@lobehub/chat 1.73.2 → 1.74.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/.env.example +4 -0
- package/CHANGELOG.md +51 -0
- package/Dockerfile +5 -1
- package/Dockerfile.database +5 -1
- package/Dockerfile.pglite +3 -1
- package/README.md +4 -2
- package/README.zh-CN.md +4 -2
- package/changelog/v1.json +18 -0
- package/docs/self-hosting/environment-variables/model-provider.mdx +13 -0
- package/docs/self-hosting/environment-variables/model-provider.zh-CN.mdx +14 -0
- package/docs/usage/providers/infiniai.mdx +29 -0
- package/docs/usage/providers/infiniai.zh-CN.mdx +29 -0
- package/locales/ar/models.json +30 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/models.json +30 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/models.json +30 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/models.json +30 -0
- package/locales/en-US/providers.json +3 -0
- package/locales/es-ES/models.json +30 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/models.json +30 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/models.json +30 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/models.json +30 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/models.json +22 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/models.json +30 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/models.json +30 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/models.json +30 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/models.json +30 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/models.json +30 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/models.json +30 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/models.json +30 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/models.json +30 -0
- package/locales/zh-CN/providers.json +3 -0
- package/locales/zh-TW/models.json +19 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +3 -3
- package/packages/web-crawler/src/utils/htmlToMarkdown.test.ts +1 -1
- package/src/app/[variants]/(main)/settings/llm/ProviderList/providers.tsx +5 -1
- package/src/config/aiModels/index.ts +6 -0
- package/src/config/aiModels/infiniai.ts +307 -0
- package/src/config/aiModels/search1api.ts +63 -0
- package/src/config/llm.ts +12 -0
- package/src/config/modelProviders/index.ts +8 -0
- package/src/config/modelProviders/infiniai.ts +184 -0
- package/src/config/modelProviders/search1api.ts +58 -0
- package/src/database/models/__tests__/knowledgeBase.test.ts +2 -0
- package/src/libs/agent-runtime/ai21/index.test.ts +8 -250
- package/src/libs/agent-runtime/ai360/index.test.ts +8 -250
- package/src/libs/agent-runtime/anthropic/index.ts +5 -1
- package/src/libs/agent-runtime/deepseek/index.test.ts +119 -335
- package/src/libs/agent-runtime/fireworksai/index.test.ts +8 -247
- package/src/libs/agent-runtime/giteeai/index.test.ts +8 -250
- package/src/libs/agent-runtime/github/index.test.ts +8 -207
- package/src/libs/agent-runtime/infiniai/index.ts +43 -0
- package/src/libs/agent-runtime/internlm/index.test.ts +8 -250
- package/src/libs/agent-runtime/lmstudio/index.test.ts +8 -247
- package/src/libs/agent-runtime/moonshot/index.test.ts +10 -243
- package/src/libs/agent-runtime/novita/index.test.ts +9 -221
- package/src/libs/agent-runtime/ollama/index.test.ts +4 -4
- package/src/libs/agent-runtime/openrouter/index.test.ts +12 -217
- package/src/libs/agent-runtime/ppio/index.test.ts +11 -220
- package/src/libs/agent-runtime/providerTestUtils.ts +6 -6
- package/src/libs/agent-runtime/qwen/index.test.ts +10 -242
- package/src/libs/agent-runtime/runtimeMap.ts +4 -0
- package/src/libs/agent-runtime/search1api/index.ts +64 -0
- package/src/libs/agent-runtime/sensenova/index.test.ts +10 -242
- package/src/libs/agent-runtime/spark/index.test.ts +7 -242
- package/src/libs/agent-runtime/stepfun/index.test.ts +7 -242
- package/src/libs/agent-runtime/taichu/index.test.ts +12 -220
- package/src/libs/agent-runtime/types/type.ts +2 -0
- package/src/libs/agent-runtime/upstage/index.test.ts +7 -250
- package/src/libs/agent-runtime/utils/openaiCompatibleFactory/index.test.ts +2 -2
- package/src/libs/agent-runtime/xai/index.test.ts +8 -250
- package/src/services/chat.ts +1 -4
- package/src/types/user/settings/keyVaults.ts +2 -0
- package/src/utils/fetch/__tests__/parseToolCalls.test.ts +9 -11
- package/src/utils/server/jwt.test.ts +1 -1
- package/vitest.server.config.ts +3 -1
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 is ontworpen voor rollenspellen en emotionele begeleiding, ondersteunt zeer lange meerdaagse herinneringen en gepersonaliseerde gesprekken, met brede toepassingen."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 is een gesloten bronmodel dat is uitgebracht door Zhipu AI en de KEG-laboratorium van Tsinghua-universiteit. Het is voorafgetraind met een enorme hoeveelheid Chinese en Engelse identificatoren en getraind om in overeenstemming te zijn met menselijke voorkeuren. In vergelijking met het eerste model, heeft het verbeteringen van respectievelijk 16%, 36% en 280% behaald op MMLU, C-Eval en GSM8K, en staat het bovendruk op de Chinese taaklijst C-Eval. Het is geschikt voor scenario's met hoge eisen aan kennis, redeneringsvermogen en creativiteit, zoals het schrijven van advertentieteksten, romans, kennisgerelateerde teksten en codegeneratie."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base is een open source basismodel van de nieuwste generatie van de ChatGLM-reeks, ontwikkeld door ZhiPu, met een schaal van 6 miljard parameters."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o is een dynamisch model dat in realtime wordt bijgewerkt om de meest actuele versie te behouden. Het combineert krachtige taalbegrip- en generatiecapaciteiten, geschikt voor grootschalige toepassingsscenario's, waaronder klantenservice, onderwijs en technische ondersteuning."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite is een lichtgewicht groot taalmodel met extreem lage latentie en efficiënte verwerkingscapaciteit. Het is volledig gratis en open, en ondersteunt realtime online zoekfunctionaliteit. De snelle respons maakt het uitermate geschikt voor inferentie op apparaten met lage rekenkracht en modelafstemming, wat gebruikers uitstekende kosteneffectiviteit en een slimme ervaring biedt, vooral in kennisvragen, contentgeneratie en zoekscenario's."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 is een reeks grote taalmodellen (LLM's) ontwikkeld en open-gebruik gemaakt door Meta. Deze reeks omvat generatieve tekstmodellen met verschillende groottes, variërend van 7 miljard tot 70 miljard parameters, die zijn voorgetraind en fijn afgesteld. Op architectuurniveau is Llama2 een automatisch regressief taalmodel dat gebruik maakt van een geoptimaliseerde transformer-architectuur. Aangepaste versies maken gebruik van toezichtsfijnafstelling (SFT) en versterkingsleren met menselijke feedback (RLHF) om de voorkeuren van mensen met betrekking tot nuttigheid en veiligheid te aligneren. Llama2 presteert opmerkelijk goed op verschillende academische datasets en biedt inspiratie voor de ontwerp- en ontwikkeling van veel andere modellen."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B biedt krachtigere AI-inferentiecapaciteiten, geschikt voor complexe toepassingen, ondersteunt een enorme rekenverwerking en garandeert efficiëntie en nauwkeurigheid."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K is uitgerust met een grote contextverwerkingscapaciteit, met verbeterd begrip van context en logische redeneervaardigheden. Het ondersteunt tekstinvoer van 32K tokens en is geschikt voor het lezen van lange documenten, privé kennisvragen en andere scenario's."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct is een grote taalmodel dat volledig zelf is getraind door Wúwèn Xīnqióng. Megrez-3B-Instruct is ontworpen om middels de concepten van zowel hardware als software, een oplossing te bieden die snelle inferentie, compact en krachtig is, en gemakkelijk in gebruik is voor edge-applicaties."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Een krachtig model met 70 miljard parameters dat uitblinkt in redeneren, coderen en brede taaltoepassingen."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Krachtig middelgroot codeermodel, ondersteunt 32K contextlengte, gespecialiseerd in meertalige programmering."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Qwen1.5 is de beta-versie van Qwen2, een op Transformer gebaseerd decoder-only taalmodel dat is voorgetraind op een enorme hoeveelheid data. Ten opzichte van eerdere Qwen-versies ondersteunen de Qwen1.5 base- en chatmodellen meerdere talen en zijn er verbeteringen doorgevoerd in de algemene chat- en basisvaardigheden. Qwen1.5-14b-chat is een 14 miljard parameters tellend model dat speciaal is ontwikkeld voor chat-scenario's."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 is de beta-versie van Qwen2, een op Transformer gebaseerd decoder-only taalmodel dat is voorgetraind op een enorme hoeveelheid data. Ten opzichte van eerdere Qwen-versies ondersteunen de Qwen1.5 base- en chatmodellen meertaligheid en zijn er verbeteringen doorgevoerd in de algemene chat- en basisvaardigheden. Qwen1.5-32b-chat is een 320 miljard parameters groot model dat speciaal is ontwikkeld voor chat-scenario's. Het is sterker in agent-scenario's dan het 14b-model en heeft lagere inferentiekosten dan het 72b-model."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "De Qwen1.5-serie is een beta-versie van Qwen2, een op Transformer gebaseerd decoder-only taalmodel dat is voorgetraind op een enorme hoeveelheid data. Ten opzichte van eerdere versies van de Qwen-serie, ondersteunen de Qwen1.5 base- en chatmodellen meertaligheid en zijn er verbeteringen doorgevoerd in de algemene chat- en basisvaardigheden. Qwen1.5-72b-chat is een specifiek voor chat-gebruik ontworpen model met 72 miljard parameters."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 is Alibaba's nieuwe generatie grootschalig taalmodel, ondersteunt diverse toepassingsbehoeften met uitstekende prestaties."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 is een nieuwe generatie van grote taalmodellen die is ontwikkeld door het Qwen-team. Het is gebaseerd op de Transformer-architectuur en maakt gebruik van SwiGLU-activatiefuncties, aandacht-QKV-bias, groepsquery-aandacht, een mix van schuifraam-aandacht en volledige aandacht, en andere technieken. Bovendien heeft het Qwen-team de tokenizer verbeterd om aan te passen aan meerdere natuurlijke talen en code."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 is een nieuwe generatie van grote taalmodellen die is ontwikkeld door het Qwen-team. Het is gebaseerd op de Transformer-architectuur en maakt gebruik van technieken zoals de SwiGLU-activatiefunctie, aandacht QKV-bias, groepsquery-aandacht, een mengsel van schuifraam-aandacht en volledige aandacht. Bovendien heeft het Qwen-team de tokenizer verbeterd om aan verschillende natuurlijke talen en code te kunnen wennen."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 is de nieuwe generatie grootschalig taalmodel van Alibaba, dat uitstekende prestaties levert ter ondersteuning van diverse toepassingsbehoeften."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 is een taalmodel van Microsoft AI dat uitblinkt in complexe gesprekken, meertaligheid, inferentie en intelligente assistentie."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 is een geüpgradeerde versie van Yi. Het wordt voortdurend voorgetraind met een hoge-kwaliteitscorpus van 500B tokens op basis van Yi, en fijn afgesteld op 3M diverse fijnafstemmingssamples."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Een nieuw model met honderden miljarden parameters, biedt superieure vraag- en tekstgeneratiecapaciteiten."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Een door Tencent ontwikkeld groot taalmodel, dat beschikt over krachtige Chinese creatiecapaciteiten, logische redeneervaardigheden in complexe contexten, en betrouwbare taakuitvoeringscapaciteiten."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Hoogwaardige, gebruiksvriendelijke en veilige grote modelservices voor app-ontwikkelaars, die de hele processtroom van het ontwikkelen tot het implementeren van grote modellen dekken."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Een open-source organisatie die zich richt op onderzoek en ontwikkeling van tools voor grote modellen. Biedt een efficiënt en gebruiksvriendelijk open-source platform voor alle AI-ontwikkelaars, zodat de meest geavanceerde modellen en algoritmische technologieën binnen handbereik zijn."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 zaprojektowany z myślą o odgrywaniu ról i emocjonalnym towarzyszeniu, obsługujący ultra-długą pamięć wielokrotną i spersonalizowane dialogi, z szerokim zakresem zastosowań."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 to zamknięty model opracowany przez AI ZhiPu i KEG Laboratorium z Politechniki Tsinghua, który przeszedł wstępne treningi na ogromnej liczbie identyfikatorów chińskich i angielskich oraz trening zgodności z preferencjami ludzkimi. W porównaniu do pierwszej generacji modelu, ChatGLM3 osiągnął poprawę o 16%, 36% i 280% w testach MMLU, C-Eval i GSM8K, oraz zajął pierwsze miejsce na liście chińskich zadań C-Eval. Jest odpowiedni do zastosowań, które wymagają wysokiej wiedzy, zdolności wnioskowania i kreatywności, takich jak tworzenie tekstów reklamowych, pisarstwo powieści, pisarstwo naukowe i generowanie kodu."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base to najnowszy model z serii ChatGLM opracowany przez ZhiPu, o skali 6 miliardów parametrów, dostępny jako oprogramowanie open source."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o to dynamiczny model, który jest na bieżąco aktualizowany, aby utrzymać najnowszą wersję. Łączy potężne zdolności rozumienia i generowania języka, co czyni go odpowiednim do zastosowań na dużą skalę, w tym obsługi klienta, edukacji i wsparcia technicznego."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite to lekki model językowy o dużej skali, charakteryzujący się niezwykle niskim opóźnieniem i wysoką wydajnością przetwarzania, całkowicie darmowy i otwarty, wspierający funkcje wyszukiwania w czasie rzeczywistym. Jego cechy szybkiej reakcji sprawiają, że doskonale sprawdza się w zastosowaniach inferencyjnych na urządzeniach o niskiej mocy obliczeniowej oraz w dostosowywaniu modeli, oferując użytkownikom znakomity stosunek kosztów do korzyści oraz inteligentne doświadczenie, szczególnie w kontekście pytań i odpowiedzi, generowania treści oraz wyszukiwania."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 to seria modeli językowych (LLM) opracowanych i udostępnionych przez Meta, obejmująca modele generujące tekst o różnej skali, od 7 miliardów do 70 miliardów parametrów, które przeszły wstępną naukę i dostrajanie. Na poziomie architektury, Llama2 jest modelem językowym optymalizowanym za pomocą architektury transformerowej. Zdolność do dostosowywania modeli do preferencji ludzi pod względem użyteczności i bezpieczeństwa została osiągnięta poprzez nadzorowane dostrajanie (SFT) i uczenie wzmacnianie z uwzględnieniem opinii ludzi (RLHF). Llama2 osiąga lepsze wyniki niż poprzednia seria Llama na wielu zbiorach danych akademickich, co dostarcza inspiracji dla projektowania i tworzenia wielu innych modeli."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B oferuje potężne możliwości wnioskowania AI, odpowiednie do złożonych zastosowań, wspierające ogromne przetwarzanie obliczeniowe przy zachowaniu efektywności i dokładności."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K jest wyposażony w dużą zdolność przetwarzania kontekstu, oferując silniejsze zrozumienie kontekstu i zdolności logicznego wnioskowania, obsługując teksty o długości do 32K tokenów, co czyni go odpowiednim do czytania długich dokumentów, prywatnych pytań i odpowiedzi oraz innych scenariuszy."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct to model językowy duży skali, w pełni samodzielnie wytrenowany przez Qwen. Megrez-3B-Instruct ma na celu stworzenie szybkiego, kompaktowego i łatwego w użyciu rozwiązania inteligentnego na urządzeniach klienckich, opartego na koncepcji integracji oprogramowania i sprzętu."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Potężny model z 70 miliardami parametrów, doskonały w rozumowaniu, kodowaniu i szerokich zastosowaniach językowych."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Potężny średniej wielkości model kodu, wspierający długość kontekstu 32K, specjalizujący się w programowaniu wielojęzycznym."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Seria Qwen1.5 to wersja Beta Qwen2, która jest modelem językowym opartym na Transformer, działającym tylko w trybie dekodowania i wytrenowanym na ogromnej ilości danych. W porównaniu z wcześniejszymi wersjami serii Qwen, modele base i chat serii Qwen1.5 obsługują wiele języków i zyskały na zdolnościach podstawowych oraz rozmowowych. Qwen1.5-14b-chat to specjalnie zaprojektowany model do zastosowań rozmowowych, posiadający 14 miliardów parametrów, co jest rozmiarem powszechnie stosowanym w branży."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Seria Qwen1.5 to wersja Beta Qwen2, oparta na modelu językowym Transformer, który jest modelu dekodującego, przeszkolonego na ogromnej ilości danych. W porównaniu do wcześniejszych wersji serii Qwen, modele base i chat serii Qwen1.5 obsługują wiele języków i oferują poprawioną jakość rozmów i podstawowe umiejętności. Qwen1.5-32b-chat to specjalnie zaprojektowany model do zastosowań czatowych, posiadający 32 miliardy parametrów. W porównaniu do modelu 14b, jest lepszy w scenariuszach agentów inteligentnych, a w porównaniu do modelu 72b, ma niższe koszty wnioskowania."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Seria Qwen1.5 to wersja Beta Qwen2, która jest modelem językowym opartym na Transformer, działającym tylko w trybie dekodowania, wytrenowanym na ogromnej ilości danych. W porównaniu z wcześniejszymi wersjami serii Qwen, modele base i chat serii Qwen1.5 obsługują wiele języków i zyskały na zdolnościach podstawowych oraz rozmowowych. Qwen1.5-72b-chat to specjalnie zaprojektowany model do zastosowań rozmowowych, posiadający 72 miliardy parametrów."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 to nowa generacja dużego modelu językowego Alibaba, wspierająca różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 to nowa generacja modeli językowych stworzona przez zespół Qwen. Opiera się na architekturze Transformer i wykorzystuje funkcję aktywacji SwiGLU, obciążenie QKV uwagi (attention QKV bias), grupowe zapytanie uwagi (group query attention), mieszankę uwagi z oknem przesuwnym (mixture of sliding window attention) i pełną uwagą. Ponadto, zespół Qwen wprowadził ulepszony tokenizator dostosowany do wielu języków naturalnych i kodu."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 to nowa seria modeli językowych stworzona przez zespół Qwen. Opiera się na architekturze Transformer i wykorzystuje funkcję aktywacji SwiGLU, obciążenie QKV uwagi (attention QKV bias), grupowe zapytanie uwagi (group query attention), mieszankę uwagi okna suwającego się (mixture of sliding window attention) i pełnej uwagi. Ponadto, zespół Qwen wprowadził ulepszone tokenizery dostosowane do wielu języków naturalnych i kodu."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 to nowa generacja dużego modelu językowego Alibaba, który wspiera różnorodne potrzeby aplikacyjne dzięki doskonałej wydajności."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 to model językowy dostarczany przez Microsoft AI, który wyróżnia się w złożonych dialogach, wielojęzyczności, wnioskowaniu i inteligentnych asystentach."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 to ulepszona wersja Yi. Używa ona wysokiej jakości korpusu danych o rozmiarze 500B tokenów do dalszego wstępnego treningu Yi, a także do dopasowywania na 3M różnorodnych próbkach dopasowujących."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Nowy model z miliardami parametrów, oferujący niezwykłe możliwości w zakresie pytań i generowania tekstu."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Model językowy opracowany przez Tencent, który posiada potężne zdolności twórcze w języku chińskim, umiejętność logicznego wnioskowania w złożonych kontekstach oraz niezawodne zdolności wykonawcze w zadaniach."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Dostarczanie usług wysokiej wydajności, łatwych w użyciu i bezpiecznych modeli dużych, obejmujących cały proces od opracowywania modeli do wdrożenia usług opartych na modelach dużych."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Organizacja open source poświęcona badaniom i rozwojowi narzędzi dla dużych modeli. Oferuje wszystkim deweloperom AI wydajną i łatwą w użyciu platformę open source, umożliwiającą dostęp do najnowocześniejszych technologii modeli i algorytmów."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "O CharGLM-3 é projetado para interpretação de personagens e companhia emocional, suportando memória de múltiplas rodadas e diálogos personalizados, com ampla aplicação."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 é um modelo de código fechado desenvolvido pela AI Zhipu em colaboração com o laboratório KEG da Tsinghua. Após um pré-treinamento extenso com identificadores em chinês e inglês, e um alinhamento com as preferências humanas, o modelo apresenta melhorias de 16%, 36% e 280% em MMLU, C-Eval e GSM8K, respectivamente, em comparação com a primeira geração. Ele lidera o ranking de tarefas em chinês C-Eval. É ideal para cenários que exigem alto nível de conhecimento, capacidade de raciocínio e criatividade, como redação de textos publicitários, escrita de romances, redação de conteúdo informativo e geração de código."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base é o modelo base de 6 bilhões de parâmetros da mais recente geração da série ChatGLM, desenvolvida pela Zhípǔ."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "O ChatGPT-4o é um modelo dinâmico, atualizado em tempo real para manter a versão mais atual. Ele combina uma poderosa capacidade de compreensão e geração de linguagem, adequado para cenários de aplicação em larga escala, incluindo atendimento ao cliente, educação e suporte técnico."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite é um modelo de linguagem grande leve, com latência extremamente baixa e alta eficiência de processamento, totalmente gratuito e aberto, suportando funcionalidades de busca online em tempo real. Sua característica de resposta rápida o torna excelente para aplicações de inferência em dispositivos de baixo poder computacional e ajuste fino de modelos, proporcionando aos usuários uma excelente relação custo-benefício e experiência inteligente, especialmente em cenários de perguntas e respostas, geração de conteúdo e busca."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 é uma série de modelos de linguagem grandes (LLM) desenvolvidos e open source pela Meta, que inclui modelos de texto gerativo pré-treinados e finetunados com escalas variando de 7 bilhões a 70 bilhões de parâmetros. Do ponto de vista arquitetural, o Llama2 é um modelo de linguagem autoregressivo que utiliza uma arquitetura de transformador otimizada. As versões ajustadas utilizam micro-treinamento supervisionado (SFT) e aprendizado por reforço com feedback humano (RLHF) para alinhar as preferências de utilidade e segurança humanas. O Llama2 apresenta um desempenho notável em vários conjuntos de dados acadêmicos, fornecendo inspiração para o design e desenvolvimento de muitos outros modelos."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B oferece capacidade de raciocínio AI mais poderosa, adequada para aplicações complexas, suportando um processamento computacional extenso e garantindo eficiência e precisão."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K possui uma capacidade de processamento de contexto grande, com melhor compreensão de contexto e capacidade de raciocínio lógico, suportando entradas de texto de 32K tokens, adequado para leitura de documentos longos, perguntas e respostas de conhecimento privado e outros cenários."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct é um modelo de linguagem grande treinado de forma totalmente autônoma pela Wúwèn Xīnqióng. O Megrez-3B-Instruct visa criar uma solução de inteligência de borda rápida, compacta e fácil de usar, através do conceito de integração de hardware e software."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Um poderoso modelo com 70 bilhões de parâmetros, destacando-se em raciocínio, codificação e amplas aplicações linguísticas."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Modelo de código de médio porte poderoso, suporta comprimento de contexto de 32K, especializado em programação multilíngue."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "A série Qwen1.5 é a versão Beta do Qwen2, um modelo de linguagem de decodificação exclusiva baseado em Transformer, pré-treinado em uma grande quantidade de dados. Comparado com as versões anteriores da série Qwen, a série Qwen1.5 suporta múltiplos idiomas tanto no modelo base quanto no modelo de chat, apresentando melhorias significativas em conversas gerais e em habilidades básicas. O Qwen1.5-14b-chat é um modelo de 14 bilhões de parâmetros, de tamanho mainstream, dedicado a cenários de chat."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "A série Qwen1.5 é a versão Beta do Qwen2, um modelo de linguagem de decodificação baseado em Transformer, pré-treinado em uma grande quantidade de dados. Comparado com as versões anteriores da série Qwen, a série Qwen1.5, tanto o modelo base quanto o modelo de chat, suporta múltiplos idiomas e apresenta melhorias tanto na conversação geral quanto nas habilidades básicas. O Qwen1.5-32b-chat é um modelo grande de 32 bilhões de parâmetros, especificamente projetado para cenários de chat, sendo mais forte em cenários de agentes inteligentes do que o modelo de 14 bilhões de parâmetros e com um custo de inferência menor do que o modelo de 72 bilhões de parâmetros."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "A série Qwen1.5 é a versão Beta do Qwen2, um modelo de linguagem de decodificação baseado em Transformer, pré-treinado em uma vasta quantidade de dados. Comparado com as versões anteriores da série Qwen, os modelos base e de chat da série Qwen1.5 suportam múltiplos idiomas e apresentam melhorias tanto na conversação geral quanto nas habilidades básicas. O Qwen1.5-72b-chat é um modelo grande de 72 bilhões de parâmetros, especificamente destinado a cenários de chat."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 é a nova geração de modelo de linguagem em larga escala da Alibaba, oferecendo desempenho excepcional para atender a diversas necessidades de aplicação."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 é a nova série de modelos de linguagem grandes desenvolvida pela equipe Qwen. Baseia-se na arquitetura Transformer e utiliza funções de ativação SwiGLU, vieses de atenção QKV (attention QKV bias), atenção de consulta em grupo (group query attention), uma mistura de atenção de janela deslizante (mixture of sliding window attention) e atenção completa. Além disso, a equipe Qwen também aprimorou o tokenizador para adaptar-se a múltiplas línguas naturais e códigos."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 é uma nova série de modelos de linguagem grandes desenvolvida pela equipe Qwen. Baseia-se na arquitetura Transformer e utiliza funções de ativação SwiGLU, viés de atenção QKV (attention QKV bias), atenção de consulta em grupo (group query attention), uma mistura de atenção de janela deslizante e atenção completa (mixture of sliding window attention and full attention). Além disso, a equipe Qwen também aprimorou o tokenizador para adaptar-se a várias línguas naturais e códigos."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 é a nova geração de modelo de linguagem em larga escala da Alibaba, oferecendo desempenho excepcional para atender a diversas necessidades de aplicação."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 é um modelo de linguagem fornecido pela Microsoft AI, destacando-se em diálogos complexos, multilíngue, raciocínio e assistentes inteligentes."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 é uma versão aprimorada do Yi. Ele usa um corpus de alta qualidade com 500B tokens para continuar o pré-treinamento do Yi e é refinado com 3M amostras de ajuste fino diversificadas."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Modelo de nova geração com trilhões de parâmetros, oferecendo capacidades excepcionais de perguntas e respostas e geração de texto."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Um modelo de linguagem desenvolvido pela Tencent, com forte capacidade de criação em chinês, habilidade de raciocínio lógico em contextos complexos e capacidade confiável de execução de tarefas."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Fornecendo serviços de grandes modelos de alto desempenho, fáceis de usar e seguros para desenvolvedores de aplicativos, abrangendo todo o processo, desde o desenvolvimento de grandes modelos até a implantação de serviços de grandes modelos."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Uma organização de código aberto dedicada à pesquisa e desenvolvimento de ferramentas para grandes modelos. Oferece uma plataforma de código aberto eficiente e fácil de usar para todos os desenvolvedores de IA, tornando as tecnologias e algoritmos de ponta acessíveis."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 разработан для ролевых игр и эмоционального сопровождения, поддерживает сверхдлинную многократную память и персонализированные диалоги, имеет широкое применение."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 — это закрытая модель, разработанная AI-лабораторией Tsinghua KEG и Zhipu AI. Она прошла предварительное обучение на огромном количестве китайских и английских данных и обучение на основе предпочтений человека. По сравнению с первой версией модели, она показала улучшение на 16%, 36% и 280% в тестах MMLU, C-Eval и GSM8K соответственно, и заняла первое место в китайском рейтинге задач C-Eval. Эта модель подходит для сценариев, требующих высокого уровня знаний, способности к рассуждению и креативности, таких как создание рекламных текстов, написание романов, научной письменности и генерации кода."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base — это базовая модель с открытым исходным кодом последнего поколения серии ChatGLM, разработанная компанией Zhipu, с 6 миллиардами параметров."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o — это динамическая модель, которая обновляется в реальном времени, чтобы оставаться актуальной. Она сочетает в себе мощное понимание языка и генерацию, подходя для масштабных приложений, включая обслуживание клиентов, образование и техническую поддержку."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite — это легковесная большая языковая модель с крайне низкой задержкой и высокой эффективностью обработки, полностью бесплатная и открытая, поддерживающая функции онлайн-поиска в реальном времени. Ее быстрая реакция делает ее отличным выбором для применения в устройствах с низкой вычислительной мощностью и для тонкой настройки моделей, обеспечивая пользователям отличное соотношение цены и качества, особенно в сценариях вопросов и ответов, генерации контента и поиска."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 — это серия больших языковых моделей (LLM), разработанных и открытых для использования компанией Meta. Это набор предобученных и дообученных генеративных текстовых моделей, размер которых варьируется от 7 до 70 миллиардов параметров. С архитектурной точки зрения, Llama2 представляет собой автогрессивную языковую модель, использующую оптимизированную трансформерную архитектуру. Настроенные версии используют надзорное дообучение (SFT) и обучение с подкреплением на основе обратной связи от человека (RLHF) для согласования с предпочтениями человека в отношении полезности и безопасности. Llama2 показывает лучшие результаты на различных академических наборах данных по сравнению с предыдущими моделями серии Llama, что предоставляет ценные идеи для дизайна и разработки других моделей."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B предлагает более мощные возможности ИИ вывода, подходит для сложных приложений, поддерживает огромное количество вычислительных процессов и гарантирует эффективность и точность."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K обладает большой способностью обработки контекста, улучшенным пониманием контекста и логическим выводом, поддерживает текстовый ввод до 32K токенов, подходит для чтения длинных документов, частных вопросов и ответов и других сценариев."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct — это крупномасштабная языковая модель, полностью обученная компанией Wuxin Xin Qiong. Megrez-3B-Instruct разработана с использованием концепции совместной оптимизации аппаратного и программного обеспечения, чтобы создать быстрое, компактное и легкое в использовании решение для интеллектуальных задач на стороне устройства."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Мощная модель с 70 миллиардами параметров, превосходящая в области рассуждений, кодирования и широких языковых приложений."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Мощная средняя модель кода, поддерживающая контекст длиной 32K, специализирующаяся на многоязычном программировании."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Qwen1.5 — это бета-версия Qwen2, основанная на архитектуре Transformer, которая является моделью только для декодирования, предобученной на огромном объеме данных. По сравнению с ранее выпущенными версиями Qwen, модели Qwen1.5 base и chat поддерживают несколько языков и демонстрируют улучшенные возможности в общении и базовых задачах. Qwen1.5-14b-chat — это специализированная модель для чат-сценариев с 14 миллиардами параметров, что является стандартным размером для таких моделей."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 — это бета-версия Qwen2, основанная на архитектуре Transformer, которая является моделью только для декодирования, предобученной на огромном объеме данных. По сравнению с ранее выпущенными версиями Qwen, модели base и chat в серии Qwen1.5 поддерживают несколько языков и демонстрируют улучшенные возможности в общении и базовых навыках. Qwen1.5-32b-chat — это специализированная модель для чат-сценариев с 32 миллиардами параметров, которая превосходит 14-миллиардную модель в сценариях с агентами и имеет более низкую стоимость вычислений по сравнению с 72-миллиардной моделью."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Qwen1.5 — это бета-версия Qwen2, основанная на архитектуре Transformer, которая является моделью только для декодирования, предобученной на огромном объеме данных. По сравнению с ранее выпущенными версиями Qwen, модели base и chat в серии Qwen1.5 поддерживают несколько языков и демонстрируют улучшения в общении и базовых возможностях. Qwen1.5-72b-chat — это специализированная модель для чат-сценариев с 72 миллиардами параметров."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 — это новое поколение крупномасштабной языковой модели от Alibaba, обеспечивающее отличные результаты для разнообразных приложений."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 — это новая серия больших языковых моделей, разработанная командой Qwen. Она основана на архитектуре Transformer и использует такие технологии, как функция активации SwiGLU, смещение QKV внимания (attention QKV bias), групповой запрос внимания (group query attention), смесь скользящего окна внимания (mixture of sliding window attention) и полное внимание. Кроме того, команда Qwen улучшила токенизатор, адаптированный для обработки различных естественных языков и кода."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 — это новая серия больших языковых моделей, разработанная командой Qwen. Она основана на архитектуре Transformer и использует такие технологии, как функция активации SwiGLU, смещение QKV внимания (attention QKV bias), групповой запрос внимания (group query attention), смесь скользящего окна внимания (mixture of sliding window attention) и полное внимание. Кроме того, команда Qwen улучшила токенизатор, адаптированный для обработки различных естественных языков и кода."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 — это новое поколение масштабной языковой модели от Alibaba, обеспечивающее отличные результаты для разнообразных потребностей приложений."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 — это языковая модель, предоставляемая Microsoft AI, которая особенно хорошо проявляет себя в сложных диалогах, многоязычных задачах, выводе и интеллектуальных помощниках."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 — это обновленная версия Yi. Она использует 500B токенов высококачественного корпуса данных для продолжения предварительной тренировки на основе Yi и微调在3M个多样化的微调样本上。"
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Совершенно новая модель с триллионом параметров, обеспечивающая выдающиеся возможности для вопросов и ответов, а также генерации текста."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Большая языковая модель, разработанная Tencent, обладающая мощными способностями к созданию текстов на китайском языке, логическим рассуждениям в сложных контекстах и надежным выполнением задач."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Предоставляет разработчикам приложений высокопроизводительные, удобные в использовании и надежные услуги больших моделей, охватывающие весь процесс от разработки больших моделей до их внедрения в качестве сервиса."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Открытая организация, занимающаяся исследованием и разработкой инструментов для больших моделей. Предоставляет всем разработчикам ИИ эффективную и удобную открытую платформу, позволяя получить доступ к самым современным технологиям больших моделей и алгоритмов."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3, rol yapma ve duygusal destek için tasarlanmış, ultra uzun çok turlu bellek ve kişiselleştirilmiş diyalog desteği sunan bir modeldir, geniş bir uygulama yelpazesine sahiptir."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3, ZhiPu AI ve Tsinghua KEG laboratuvarı tarafından yayınlanan kapalı kaynaklı bir modeldir. Büyük miktarda Çince ve İngilizce belirteçlerin önceden eğitilmesi ve insan tercihleriyle hizalama eğitimi ile, birinci nesil modellere göre MMLU, C-Eval ve GSM8K'da sırasıyla %16, %36 ve %280'lük iyileştirmeler elde edilmiştir ve Çince görevler listesinde C-Eval zirvesine ulaşmıştır. Bilgi hacmi, çıkarım yeteneği ve yaratıcılık gerektiren senaryolarda kullanılabilir, örneğin reklam metni, roman yazımı, bilgi tabanlı yazım, kod oluşturma vb."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base, ZhiPu tarafından geliştirilen ChatGLM serisinin en yeni nesli olan 6 milyar parametrelik açık kaynaklı temel modeldir."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o, güncel versiyonunu korumak için gerçek zamanlı olarak güncellenen dinamik bir modeldir. Güçlü dil anlama ve üretme yeteneklerini birleştirir, müşteri hizmetleri, eğitim ve teknik destek gibi geniş ölçekli uygulama senaryoları için uygundur."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite, son derece düşük gecikme süresi ve yüksek verimlilikle çalışan hafif bir büyük dil modelidir. Tamamen ücretsiz ve açık olup, gerçek zamanlı çevrimiçi arama işlevini desteklemektedir. Hızlı yanıt verme özelliği, düşük hesaplama gücüne sahip cihazlarda çıkarım uygulamaları ve model ince ayarlarında mükemmel performans sergileyerek, kullanıcılara maliyet etkinliği ve akıllı deneyim sunmakta, özellikle bilgi sorgulama, içerik oluşturma ve arama senaryolarında başarılı olmaktadır."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2, Meta tarafından geliştirilmiş ve açık kaynaklı büyük dil modeli (LLM) serisidir. Bu, 7 milyar ile 70 milyar parametre arasında değişen, önceden eğitilmiş ve ince ayarlanmış üretici metin modellerinden oluşan bir gruptır. Mimari açısından, Llama2, optimize edilmiş dönüştürücü mimarisi kullanan bir otoregresif dil modelidir. Ayarlanmış versiyonlar, faydalılık ve güvenliğin insan tercihleriyle hizalanması için gözetimli ince ayarlama (SFT) ve insan geri bildirimleriyle güçlendirilmiş öğrenme (RLHF) kullanır. Llama2, Llama serisine göre çeşitli akademik veri kümelerinde daha iyi performans gösterir ve birçok diğer modelin tasarım ve geliştirilmesine ilham verir."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B, daha güçlü AI akıl yürütme yeteneği sunar, karmaşık uygulamalar için uygundur ve yüksek verimlilik ve doğruluk sağlamak için çok sayıda hesaplama işlemini destekler."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K, büyük bağlam işleme yeteneği ile donatılmıştır ve daha güçlü bağlam anlama ve mantıksal çıkarım yetenekleri sunmaktadır. 32K token'lık metin girişi desteklemekte olup, uzun belgelerin okunması, özel bilgi sorgulama gibi senaryolar için uygundur."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct, Wuwen Xin Qiong tarafından tamamen bağımsız olarak eğitilen büyük dil modelidir. Megrez-3B-Instruct, yazılım ve donanım işbirliği felsefesiyle, hızlı çıkarım, küçük ve güçlü, kullanımı kolay bir uç tarafı zeka çözümü oluşturmayı amaçlamaktadır."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Akıl yürütme, kodlama ve geniş dil uygulamalarında mükemmel bir 70 milyar parametreli model."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Güçlü orta ölçekli kod modeli, 32K bağlam uzunluğunu destekler, çok dilli programlama konusunda uzmandır."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Qwen1.5 serisi, Qwen2'nin Beta sürümüdür ve büyük veri setleri üzerinde ön eğitilmiş, Transformer tabanlı sadece dekodlama dil modelidir. Önceki Qwen serisi sürümlerine kıyasla, Qwen1.5 serisinin hem temel hem de sohbet modelleri birden fazla dile destek sağlar ve genel sohbet yetenekleri ve temel yetenekleri açısından iyileştirilmiştir. Qwen1.5-14b-chat, 14 milyar parametreli ve sohbet senaryoları için özel olarak tasarlanmış ana boyutlu modeldir."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 serisi, Qwen2'nin Beta sürümüdür ve çok sayıda veri üzerinde ön eğitilmiş, Transformer tabanlı sadece çözücü dil modelidir. Önceki Qwen serisi sürümlerine kıyasla, Qwen1.5 serisinin hem base hem de chat modelleri, çeşitli dilleri destekleyebilir ve genel sohbet ve temel yeteneklerde iyileştirmeler sunar. Qwen1.5-32b-chat, 32 milyar parametreli ve özellikle chat senaryoları için tasarlanmış büyük modeldir. 14b modeline göre daha güçlü, 72b modeline göre ise çıkarım maliyeti daha düşüktür."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Qwen1.5 serisi, Qwen2'nin Beta sürümüdür ve Transformer tabanlı sadece çözücü bir dil modelidir, büyük hacimli veriler üzerinde ön eğitilmiş bulunmaktadır. Daha önce yayınlanan Qwen serisi sürümlerine kıyasla, Qwen1.5 serisinin hem temel hem de sohbet modelleri birden fazla dile destek verir ve genel sohbet ve temel yeteneklerde iyileştirmeler sunar. Qwen1.5-72b-chat, 72 milyar parametreli ve sohbet senaryoları için özel olarak tasarlanmış büyük modeldir."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2, Alibaba'nın yeni nesil büyük ölçekli dil modelidir, mükemmel performans ile çeşitli uygulama ihtiyaçlarını destekler."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2, Qwen ekibinin yeni nesil büyük dil modeli serisidir. Bu model, Transformer mimarisine dayanır ve SwiGLU aktivasyon fonksiyonu, dikkat QKV yanlısı (attention QKV bias), grup sorgu dikkati (group query attention), kayan pencere dikkatı (mixture of sliding window attention) ve tam dikkatin karışımı gibi teknikleri kullanır. Ayrıca, Qwen ekibi, çeşitli doğal diller ve kodları destekleyen belirteçleyiciyi (tokenizer) de geliştirdi."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2, Qwen ekibinin yeni nesil büyük dil modeli serisidir. Bu model, Transformer mimarisine dayanır ve SwiGLU aktivasyon fonksiyonu, dikkat QKV bias, grup sorgu dikkati, kayan pencere dikkatini ve tam dikkat karışımını içeren teknolojiler kullanır. Ayrıca, Qwen ekibi, çeşitli doğal diller ve kodları için belirteçleyiciyi de geliştirdi."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5, Alibaba'nın yeni nesil büyük ölçekli dil modelidir ve mükemmel performansıyla çeşitli uygulama ihtiyaçlarını desteklemektedir."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2, Microsoft AI tarafından sunulan bir dil modelidir, karmaşık diyaloglar, çok dilli, akıl yürütme ve akıllı asistan alanlarında özellikle başarılıdır."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5, Yi'nin geliştirilmiş sürümüdür. Yüksek kaliteli 500B token'lı veri kümesi üzerinde devam eden ön eğitimi ve 3M çeşitlendirilmiş ince ayar örneği üzerinde ince ayarını içerir."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Yeni nesil yüz milyar parametreli model, güçlü soru yanıtlama ve metin üretim yetenekleri sunar."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Tencent tarafından geliştirilen büyük bir dil modeli, güçlü Çince yaratım yeteneklerine, karmaşık bağlamlarda mantıksal akıl yürütme yeteneğine ve güvenilir görev yerine getirme yeteneğine sahiptir."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Uygulama geliştiricilere yüksek performanslı, kullanımı kolay ve güvenilir büyük model hizmetleri sunar. Büyük model geliştirme den hizmetleştirmeye kadar tüm süreçleri kapsar."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Büyük model araştırma ve geliştirme araç zincirine adanmış bir açık kaynak organizasyonu. Tüm AI geliştiricilerine verimli ve kullanımı kolay bir açık kaynak platformu sunarak en son büyük model ve algoritma teknolojilerine erişimi kolaylaştırır."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 được thiết kế đặc biệt cho vai trò và đồng hành cảm xúc, hỗ trợ trí nhớ nhiều vòng siêu dài và đối thoại cá nhân hóa, ứng dụng rộng rãi."
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 là mô hình đóng nguồn do Trung tâm AI Zhizhu và Phòng thí nghiệm KEG của Đại học Thanh Hoa phát hành. Mô hình này đã được tiền huấn luyện với lượng lớn các bộ định danh tiếng Trung và tiếng Anh, cũng như được huấn luyện để phù hợp với sở thích của con người. So với mô hình thế hệ đầu tiên, ChatGLM3 đã cải thiện 16%, 36% và 280% trên các bảng xếp hạng MMLU, C-Eval và GSM8K, đồng thời đứng đầu bảng xếp hạng C-Eval cho các tác vụ tiếng Trung. Mô hình này phù hợp cho các trường hợp yêu cầu cao về lượng kiến thức, khả năng suy luận và sáng tạo, như viết quảng cáo, viết tiểu thuyết, viết nội dung kiến thức, và tạo mã nguồn."
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base là mô hình cơ bản có quy mô 6 tỷ tham số, thuộc thế hệ mới nhất của loạt ChatGLM do Zhipu phát triển."
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o là một mô hình động, được cập nhật theo thời gian thực để giữ phiên bản mới nhất. Nó kết hợp khả năng hiểu và sinh ngôn ngữ mạnh mẽ, phù hợp cho các ứng dụng quy mô lớn, bao gồm dịch vụ khách hàng, giáo dục và hỗ trợ kỹ thuật."
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite là một mô hình ngôn ngữ lớn nhẹ, có độ trễ cực thấp và khả năng xử lý hiệu quả, hoàn toàn miễn phí và mở, hỗ trợ chức năng tìm kiếm trực tuyến theo thời gian thực. Đặc điểm phản hồi nhanh của nó giúp nó nổi bật trong các ứng dụng suy diễn trên thiết bị có công suất thấp và tinh chỉnh mô hình, mang lại hiệu quả chi phí và trải nghiệm thông minh xuất sắc cho người dùng, đặc biệt trong các tình huống hỏi đáp kiến thức, tạo nội dung và tìm kiếm."
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 là một loạt các mô hình ngôn ngữ lớn (LLM) do Meta phát triển và công khai, bao gồm các mô hình tạo văn bản đã được tiền huấn luyện và tinh chỉnh với quy mô từ 7 tỷ đến 700 tỷ tham số. Về mặt kiến trúc, Llama2 là một mô hình ngôn ngữ hồi quy tự động sử dụng kiến trúc biến đổi tối ưu. Các phiên bản đã điều chỉnh sử dụng tinh chỉnh có giám sát (SFT) và học củng cố với phản hồi từ con người (RLHF) để đồng bộ hóa với sở thích của con người về tính hữu ích và an toàn. Llama2 có hiệu suất vượt trội hơn so với loạt Llama trên nhiều bộ dữ liệu học thuật, cung cấp ý tưởng cho thiết kế và phát triển của nhiều mô hình khác."
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B cung cấp khả năng suy luận AI mạnh mẽ hơn, phù hợp cho các ứng dụng phức tạp, hỗ trợ xử lý tính toán cực lớn và đảm bảo hiệu quả và độ chính xác cao."
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K được cấu hình với khả năng xử lý ngữ cảnh lớn, có khả năng hiểu ngữ cảnh và suy luận logic mạnh mẽ hơn, hỗ trợ đầu vào văn bản 32K tokens, phù hợp cho việc đọc tài liệu dài, hỏi đáp kiến thức riêng tư và các tình huống khác."
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct là mô hình ngôn ngữ lớn được huấn luyện hoàn toàn độc lập bởi Wúwèn Xīnqióng. Megrez-3B-Instruct nhằm tạo ra một giải pháp thông minh ở đầu cuối với khả năng suy luận nhanh chóng, kích thước nhỏ gọn và dễ sử dụng thông qua lý thuyết tích hợp phần mềm và phần cứng."
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "Mô hình 70 tỷ tham số mạnh mẽ, xuất sắc trong lý luận, lập trình và các ứng dụng ngôn ngữ rộng lớn."
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "Mô hình mã mạnh mẽ cỡ trung, hỗ trợ độ dài ngữ cảnh 32K, xuất sắc trong lập trình đa ngôn ngữ."
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Qwen1.5 là phiên bản Beta của Qwen2, là mô hình ngôn ngữ chỉ giải mã dựa trên Transformer, được tiền huấn luyện trên dữ liệu lớn. So với các phiên bản Qwen đã phát hành trước đây, cả mô hình base và chat của Qwen1.5 đều hỗ trợ nhiều ngôn ngữ và có sự cải thiện đáng kể về khả năng trò chuyện tổng thể và các kỹ năng cơ bản. Qwen1.5-14b-chat là mô hình có 14 tỷ tham số, được thiết kế đặc biệt cho các tình huống trò chuyện."
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 series là phiên bản Beta của Qwen2, là mô hình ngôn ngữ chỉ giải mã dựa trên Transformer, được tiền huấn luyện trên dữ liệu lớn. So với các phiên bản Qwen series được phát hành trước đó, cả mô hình base và chat của Qwen1.5 series đều hỗ trợ nhiều ngôn ngữ, và có sự cải thiện đáng kể về khả năng trò chuyện tổng thể và các kỹ năng cơ bản. Qwen1.5-32b-chat là mô hình lớn 32 tỷ tham số chuyên dụng cho các tình huống trò chuyện, mạnh hơn mô hình 14 tỷ tham số trong các tình huống thực thể thông minh, và có chi phí suy luận thấp hơn mô hình 72 tỷ tham số."
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Qwen1.5 là phiên bản Beta của Qwen2, là mô hình ngôn ngữ chỉ giải mã dựa trên Transformer, được tiền huấn luyện trên dữ liệu lớn. So với các phiên bản Qwen đã phát hành trước đó, cả mô hình base và chat của Qwen1.5 đều hỗ trợ nhiều ngôn ngữ, và có sự cải thiện đáng kể về khả năng trò chuyện tổng thể và các kỹ năng cơ bản. Qwen1.5-72b-chat là mô hình lớn có 72 tỷ tham số, chuyên dùng cho các tình huống trò chuyện."
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 là mô hình ngôn ngữ quy mô lớn thế hệ mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 là thế hệ mô hình ngôn ngữ lớn mới do đội Qwen phát triển. Nó dựa trên kiến trúc Transformer và sử dụng hàm kích hoạt SwiGLU, chệch QKV chú ý (attention QKV bias), chú ý truy vấn nhóm (group query attention), hỗn hợp chú ý cửa sổ trượt (mixture of sliding window attention) và chú ý đầy đủ. Ngoài ra, đội Qwen còn cải tiến bộ tách từ để thích ứng với nhiều ngôn ngữ tự nhiên và mã nguồn."
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 là một loạt mô hình ngôn ngữ lớn mới do đội Qwen phát triển. Nó dựa trên kiến trúc Transformer và sử dụng hàm kích hoạt SwiGLU, chệch QKV chú ý (attention QKV bias), chú ý truy vấn nhóm (group query attention), hỗn hợp chú ý cửa sổ trượt (mixture of sliding window attention) và chú ý đầy đủ. Ngoài ra, đội Qwen còn cải tiến bộ tách từ để thích ứng với nhiều ngôn ngữ tự nhiên và mã nguồn."
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 là thế hệ mô hình ngôn ngữ quy mô lớn mới của Alibaba, hỗ trợ các nhu cầu ứng dụng đa dạng với hiệu suất xuất sắc."
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 là mô hình ngôn ngữ do Microsoft AI cung cấp, đặc biệt xuất sắc trong các lĩnh vực đối thoại phức tạp, đa ngôn ngữ, suy luận và trợ lý thông minh."
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 là phiên bản nâng cấp của Yi. Nó sử dụng 500B token từ cơ sở dữ liệu chất lượng cao để tiếp tục tiền huấn luyện trên Yi, và được tinh chỉnh trên 3M mẫu đa dạng."
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "Mô hình với hàng trăm tỷ tham số mới, cung cấp khả năng hỏi đáp và sinh văn bản mạnh mẽ."
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "Mô hình ngôn ngữ lớn được phát triển bởi Tencent, có khả năng sáng tạo tiếng Trung mạnh mẽ, khả năng suy luận logic trong các ngữ cảnh phức tạp, và khả năng thực hiện nhiệm vụ đáng tin cậy."
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "Cung cấp dịch vụ mô hình lớn hiệu suất cao, dễ sử dụng và an toàn cho nhà phát triển ứng dụng, bao gồm toàn bộ quy trình từ phát triển mô hình lớn đến triển khai dịch vụ mô hình lớn."
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "Tổ chức mã nguồn mở chuyên nghiên cứu và phát triển công cụ cho mô hình lớn. Cung cấp nền tảng mã nguồn mở hiệu quả, dễ sử dụng cho tất cả các nhà phát triển AI, giúp tiếp cận công nghệ mô hình lớn và thuật toán tiên tiến nhất."
|
58
61
|
},
|
@@ -521,6 +521,12 @@
|
|
521
521
|
"charglm-3": {
|
522
522
|
"description": "CharGLM-3 专为角色扮演与情感陪伴设计,支持超长多轮记忆与个性化对话,应用广泛。"
|
523
523
|
},
|
524
|
+
"chatglm3": {
|
525
|
+
"description": "ChatGLM3 是智谱 AI 与清华 KEG 实验室发布的闭源模型,经过海量中英标识符的预训练与人类偏好对齐训练,相比一代模型在 MMLU、C-Eval、GSM8K 分别取得了 16%、36%、280% 的提升,并登顶中文任务榜单 C-Eval。适用于对知识量、推理能力、创造力要求较高的场景,比如广告文案、小说写作、知识类写作、代码生成等。"
|
526
|
+
},
|
527
|
+
"chatglm3-6b-base": {
|
528
|
+
"description": "ChatGLM3-6b-base 是由智谱开发的 ChatGLM 系列最新一代的 60 亿参数规模的开源的基础模型。"
|
529
|
+
},
|
524
530
|
"chatgpt-4o-latest": {
|
525
531
|
"description": "ChatGPT-4o 是一款动态模型,实时更新以保持当前最新版本。它结合了强大的语言理解与生成能力,适合于大规模应用场景,包括客户服务、教育和技术支持。"
|
526
532
|
},
|
@@ -1133,6 +1139,9 @@
|
|
1133
1139
|
"lite": {
|
1134
1140
|
"description": "Spark Lite 是一款轻量级大语言模型,具备极低的延迟与高效的处理能力,完全免费开放,支持实时在线搜索功能。其快速响应的特性使其在低算力设备上的推理应用和模型微调中表现出色,为用户带来出色的成本效益和智能体验,尤其在知识问答、内容生成及搜索场景下表现不俗。"
|
1135
1141
|
},
|
1142
|
+
"llama-2-7b-chat": {
|
1143
|
+
"description": "Llama2 是由 Meta 开发并开源的大型语言模型(LLM)系列,这是一组从 70 亿到 700 亿参数不同规模、经过预训练和微调的生成式文本模型。架构层面,LLama2 是一个使用优化型转换器架构的自动回归语言模型。调整后的版本使用有监督的微调(SFT)和带有人类反馈的强化学习(RLHF)以对齐人类对有用性和安全性的偏好。Llama2 较 Llama 系列在多种学术数据集上有着更加不俗的表现,为大量其他模型提供了设计和开发的思路。"
|
1144
|
+
},
|
1136
1145
|
"llama-3.1-70b-versatile": {
|
1137
1146
|
"description": "Llama 3.1 70B 提供更强大的AI推理能力,适合复杂应用,支持超多的计算处理并保证高效和准确率。"
|
1138
1147
|
},
|
@@ -1196,6 +1205,9 @@
|
|
1196
1205
|
"max-32k": {
|
1197
1206
|
"description": "Spark Max 32K 配置了大上下文处理能力,更强的上下文理解和逻辑推理能力,支持32K tokens的文本输入,适用于长文档阅读、私有知识问答等场景"
|
1198
1207
|
},
|
1208
|
+
"megrez-3b-instruct": {
|
1209
|
+
"description": "Megrez-3B-Instruct 是由无问芯穹完全自主训练的大语言模型。Megrez-3B-Instruct 旨在通过软硬协同理念,打造一款极速推理、小巧精悍、极易上手的端侧智能解决方案。"
|
1210
|
+
},
|
1199
1211
|
"meta-llama-3-70b-instruct": {
|
1200
1212
|
"description": "一个强大的700亿参数模型,在推理、编码和广泛的语言应用方面表现出色。"
|
1201
1213
|
},
|
@@ -1583,9 +1595,24 @@
|
|
1583
1595
|
"qwen/qwen2.5-coder-7b-instruct": {
|
1584
1596
|
"description": "强大的中型代码模型,支持 32K 上下文长度,擅长多语言编程。"
|
1585
1597
|
},
|
1598
|
+
"qwen1.5-14b-chat": {
|
1599
|
+
"description": "Qwen1.5 系列是 Qwen2 的 Beta 版本,是一个基于 Transformer 的仅解码语言模型,在海量数据上进行预训练。与之前发布的 Qwen 系列版本相比,Qwen1.5 系列 base 与 chat 模型均能支持多种语言,在整体聊天和基础能力上都得到了提升。Qwen1.5-14b-chat 是其中专用于 chat 场景的 140 亿参数的主流大小模型。"
|
1600
|
+
},
|
1601
|
+
"qwen1.5-32b-chat": {
|
1602
|
+
"description": "Qwen1.5 系列是 Qwen2 的 Beta 版本,是一个基于 Transformer 的仅解码语言模型,在海量数据上进行预训练。与之前发布的 Qwen 系列版本相比,Qwen1.5 系列 base 与 chat 模型均能支持多种语言,在整体聊天和基础能力上都得到了提升。Qwen1.5-32b-chat 是其中专用于 chat 场景的 320 亿参数的大模型,较于 14b 模型在智能体场景更强,较于 72b 模型推理成本更低。"
|
1603
|
+
},
|
1604
|
+
"qwen1.5-72b-chat": {
|
1605
|
+
"description": "Qwen1.5 系列是 Qwen2 的 Beta 版本,是一个基于 Transformer 的仅解码语言模型,在海量数据上进行预训练。与之前发布的 Qwen 系列版本相比,Qwen1.5 系列 base 与 chat 模型均能支持多种语言,在整体聊天和基础能力上都得到了提升。Qwen1.5-72b-chat 是其中专用于 chat 场景的 720 亿参数的大模型。"
|
1606
|
+
},
|
1586
1607
|
"qwen2": {
|
1587
1608
|
"description": "Qwen2 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1588
1609
|
},
|
1610
|
+
"qwen2-72b-instruct": {
|
1611
|
+
"description": "Qwen2 是 Qwen 团队推出的新一代大型语言模型系列。它基于 Transformer 架构,并采用 SwiGLU 激活函数、注意力 QKV 偏置(attention QKV bias)、群组查询注意力(group query attention)、滑动窗口注意力(mixture of sliding window attention)与全注意力的混合等技术。此外,Qwen 团队还改进了适应多种自然语言和代码的分词器。"
|
1612
|
+
},
|
1613
|
+
"qwen2-7b-instruct": {
|
1614
|
+
"description": "Qwen2 是 Qwen 团队推出的新一代大型语言模型系列。它基于 Transformer 架构,并采用 SwiGLU 激活函数、注意力 QKV 偏置(attention QKV bias)、群组查询注意力(group query attention)、滑动窗口注意力(mixture of sliding window attention)与全注意力的混合等技术。此外,Qwen 团队还改进了适应多种自然语言和代码的分词器。"
|
1615
|
+
},
|
1589
1616
|
"qwen2.5": {
|
1590
1617
|
"description": "Qwen2.5 是阿里巴巴的新一代大规模语言模型,以优异的性能支持多元化的应用需求。"
|
1591
1618
|
},
|
@@ -1763,6 +1790,9 @@
|
|
1763
1790
|
"wizardlm2:8x22b": {
|
1764
1791
|
"description": "WizardLM 2 是微软AI提供的语言模型,在复杂对话、多语言、推理和智能助手领域表现尤为出色。"
|
1765
1792
|
},
|
1793
|
+
"yi-1.5-34b-chat": {
|
1794
|
+
"description": "Yi-1.5 是 Yi 的升级版本。 它使用 500B Tokens 的高质量语料库在 Yi 上持续进行预训练,并在 3M 个多样化的微调样本上进行微调。"
|
1795
|
+
},
|
1766
1796
|
"yi-large": {
|
1767
1797
|
"description": "全新千亿参数模型,提供超强问答及文本生成能力。"
|
1768
1798
|
},
|
@@ -53,6 +53,9 @@
|
|
53
53
|
"hunyuan": {
|
54
54
|
"description": "由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力"
|
55
55
|
},
|
56
|
+
"infiniai": {
|
57
|
+
"description": "为应用开发者提供高性能、易上手、安全可靠的大模型服务,覆盖从大模型开发到大模型服务化部署的全流程。"
|
58
|
+
},
|
56
59
|
"internlm": {
|
57
60
|
"description": "致力于大模型研究与开发工具链的开源组织。为所有 AI 开发者提供高效、易用的开源平台,让最前沿的大模型与算法技术触手可及"
|
58
61
|
},
|