@lobehub/chat 1.68.3 → 1.68.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (112) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/README.md +3 -3
  3. package/README.zh-CN.md +14 -17
  4. package/changelog/v1.json +18 -0
  5. package/docs/usage/providers/azureai.mdx +69 -0
  6. package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
  7. package/docs/usage/providers/deepseek.mdx +3 -3
  8. package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
  9. package/docs/usage/providers/jina.mdx +51 -0
  10. package/docs/usage/providers/jina.zh-CN.mdx +51 -0
  11. package/docs/usage/providers/lmstudio.mdx +75 -0
  12. package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
  13. package/docs/usage/providers/nvidia.mdx +55 -0
  14. package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
  15. package/docs/usage/providers/ppio.mdx +7 -7
  16. package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
  17. package/docs/usage/providers/sambanova.mdx +50 -0
  18. package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
  19. package/docs/usage/providers/tencentcloud.mdx +49 -0
  20. package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
  21. package/docs/usage/providers/vertexai.mdx +59 -0
  22. package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
  23. package/docs/usage/providers/vllm.mdx +98 -0
  24. package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
  25. package/docs/usage/providers/volcengine.mdx +47 -0
  26. package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
  27. package/locales/ar/chat.json +29 -0
  28. package/locales/ar/models.json +48 -0
  29. package/locales/ar/providers.json +3 -0
  30. package/locales/bg-BG/chat.json +29 -0
  31. package/locales/bg-BG/models.json +48 -0
  32. package/locales/bg-BG/providers.json +3 -0
  33. package/locales/de-DE/chat.json +29 -0
  34. package/locales/de-DE/models.json +48 -0
  35. package/locales/de-DE/providers.json +3 -0
  36. package/locales/en-US/chat.json +29 -0
  37. package/locales/en-US/models.json +48 -0
  38. package/locales/en-US/providers.json +3 -3
  39. package/locales/es-ES/chat.json +29 -0
  40. package/locales/es-ES/models.json +48 -0
  41. package/locales/es-ES/providers.json +3 -0
  42. package/locales/fa-IR/chat.json +29 -0
  43. package/locales/fa-IR/models.json +48 -0
  44. package/locales/fa-IR/providers.json +3 -0
  45. package/locales/fr-FR/chat.json +29 -0
  46. package/locales/fr-FR/models.json +48 -0
  47. package/locales/fr-FR/providers.json +3 -0
  48. package/locales/it-IT/chat.json +29 -0
  49. package/locales/it-IT/models.json +48 -0
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/chat.json +29 -0
  52. package/locales/ja-JP/models.json +48 -0
  53. package/locales/ja-JP/providers.json +3 -0
  54. package/locales/ko-KR/chat.json +29 -0
  55. package/locales/ko-KR/models.json +48 -0
  56. package/locales/ko-KR/providers.json +3 -0
  57. package/locales/nl-NL/chat.json +29 -0
  58. package/locales/nl-NL/models.json +48 -0
  59. package/locales/nl-NL/providers.json +3 -0
  60. package/locales/pl-PL/chat.json +29 -0
  61. package/locales/pl-PL/models.json +48 -0
  62. package/locales/pl-PL/providers.json +3 -0
  63. package/locales/pt-BR/chat.json +29 -0
  64. package/locales/pt-BR/models.json +48 -0
  65. package/locales/pt-BR/providers.json +3 -0
  66. package/locales/ru-RU/chat.json +29 -0
  67. package/locales/ru-RU/models.json +48 -0
  68. package/locales/ru-RU/providers.json +3 -0
  69. package/locales/tr-TR/chat.json +29 -0
  70. package/locales/tr-TR/models.json +48 -0
  71. package/locales/tr-TR/providers.json +3 -0
  72. package/locales/vi-VN/chat.json +29 -0
  73. package/locales/vi-VN/models.json +48 -0
  74. package/locales/vi-VN/providers.json +3 -0
  75. package/locales/zh-CN/chat.json +29 -0
  76. package/locales/zh-CN/models.json +51 -3
  77. package/locales/zh-CN/providers.json +3 -4
  78. package/locales/zh-TW/chat.json +29 -0
  79. package/locales/zh-TW/models.json +48 -0
  80. package/locales/zh-TW/providers.json +3 -0
  81. package/package.json +1 -1
  82. package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
  83. package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
  84. package/packages/web-crawler/src/utils/errorType.ts +7 -0
  85. package/scripts/serverLauncher/startServer.js +11 -7
  86. package/src/config/modelProviders/index.ts +1 -1
  87. package/src/config/modelProviders/ppio.ts +1 -1
  88. package/src/features/Conversation/Extras/Assistant.tsx +12 -20
  89. package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
  90. package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
  91. package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
  92. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
  93. package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
  94. package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
  95. package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
  96. package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
  97. package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
  98. package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
  99. package/src/locales/default/chat.ts +30 -1
  100. package/src/server/routers/tools/search.ts +1 -1
  101. package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
  102. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  103. package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
  104. package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
  105. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
  106. package/src/store/chat/slices/message/action.ts +3 -0
  107. package/src/store/global/initialState.ts +1 -0
  108. package/src/store/global/selectors/systemStatus.ts +2 -0
  109. package/src/types/message/base.ts +18 -0
  110. package/src/types/message/chat.ts +4 -3
  111. package/src/utils/fetch/fetchSSE.ts +24 -1
  112. package/src/utils/format.ts +3 -1
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B ondersteunt 16K tokens en biedt efficiënte, vloeiende taalgeneratiecapaciteiten."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything, het nieuwste open-source fine-tuning model, met 34 miljard parameters, dat fine-tuning ondersteunt voor verschillende dialoogscenario's, met hoogwaardige trainingsdata die zijn afgestemd op menselijke voorkeuren."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything, het nieuwste open-source fine-tuning model, met 9 miljard parameters, dat fine-tuning ondersteunt voor verschillende dialoogscenario's, met hoogwaardige trainingsdata die zijn afgestemd op menselijke voorkeuren."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, als een belangrijk lid van de 360 AI-modelreeks, voldoet aan de diverse natuurlijke taaltoepassingsscenario's met efficiënte tekstverwerkingscapaciteiten en ondersteunt lange tekstbegrip en meerdaagse gesprekken."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 is een meertalig model van Cohere, ondersteunt 23 talen en biedt gemak voor diverse taaltoepassingen."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B is een open-source, commercieel bruikbaar groot taalmodel ontwikkeld door Baichuan Intelligent, met 13 miljard parameters, dat de beste prestaties in zijn klasse heeft behaald op gezaghebbende Chinese en Engelse benchmarks."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 is ontworpen voor rollenspellen en emotionele begeleiding, ondersteunt zeer lange meerdaagse herinneringen en gepersonaliseerde gesprekken, met brede toepassingen."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B is een groot taalmodel gebaseerd op Llama3.3 70B, dat gebruikmaakt van de fine-tuning van DeepSeek R1-output en vergelijkbare concurrentieprestaties bereikt als grote vooraanstaande modellen."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B is een gedistilleerd groot taalmodel gebaseerd op Llama-3.1-8B-Instruct, dat is getraind met behulp van de output van DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B is een gedistilleerd groot taalmodel gebaseerd op Qwen 2.5 14B, dat is getraind met behulp van de output van DeepSeek R1. Dit model heeft in verschillende benchmarktests OpenAI's o1-mini overtroffen en heeft de nieuwste technologische vooruitgang behaald voor dichte modellen (state-of-the-art). Hier zijn enkele resultaten van benchmarktests:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDit model toont concurrentieprestaties die vergelijkbaar zijn met grotere vooraanstaande modellen door fine-tuning op de output van DeepSeek R1."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B is een gedistilleerd groot taalmodel gebaseerd op Qwen 2.5 32B, dat is getraind met behulp van de output van DeepSeek R1. Dit model heeft in verschillende benchmarktests OpenAI's o1-mini overtroffen en heeft de nieuwste technologische vooruitgang behaald voor dichte modellen (state-of-the-art). Hier zijn enkele resultaten van benchmarktests:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDit model toont concurrentieprestaties die vergelijkbaar zijn met grotere vooraanstaande modellen door fine-tuning op de output van DeepSeek R1."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 is het nieuwste open-source model dat door het DeepSeek-team is uitgebracht, met zeer krachtige inferentieprestaties, vooral op het gebied van wiskunde, programmeren en redeneringstaken, en bereikt een niveau dat vergelijkbaar is met het o1-model van OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 heeft een belangrijke doorbraak bereikt in inferentiesnelheid ten opzichte van eerdere modellen. Het staat op de eerste plaats onder open-source modellen en kan zich meten met de meest geavanceerde gesloten modellen ter wereld. DeepSeek-V3 maakt gebruik van Multi-Head Latent Attention (MLA) en de DeepSeekMoE-architectuur, die grondig zijn gevalideerd in DeepSeek-V2. Bovendien introduceert DeepSeek-V3 een aanvullende verliesloze strategie voor load balancing en stelt het multi-label voorspellingsdoelen in om sterkere prestaties te behalen."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 heeft een belangrijke doorbraak bereikt in inferentiesnelheid ten opzichte van eerdere modellen. Het staat op de eerste plaats onder open-source modellen en kan zich meten met de meest geavanceerde gesloten modellen ter wereld. DeepSeek-V3 maakt gebruik van Multi-Head Latent Attention (MLA) en de DeepSeekMoE-architectuur, die grondig zijn gevalideerd in DeepSeek-V2. Bovendien introduceert DeepSeek-V3 een aanvullende verliesloze strategie voor load balancing en stelt het multi-label voorspellingsdoelen in om sterkere prestaties te behalen."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite is de nieuwste generatie lichtgewicht model, met extreme responssnelheid en prestaties die wereldwijd tot de top behoren."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 is ontworpen voor taken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 is ontworpen voor taken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Geïnitieerd met het Qwen-7B taalmodel, voegt het een afbeeldingsmodel toe, met een invoerresolutie van 448 voor het voorgetrainde model."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 is de gloednieuwe serie van grote taalmodellen van Qwen. Qwen2 7B is een transformer-gebaseerd model dat uitblinkt in taalbegrip, meertalige capaciteiten, programmeren, wiskunde en redenering."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 is een gloednieuwe serie grote taalmodellen met sterkere begrip- en generatiecapaciteiten."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL is de nieuwste iteratie van het Qwen-VL-model en heeft geavanceerde prestaties behaald in visuele begrip benchmarktests, waaronder MathVista, DocVQA, RealWorldQA en MTVQA. Qwen2-VL kan video's van meer dan 20 minuten begrijpen voor hoogwaardige video-gebaseerde vraag-en-antwoord, dialoog en contentcreatie. Het heeft ook complexe redenerings- en besluitvormingscapaciteiten en kan worden geïntegreerd met mobiele apparaten, robots, enzovoort, voor automatische operaties op basis van visuele omgevingen en tekstinstructies. Naast Engels en Chinees ondersteunt Qwen2-VL nu ook het begrijpen van tekst in verschillende talen in afbeeldingen, waaronder de meeste Europese talen, Japans, Koreaans, Arabisch en Vietnamees."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in codering en wiskunde. Het model biedt ook ondersteuning voor meerdere talen, met meer dan 29 talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde output (vooral JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 32B-model heeft aanzienlijke verbeteringen in codering en wiskunde. Het model biedt ook ondersteuning voor meerdere talen, met meer dan 29 talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde output (vooral JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM gericht op zowel Chinees als Engels, gericht op taal, programmeren, wiskunde, redeneren en meer."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Een efficiënte en kosteneffectieve nieuwe generatie Embedding model, geschikt voor kennisretrieval, RAG-toepassingen en andere scenario's."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "De open-source versie van de nieuwste generatie voorgetrainde modellen van de GLM-4-serie, uitgebracht door Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) biedt verbeterde rekenkracht door middel van efficiënte strategieën en modelarchitectuur."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity is een toonaangevende aanbieder van dialooggeneratiemodellen, die verschillende geavanceerde Llama 3.1-modellen aanbiedt, die zowel online als offline toepassingen ondersteunen, en bijzonder geschikt zijn voor complexe natuurlijke taalverwerkingstaken."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO biedt stabiele en kosteneffectieve open source model API-diensten, die ondersteuning bieden voor de volledige DeepSeek-serie, Llama, Qwen en andere toonaangevende grote modellen in de industrie."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Tongyi Qianwen is een door Alibaba Cloud zelf ontwikkeld grootschalig taalmodel met krachtige mogelijkheden voor natuurlijke taalbegrip en -generatie. Het kan verschillende vragen beantwoorden, tekstinhoud creëren, meningen uiten, code schrijven, en speelt een rol in verschillende domeinen."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Istnieją podwątki, nie można usunąć",
80
80
  "regenerate": "Wygeneruj ponownie"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Punkty",
85
+ "creditPricing": "Cennik",
86
+ "creditTooltip": "Aby ułatwić obliczenia, przeliczamy 1$ na 1M punktów, na przykład $3/M tokenów to 3 punkty/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Zbuforowane wejście {{amount}}/punktów · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M znaków",
90
+ "inputMinutes": "${{amount}}/minutę",
91
+ "inputTokens": "Wejście {{amount}}/punktów · ${{amount}}/M",
92
+ "outputTokens": "Wyjście {{amount}}/punktów · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Wejście",
97
+ "inputAudio": "Wejście audio",
98
+ "inputCached": "Zbuforowane wejście",
99
+ "inputText": "Wejście tekstowe",
100
+ "inputTitle": "Szczegóły wejścia",
101
+ "inputUncached": "Wejście niezbuforowane",
102
+ "output": "Wyjście",
103
+ "outputAudio": "Wyjście audio",
104
+ "outputText": "Wyjście tekstowe",
105
+ "outputTitle": "Szczegóły wyjścia",
106
+ "reasoning": "Głębokie myślenie",
107
+ "title": "Szczegóły generacji",
108
+ "total": "Całkowite zużycie"
109
+ }
110
+ },
82
111
  "newAgent": "Nowy asystent",
83
112
  "pin": "Przypnij",
84
113
  "pinOff": "Odepnij",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B obsługuje 16K tokenów, oferując wydajne i płynne zdolności generowania języka."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One, najnowszy model open source z dostrojeniem, zawierający 34 miliardy parametrów, dostosowany do różnych scenariuszy dialogowych, z wysokiej jakości danymi treningowymi, dostosowany do preferencji ludzkich."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One, najnowszy model open source z dostrojeniem, zawierający 9 miliardów parametrów, dostosowany do różnych scenariuszy dialogowych, z wysokiej jakości danymi treningowymi, dostosowany do preferencji ludzkich."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, jako ważny członek serii modeli AI 360, zaspokaja różnorodne potrzeby aplikacji przetwarzania języka naturalnego dzięki wydajnym zdolnościom przetwarzania tekstu, obsługując zrozumienie długich tekstów i wielokrotne dialogi."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 to model wielojęzyczny wydany przez Cohere, wspierający 23 języki, ułatwiający różnorodne zastosowania językowe."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B to otwarty model językowy stworzony przez Baichuan Intelligence, zawierający 13 miliardów parametrów, który osiągnął najlepsze wyniki w swojej klasie w autorytatywnych benchmarkach w języku chińskim i angielskim."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 zaprojektowany z myślą o odgrywaniu ról i emocjonalnym towarzyszeniu, obsługujący ultra-długą pamięć wielokrotną i spersonalizowane dialogi, z szerokim zakresem zastosowań."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 znacznie poprawił zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw wygeneruje fragment myślenia, aby zwiększyć dokładność końcowej odpowiedzi."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B to duży model językowy oparty na Llama3.3 70B, który wykorzystuje dostrojenie na podstawie wyjścia DeepSeek R1, osiągając konkurencyjną wydajność porównywalną z dużymi modelami na czołowej pozycji."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B to destylowany duży model językowy oparty na Llama-3.1-8B-Instruct, wytrenowany przy użyciu wyjścia DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B to destylowany duży model językowy oparty na Qwen 2.5 14B, wytrenowany przy użyciu wyjścia DeepSeek R1. Model ten przewyższył OpenAI o1-mini w wielu testach benchmarkowych, osiągając najnowsze osiągnięcia technologiczne w dziedzinie modeli gęstych (dense models). Oto niektóre wyniki testów benchmarkowych:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nModel ten, dostrojony na podstawie wyjścia DeepSeek R1, wykazuje konkurencyjną wydajność porównywalną z większymi modelami na czołowej pozycji."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B to destylowany duży model językowy oparty na Qwen 2.5 32B, wytrenowany przy użyciu wyjścia DeepSeek R1. Model ten przewyższył OpenAI o1-mini w wielu testach benchmarkowych, osiągając najnowsze osiągnięcia technologiczne w dziedzinie modeli gęstych (dense models). Oto niektóre wyniki testów benchmarkowych:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nModel ten, dostrojony na podstawie wyjścia DeepSeek R1, wykazuje konkurencyjną wydajność porównywalną z większymi modelami na czołowej pozycji."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 to najnowszy model open source wydany przez zespół DeepSeek, który charakteryzuje się bardzo silnymi możliwościami wnioskowania, szczególnie w zadaniach matematycznych, programistycznych i logicznych, osiągając poziom porównywalny z modelem o1 OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 znacznie poprawił zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw wygeneruje fragment myślenia, aby zwiększyć dokładność końcowej odpowiedzi."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 osiągnął znaczący przełom w szybkości wnioskowania w porównaniu do wcześniejszych modeli. Zajmuje pierwsze miejsce wśród modeli open source i może konkurować z najnowocześniejszymi modelami zamkniętymi na świecie. DeepSeek-V3 wykorzystuje architekturę wielogłowicowej uwagi (MLA) oraz DeepSeekMoE, które zostały w pełni zweryfikowane w DeepSeek-V2. Ponadto, DeepSeek-V3 wprowadza pomocniczą strategię bezstratną do równoważenia obciążenia oraz ustala cele treningowe dla wieloetykietowego przewidywania, aby uzyskać lepszą wydajność."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 osiągnął znaczący przełom w szybkości wnioskowania w porównaniu do wcześniejszych modeli. Zajmuje pierwsze miejsce wśród modeli open source i może konkurować z najnowocześniejszymi modelami zamkniętymi na świecie. DeepSeek-V3 wykorzystuje architekturę wielogłowicowej uwagi (MLA) oraz DeepSeekMoE, które zostały w pełni zweryfikowane w DeepSeek-V2. Ponadto, DeepSeek-V3 wprowadza pomocniczą strategię bezstratną do równoważenia obciążenia oraz ustala cele treningowe dla wieloetykietowego przewidywania, aby uzyskać lepszą wydajność."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite to nowa generacja modelu o lekkiej konstrukcji, charakteryzująca się ekstremalną szybkością reakcji, osiągając światowy poziom zarówno w zakresie wydajności, jak i opóźnienia."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 jest zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Wykazuje doskonałe wyniki w zadaniach takich jak opisywanie obrazów i wizualne pytania i odpowiedzi, przekraczając granice między generowaniem języka a wnioskowaniem wizualnym."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 jest zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Wykazuje doskonałe wyniki w zadaniach takich jak opisywanie obrazów i wizualne pytania i odpowiedzi, przekraczając granice między generowaniem języka a wnioskowaniem wizualnym."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Model wstępnie wytrenowany, zainicjowany przez model językowy Qwen-7B, dodający model obrazowy, z rozdzielczością wejściową obrazu wynoszącą 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 to nowa seria dużych modeli językowych Qwen. Qwen2 7B to model oparty na transformatorze, który wykazuje doskonałe wyniki w zakresie rozumienia języka, zdolności wielojęzycznych, programowania, matematyki i wnioskowania."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 to nowa seria dużych modeli językowych, charakteryzująca się silniejszymi zdolnościami rozumienia i generowania."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL to najnowsza iteracja modelu Qwen-VL, która osiągnęła najnowocześniejsze wyniki w testach benchmarkowych dotyczących rozumienia wizualnego, w tym MathVista, DocVQA, RealWorldQA i MTVQA. Qwen2-VL potrafi rozumieć filmy trwające ponad 20 minut, umożliwiając wysokiej jakości pytania i odpowiedzi, dialogi oraz tworzenie treści oparte na wideo. Posiada również zdolności do złożonego wnioskowania i podejmowania decyzji, co pozwala na integrację z urządzeniami mobilnymi, robotami itp., aby automatycznie działać na podstawie środowiska wizualnego i instrukcji tekstowych. Oprócz angielskiego i chińskiego, Qwen2-VL teraz wspiera również rozumienie tekstu w różnych językach w obrazach, w tym większości języków europejskich, japońskiego, koreańskiego, arabskiego i wietnamskiego."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B wykazuje znaczną poprawę w obszarach kodowania i matematyki. Model ten oferuje wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model znacząco poprawił zdolność do podążania za instrukcjami, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 32B wykazuje znaczną poprawę w obszarach kodowania i matematyki. Model ten oferuje wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model znacząco poprawił zdolność do podążania za instrukcjami, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM skierowany na język chiński i angielski, skoncentrowany na języku, programowaniu, matematyce, wnioskowaniu i innych dziedzinach."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Nowej generacji model Embedding, efektywny i ekonomiczny, odpowiedni do wyszukiwania wiedzy, aplikacji RAG i innych scenariuszy."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Otwarta wersja najnowszej generacji modelu pretrenowanego GLM-4 wydanego przez Zhipu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) oferuje zwiększoną moc obliczeniową dzięki efektywnym strategiom i architekturze modelu."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity to wiodący dostawca modeli generacji dialogów, oferujący różnorodne zaawansowane modele Llama 3.1, wspierające aplikacje online i offline, szczególnie odpowiednie do złożonych zadań przetwarzania języka naturalnego."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paiou Cloud oferuje stabilne i opłacalne usługi API modeli open source, wspierające pełną gamę DeepSeek, Llama, Qwen i inne wiodące modele w branży."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Tongyi Qianwen to samodzielnie opracowany przez Alibaba Cloud model językowy o dużej skali, charakteryzujący się silnymi zdolnościami rozumienia i generowania języka naturalnego. Może odpowiadać na różnorodne pytania, tworzyć treści pisemne, wyrażać opinie, pisać kod i działać w wielu dziedzinach."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Existem subtópicos, não é possível deletar.",
80
80
  "regenerate": "Regenerar"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Créditos",
85
+ "creditPricing": "Precificação",
86
+ "creditTooltip": "Para facilitar a contagem, consideramos 1$ como 1M créditos, por exemplo, $3/M tokens se converte em 3 créditos/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Entrada em cache {{amount}}/créditos · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M caracteres",
90
+ "inputMinutes": "${{amount}}/minuto",
91
+ "inputTokens": "Entrada {{amount}}/créditos · ${{amount}}/M",
92
+ "outputTokens": "Saída {{amount}}/créditos · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Entrada",
97
+ "inputAudio": "Entrada de áudio",
98
+ "inputCached": "Entrada em cache",
99
+ "inputText": "Entrada de texto",
100
+ "inputTitle": "Detalhes da entrada",
101
+ "inputUncached": "Entrada não cacheada",
102
+ "output": "Saída",
103
+ "outputAudio": "Saída de áudio",
104
+ "outputText": "Saída de texto",
105
+ "outputTitle": "Detalhes da saída",
106
+ "reasoning": "Raciocínio profundo",
107
+ "title": "Detalhes da geração",
108
+ "total": "Total consumido"
109
+ }
110
+ },
82
111
  "newAgent": "Novo Assistente",
83
112
  "pin": "Fixar",
84
113
  "pinOff": "Desafixar",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B suporta 16K Tokens, oferecendo capacidade de geração de linguagem eficiente e fluida."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero Um, o mais recente modelo de ajuste fino de código aberto, com 34 bilhões de parâmetros, suporta múltiplos cenários de diálogo, com dados de treinamento de alta qualidade, alinhados às preferências humanas."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero Um, o mais recente modelo de ajuste fino de código aberto, com 9 bilhões de parâmetros, suporta múltiplos cenários de diálogo, com dados de treinamento de alta qualidade, alinhados às preferências humanas."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, como um membro importante da série de modelos de IA da 360, atende a diversas aplicações de linguagem natural com sua capacidade eficiente de processamento de texto, suportando compreensão de longos textos e diálogos em múltiplas rodadas."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 é um modelo multilíngue lançado pela Cohere, suportando 23 idiomas, facilitando aplicações linguísticas diversificadas."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B é um modelo de linguagem de código aberto e comercializável desenvolvido pela Baichuan Intelligence, contendo 13 bilhões de parâmetros, alcançando os melhores resultados em benchmarks de chinês e inglês na mesma dimensão."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "O CharGLM-3 é projetado para interpretação de personagens e companhia emocional, suportando memória de múltiplas rodadas e diálogos personalizados, com ampla aplicação."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 melhorou significativamente a capacidade de raciocínio do modelo com muito poucos dados rotulados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B é um grande modelo de linguagem baseado no Llama3.3 70B, que utiliza o ajuste fino da saída do DeepSeek R1 para alcançar um desempenho competitivo comparável aos grandes modelos de ponta."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B é um modelo de linguagem grande destilado baseado no Llama-3.1-8B-Instruct, treinado usando a saída do DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B é um modelo de linguagem grande destilado baseado no Qwen 2.5 14B, treinado usando a saída do DeepSeek R1. Este modelo superou o o1-mini da OpenAI em vários benchmarks, alcançando os mais recentes avanços tecnológicos em modelos densos (state-of-the-art). Aqui estão alguns resultados de benchmarks:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nClassificação CodeForces: 1481\nEste modelo, ajustado a partir da saída do DeepSeek R1, demonstrou desempenho competitivo comparável a modelos de ponta de maior escala."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B é um modelo de linguagem grande destilado baseado no Qwen 2.5 32B, treinado usando a saída do DeepSeek R1. Este modelo superou o o1-mini da OpenAI em vários benchmarks, alcançando os mais recentes avanços tecnológicos em modelos densos (state-of-the-art). Aqui estão alguns resultados de benchmarks:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nClassificação CodeForces: 1691\nEste modelo, ajustado a partir da saída do DeepSeek R1, demonstrou desempenho competitivo comparável a modelos de ponta de maior escala."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 é o mais recente modelo de código aberto lançado pela equipe DeepSeek, com desempenho de inferência extremamente robusto, especialmente em tarefas de matemática, programação e raciocínio, alcançando níveis comparáveis ao modelo o1 da OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 melhorou significativamente a capacidade de raciocínio do modelo com muito poucos dados rotulados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 alcançou um avanço significativo na velocidade de inferência em comparação com os modelos anteriores. Classificado como o número um entre os modelos de código aberto, pode competir com os modelos fechados mais avançados do mundo. DeepSeek-V3 utiliza a arquitetura de Atenção Multi-Cabeça (MLA) e DeepSeekMoE, que foram amplamente validadas no DeepSeek-V2. Além disso, DeepSeek-V3 introduziu uma estratégia auxiliar sem perdas para balanceamento de carga e definiu objetivos de treinamento de previsão de múltiplos rótulos para obter um desempenho mais forte."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 alcançou um avanço significativo na velocidade de inferência em comparação com os modelos anteriores. Classificado como o número um entre os modelos de código aberto, pode competir com os modelos fechados mais avançados do mundo. DeepSeek-V3 utiliza a arquitetura de Atenção Multi-Cabeça (MLA) e DeepSeekMoE, que foram amplamente validadas no DeepSeek-V2. Além disso, DeepSeek-V3 introduziu uma estratégia auxiliar sem perdas para balanceamento de carga e definiu objetivos de treinamento de previsão de múltiplos rótulos para obter um desempenho mais forte."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite é a nova geração de modelo leve, com velocidade de resposta extrema, alcançando níveis de desempenho e latência de classe mundial."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 é projetado para lidar com tarefas que combinam dados visuais e textuais. Ele se destaca em tarefas como descrição de imagens e perguntas visuais, superando a lacuna entre geração de linguagem e raciocínio visual."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 é projetado para lidar com tarefas que combinam dados visuais e textuais. Ele se destaca em tarefas como descrição de imagens e perguntas visuais, superando a lacuna entre geração de linguagem e raciocínio visual."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Inicializado com o modelo de linguagem Qwen-7B, adicionando um modelo de imagem, um modelo pré-treinado com resolução de entrada de imagem de 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 é uma nova série de modelos de linguagem grande Qwen. Qwen2 7B é um modelo baseado em transformer, com excelente desempenho em compreensão de linguagem, capacidade multilíngue, programação, matemática e raciocínio."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 é uma nova série de grandes modelos de linguagem, com capacidades de compreensão e geração mais robustas."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL é a versão mais recente do modelo Qwen-VL, alcançando desempenho de ponta em benchmarks de compreensão visual, incluindo MathVista, DocVQA, RealWorldQA e MTVQA. Qwen2-VL é capaz de entender vídeos de mais de 20 minutos, permitindo perguntas e respostas, diálogos e criação de conteúdo de alta qualidade baseados em vídeo. Ele também possui capacidades complexas de raciocínio e tomada de decisão, podendo ser integrado a dispositivos móveis, robôs, etc., para operações automáticas baseadas em ambientes visuais e instruções textuais. Além do inglês e do chinês, o Qwen2-VL agora também suporta a compreensão de texto em diferentes idiomas em imagens, incluindo a maioria das línguas europeias, japonês, coreano, árabe e vietnamita."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct é uma das mais recentes séries de modelos de linguagem grande lançadas pela Alibaba Cloud. Este modelo de 72B apresenta capacidades significativamente aprimoradas em áreas como codificação e matemática. O modelo também oferece suporte a múltiplas línguas, cobrindo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct é uma das mais recentes séries de modelos de linguagem grande lançadas pela Alibaba Cloud. Este modelo de 32B apresenta capacidades significativamente aprimoradas em áreas como codificação e matemática. O modelo oferece suporte a múltiplas línguas, cobrindo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM voltado para chinês e inglês, focado em linguagem, programação, matemática, raciocínio e outras áreas."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Modelo de Embedding de nova geração, eficiente e econômico, adequado para recuperação de conhecimento, aplicações RAG e outros cenários."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Versão de código aberto da última geração do modelo pré-treinado GLM-4, lançado pela Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) oferece capacidade de computação aprimorada através de estratégias e arquiteturas de modelo eficientes."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity é um fornecedor líder de modelos de geração de diálogo, oferecendo uma variedade de modelos avançados Llama 3.1, suportando aplicações online e offline, especialmente adequados para tarefas complexas de processamento de linguagem natural."
91
91
  },
92
+ "ppio": {
93
+ "description": "O PPIO Paiouyun oferece serviços de API de modelos de código aberto estáveis e com alto custo-benefício, suportando toda a linha DeepSeek, Llama, Qwen e outros grandes modelos líderes da indústria."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen é um modelo de linguagem de grande escala desenvolvido pela Alibaba Cloud, com forte capacidade de compreensão e geração de linguagem natural. Ele pode responder a várias perguntas, criar conteúdo escrito, expressar opiniões e escrever código, atuando em vários campos."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Существуют подтемы, удаление невозможно",
80
80
  "regenerate": "Пересоздать"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Кредиты",
85
+ "creditPricing": "Ценообразование",
86
+ "creditTooltip": "Для удобства подсчета мы приравниваем 1$ к 1M кредитов, например, $3/M токенов эквивалентно 3 кредитам/токен",
87
+ "pricing": {
88
+ "inputCachedTokens": "Кэшированные входные {{amount}}/кредиты · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M символов",
90
+ "inputMinutes": "${{amount}}/минуту",
91
+ "inputTokens": "Входные {{amount}}/кредиты · ${{amount}}/M",
92
+ "outputTokens": "Выходные {{amount}}/кредиты · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Вход",
97
+ "inputAudio": "Аудиовход",
98
+ "inputCached": "Кэшированный вход",
99
+ "inputText": "Текстовый вход",
100
+ "inputTitle": "Детали входа",
101
+ "inputUncached": "Некэшированный вход",
102
+ "output": "Выход",
103
+ "outputAudio": "Аудиовыход",
104
+ "outputText": "Текстовый выход",
105
+ "outputTitle": "Детали выхода",
106
+ "reasoning": "Глубокое мышление",
107
+ "title": "Детали генерации",
108
+ "total": "Общее потребление"
109
+ }
110
+ },
82
111
  "newAgent": "Создать помощника",
83
112
  "pin": "Закрепить",
84
113
  "pinOff": "Открепить",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B поддерживает 16K токенов, обеспечивая эффективные и плавные возможности генерации языка."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "零一万物 — это последняя версия открытой доработанной модели с 34 миллиардами параметров, которая поддерживает различные сценарии диалога, используя высококачественные обучающие данные, соответствующие человеческим предпочтениям."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "零一万物 — это последняя версия открытой доработанной модели с 9 миллиардами параметров, которая поддерживает различные сценарии диалога, используя высококачественные обучающие данные, соответствующие человеческим предпочтениям."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, как важный член серии моделей AI от 360, удовлетворяет разнообразные приложения обработки текста с высокой эффективностью, поддерживает понимание длинных текстов и многораундные диалоги."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 — это многоязычная модель, выпущенная Cohere, поддерживающая 23 языка, обеспечивая удобство для многоязычных приложений."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B — это открытая коммерческая крупная языковая модель с 13 миллиардами параметров, разработанная Baichuan Intelligence, которая показала лучшие результаты среди моделей того же размера на авторитетных бенчмарках на китайском и английском языках."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 разработан для ролевых игр и эмоционального сопровождения, поддерживает сверхдлинную многократную память и персонализированные диалоги, имеет широкое применение."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 значительно улучшила способности модели к рассуждению при наличии лишь очень ограниченных размеченных данных. Перед тем как предоставить окончательный ответ, модель сначала выводит цепочку размышлений, чтобы повысить точность окончательного ответа."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B — это крупная языковая модель на основе Llama3.3 70B, которая использует доработку, полученную от DeepSeek R1, для достижения конкурентоспособной производительности, сопоставимой с крупными передовыми моделями."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B — это дистиллированная большая языковая модель на основе Llama-3.1-8B-Instruct, обученная с использованием выходных данных DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B — это дистиллированная большая языковая модель на основе Qwen 2.5 14B, обученная с использованием выходных данных DeepSeek R1. Эта модель превзошла o1-mini от OpenAI в нескольких бенчмарках, достигнув последних достижений в области плотных моделей (state-of-the-art). Вот некоторые результаты бенчмарков:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nРейтинг CodeForces: 1481\nЭта модель, доработанная на основе выходных данных DeepSeek R1, демонстрирует конкурентоспособную производительность, сопоставимую с более крупными передовыми моделями."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B — это дистиллированная большая языковая модель на основе Qwen 2.5 32B, обученная с использованием выходных данных DeepSeek R1. Эта модель превзошла o1-mini от OpenAI в нескольких бенчмарках, достигнув последних достижений в области плотных моделей (state-of-the-art). Вот некоторые результаты бенчмарков:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nРейтинг CodeForces: 1691\nЭта модель, доработанная на основе выходных данных DeepSeek R1, демонстрирует конкурентоспособную производительность, сопоставимую с более крупными передовыми моделями."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 — это последняя версия открытой модели, выпущенной командой DeepSeek, обладающая выдающимися возможностями вывода, особенно в математических, программных и логических задачах, достигая уровня, сопоставимого с моделью o1 от OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 значительно улучшила способности модели к рассуждению при наличии лишь очень ограниченных размеченных данных. Перед тем как предоставить окончательный ответ, модель сначала выводит цепочку размышлений, чтобы повысить точность окончательного ответа."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 достиг значительного прорыва в скорости вывода по сравнению с предыдущими моделями. Она занимает первое место среди открытых моделей и может соперничать с самыми современными закрытыми моделями в мире. DeepSeek-V3 использует архитектуры многоголового потенциального внимания (MLA) и DeepSeekMoE, которые были полностью проверены в DeepSeek-V2. Кроме того, DeepSeek-V3 внедрила вспомогательную безубыточную стратегию для балансировки нагрузки и установила цели обучения для многомаркерного прогнозирования для достижения более высокой производительности."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 достиг значительного прорыва в скорости вывода по сравнению с предыдущими моделями. Она занимает первое место среди открытых моделей и может соперничать с самыми современными закрытыми моделями в мире. DeepSeek-V3 использует архитектуры многоголового потенциального внимания (MLA) и DeepSeekMoE, которые были полностью проверены в DeepSeek-V2. Кроме того, DeepSeek-V3 внедрила вспомогательную безубыточную стратегию для балансировки нагрузки и установила цели обучения для многомаркерного прогнозирования для достижения более высокой производительности."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite - совершенно новое поколение легкой модели, с максимальной скоростью отклика, результаты и задержка достигают мирового уровня."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 предназначена для обработки задач, сочетающих визуальные и текстовые данные. Она демонстрирует отличные результаты в задачах описания изображений и визуального вопросно-ответного взаимодействия, преодолевая разрыв между генерацией языка и визуальным выводом."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 предназначена для обработки задач, сочетающих визуальные и текстовые данные. Она демонстрирует отличные результаты в задачах описания изображений и визуального вопросно-ответного взаимодействия, преодолевая разрыв между генерацией языка и визуальным выводом."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Инициализированная языковой моделью Qwen-7B, добавлена модель изображения, предобученная модель с разрешением входного изображения 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 — это новая серия больших языковых моделей Qwen. Qwen2 7B — это модель на основе трансформера, которая демонстрирует отличные результаты в понимании языка, многоязычных способностях, программировании, математике и логическом рассуждении."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 — это новая серия крупных языковых моделей с более сильными возможностями понимания и генерации."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL — это последняя итерация модели Qwen-VL, достигшая передовых результатов в бенчмарках визуального понимания, включая MathVista, DocVQA, RealWorldQA и MTVQA. Qwen2-VL может понимать видео продолжительностью более 20 минут для высококачественного видеозапроса, диалога и создания контента. Она также обладает сложными способностями к рассуждению и принятию решений, может интегрироваться с мобильными устройствами, роботами и выполнять автоматические операции на основе визуальной среды и текстовых инструкций. Кроме английского и китайского, Qwen2-VL теперь также поддерживает понимание текста на разных языках в изображениях, включая большинство европейских языков, японский, корейский, арабский и вьетнамский."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct — это одна из последних серий больших языковых моделей, выпущенных Alibaba Cloud. Эта модель 72B демонстрирует значительные улучшения в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct — это одна из последних серий больших языковых моделей, выпущенных Alibaba Cloud. Эта модель 32B демонстрирует значительные улучшения в области кодирования и математики. Модель поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM, ориентированная на китайский и английский языки, охватывающая области языка, программирования, математики, рассуждений и др."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Эффективная и экономичная новая генерация модели Embedding, подходящая для поиска знаний, приложений RAG и других сценариев."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Открытая версия последнего поколения предобученной модели GLM-4, выпущенной Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) обеспечивает повышенные вычислительные возможности благодаря эффективным стратегиям и архитектуре модели."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity — это ведущий поставщик моделей генерации диалогов, предлагающий множество передовых моделей Llama 3.1, поддерживающих онлайн и оффлайн приложения, особенно подходящих для сложных задач обработки естественного языка."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paiouyun предоставляет стабильные и высокоэффективные API-сервисы для открытых моделей, поддерживающие всю серию DeepSeek, Llama, Qwen и другие ведущие модели в отрасли."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen — это сверхбольшая языковая модель, разработанная Alibaba Cloud, обладающая мощными возможностями понимания и генерации естественного языка. Она может отвечать на различные вопросы, создавать текстовый контент, выражать мнения и писать код, играя важную роль в различных областях."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Alt konular mevcut, silinemez",
80
80
  "regenerate": "Yeniden Oluştur"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Kredi",
85
+ "creditPricing": "Fiyatlandırma",
86
+ "creditTooltip": "Hesaplamayı kolaylaştırmak için, 1$'ı 1M kredi olarak hesaplıyoruz; örneğin, $3/M token, 3 kredi/token olarak hesaplanır.",
87
+ "pricing": {
88
+ "inputCachedTokens": "Önceden yüklenmiş giriş {{amount}}/kredi · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M karakter",
90
+ "inputMinutes": "${{amount}}/dakika",
91
+ "inputTokens": "Giriş {{amount}}/kredi · ${{amount}}/M",
92
+ "outputTokens": "Çıkış {{amount}}/kredi · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Giriş",
97
+ "inputAudio": "Ses girişi",
98
+ "inputCached": "Önceden yüklenmiş giriş",
99
+ "inputText": "Metin girişi",
100
+ "inputTitle": "Giriş detayları",
101
+ "inputUncached": "Önceden yüklenmemiş giriş",
102
+ "output": "Çıkış",
103
+ "outputAudio": "Ses çıkışı",
104
+ "outputText": "Metin çıkışı",
105
+ "outputTitle": "Çıkış detayları",
106
+ "reasoning": "Derin düşünme",
107
+ "title": "Üretim detayları",
108
+ "total": "Toplam tüketim"
109
+ }
110
+ },
82
111
  "newAgent": "Yeni Asistan",
83
112
  "pin": "Pin",
84
113
  "pinOff": "Unpin",