@lobehub/chat 1.73.2 → 1.74.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.env.example +4 -0
- package/CHANGELOG.md +51 -0
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +3 -1
- package/README.md +4 -2
- package/README.zh-CN.md +4 -2
- package/changelog/v1.json +18 -0
- package/docs/self-hosting/environment-variables/model-provider.mdx +13 -0
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +14 -0
- package/docs/usage/providers/infiniai.mdx +29 -0
- package/docs/usage/providers/infiniai.zh-CN.mdx +29 -0
- package/locales/ar/models.json +30 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +30 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +30 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +30 -0
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +30 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +30 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +30 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +30 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +22 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +30 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +30 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +30 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +30 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +30 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +30 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +30 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +30 -0
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +19 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +3 -3
- package/packages/web-crawler/src/utils/htmlToMarkdown.test.ts +1 -1
- package/src/app/[variants]/(main)/settings/llm/ProviderList/providers.tsx +5 -1
- package/src/config/aiModels/index.ts +6 -0
- package/src/config/aiModels/infiniai.ts +307 -0
- package/src/config/aiModels/search1api.ts +63 -0
- package/src/config/llm.ts +12 -0
- package/src/config/modelProviders/index.ts +8 -0
- package/src/config/modelProviders/infiniai.ts +184 -0
- package/src/config/modelProviders/search1api.ts +58 -0
- package/src/database/models/__tests__/knowledgeBase.test.ts +2 -0
- package/src/libs/agent-runtime/ai21/index.test.ts +8 -250
- package/src/libs/agent-runtime/ai360/index.test.ts +8 -250
- package/src/libs/agent-runtime/anthropic/index.ts +5 -1
- package/src/libs/agent-runtime/deepseek/index.test.ts +119 -335
- package/src/libs/agent-runtime/fireworksai/index.test.ts +8 -247
- package/src/libs/agent-runtime/giteeai/index.test.ts +8 -250
- package/src/libs/agent-runtime/github/index.test.ts +8 -207
- package/src/libs/agent-runtime/infiniai/index.ts +43 -0
- package/src/libs/agent-runtime/internlm/index.test.ts +8 -250
- package/src/libs/agent-runtime/lmstudio/index.test.ts +8 -247
- package/src/libs/agent-runtime/moonshot/index.test.ts +10 -243
- package/src/libs/agent-runtime/novita/index.test.ts +9 -221
- package/src/libs/agent-runtime/ollama/index.test.ts +4 -4
- package/src/libs/agent-runtime/openrouter/index.test.ts +12 -217
- package/src/libs/agent-runtime/ppio/index.test.ts +11 -220
- package/src/libs/agent-runtime/providerTestUtils.ts +6 -6
- package/src/libs/agent-runtime/qwen/index.test.ts +10 -242
- package/src/libs/agent-runtime/runtimeMap.ts +4 -0
- package/src/libs/agent-runtime/search1api/index.ts +64 -0
- package/src/libs/agent-runtime/sensenova/index.test.ts +10 -242
- package/src/libs/agent-runtime/spark/index.test.ts +7 -242
- package/src/libs/agent-runtime/stepfun/index.test.ts +7 -242
- package/src/libs/agent-runtime/taichu/index.test.ts +12 -220
- package/src/libs/agent-runtime/types/type.ts +2 -0
- package/src/libs/agent-runtime/upstage/index.test.ts +7 -250
- package/src/libs/agent-runtime/utils/openaiCompatibleFactory/index.test.ts +2 -2
- package/src/libs/agent-runtime/xai/index.test.ts +8 -250
- package/src/services/chat.ts +1 -4
- package/src/types/user/settings/keyVaults.ts +2 -0
- package/src/utils/fetch/__tests__/parseToolCalls.test.ts +9 -11
- package/src/utils/server/jwt.test.ts +1 -1
- package/vitest.server.config.ts +3 -1
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 is designed for role-playing and emotional companionship, supporting ultra-long multi-turn memory and personalized dialogue, with wide applications."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 is a closed-source model released by Zhipu AI and Tsinghua KEG Lab. It has been pre-trained on a massive amount of Chinese and English identifiers and fine-tuned with human preference alignment. Compared to the first-generation model, it has achieved improvements of 16%, 36%, and 280% in MMLU, C-Eval, and GSM8K, respectively, and topped the Chinese task leaderboard C-Eval. It is suitable for scenarios that require a high level of knowledge, reasoning, and creativity, such as advertising copywriting, novel writing, knowledge-based writing, and code generation."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base is the latest generation of the ChatGLM series, a 6 billion parameter open-source base model developed by Zhipu."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o is a dynamic model that updates in real-time to stay current with the latest version. It combines powerful language understanding and generation capabilities, making it suitable for large-scale applications, including customer service, education, and technical support."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite is a lightweight large language model with extremely low latency and efficient processing capabilities, completely free and open, supporting real-time online search functionality. Its quick response feature makes it excel in inference applications and model fine-tuning on low-power devices, providing users with excellent cost-effectiveness and intelligent experiences, particularly in knowledge Q&A, content generation, and search scenarios."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 is a series of large language models (LLMs) developed and open-sourced by Meta. This series includes generative text models of varying sizes, ranging from 7 billion to 70 billion parameters, which have been pre-trained and fine-tuned. Architecturally, Llama2 is an autoregressive language model that uses an optimized transformer architecture. The fine-tuned versions leverage supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for usefulness and safety. Llama2 outperforms the Llama series on multiple academic datasets and provides valuable insights for the design and development of other models."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B provides enhanced AI reasoning capabilities, suitable for complex applications, supporting extensive computational processing while ensuring efficiency and accuracy."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K is configured with large context processing capabilities, enhanced contextual understanding, and logical reasoning abilities, supporting text input of 32K tokens, suitable for long document reading, private knowledge Q&A, and other scenarios."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct is a large language model fully trained by Wuwen Xin Qiong. Megrez-3B-Instruct aims to create an ultra-fast, compact, and easy-to-use intelligent solution for edge devices through the concept of hardware-software co-design."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "A powerful 70-billion parameter model excelling in reasoning, coding, and broad language applications."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "A powerful medium-sized code model supporting 32K context length, proficient in multilingual programming."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "The Qwen1.5 series is the Beta version of Qwen2, a Transformer-based decoder-only language model pre-trained on a vast amount of data. Compared to previously released versions of Qwen, both the base and chat models in the Qwen1.5 series support multiple languages and have seen improvements in overall chat and foundational capabilities. Qwen1.5-14b-chat is a 14 billion parameter model specifically designed for chat scenarios, representing a mainstream size in the field."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "The Qwen1.5 series is the Beta version of Qwen2, a Transformer-based decoder-only language model pre-trained on a vast amount of data. Compared to previously released versions of the Qwen series, the Qwen1.5 series, including both the base and chat models, supports multiple languages and has seen improvements in overall chat and foundational capabilities. Qwen1.5-32b-chat is a 32 billion parameter model specifically designed for chat scenarios, offering stronger performance in agent scenarios compared to the 14 billion parameter model, and lower inference costs compared to the 72 billion parameter model."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "The Qwen1.5 series is the Beta version of Qwen2, a decoder-only language model based on the Transformer architecture, pre-trained on a vast amount of data. Compared to previously released versions of the Qwen series, the Qwen1.5 series, including both the base and chat models, supports multiple languages and has seen improvements in overall chat and foundational capabilities. Qwen1.5-72b-chat is a 72 billion parameter model specifically designed for chat scenarios."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 is Alibaba's next-generation large-scale language model, supporting diverse application needs with excellent performance."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 is the new generation of large language model series introduced by the Qwen team. It is based on the Transformer architecture and incorporates technologies such as the SwiGLU activation function, attention QKV bias, group query attention, a mixture of sliding window attention, and full attention. Additionally, the Qwen team has improved the tokenizer to better adapt to multiple natural languages and code."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 is the new generation of large language model series introduced by the Qwen team. It is based on the Transformer architecture and incorporates technologies such as the SwiGLU activation function, attention QKV bias, group query attention, a mixture of sliding window attention, and full attention. Additionally, the Qwen team has improved the tokenizer to better adapt to multiple natural languages and code."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 is Alibaba's next-generation large-scale language model, supporting diverse application needs with outstanding performance."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 is a language model provided by Microsoft AI, excelling in complex dialogues, multilingual capabilities, reasoning, and intelligent assistant applications."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 is an upgraded version of Yi. It continues pre-training on Yi using a high-quality corpus of 500B tokens and is fine-tuned on 3M diverse samples."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "A new trillion-parameter model, providing super strong question-answering and text generation capabilities."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "A large language model developed by Tencent, equipped with powerful Chinese creative capabilities, logical reasoning abilities in complex contexts, and reliable task execution skills."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Provides high-performance, easy-to-use, and secure large model services for application developers, covering the entire process from large model development to service deployment."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "An open-source organization dedicated to the research and development of large model toolchains. It provides an efficient and user-friendly open-source platform for all AI developers, making cutting-edge large models and algorithm technologies easily accessible."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 está diseñado para juegos de rol y acompañamiento emocional, soportando memoria de múltiples rondas y diálogos personalizados, con aplicaciones amplias."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 es un modelo de código cerrado desarrollado por Zhipu AI y el Laboratorio KEG de Tsinghua. Ha sido preentrenado con una gran cantidad de identificadores en chino e inglés y ajustado a las preferencias humanas. En comparación con el modelo de primera generación, ha logrado mejoras del 16%, 36% y 280% en MMLU, C-Eval y GSM8K, respectivamente, y ha alcanzado el primer lugar en el ranking de tareas en chino C-Eval. Es adecuado para escenarios que requieren un alto nivel de conocimiento, capacidad de razonamiento y creatividad, como la redacción de anuncios, la escritura de novelas, la redacción de contenido de conocimiento y la generación de código."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base es el modelo base de la última generación de la serie ChatGLM, desarrollado por Zhipu, con una escala de 6.000 millones de parámetros y de código abierto."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o es un modelo dinámico que se actualiza en tiempo real para mantener la versión más actual. Combina una poderosa comprensión y generación de lenguaje, adecuado para aplicaciones a gran escala, incluyendo servicio al cliente, educación y soporte técnico."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite es un modelo de lenguaje grande y ligero, con una latencia extremadamente baja y una capacidad de procesamiento eficiente, completamente gratuito y de código abierto, que admite funciones de búsqueda en línea en tiempo real. Su característica de respuesta rápida lo hace destacar en aplicaciones de inferencia y ajuste de modelos en dispositivos de baja potencia, brindando a los usuarios una excelente relación costo-beneficio y experiencia inteligente, especialmente en escenarios de preguntas y respuestas, generación de contenido y búsqueda."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 es una serie de modelos de lenguaje de gran escala (LLM) desarrollados y publicados por Meta, que incluye modelos de texto generativo preentrenados y ajustados de diferentes tamaños, desde 7 mil millones hasta 70 mil millones de parámetros. A nivel de arquitectura, Llama2 es un modelo de lenguaje autoregresivo que utiliza una arquitectura de transformador optimizada. Las versiones ajustadas utilizan un ajuste de fine-tuning supervisado (SFT) y aprendizaje por refuerzo con retroalimentación humana (RLHF) para alinear las preferencias de utilidad y seguridad humanas. Llama2 supera a la serie Llama en varios conjuntos de datos académicos, proporcionando ideas para el diseño y desarrollo de numerosos otros modelos."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B ofrece una capacidad de razonamiento AI más potente, adecuada para aplicaciones complejas, soportando un procesamiento computacional extenso y garantizando eficiencia y precisión."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K está equipado con una capacidad de procesamiento de contexto grande, con una comprensión contextual más fuerte y habilidades de razonamiento lógico, soportando entradas de texto de 32K tokens, adecuado para la lectura de documentos largos, preguntas y respuestas de conocimiento privado y otros escenarios."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct es un modelo de lenguaje grande entrenado completamente de forma autónoma por Wúwèn Xīnqióng. Megrez-3B-Instruct tiene como objetivo crear una solución de inteligencia periférica rápida, compacta y fácil de usar, basada en el concepto de colaboración entre hardware y software."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Un poderoso modelo de 70 mil millones de parámetros que sobresale en razonamiento, codificación y amplias aplicaciones de lenguaje."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Poderoso modelo de código de tamaño mediano, que soporta longitudes de contexto de 32K, experto en programación multilingüe."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "La serie Qwen1.5 es la versión Beta de Qwen2, un modelo de lenguaje de solo decodificación basado en Transformer, preentrenado en una gran cantidad de datos. En comparación con las versiones anteriores de la serie Qwen, tanto el modelo base como el modelo de chat de la serie Qwen1.5 admiten múltiples idiomas y han mejorado en términos de chat general y capacidades básicas. Qwen1.5-14b-chat es el modelo de 14 mil millones de parámetros diseñado específicamente para escenarios de chat, considerado como un tamaño de modelo principal."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 es la versión Beta de Qwen2, un modelo de lenguaje de solo decodificación basado en Transformer, preentrenado en una gran cantidad de datos. En comparación con las versiones anteriores de la serie Qwen, tanto el modelo base como el modelo de chat de Qwen1.5 admiten múltiples idiomas y han mejorado tanto en chat general como en capacidades básicas. Qwen1.5-32b-chat es un modelo de 320 mil millones de parámetros diseñado específicamente para escenarios de chat, que ofrece un mejor rendimiento en escenarios de agentes inteligentes en comparación con el modelo de 14 mil millones de parámetros y un menor costo de inferencia en comparación con el modelo de 72 mil millones de parámetros."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "La serie Qwen1.5 es la versión Beta de Qwen2, un modelo de lenguaje de solo decodificación basado en Transformer, preentrenado en una gran cantidad de datos. En comparación con las versiones anteriores de la serie Qwen, tanto el modelo base como el modelo de chat de la serie Qwen1.5 pueden soportar múltiples idiomas, mejorando tanto en el chat general como en las capacidades básicas. Qwen1.5-72b-chat es el modelo de 72 mil millones de parámetros dedicado a escenarios de chat."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 es el nuevo modelo de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 es la nueva serie de modelos de lenguaje de gran escala presentada por el equipo de Qwen. Se basa en la arquitectura Transformer y utiliza funciones de activación SwiGLU, sesgo de atención QKV (attention QKV bias), atención de consulta grupal (group query attention), una mezcla de atención de ventana deslizante y atención completa (mixture of sliding window attention and full attention). Además, el equipo de Qwen ha mejorado el tokenizador para adaptarse a múltiples lenguajes naturales y códigos."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 es una nueva serie de modelos de lenguaje de gran escala desarrollada por el equipo de Qwen. Se basa en la arquitectura Transformer y utiliza funciones de activación SwiGLU, sesgo de atención QKV (attention QKV bias), atención de consulta grupal (group query attention), una mezcla de atención de ventana deslizante y atención completa (mixture of sliding window attention and full attention). Además, el equipo de Qwen ha mejorado el tokenizador para adaptarse a múltiples lenguajes naturales y códigos."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 es la nueva generación de modelos de lenguaje a gran escala de Alibaba, que ofrece un rendimiento excepcional para satisfacer diversas necesidades de aplicación."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 es un modelo de lenguaje proporcionado por Microsoft AI, que destaca en diálogos complejos, multilingües, razonamiento y asistentes inteligentes."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 es una versión mejorada de Yi. Utiliza un corpus de alta calidad de 500B tokens para continuar el preentrenamiento de Yi y se微调 en 3M muestras de ajuste fino diversificadas."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Modelo de mil millones de parámetros completamente nuevo, que ofrece capacidades excepcionales de preguntas y respuestas y generación de texto."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Un modelo de lenguaje desarrollado por Tencent, que posee una poderosa capacidad de creación en chino, habilidades de razonamiento lógico en contextos complejos y una capacidad confiable para ejecutar tareas."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Proporciona a los desarrolladores de aplicaciones servicios de modelos grandes de alto rendimiento, fáciles de usar y seguros, cubriendo todo el proceso desde el desarrollo de modelos grandes hasta su implementación como servicio."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Organización de código abierto dedicada a la investigación y desarrollo de herramientas para modelos grandes. Proporciona a todos los desarrolladores de IA una plataforma de código abierto eficiente y fácil de usar, permitiendo el acceso a las tecnologías y algoritmos más avanzados."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 بهطور ویژه برای نقشآفرینی و همراهی عاطفی طراحی شده است، از حافظه طولانیمدت و مکالمات شخصیسازیشده پشتیبانی میکند و کاربردهای گستردهای دارد."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 یک مدل بستهشده است که توسط هوش مصنوعی Zhima و آزمایشگاه KEG دانشگاه Tsinghua منتشر شده است. این مدل با پیشآموزش بر روی مجموعهای وسیع از نمادهای چینی و انگلیسی و همچنین آموزش مطابق با ترجیحات انسانی، نسبت به نسل اول مدل، بهبودهای 16٪، 36٪ و 280٪ در MMLU، C-Eval و GSM8K به دست آورده است و در رتبهبندی وظایف چینی C-Eval رتبه اول را کسب کرده است. این مدل برای صحنههایی که نیاز به مقدار زیادی دانش، توانایی استدلال و خلاقیت دارند، مانند نوشتن متن تبلیغاتی، نویسندگی داستان، نوشتن محتوای دانشگاهی و تولید کد مناسب است."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base یک مدل پایه منبع باز با مقیاس ۶ میلیارد پارامتر از نسل جدید سری ChatGLM است که توسط شرکت Zhizhu (智谱) توسعه یافته است."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o یک مدل پویا است که بهصورت زنده بهروزرسانی میشود تا همیشه نسخهی جدید و بهروز باشد. این مدل ترکیبی از تواناییهای قوی در درک و تولید زبان است و برای کاربردهای گسترده مانند خدمات مشتری، آموزش و پشتیبانی فنی مناسب است."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite یک مدل زبان بزرگ سبک است که دارای تأخیر بسیار کم و توانایی پردازش کارآمد میباشد. بهطور کامل رایگان و باز است و از قابلیت جستجوی آنلاین در زمان واقعی پشتیبانی میکند. ویژگی پاسخدهی سریع آن باعث میشود که در کاربردهای استنتاجی و تنظیم مدل در دستگاههای با توان محاسباتی پایین عملکرد برجستهای داشته باشد و تجربهای هوشمند و مقرونبهصرفه برای کاربران فراهم کند. بهویژه در زمینههای پرسش و پاسخ دانش، تولید محتوا و جستجو عملکرد خوبی دارد."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "سری مدلهای زبانی بزرگ (LLM) Llama2 توسط Meta توسعه یافته و به صورت متنباز منتشر شده است. این مجموعه شامل مدلهای متنی تولیدی با مقیاسهای مختلف از 7 میلیارد تا 70 میلیارد پارامتر است که پیشآموزش و ریآموزش داده شدهاند. از نظر معماری، Llama2 یک مدل زبانی خودرگرسیو با استفاده از معماری تبدیلکننده بهینهشده است. نسخههای تنظیمشده از این مدل با استفاده از ریآموزش نظارتشده (SFT) و یادگیری تقویتی با بازخورد انسانی (RLHF) برای همگرایی با ترجیحات انسانی در مورد مفیدیت و ایمنی تنظیم شدهاند. Llama2 نسبت به سری Llama در مجموعههای داده علمی مختلف عملکرد بهتری دارد و الهام بخش طراحی و توسعه مدلهای دیگر بسیاری بوده است."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "لاما 3.1 70B توانایی استدلال هوش مصنوعی قویتری را ارائه میدهد، مناسب برای برنامههای پیچیده، پشتیبانی از پردازشهای محاسباتی فراوان و تضمین کارایی و دقت بالا."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K با قابلیت پردازش متن با زمینه بزرگتر، توانایی درک و استدلال منطقی قویتری دارد و از ورودی متنی تا 32K توکن پشتیبانی میکند. مناسب برای خواندن اسناد طولانی، پرسش و پاسخ با دانش خصوصی و موارد مشابه."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct یک مدل زبانی بزرگ است که به طور کامل توسط شرکت ووونگ شیونگ آموزش داده شده است. هدف از Megrez-3B-Instruct ایجاد یک راهحل هوشمند از طریق هماهنگی سختافزار و نرمافزار است که دارای استنتاج سریع، حجم کوچک و آسانی در استفاده باشد."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "یک مدل قدرتمند با ۷۰ میلیارد پارامتر که در استدلال، کدنویسی و کاربردهای گسترده زبانی عملکرد برجستهای دارد."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "مدل کد قدرتمند و متوسط که از طول زمینه 32K پشتیبانی میکند و در برنامهنویسی چند زبانه مهارت دارد."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "سری Qwen1.5 نسخه بیتا از Qwen2 است، که یک مدل زبانی تنها دکد کننده بر پایه Transformer است که روی دادههای بسیار زیاد آموزش داده شده است. نسبت به نسخههای قبلی سری Qwen، هم مدل base و هم مدل chat سری Qwen1.5 قادر به پشتیبانی از زبانهای مختلف هستند و در مجموع در چت و تواناییهای پایه بهبود یافتهاند. Qwen1.5-14b-chat یک مدل با 14 میلیارد پارامتر است که برای صحنههای چت طراحی شده است."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "سری Qwen1.5 نسخه بتهای Qwen2 است، یک مدل زبانی تنها دیکد کننده بر پایه Transformer است که روی دادههای بسیار زیاد پیش آموزش داده شده است. نسبت به نسخههای قبلی سری Qwen، هم مدلهای base و chat سری Qwen1.5 چندین زبان را پشتیبانی میکنند و در مکالمات کلی و تواناییهای پایه بهبود یافتهاند. Qwen1.5-32b-chat مدل 32 میلیارد پارامتری است که برای صحنههای چت تخصصیتر است، نسبت به مدل 14 میلیارد پارامتری در صحنههای هوشمند تر است و نسبت به مدل 72 میلیارد پارامتری هزینه استنتاج کمتری دارد."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "سری Qwen1.5 نسخه بیتا از Qwen2 است، که یک مدل زبانی تنها دکد کننده بر پایه Transformer است و روی دادههای بسیار زیاد آموزش داده شده است. نسبت به نسخههای قبلی سری Qwen، هم مدل base و هم مدل chat سری Qwen1.5 قادر به پشتیبانی از زبانهای مختلف هستند و در مجموع در چت و تواناییهای پایه بهبود یافتهاند. Qwen1.5-72b-chat مدل گستردهای با 72 میلیارد پارامتر است که برای صحنههای چت تخصصی است."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 مدل زبان بزرگ نسل جدید علیبابا است که با عملکرد عالی از نیازهای متنوع کاربردی پشتیبانی میکند."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2، سری جدیدی از مدلهای زبانی بزرگ توسط تیم Qwen ارائه شده است. این مدل بر اساس معماری Transformer ساخته شده و از توابع فعالسازی SwiGLU، بایاس QKV توجه (attention QKV bias)، توجه سؤال گروهی (group query attention)، ترکیب توجه پنجرهای لغزشی و توجه کامل (mixture of sliding window attention and full attention) استفاده میکند. علاوه بر این، تیم Qwen بهبودی در تجزیهکنندههایی که برای تجزیه متنهای طبیعی و کد مناسب هستند ایجاد کردهاند."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2، سری جدیدی از مدلهای زبانی بزرگ توسط تیم Qwen ارائه شده است. این مدل بر اساس معماری Transformer ساخته شده و از توابع فعالسازی SwiGLU، بایاس QKV توجه (attention QKV bias)، توجه سرویسگروهی (group query attention)، ترکیب توجه پنجرهای لغزشی و توجه کامل (mixture of sliding window attention and full attention) استفاده میکند. علاوه بر این، تیم Qwen بهبودی در تجزیهکنندههایی ارائه کردهاند که برای تجزیه متنهای طبیعی و کد مناسب هستند."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 نسل جدید مدل زبانی مقیاس بزرگ Alibaba است که با عملکرد عالی از نیازهای متنوع کاربردی پشتیبانی میکند."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 یک مدل زبانی ارائه شده توسط مایکروسافت AI است که در زمینههای مکالمات پیچیده، چندزبانه، استدلال و دستیارهای هوشمند عملکرد برجستهای دارد."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 نسخهی بهروزرسانی شدهی Yi است. این مدل با استفاده از یک مجموعه داده با کیفیت بالا شامل 500 میلیارد توکن برای پیشآموزی و 3 میلیون نمونه متنوع برای آموزش ریزی مجدداً آموزش داده شده است."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "مدل جدید با میلیاردها پارامتر، ارائهدهنده تواناییهای فوقالعاده در پاسخگویی و تولید متن."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "مدل زبان بزرگ توسعهیافته توسط تنسنت، با تواناییهای قدرتمند در خلق محتوای چینی، توانایی استدلال منطقی در زمینههای پیچیده، و قابلیت اجرای وظایف بهصورت قابل اعتماد"
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "خدمات مدلهای بزرگ با عملکرد بالا، راحت برای استفاده و امن برای توسعهدهندگان اپلیکیشن، که شامل مراحل از توسعه مدلهای بزرگ تا پیشگیری از نصب خدمات مدلهای بزرگ میشود."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "سازمان متن باز متعهد به تحقیق و توسعه ابزارهای مدلهای بزرگ. ارائه یک پلتفرم متن باز کارآمد و آسان برای تمام توسعهدهندگان هوش مصنوعی، تا جدیدترین مدلها و تکنیکهای الگوریتمی در دسترس باشد."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 est conçu pour le jeu de rôle et l'accompagnement émotionnel, prenant en charge une mémoire multi-tours ultra-longue et des dialogues personnalisés, avec des applications variées."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 est un modèle fermé développé par l'IA Zhipu et le laboratoire KEG de Tsinghua. Il a été pré-entraîné sur une grande quantité d'identifiants chinois et anglais et a été aligné sur les préférences humaines. Par rapport au modèle de première génération, il a amélioré ses performances de 16%, 36% et 280% sur MMLU, C-Eval et GSM8K respectivement, et est devenu le meilleur modèle sur le classement C-Eval pour les tâches en chinois. Il est adapté aux scénarios nécessitant une grande quantité de connaissances, des capacités de raisonnement et de créativité, tels que la rédaction de publicités, l'écriture de romans, la rédaction de contenu informatif et la génération de code."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base est le modèle de base open source de la dernière génération de la série ChatGLM, développé par Zhipu, avec une taille de 6 milliards de paramètres."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o est un modèle dynamique, mis à jour en temps réel pour rester à jour avec la dernière version. Il combine une compréhension et une génération de langage puissantes, adapté à des scénarios d'application à grande échelle, y compris le service client, l'éducation et le support technique."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite est un modèle de langage léger, offrant une latence extrêmement faible et une capacité de traitement efficace, entièrement gratuit et ouvert, prenant en charge la recherche en temps réel. Sa capacité de réponse rapide le rend exceptionnel pour les applications d'inférence sur des appareils à faible puissance de calcul et pour le réglage des modèles, offrant aux utilisateurs un excellent rapport coût-efficacité et une expérience intelligente, en particulier dans les scénarios de questions-réponses, de génération de contenu et de recherche."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 est une série de grands modèles de langage (LLM) développés et open-source par Meta. Elle comprend des modèles de génération de texte pré-entraînés et affinés, dont la taille varie de 7 milliards à 70 milliards de paramètres. Sur le plan architectural, Llama2 est un modèle de langage auto-régressif utilisant une architecture de transformateur optimisée. Les versions ajustées utilisent un affinage supervisé (SFT) et un apprentissage par renforcement avec feedback humain (RLHF) pour aligner les préférences d'utilité et de sécurité humaines. Llama2 offre de meilleures performances que la série Llama sur de nombreux jeux de données académiques, fournissant des idées pour la conception et le développement de nombreux autres modèles."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B offre une capacité de raisonnement AI plus puissante, adaptée aux applications complexes, prenant en charge un traitement de calcul intensif tout en garantissant efficacité et précision."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K est équipé d'une grande capacité de traitement de contexte, avec une compréhension contextuelle et des capacités de raisonnement logique renforcées, prenant en charge des entrées textuelles de 32K tokens, adapté à la lecture de documents longs, aux questions-réponses privées et à d'autres scénarios."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct est un grand modèle de langage entièrement formé par Wúwèn Xīnqióng. Megrez-3B-Instruct vise à créer une solution d'intelligence embarquée rapide, compacte et facile à utiliser, en adoptant une approche intégrée logiciel-hardware."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Un puissant modèle de 70 milliards de paramètres excelling dans le raisonnement, le codage et les applications linguistiques larges."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Modèle de code puissant de taille moyenne, prenant en charge une longueur de contexte de 32K, spécialisé dans la programmation multilingue."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "La série Qwen1.5 est la version Beta de Qwen2, un modèle de langage de décodage uniquement basé sur Transformer, pré-entraîné sur de vastes volumes de données. Par rapport aux versions précédentes de la série Qwen, les modèles base et chat de la série Qwen1.5 prennent en charge plusieurs langues et ont été améliorés en termes de conversation globale et de capacités de base. Qwen1.5-14b-chat est le modèle de taille principale de 14 milliards de paramètres spécifiquement conçu pour les scénarios de chat."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "La série Qwen1.5 est la version Beta de Qwen2, un modèle de langage de décodage uniquement basé sur Transformer, pré-entraîné sur de vastes volumes de données. Par rapport aux versions précédentes de la série Qwen, la série Qwen1.5 améliore les modèles base et chat pour prendre en charge plusieurs langues, et offre des améliorations dans les capacités de conversation et de base. Qwen1.5-32b-chat est un grand modèle de 320 milliards de paramètres spécifiquement conçu pour les scénarios de chat, offrant des performances supérieures dans les scénarios d'agents intelligents par rapport au modèle 14b, tout en réduisant les coûts d'inférence par rapport au modèle 72b."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "La série Qwen1.5 est la version Beta de Qwen2, un modèle de langage de décodage uniquement basé sur Transformer, pré-entraîné sur de vastes volumes de données. Par rapport aux versions précédentes de la série Qwen, les modèles base et chat de la série Qwen1.5 prennent en charge plusieurs langues et ont été améliorés en termes de conversation globale et de capacités de base. Qwen1.5-72b-chat est le grand modèle de 72 milliards de paramètres dédié aux scénarios de chat."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 est le nouveau modèle de langage à grande échelle d'Alibaba, offrant d'excellentes performances pour des besoins d'application diversifiés."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 est la nouvelle série de modèles de langage grand format développée par l'équipe Qwen. Elle repose sur l'architecture Transformer et intègre des fonctions d'activation SwiGLU, un biais d'attention QKV (attention QKV bias), une attention de requête de groupe (group query attention), un mélange d'attention à fenêtre glissante (mixture of sliding window attention) et une attention complète. De plus, l'équipe Qwen a amélioré le segmenteur pour mieux s'adapter à diverses langues naturelles et au code."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 est la nouvelle génération de modèles de langage grand format développée par l'équipe Qwen. Il repose sur l'architecture Transformer et utilise des fonctions d'activation SwiGLU, des biais QKV d'attention, de l'attention de requête de groupe, un mélange d'attention à fenêtre glissante et d'attention complète. De plus, l'équipe Qwen a amélioré le segmenteur pour s'adapter à de nombreuses langues naturelles et à des codes."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 est le nouveau modèle de langage à grande échelle de Alibaba, offrant d'excellentes performances pour répondre à des besoins d'application diversifiés."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 est un modèle de langage proposé par Microsoft AI, particulièrement performant dans les domaines des dialogues complexes, du multilinguisme, du raisonnement et des assistants intelligents."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 est une version améliorée de Yi. Il utilise un corpus de haute qualité de 500 milliards de tokens pour poursuivre l'entraînement préalable de Yi, et est affiné sur 3 millions d'exemples de fine-tuning variés."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Un modèle de nouvelle génération avec des milliards de paramètres, offrant des capacités de question-réponse et de génération de texte exceptionnelles."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Un modèle de langage développé par Tencent, doté d'une puissante capacité de création en chinois, d'une capacité de raisonnement logique dans des contextes complexes, ainsi que d'une capacité fiable d'exécution des tâches."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Fournit aux développeurs d'applications des services de grands modèles performants, faciles à utiliser et sécurisés, couvrant l'ensemble du processus, de la conception des grands modèles à leur déploiement en tant que service."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Organisation open source dédiée à la recherche et au développement d'outils pour les grands modèles. Fournit à tous les développeurs d'IA une plateforme open source efficace et facile à utiliser, rendant les technologies de pointe en matière de grands modèles et d'algorithmes accessibles."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 è progettato per il gioco di ruolo e la compagnia emotiva, supporta una memoria multi-turno ultra-lunga e dialoghi personalizzati, con ampie applicazioni."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 è un modello a sorgente chiusa sviluppato da Zhipu AI e dal laboratorio KEG di Tsinghua. Dopo un pre-addestramento su una vasta quantità di identificatori cinesi e inglesi e un addestramento allineato alle preferenze umane, rispetto alla prima generazione di modelli, ha ottenuto miglioramenti del 16%, 36% e 280% rispettivamente in MMLU, C-Eval e GSM8K, e ha raggiunto il vertice della classifica C-Eval per compiti in cinese. È adatto a scenari che richiedono un alto livello di conoscenza, capacità di ragionamento e creatività, come la stesura di testi pubblicitari, la scrittura di romanzi, la composizione di testi informativi e la generazione di codice."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base è il modello di base open source più recente della serie ChatGLM, sviluppato da Zhipu con una dimensione di 6 miliardi di parametri."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o è un modello dinamico, aggiornato in tempo reale per mantenere la versione più recente. Combina una potente comprensione e generazione del linguaggio, adatta a scenari di applicazione su larga scala, inclusi servizi clienti, educazione e supporto tecnico."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite è un modello di linguaggio di grandi dimensioni leggero, con latenza estremamente bassa e capacità di elaborazione efficiente, completamente gratuito e aperto, supporta funzionalità di ricerca online in tempo reale. La sua caratteristica di risposta rapida lo rende eccellente per applicazioni di inferenza su dispositivi a bassa potenza e per il fine-tuning dei modelli, offrendo agli utenti un'ottima efficienza dei costi e un'esperienza intelligente, soprattutto nei contesti di domande e risposte, generazione di contenuti e ricerca."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 è una serie di modelli linguistici di grandi dimensioni (LLM) sviluppati e resi open source da Meta. Questa serie comprende modelli generativi di testo pre-addestrati e finetunati, con dimensioni che variano da 7 miliardi a 70 miliardi di parametri. Sul piano architettonico, Llama2 è un modello linguistico autoregressivo che utilizza un'architettura di trasformatore ottimizzata. Le versioni aggiornate utilizzano il fine-tuning supervisionato (SFT) e l'apprendimento per rinforzo con feedback umano (RLHF) per allineare le preferenze di utilità e sicurezza umane. Llama2 supera Llama in diverse basi di dati accademiche, fornendo ispirazione per la progettazione e lo sviluppo di molti altri modelli."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B offre capacità di ragionamento AI più potenti, adatto per applicazioni complesse, supporta un'elaborazione computazionale elevata garantendo efficienza e precisione."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K è dotato di una grande capacità di elaborazione del contesto, con una comprensione del contesto e capacità di ragionamento logico superiori, supporta input testuali fino a 32K token, adatto per la lettura di documenti lunghi, domande e risposte su conoscenze private e altri scenari."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct è un modello di linguaggio grande completamente addestrato da Wuwen Xin Qiong. Megrez-3B-Instruct mira a creare una soluzione di intelligenza per dispositivi finali, rapida, compatta e facile da usare, attraverso il concetto di collaborazione hardware-software."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Un potente modello con 70 miliardi di parametri che eccelle nel ragionamento, nella codifica e nelle ampie applicazioni linguistiche."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Potente modello di codice di medie dimensioni, supporta una lunghezza di contesto di 32K, specializzato in programmazione multilingue."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "La serie Qwen1.5 è la versione Beta di Qwen2, un modello linguistico decodificatore basato su Transformer, pre-addestrato su un vasto corpus di dati. Rispetto alle versioni precedenti della serie Qwen, la serie Qwen1.5 supporta diverse lingue sia nel modello base che in quello per chat, migliorando le prestazioni complessive sia nella conversazione che nelle capacità di base. Qwen1.5-14b-chat è il modello specifico per scenari di chat, con 14 miliardi di parametri, una dimensione mainstream."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "La serie Qwen1.5 è la versione Beta di Qwen2, un modello linguistico di solo decodifica basato su Transformer, pre-addestrato su un vasto corpus di dati. Rispetto alle versioni precedenti della serie Qwen, sia il modello base che il modello chat della serie Qwen1.5 supportano diverse lingue e hanno migliorato le prestazioni complessive in chat e le capacità di base. Qwen1.5-32b-chat è un modello di 32 miliardi di parametri specificamente progettato per scenari di chat, che offre prestazioni superiori nel contesto di agenti intelligenti rispetto al modello da 14 miliardi di parametri e ha un costo inferiore di inferenza rispetto al modello da 72 miliardi di parametri."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "La serie Qwen1.5 è la versione Beta di Qwen2, un modello linguistico di solo decodifica basato su Transformer, pre-addestrato su un vasto corpus di dati. Rispetto alle precedenti versioni della serie Qwen, la serie Qwen1.5 supporta diverse lingue sia nel modello base che in quello per chat, migliorando le prestazioni complessive sia nella conversazione che nelle capacità di base. Qwen1.5-72b-chat è il modello specifico per scenari di chat, con 72 miliardi di parametri."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 è la nuova generazione di modelli di linguaggio su larga scala di Alibaba, supporta prestazioni eccellenti per esigenze applicative diversificate."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 è la nuova serie di modelli linguistici di grande dimensione sviluppata dal team Qwen. Si basa sull'architettura Transformer e utilizza funzioni di attivazione SwiGLU, bias QKV dell'attenzione, attenzione a query di gruppo, una combinazione di attenzione a finestra scorrevole e attenzione completa. Inoltre, il team Qwen ha migliorato il tokenizzatore per adattarlo a diverse lingue naturali e codici."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 è la nuova serie di modelli linguistici di grandi dimensioni presentata dal team Qwen. Si basa sull'architettura Transformer e utilizza funzioni di attivazione SwiGLU, bias QKV dell'attenzione (attention QKV bias), attenzione a query di gruppo (group query attention), una combinazione di attenzione a finestra scorrevole (sliding window attention) e attenzione completa. Inoltre, il team Qwen ha migliorato il tokenizzatore per adattarlo a diverse lingue naturali e codici."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 è la nuova generazione di modelli linguistici su larga scala di Alibaba, che supporta esigenze applicative diversificate con prestazioni eccellenti."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 è un modello di linguaggio fornito da Microsoft AI, particolarmente efficace in dialoghi complessi, multilingue, ragionamento e assistenti intelligenti."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 è una versione aggiornata di Yi. Utilizza un corpus di alta qualità di 500B token per il pre-addestramento continuo di Yi e viene finetunato su 3M campioni di micro-tuning diversificati."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Un nuovo modello con centinaia di miliardi di parametri, offre capacità eccezionali di risposta e generazione di testi."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Un modello di linguaggio sviluppato da Tencent, dotato di potenti capacità di creazione in cinese, abilità di ragionamento logico in contesti complessi e capacità affidabili di esecuzione dei compiti."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Fornisce servizi di modelli di grande dimensione ad alta prestazione, facili da usare e sicuri per gli sviluppatori di applicazioni, coprendo l'intero processo dalla sviluppo dei modelli alla distribuzione dei servizi."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Un'organizzazione open source dedicata alla ricerca e allo sviluppo di strumenti per modelli di grandi dimensioni. Fornisce a tutti gli sviluppatori di AI una piattaforma open source efficiente e facile da usare, rendendo le tecnologie e gli algoritmi all'avanguardia accessibili a tutti."
|
58
61
|
},
|
@@ -1,4 +1,5 @@
|
|
1
1
|
{
|
2
|
+
"0": "{",
|
2
3
|
"01-ai/Yi-1.5-34B-Chat-16K": {
|
3
4
|
"description": "Yi-1.5 34Bは豊富な訓練サンプルを用いて業界アプリケーションで優れたパフォーマンスを提供します。"
|
4
5
|
},
|
@@ -521,6 +522,12 @@
|
|
521
522
|
"charglm-3": {
|
522
523
|
"description": "CharGLM-3はキャラクター演技と感情的な伴侶のために設計されており、超長期の多段階記憶と個別化された対話をサポートし、幅広い用途に適しています。"
|
523
524
|
},
|
525
|
+
"chatglm3": {
|
526
|
+
"description": "ChatGLM3は、智譜AIと清華KEGラボが公開したクローズドソースモデルで、大量の中国語と英語の識別子の事前学習と人間の好みの調整学習を経ています。1世代目のモデルと比較して、MMLU、C-Eval、GSM8Kでそれぞれ16%、36%、280%の向上を達成し、中国語タスクランキングC-Evalで1位を獲得しました。知識量、推論能力、創造性が求められる場面、例えば広告文の作成、小説の執筆、知識系の執筆、コードの生成などに適しています。"
|
527
|
+
},
|
528
|
+
"chatglm3-6b-base": {
|
529
|
+
"description": "ChatGLM3-6b-base は、智譜が開発した ChatGLM シリーズの最新世代の 60 億パラメータのオープンソースの基本モデルです。"
|
530
|
+
},
|
524
531
|
"chatgpt-4o-latest": {
|
525
532
|
"description": "ChatGPT-4oは、リアルタイムで更新される動的モデルで、常に最新のバージョンを維持します。強力な言語理解と生成能力を組み合わせており、顧客サービス、教育、技術サポートなどの大規模なアプリケーションシナリオに適しています。"
|
526
533
|
},
|
@@ -1196,6 +1203,9 @@
|
|
1196
1203
|
"max-32k": {
|
1197
1204
|
"description": "Spark Max 32Kは大規模なコンテキスト処理能力を備え、より強力なコンテキスト理解と論理推論能力を持ち、32Kトークンのテキスト入力をサポートします。長文書の読解やプライベートな知識問答などのシーンに適しています。"
|
1198
1205
|
},
|
1206
|
+
"megrez-3b-instruct": {
|
1207
|
+
"description": "Megrez-3B-Instruct は、無問芯穹が完全に自主的に訓練した大規模言語モデルです。Megrez-3B-Instruct は、ソフトウェアとハードウェアの協調理念に基づき、高速推論、小型で高性能、そして非常に使いやすいエッジ側のスマートソリューションを目指しています。"
|
1208
|
+
},
|
1199
1209
|
"meta-llama-3-70b-instruct": {
|
1200
1210
|
"description": "推論、コーディング、広範な言語アプリケーションに優れた70億パラメータの強力なモデルです。"
|
1201
1211
|
},
|
@@ -1583,6 +1593,15 @@
|
|
1583
1593
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1594
|
"description": "強力な中型コードモデルで、32Kのコンテキスト長をサポートし、多言語プログラミングに優れています。"
|
1585
1595
|
},
|
1596
|
+
"qwen1.5-14b-chat": {
|
1597
|
+
"description": "Qwen1.5 シリーズは Qwen2 のベータ版で、Transformer ベースのデコーダー専用言語モデルであり、大量のデータで事前学習されています。以前にリリースされた Qwen シリーズのバージョンと比較して、Qwen1.5 シリーズの base と chat モデルは複数の言語をサポートし、全体的なチャットと基本的な機能が向上しています。Qwen1.5-14b-chat は、チャット用途に特化した 140 億パラメータの主要なモデルです。"
|
1598
|
+
},
|
1599
|
+
"qwen1.5-32b-chat": {
|
1600
|
+
"description": "Qwen1.5 シリーズは Qwen2 のベータ版で、Transformer ベースのデコーダー専用言語モデルであり、大量のデータで事前学習されています。以前にリリースされた Qwen シリーズのバージョンと比較して、Qwen1.5 シリーズの base と chat モデルは、複数の言語をサポートし、全体的なチャットと基本的な能力が向上しています。Qwen1.5-32b-chat は、チャット用途に特化した 320 億パラメータの大規模モデルで、14b モデルよりもエージェント用途で優れ、72b モデルよりも推論コストが低いです。"
|
1601
|
+
},
|
1602
|
+
"qwen1.5-72b-chat": {
|
1603
|
+
"description": "Qwen1.5 シリーズは Qwen2 のベータ版で、Transformer ベースのデコーダー専用言語モデルであり、大量のデータで事前学習されています。以前にリリースされた Qwen シリーズのバージョンと比較して、Qwen1.5 シリーズの base と chat モデルは、複数の言語をサポートし、全体的なチャットと基本的な機能が向上しています。Qwen1.5-72b-chat は、チャット用途に特化した 720 億パラメータの大規模モデルです。"
|
1604
|
+
},
|
1586
1605
|
"qwen2": {
|
1587
1606
|
"description": "Qwen2は、Alibabaの新世代大規模言語モデルであり、優れた性能で多様なアプリケーションニーズをサポートします。"
|
1588
1607
|
},
|
@@ -1763,6 +1782,9 @@
|
|
1763
1782
|
"wizardlm2:8x22b": {
|
1764
1783
|
"description": "WizardLM 2は、Microsoft AIが提供する言語モデルであり、複雑な対話、多言語、推論、インテリジェントアシスタントの分野で特に優れた性能を発揮します。"
|
1765
1784
|
},
|
1785
|
+
"yi-1.5-34b-chat": {
|
1786
|
+
"description": "Yi-1.5は、Yiのアップグレード版です。500Bトークンの高品質なコーパスを使用してYiの事前学習を継続し、3Mの多様なファインチューニングサンプルでファインチューニングを行います。"
|
1787
|
+
},
|
1766
1788
|
"yi-large": {
|
1767
1789
|
"description": "新しい千億パラメータモデルであり、超強力な質問応答およびテキスト生成能力を提供します。"
|
1768
1790
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "テンセントが開発した大規模言語モデルであり、強力な中国語の創作能力、複雑な文脈における論理的推論能力、そして信頼性の高いタスク実行能力を備えています。"
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "アプリケーション開発者向けに、高性能、使いやすさ、セキュリティを兼ね備えた大規模モデルサービスを提供し、大規模モデルの開発からサービス展開までの全プロセスをカバーします。"
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "大規模モデルの研究と開発ツールチェーンに特化したオープンソース組織です。すべてのAI開発者に対して、高効率で使いやすいオープンプラットフォームを提供し、最先端の大規模モデルとアルゴリズム技術を身近に感じられるようにします。"
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3는 역할 수행 및 감정 동반을 위해 설계된 모델로, 초장 다회 기억 및 개인화된 대화를 지원하여 광범위하게 사용됩니다."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3는 지품 AI와 청화 KEG 연구실에서 발표한 폐원 모델로, 대량의 중영 식별자 사전 학습과 인간 선호도 맞춤 학습을 거쳤습니다. 1세대 모델에 비해 MMLU, C-Eval, GSM8K에서 각각 16%, 36%, 280%의 향상을 이루었으며, 중국어 작업 차트 C-Eval에서 1위를 차지했습니다. 이 모델은 지식량, 추론 능력, 창의력이 요구되는 상황, 예를 들어 광고 문안, 소설 작성, 지식 기반 작문, 코드 생성 등에 적합합니다."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base는 지푸에서 개발한 ChatGLM 시리즈의 최신 세대 60억 개 매개변수 규모의 오픈소스 기반 모델입니다."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o는 동적 모델로, 최신 버전을 유지하기 위해 실시간으로 업데이트됩니다. 강력한 언어 이해 및 생성 능력을 결합하여 고객 서비스, 교육 및 기술 지원을 포함한 대규모 응용 프로그램에 적합합니다."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite는 경량 대형 언어 모델로, 매우 낮은 지연 시간과 효율적인 처리 능력을 갖추고 있으며, 완전히 무료로 제공되고 실시간 온라인 검색 기능을 지원합니다. 빠른 응답 특성 덕분에 저전력 장치에서의 추론 응용 및 모델 미세 조정에서 뛰어난 성능을 발휘하며, 사용자에게 뛰어난 비용 효율성과 스마트한 경험을 제공합니다. 특히 지식 질문 응답, 콘텐츠 생성 및 검색 시나리오에서 두각을 나타냅니다."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2는 Meta에서 개발하고 오픈소스로 공개한 대형 언어 모델(LLM) 시리즈로, 70억에서 700억 개의 매개변수를 가진 다양한 규모의 사전 학습 및 미세 조정된 생성형 텍스트 모델입니다. 구조적으로 Llama2는 최적화된 트랜스포머 아키텍처를 사용하는 자동 회귀 언어 모델입니다. 조정된 버전은 감독된 미세 조정(SFT)과 인간 피드백을 활용한 강화 학습(RLHF)을 사용하여 인간의 유용성과 안전성 선호도에 맞춥니다. Llama2는 Llama 시리즈보다 다양한 학술 데이터셋에서 더욱 뛰어난 성능을 보여주며, 많은 다른 모델의 설계와 개발에 영감을 주고 있습니다."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B는 더 강력한 AI 추론 능력을 제공하며, 복잡한 응용 프로그램에 적합하고, 많은 계산 처리를 지원하며 효율성과 정확성을 보장합니다."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K는 큰 컨텍스트 처리 능력을 갖추고 있으며, 더 강력한 컨텍스트 이해 및 논리 추론 능력을 지원합니다. 32K 토큰의 텍스트 입력을 지원하며, 긴 문서 읽기, 개인 지식 질문 응답 등 다양한 시나리오에 적합합니다."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct는 무문심궁이 완전히 독립적으로 훈련한 대형 언어 모델입니다. Megrez-3B-Instruct는 소프트웨어와 하드웨어의 협동 개념을 통해 빠른 추론, 컴팩트하고 강력하며 사용하기 쉬운 엣지 측 인텔리전스 솔루션을 제공하는 것을 목표로 합니다."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "추론, 코딩 및 광범위한 언어 응용 프로그램에서 뛰어난 성능을 발휘하는 강력한 70억 매개변수 모델입니다."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "32K 컨텍스트 길이를 지원하는 강력한 중형 코드 모델로, 다국어 프로그래밍에 능숙합니다."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Qwen1.5 시리즈는 Qwen2의 베타 버전으로, 트랜스포머 기반의 디코더 전용 언어 모델로 대규모 데이터에서 사전 학습되었습니다. 이전에 출시된 Qwen 시리즈 버전과 비교하여, Qwen1.5 시리즈의 base 및 chat 모델은 여러 언어를 지원하며, 전체 대화 및 기본 기능이 향상되었습니다. Qwen1.5-14b-chat은 140억 개의 매개변수를 가진 채팅 전용 주요 모델입니다."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 시리즈는 Qwen2의 베타 버전으로, 트랜스포머 기반의 디코더 전용 언어 모델로 대규모 데이터에서 사전 학습되었습니다. 이전에 출시된 Qwen 시리즈 버전과 비교하여, Qwen1.5 시리즈의 base 및 chat 모델은 여러 언어를 지원하며, 전체적인 대화와 기본 기능이 향상되었습니다. Qwen1.5-32b-chat은 320억 개의 매개변수를 가진 채팅 전용 대형 모델로, 14b 모델보다는 스마트 에이전트 시나리오에서 더 강하고, 72b 모델보다는 추론 비용이 낮습니다."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Qwen1.5 시리즈는 Qwen2의 베타 버전으로, 트랜스포머 기반의 디코더 전용 언어 모델로 대규모 데이터에서 사전 학습되었습니다. 이전에 출시된 Qwen 시리즈 버전과 비교하여, Qwen1.5 시리즈의 base 및 chat 모델은 여러 언어를 지원하며, 전체적인 대화와 기본 기능이 향상되었습니다. Qwen1.5-72b-chat은 720억 개의 매개변수를 가진 채팅 전용 대형 모델입니다."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2는 Qwen 팀이 출시한 새로운 대형 언어 모델 시리즈입니다. 이 모델은 Transformer 아키텍처를 기반으로 하며, SwiGLU 활성화 함수, 주의 QKV 편향(attention QKV bias), 그룹 쿼리 주의(group query attention), 슬라이딩 윈도우 주의와 전체 주의의 혼합(mixture of sliding window attention and full attention) 등의 기술을 채택하고 있습니다. 또한, Qwen 팀은 다양한 자연어와 코드에 적합한 토크나이저를 개선했습니다."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2는 Qwen 팀이 출시한 새로운 대형 언어 모델 시리즈입니다. 이 모델은 Transformer 아키텍처를 기반으로 하며, SwiGLU 활성화 함수, 주의 QKV 편향(attention QKV bias), 그룹 쿼리 주의(group query attention), 슬라이딩 윈도우 주의와 전체 주의의 혼합(mixture of sliding window attention and full attention) 등의 기술을 채택하고 있습니다. 또한, Qwen 팀은 다양한 자연어와 코드에 적합한 토크나이저를 개선했습니다."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5는 Alibaba의 차세대 대규모 언어 모델로, 뛰어난 성능으로 다양한 응용 요구를 지원합니다."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2는 Microsoft AI에서 제공하는 언어 모델로, 복잡한 대화, 다국어, 추론 및 스마트 어시스턴트 분야에서 특히 뛰어난 성능을 발휘합니다."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5는 Yi의 업그레이드 버전입니다. 500B 토큰의 고품질 데이터셋을 사용하여 Yi를 추가로 사전 학습시키고, 3M개의 다양한 미세 조정 샘플을 사용하여 미세 조정되었습니다."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "새로운 1000억 매개변수 모델로, 강력한 질문 응답 및 텍스트 생성 능력을 제공합니다."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "텐센트가 개발한 대형 언어 모델로, 강력한 한국어 창작 능력과 복잡한 맥락에서의 논리적 추론 능력, 그리고 신뢰할 수 있는 작업 수행 능력을 갖추고 있습니다."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "애플리케이션 개발자에게 고성능, 사용하기 쉬운, 안전하고 신뢰할 수 있는 대형 모델 서비스를 제공하며, 대형 모델 개발부터 서비스 배포까지의 전체 프로세스를 지원합니다."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "대규모 모델 연구 및 개발 도구 체인에 전념하는 오픈 소스 조직입니다. 모든 AI 개발자에게 효율적이고 사용하기 쉬운 오픈 소스 플랫폼을 제공하여 최첨단 대규모 모델 및 알고리즘 기술을 손쉽게 이용할 수 있도록 합니다."
|
58
61
|
},
|