجابته السريعة منه مثاليًا لتطبيقات الاستدلال على الأجهزة ذات القدرة الحاسوبية المنخفضة وضبط النماذج، مما يوفر للمستخدمين قيمة ممتازة من حيث التكلفة وتجربة ذكية، خاصة في مجالات الأسئلة والأجوبة المعرفية، وتوليد المحتوى، وسيناريوهات البحث."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 هو سلسلة من النماذج اللغوية الكبيرة (LLM) التي طورتها Meta وأطلقتها كمصدر مفتوح، وهي تتكون من نماذج توليد نص مسبقة التدريب ومتخصصة بحجم يتراوح من 7 مليارات إلى 70 مليار معلمة. على مستوى العمارة، Llama2 هو نموذج لغوي تراجعي تلقائي يستخدم معمارية محول محسنة. الإصدارات المعدلة تستخدم التدريب الدقيق تحت الإشراف (SFT) والتعلم التقويمي مع تعزيزات من البشر (RLHF) لتوافق تفضيلات البشر فيما يتعلق بالفائدة والأمان. أظهر Llama2 أداءً أفضل بكثير من سلسلة Llama في العديد من المجموعات الأكاديمية، مما قدم إلهامًا لتصميم وتطوير العديد من النماذج الأخرى."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B يوفر قدرة استدلال ذكائي أقوى، مناسب للتطبيقات المعقدة، يدعم معالجة حسابية ضخمة ويضمن الكفاءة والدقة."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "سبارك ماكس 32K مزود بقدرة معالجة سياق كبيرة، مع فهم أقوى للسياق وقدرة على الاستدلال المنطقي، يدعم إدخال نصوص تصل إلى 32K توكن، مما يجعله مناسبًا لقراءة الوثائق الطويلة، والأسئلة والأجوبة المعرفية الخاصة، وغيرها من السيناريوهات."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct هو نموذج لغة كبير تم تدريبه بشكل مستقل من قبل شركة ووون تشينغ. يهدف Megrez-3B-Instruct إلى تقديم حل ذكاء على جهاز نهائي سريع وصغير وسهل الاستخدام من خلال مفهوم التكامل بين البرمجيات والأجهزة."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "نموذج قوي بحجم 70 مليار معلمة يتفوق في التفكير، والترميز، وتطبيقات اللغة الواسعة."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "نموذج قوي للبرمجة متوسطة الحجم، يدعم طول سياق يصل إلى 32K، بارع في البرمجة متعددة اللغات."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "سلسلة Qwen1.5 هي نسخة تجريبية من Qwen2، وهي نموذج لغة قائم على Transformer يتميز بالتفكيك فقط، وقد تم تدريبه مسبقًا على كميات هائلة من البيانات. مقارنة بالإصدارات السابقة من سلسلة Qwen، تدعم سلسلة Qwen1.5 النماذج الأساسية والدردشة بعدة لغات، وقد تحسنت قدراتها في الدردشة والأساسية بشكل عام. Qwen1.5-14b-chat هو النموذج الرئيسي المخصص لسituات الدردشة، ويحتوي على 14 مليار معلمة."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "سلسلة Qwen1.5 هي نسخة تجريبية من Qwen2، وهي نموذج لغة قائم على Transformer مصمم للتفكيك فقط، وقد تم تدريبه مسبقًا على كميات هائلة من البيانات. مقارنة بالإصدارات السابقة من سلسلة Qwen، تدعم سلسلة Qwen1.5 النماذج الأساسية والدردشة بعدة لغات، وقد تحسنت قدراتها في الدردشة والأساسية بشكل عام. Qwen1.5-32b-chat هو نموذج كبير بحجم 32 مليار معلمة مخصص لسituات الدردشة، وهو أقوى في سituات الذكاء الاصطناعي مقارنة بنموذج 14 مليار معلمة، وأقل تكلفة في الاستدلال مقارنة بنموذج 72 مليار معلمة."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "سلسلة Qwen1.5 هي نسخة تجريبية من Qwen2، وهي نموذج لغة قائم على Transformer مصمم للتفكيك فقط، وقد تم تدريبه مسبقًا على كميات هائلة من البيانات. مقارنة بالإصدارات السابقة من سلسلة Qwen، تدعم سلسلة Qwen1.5 النماذج الأساسية والدردشة بعدة لغات، وقد تحسنت قدراتها في الدردشة والأساسية بشكل عام. Qwen1.5-72b-chat هو النموذج الكبير المخصص لسituات الدردشة، ويحتوي على 72 مليار معلمة."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 هو نموذج لغوي كبير من الجيل الجديد من Alibaba، يدعم أداءً ممتازًا لتلبية احتياجات التطبيقات المتنوعة."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 هو سلسلة نماذج لغوية كبيرة جديدة تم إطلاقها من قبل فريق Qwen. تعتمد هذه النماذج على هندسة Transformer وتستخدم دالة التنشيط SwiGLU، وتحيز الانتباه QKV (attention QKV bias)، وانتباه الاستفسار الجماعي (group query attention)، وخلط انتباه النافذة المتزحلقة والانتباه الكامل (mixture of sliding window attention and full attention). بالإضافة إلى ذلك، قام فريق Qwen بتحسين مجزئ يتكيف مع العديد من اللغات الطبيعية والأكواد."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 هو سلسلة نماذج لغوية كبيرة جديدة تم طرحها من قبل فريق Qwen. يعتمد هذا النموذج على هندسة Transformer، ويستخدم دالة التنشيط SwiGLU، وتحيز QKV للانتباه (attention QKV bias)، وانتباه الاستفسار الجماعي (group query attention)، وخلط انتباه النافذة المتزحلقة والانتباه الكامل. بالإضافة إلى ذلك، قام فريق Qwen بتحسين المقطّع الذي يتكيف مع العديد من اللغات الطبيعية والأكواد."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 هو الجيل الجديد من نماذج اللغة الكبيرة من Alibaba، يدعم احتياجات التطبيقات المتنوعة بأداء ممتاز."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 هو نموذج لغوي تقدمه Microsoft AI، يتميز بأداء ممتاز في الحوار المعقد، واللغات المتعددة، والاستدلال، والمساعدين الذكيين."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "يي-1.5 هو إصدار مُحدّث من يي. تم تدريبه بشكل مُسبق باستخدام مكتبة بيانات عالية الجودة تحتوي على 500 مليار علامة (Token) على يي، وتم تحسينه أيضًا باستخدام 3 ملايين مثال متنوع للتدريب الدقيق."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "نموذج جديد بمليارات المعلمات، يوفر قدرة قوية على الإجابة وتوليد النصوص."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "نموذج لغة متقدم تم تطويره بواسطة Tencent، يتمتع بقدرة قوية على الإبداع باللغة الصينية، وقدرة على الاستدلال المنطقي في سياقات معقدة، بالإضافة إلى قدرة موثوقة على تنفيذ المهام."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "يقدم خدمات نماذج كبيرة ذات أداء عالٍ وسهولة الاستخدام وأمان موثوق به للمطورين، تغطي كامل العملية من تطوير النماذج الكبيرة إلى نشرها كخدمات."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "منظمة مفتوحة المصدر مكرسة لأبحاث وتطوير أدوات النماذج الكبيرة. توفر منصة مفتوحة المصدر فعالة وسهلة الاستخدام لجميع مطوري الذكاء الاصطناعي، مما يجعل أحدث تقنيات النماذج الكبيرة والخوارزميات في متناول اليد."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 е проектиран за ролеви игри и емоционално придружаване, поддържаща дълга многократна памет и персонализиран диалог, с широко приложение."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 е закритоизточен модел, обявен от интелигентната платформа AI и лабораторията KEG на Университета в Тайхуа. Той е претрениран с голям обем на китайски и английски идентификатори и е подложен на тренировка за съответствие с хуманите предпочитания. Сравнено с първата версия на модела, ChatGLM3 постига подобрения от 16%, 36% и 280% в MMLU, C-Eval и GSM8K съответно, и е класифициран на първо място в китайския рейтинг C-Eval. Този модел е подходящ за сценарии, които изискват високи стандарти за знания, умения за разсъждаване и креативност, като например създаване на рекламни текстове, писане на романи, научно-популярно писане и генериране на код."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base е последната генерация на редицата ChatGLM, разработена от компанията Zhipu, с 6 милиарда параметри и е открит източник."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o е динамичен модел, който се актуализира в реално време, за да поддържа най-новата версия. Той комбинира мощно разбиране на езика и генериране на текст, подходящ за мащабни приложения, включително обслужване на клиенти, образование и техническа поддръжка."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite е лек модел на голям език, с изключително ниска латентност и ефективна обработка, напълно безплатен и отворен, поддържащ функции за онлайн търсене в реално време. Неговите бързи отговори го правят отличен за приложения на нискомощни устройства и фина настройка на модели, предоставяйки на потребителите отлична рентабилност и интелигентно изживяване, особено в контекста на въпроси и отговори, генериране на съдържание и търсене."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 е серия от големи модели за език (LLM), разработени и с отворен код от Meta. Това е набор от генеративни текстови модели с различен размер, от 7 милиарда до 70 милиарда параметри, които са претренирани и майсторски оптимизирани. Архитектурно, Llama2 е автоматично регресивен езиков модел, използващ оптимизирана трансформаторна архитектура. Подобренията включват супервизирано майсторско трениране (SFT) и подкрепено с учене с награди (RLHF) за подреждане на предпочтенията на хората за полезност и безопасност. Llama2 демонстрира значително подобрени резултати върху множество академични набори от данни, което предоставя възможности за дизайн и развитие на много други модели."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B предлага по-мощни способности за разсъждение на AI, подходящи за сложни приложения, поддържащи множество изчислителни обработки и осигуряващи ефективност и точност."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K е конфигуриран с голяма способност за обработка на контекст, с по-силно разбиране на контекста и логическо разсъждение, поддържащ текстови входове до 32K токена, подходящ за четене на дълги документи, частни въпроси и отговори и други сценарии."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct е голям езиков модел, напълно обучен от безкрайната връху чиповете. Megrez-3B-Instruct се стреми чрез концепцията за съвместно хардуерно-софтуерно взаимодействие да създаде решение за крайните устройства, което е бързо за извършване, компактно и лесно за използване."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Мощен модел с 70 милиарда параметри, отличаващ се в разсъждения, кодиране и широки езикови приложения."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Мощен среден модел за код, поддържащ 32K дължина на контекста, специализиран в многоезично програмиране."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Qwen1.5 серия е бета версия на Qwen2, която е декодиращ езиков модел, базиран на Transformer, предварително обучен на обемни данни. Сравнено с предходните версии на Qwen, моделите base и chat на Qwen1.5 серия поддържат множество езици и са подобрени както в общите разговори, така и в основните умения. Qwen1.5-14b-chat е модел с 14 милиарда параметри, специално предназначен за разговорни сценарии."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 серия е бета версия на Qwen2, което е декодиращ езиков модел, базиран на Transformer, предварително обучен на обемни данни. Сравнено с предходните версии на Qwen, серията Qwen1.5 поддържа множество езици и е подобрена както в общите разговорни, така и в основните функции. Qwen1.5-32b-chat е специализиран модел за разговорни сценарии с 32 милиарда параметри, който е по-силен в сценарии с интелектуални агенти спрямо 14 милиардната версия и има по-нисък разход за извършване на изводи спрямо 72 милиардната версия."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Серия Qwen1.5 е бета версия на Qwen2 и представлява декодиращ езиков модел, базиран на Transformer, предварително обучен на обемни данни. Сравнено с предходните версии на Qwen, моделите base и chat от серията Qwen1.5 поддържат множество езици и са подобрени както в общите разговори, така и в основните умения. Qwen1.5-72b-chat е специално предназначен за разговорни сценарии и разполага с 72 милиарда параметри."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 е новото поколение голям езиков модел на Alibaba, предлагащ отлична производителност за разнообразни приложения."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 е новият серий на големи модели за език, предложен от екипа Qwen. Той се основава на архитектурата Transformer и използва SwiGLU активационна функция, внимание QKV смещение (attention QKV bias), групово запитване на внимание (group query attention), смесени техники за внимание с превъртващи се прозорци (mixture of sliding window attention) и пълно внимание. Освен това, екипът Qwen също е подобрал токенизатора, който поддържа множество езици и код."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 е новият серийен модел за големи езици, представен от екипа Qwen. Той се основава на архитектурата Transformer и използва SwiGLU активационна функция, внимание с QKV смещение (attention QKV bias), групово внимание за заявки (group query attention), смесени техники за обръщане на внимание с превъртващи се прозорци (mixture of sliding window attention) и пълно внимание. Освен това, екипът Qwen е подобрил токенизатора, който поддържа множество езици и код."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 е новото поколение мащабен езиков модел на Alibaba, който предлага отлична производителност, за да отговори на разнообразни приложни нужди."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 е езиков модел, предоставен от Microsoft AI, който се отличава в сложни диалози, многоезичност, разсъждение и интелигентни асистенти."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 е обновена версия на Yi. Тя използва висококачествен корпус от 500B токена за продължителна предварителна обучение на Yi и е майсторски подобрявана с 3M разнообразни примера за fino-tuning."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Новият модел с хиляда милиарда параметри предлага изключителни способности за отговори и генериране на текст."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Модел на голям език, разработен от Tencent, който притежава мощни способности за създаване на текст на китайски, логическо разсъждение в сложни контексти и надеждни способности за изпълнение на задачи."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Предоставя високопроизводителни, лесни за използване и сигурни услуги с големи модели за приложението разработчици, покриващи целия процес от разработка на големи модели до техното услугово разгъване."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Отворена организация, посветена на изследването и разработването на инструменти за големи модели. Предоставя на всички AI разработчици ефективна и лесна за използване отворена платформа, която прави най-съвременните технологии и алгоритми за големи модели достъпни."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 ist für Rollenspiele und emotionale Begleitung konzipiert und unterstützt extrem lange Mehrfachgedächtnisse und personalisierte Dialoge, mit breiter Anwendung."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 ist ein proprietäres Modell, das von der KI-Forschungsgruppe Zhipu AI und dem KEG-Labor der Tsinghua-Universität veröffentlicht wurde. Es wurde durch umfangreiche Vortrainings mit chinesischen und englischen Bezeichnern sowie durch die Anpassung an menschliche Präferenzen entwickelt. Im Vergleich zum ersten Modell erzielte es Verbesserungen von 16 %, 36 % und 280 % in den Benchmarks MMLU, C-Eval und GSM8K und steht an der Spitze der chinesischen Aufgabenliste C-Eval. Es eignet sich für Szenarien, die hohe Anforderungen an das Wissensvolumen, die Inferenzfähigkeit und die Kreativität stellen, wie z. B. die Erstellung von Werbetexten, das Schreiben von Romanen, wissensbasiertes Schreiben und die Generierung von Code."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base ist das neueste Modell der ChatGLM-Serie mit 6 Milliarden Parametern, entwickelt von Zhipu."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o ist ein dynamisches Modell, das in Echtzeit aktualisiert wird, um die neueste Version zu gewährleisten. Es kombiniert starke Sprachverständnis- und Generierungsfähigkeiten und eignet sich für großangelegte Anwendungsszenarien, einschließlich Kundenservice, Bildung und technische Unterstützung."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite ist ein leichtgewichtiges großes Sprachmodell mit extrem niedriger Latenz und effizienter Verarbeitung, das vollständig kostenlos und offen ist und Echtzeitsuchfunktionen unterstützt. Seine schnelle Reaktionsfähigkeit macht es besonders geeignet für Inferenzanwendungen und Modellanpassungen auf Geräten mit geringer Rechenleistung und bietet den Nutzern ein hervorragendes Kosten-Nutzen-Verhältnis sowie ein intelligentes Erlebnis, insbesondere in den Bereichen Wissensabfragen, Inhaltserstellung und Suchszenarien."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 ist eine Serie großer Sprachmodelle (LLM), die von Meta entwickelt und als Open Source veröffentlicht wurden. Diese Serie umfasst generative Textmodelle mit einer Parameteranzahl von 7 Milliarden bis 70 Milliarden, die vortrainiert und feinjustiert wurden. Architekturtechnisch ist Llama2 ein autoregressives Sprachmodell, das eine optimierte Transformer-Architektur verwendet. Die angepassten Versionen nutzen überwachte Feinabstimmung (SFT) und Reinforcement Learning mit menschlichem Feedback (RLHF), um den menschlichen Vorlieben für Nützlichkeit und Sicherheit zu entsprechen. Llama2 übertrifft die Leistung der Llama-Serie in mehreren akademischen Datensätzen und bietet Inspiration für die Entwicklung und Gestaltung vieler anderer Modelle."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B bietet leistungsstarke KI-Schlussfolgerungsfähigkeiten, die für komplexe Anwendungen geeignet sind und eine hohe Rechenverarbeitung bei gleichzeitiger Effizienz und Genauigkeit unterstützen."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K bietet eine große Kontextverarbeitungsfähigkeit mit verbesserter Kontextverständnis und logischer Schlussfolgerungsfähigkeit und unterstützt Texteingaben von bis zu 32K Tokens, was es ideal für das Lesen langer Dokumente und private Wissensabfragen macht."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct ist ein großes Sprachmodell, das vollständig von Wuxin XinQiong trainiert wurde. Megrez-3B-Instruct zielt darauf ab, durch die Idee der Hardware-Software-Kooperation eine schnelle Inferenz, ein kompaktes Design und eine benutzerfreundliche Endgerätlösung zu schaffen."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Ein leistungsstarkes Modell mit 70 Milliarden Parametern, das in den Bereichen Schlussfolgerungen, Programmierung und breiten Sprachanwendungen herausragt."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Leistungsstarkes, mittelgroßes Codierungsmodell, das 32K Kontextlängen unterstützt und in der mehrsprachigen Programmierung versiert ist."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Die Qwen1.5-Serie ist die Beta-Version von Qwen2 und basiert auf einem Transformer-basierten dekodierenden Sprachmodell, das auf umfangreichen Daten vorab trainiert wurde. Im Vergleich zu früheren Versionen der Qwen-Serie können sowohl das Base-Modell als auch das Chat-Modell der Qwen1.5-Serie mehrere Sprachen unterstützen und bieten Verbesserungen in der gesamten Chat-Funktionalität und den grundlegenden Fähigkeiten. Qwen1.5-14b-chat ist ein 14-Milliarden-Parameter-Modell, das speziell für Chat-Szenarien entwickelt wurde."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Die Qwen1.5-Serie ist die Beta-Version von Qwen2 und basiert auf einem Transformer-basierten dekodierenden Sprachmodell, das auf umfangreichen Daten vorab trainiert wurde. Im Vergleich zu früheren Versionen der Qwen-Serie können sowohl das Base-Modell als auch das Chat-Modell der Qwen1.5-Serie mehrere Sprachen unterstützen und bieten Verbesserungen in der allgemeinen Konversation und den grundlegenden Fähigkeiten. Qwen1.5-32b-chat ist ein 32-Milliarden-Parameter-Modell, das speziell für Chat-Szenarien entwickelt wurde. Im Vergleich zum 14-Milliarden-Parameter-Modell ist es leistungsfähiger in Agentenszenarien, während es im Vergleich zum 72-Milliarden-Parameter-Modell günstigere Inferenzkosten aufweist."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Die Qwen1.5-Serie ist die Beta-Version von Qwen2 und basiert auf einem Transformer-basierten dekodierenden Sprachmodell, das auf umfangreichen Daten vorab trainiert wurde. Im Vergleich zu früheren Versionen der Qwen-Serie können sowohl das Base-Modell als auch das Chat-Modell der Qwen1.5-Serie mehrere Sprachen unterstützen und bieten Verbesserungen in der gesamten Chat-Funktionalität und den grundlegenden Fähigkeiten. Qwen1.5-72b-chat ist das 72-Milliarden-Parameter-Modell, das speziell für Chat-Szenarien entwickelt wurde."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 ist das neue große Sprachmodell von Alibaba, das mit hervorragender Leistung eine Vielzahl von Anwendungsanforderungen unterstützt."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 ist die neueste Generation von Sprachmodellen, die vom Qwen-Team entwickelt wurde. Es basiert auf der Transformer-Architektur und verwendet Techniken wie die SwiGLU-Aktivierungsfunktion, die Aufmerksamkeits-QKV-Bias (attention QKV bias), die gruppenbasierte Abfrageaufmerksamkeit (group query attention) und eine Mischung aus rutschendem Fenster und voller Aufmerksamkeit (mixture of sliding window attention and full attention). Darüber hinaus hat das Qwen-Team den Tokenizer verbessert, der für die Verarbeitung von natürlicher Sprache und Code optimiert ist."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 ist die neueste Serie von großen Sprachmodellen, die vom Qwen-Team entwickelt wurde. Es basiert auf der Transformer-Architektur und verwendet Techniken wie die SwiGLU-Aktivierungsfunktion, die Aufmerksamkeits-QKV-Bias (attention QKV bias), die Gruppenabfrageaufmerksamkeit (group query attention) und eine Mischung aus rutschendem Fenster und voller Aufmerksamkeit (mixture of sliding window attention and full attention). Zudem hat das Qwen-Team den Tokenizer verbessert, um mehrere natürliche Sprachen und Code besser zu verarbeiten."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 ist das neue, groß angelegte Sprachmodell der Alibaba-Gruppe, das hervorragende Leistungen zur Unterstützung vielfältiger Anwendungsbedürfnisse bietet."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 ist ein Sprachmodell von Microsoft AI, das in komplexen Dialogen, mehrsprachigen Anwendungen, Schlussfolgerungen und intelligenten Assistenten besonders gut abschneidet."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 ist eine verbesserte Version von Yi. Es wurde mit einem hochwertigen Korpus von 500B Tokens auf Yi fortlaufend vortrainiert und auf 3M diversen Feinabstimmungsbeispielen feinjustiert."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Das brandneue Modell mit einer Billion Parametern bietet außergewöhnliche Frage- und Textgenerierungsfähigkeiten."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Ein von Tencent entwickeltes großes Sprachmodell, das über starke Fähigkeiten zur Erstellung von Inhalten in chinesischer Sprache, logisches Denkvermögen in komplexen Kontexten und zuverlässige Fähigkeiten zur Aufgabenerfüllung verfügt."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Bietet Anwendungsentwicklern hochleistungs-fähige, benutzerfreundliche und sichere Dienste für große Modelle, die den gesamten Prozess von der Entwicklung großer Modelle bis hin zur Dienstbereitstellung abdecken."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Eine Open-Source-Organisation, die sich der Forschung und Entwicklung von großen Modellen und Werkzeugketten widmet. Sie bietet allen KI-Entwicklern eine effiziente und benutzerfreundliche Open-Source-Plattform, die den Zugang zu den neuesten Technologien und Algorithmen für große Modelle ermöglicht."
|
58
61
|
},
|