@lobehub/chat 1.68.3 → 1.68.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (112) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/README.md +3 -3
  3. package/README.zh-CN.md +14 -17
  4. package/changelog/v1.json +18 -0
  5. package/docs/usage/providers/azureai.mdx +69 -0
  6. package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
  7. package/docs/usage/providers/deepseek.mdx +3 -3
  8. package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
  9. package/docs/usage/providers/jina.mdx +51 -0
  10. package/docs/usage/providers/jina.zh-CN.mdx +51 -0
  11. package/docs/usage/providers/lmstudio.mdx +75 -0
  12. package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
  13. package/docs/usage/providers/nvidia.mdx +55 -0
  14. package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
  15. package/docs/usage/providers/ppio.mdx +7 -7
  16. package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
  17. package/docs/usage/providers/sambanova.mdx +50 -0
  18. package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
  19. package/docs/usage/providers/tencentcloud.mdx +49 -0
  20. package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
  21. package/docs/usage/providers/vertexai.mdx +59 -0
  22. package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
  23. package/docs/usage/providers/vllm.mdx +98 -0
  24. package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
  25. package/docs/usage/providers/volcengine.mdx +47 -0
  26. package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
  27. package/locales/ar/chat.json +29 -0
  28. package/locales/ar/models.json +48 -0
  29. package/locales/ar/providers.json +3 -0
  30. package/locales/bg-BG/chat.json +29 -0
  31. package/locales/bg-BG/models.json +48 -0
  32. package/locales/bg-BG/providers.json +3 -0
  33. package/locales/de-DE/chat.json +29 -0
  34. package/locales/de-DE/models.json +48 -0
  35. package/locales/de-DE/providers.json +3 -0
  36. package/locales/en-US/chat.json +29 -0
  37. package/locales/en-US/models.json +48 -0
  38. package/locales/en-US/providers.json +3 -3
  39. package/locales/es-ES/chat.json +29 -0
  40. package/locales/es-ES/models.json +48 -0
  41. package/locales/es-ES/providers.json +3 -0
  42. package/locales/fa-IR/chat.json +29 -0
  43. package/locales/fa-IR/models.json +48 -0
  44. package/locales/fa-IR/providers.json +3 -0
  45. package/locales/fr-FR/chat.json +29 -0
  46. package/locales/fr-FR/models.json +48 -0
  47. package/locales/fr-FR/providers.json +3 -0
  48. package/locales/it-IT/chat.json +29 -0
  49. package/locales/it-IT/models.json +48 -0
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/chat.json +29 -0
  52. package/locales/ja-JP/models.json +48 -0
  53. package/locales/ja-JP/providers.json +3 -0
  54. package/locales/ko-KR/chat.json +29 -0
  55. package/locales/ko-KR/models.json +48 -0
  56. package/locales/ko-KR/providers.json +3 -0
  57. package/locales/nl-NL/chat.json +29 -0
  58. package/locales/nl-NL/models.json +48 -0
  59. package/locales/nl-NL/providers.json +3 -0
  60. package/locales/pl-PL/chat.json +29 -0
  61. package/locales/pl-PL/models.json +48 -0
  62. package/locales/pl-PL/providers.json +3 -0
  63. package/locales/pt-BR/chat.json +29 -0
  64. package/locales/pt-BR/models.json +48 -0
  65. package/locales/pt-BR/providers.json +3 -0
  66. package/locales/ru-RU/chat.json +29 -0
  67. package/locales/ru-RU/models.json +48 -0
  68. package/locales/ru-RU/providers.json +3 -0
  69. package/locales/tr-TR/chat.json +29 -0
  70. package/locales/tr-TR/models.json +48 -0
  71. package/locales/tr-TR/providers.json +3 -0
  72. package/locales/vi-VN/chat.json +29 -0
  73. package/locales/vi-VN/models.json +48 -0
  74. package/locales/vi-VN/providers.json +3 -0
  75. package/locales/zh-CN/chat.json +29 -0
  76. package/locales/zh-CN/models.json +51 -3
  77. package/locales/zh-CN/providers.json +3 -4
  78. package/locales/zh-TW/chat.json +29 -0
  79. package/locales/zh-TW/models.json +48 -0
  80. package/locales/zh-TW/providers.json +3 -0
  81. package/package.json +1 -1
  82. package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
  83. package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
  84. package/packages/web-crawler/src/utils/errorType.ts +7 -0
  85. package/scripts/serverLauncher/startServer.js +11 -7
  86. package/src/config/modelProviders/index.ts +1 -1
  87. package/src/config/modelProviders/ppio.ts +1 -1
  88. package/src/features/Conversation/Extras/Assistant.tsx +12 -20
  89. package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
  90. package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
  91. package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
  92. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
  93. package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
  94. package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
  95. package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
  96. package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
  97. package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
  98. package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
  99. package/src/locales/default/chat.ts +30 -1
  100. package/src/server/routers/tools/search.ts +1 -1
  101. package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
  102. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  103. package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
  104. package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
  105. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
  106. package/src/store/chat/slices/message/action.ts +3 -0
  107. package/src/store/global/initialState.ts +1 -0
  108. package/src/store/global/selectors/systemStatus.ts +2 -0
  109. package/src/types/message/base.ts +18 -0
  110. package/src/types/message/chat.ts +4 -3
  111. package/src/utils/fetch/fetchSSE.ts +24 -1
  112. package/src/utils/format.ts +3 -1
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B supporte 16K Tokens, offrant une capacité de génération de langage efficace et fluide."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything, le dernier modèle de fine-tuning open source, avec 34 milliards de paramètres, prend en charge divers scénarios de dialogue, avec des données d'entraînement de haute qualité, alignées sur les préférences humaines."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything, le dernier modèle de fine-tuning open source, avec 9 milliards de paramètres, prend en charge divers scénarios de dialogue, avec des données d'entraînement de haute qualité, alignées sur les préférences humaines."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, en tant que membre important de la série de modèles AI de 360, répond à des applications variées de traitement de texte avec une efficacité élevée, supportant la compréhension de longs textes et les dialogues multi-tours."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 est un modèle multilingue lancé par Cohere, prenant en charge 23 langues, facilitant les applications linguistiques diversifiées."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B est un modèle de langage open source et commercialisable développé par Baichuan Intelligence, contenant 13 milliards de paramètres, qui a obtenu les meilleurs résultats dans des benchmarks chinois et anglais de référence."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 est conçu pour le jeu de rôle et l'accompagnement émotionnel, prenant en charge une mémoire multi-tours ultra-longue et des dialogues personnalisés, avec des applications variées."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B est un modèle de langage de grande taille basé sur Llama3.3 70B, qui utilise le fine-tuning des sorties de DeepSeek R1 pour atteindre des performances compétitives comparables aux grands modèles de pointe."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B est un modèle de langage distillé basé sur Llama-3.1-8B-Instruct, entraîné en utilisant les sorties de DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B est un modèle de langage distillé basé sur Qwen 2.5 14B, entraîné en utilisant les sorties de DeepSeek R1. Ce modèle a surpassé l'o1-mini d'OpenAI dans plusieurs benchmarks, atteignant des résultats de pointe pour les modèles denses. Voici quelques résultats de benchmarks :\nAIME 2024 pass@1 : 69.7\nMATH-500 pass@1 : 93.9\nCodeForces Rating : 1481\nCe modèle, affiné à partir des sorties de DeepSeek R1, démontre des performances compétitives comparables à celles de modèles de pointe de plus grande taille."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B est un modèle de langage distillé basé sur Qwen 2.5 32B, entraîné en utilisant les sorties de DeepSeek R1. Ce modèle a surpassé l'o1-mini d'OpenAI dans plusieurs benchmarks, atteignant des résultats de pointe pour les modèles denses. Voici quelques résultats de benchmarks :\nAIME 2024 pass@1 : 72.6\nMATH-500 pass@1 : 94.3\nCodeForces Rating : 1691\nCe modèle, affiné à partir des sorties de DeepSeek R1, démontre des performances compétitives comparables à celles de modèles de pointe de plus grande taille."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 est le dernier modèle open source publié par l'équipe DeepSeek, offrant des performances d'inférence très puissantes, atteignant des niveaux comparables à ceux du modèle o1 d'OpenAI, en particulier dans les tâches de mathématiques, de programmation et de raisonnement."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 a réalisé une percée majeure en termes de vitesse d'inférence par rapport aux modèles précédents. Il se classe au premier rang des modèles open source et peut rivaliser avec les modèles fermés les plus avancés au monde. DeepSeek-V3 utilise une architecture d'attention multi-tête (MLA) et DeepSeekMoE, qui ont été entièrement validées dans DeepSeek-V2. De plus, DeepSeek-V3 a introduit une stratégie auxiliaire sans perte pour l'équilibrage de charge et a établi des objectifs d'entraînement de prédiction multi-étiquettes pour obtenir de meilleures performances."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 a réalisé une percée majeure en termes de vitesse d'inférence par rapport aux modèles précédents. Il se classe au premier rang des modèles open source et peut rivaliser avec les modèles fermés les plus avancés au monde. DeepSeek-V3 utilise une architecture d'attention multi-tête (MLA) et DeepSeekMoE, qui ont été entièrement validées dans DeepSeek-V2. De plus, DeepSeek-V3 a introduit une stratégie auxiliaire sans perte pour l'équilibrage de charge et a établi des objectifs d'entraînement de prédiction multi-étiquettes pour obtenir de meilleures performances."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite est un modèle léger de nouvelle génération, offrant une vitesse de réponse extrême, avec des performances et des délais atteignant des niveaux de classe mondiale."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 est conçu pour traiter des tâches combinant des données visuelles et textuelles. Il excelle dans des tâches telles que la description d'images et les questions-réponses visuelles, comblant le fossé entre la génération de langage et le raisonnement visuel."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 est conçu pour traiter des tâches combinant des données visuelles et textuelles. Il excelle dans des tâches telles que la description d'images et les questions-réponses visuelles, comblant le fossé entre la génération de langage et le raisonnement visuel."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Initialisé avec le modèle de langage Qwen-7B, ajoutant un modèle d'image, un modèle pré-entraîné avec une résolution d'entrée d'image de 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 est la toute nouvelle série de modèles de langage de grande taille Qwen. Qwen2 7B est un modèle basé sur le transformateur, qui excelle dans la compréhension du langage, les capacités multilingues, la programmation, les mathématiques et le raisonnement."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 est une toute nouvelle série de modèles de langage de grande taille, offrant des capacités de compréhension et de génération plus puissantes."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL est la dernière version itérée du modèle Qwen-VL, atteignant des performances de pointe dans les benchmarks de compréhension visuelle, y compris MathVista, DocVQA, RealWorldQA et MTVQA. Qwen2-VL peut comprendre des vidéos de plus de 20 minutes pour des questions-réponses, des dialogues et de la création de contenu de haute qualité basés sur la vidéo. Il possède également des capacités de raisonnement et de décision complexes, pouvant être intégré à des appareils mobiles, des robots, etc., pour des opérations automatiques basées sur l'environnement visuel et des instructions textuelles. En plus de l'anglais et du chinois, Qwen2-VL prend désormais en charge la compréhension du texte dans différentes langues dans les images, y compris la plupart des langues européennes, le japonais, le coréen, l'arabe et le vietnamien."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage de grande taille publiés par Alibaba Cloud. Ce modèle de 72B présente des capacités significativement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct est l'un des derniers modèles de langage de grande taille publiés par Alibaba Cloud. Ce modèle de 32B présente des capacités significativement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM orienté vers le chinois et l'anglais, ciblant des domaines tels que la langue, la programmation, les mathématiques et le raisonnement."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Un modèle d'Embedding de nouvelle génération, efficace et économique, adapté à la recherche de connaissances, aux applications RAG, etc."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Version open source de la dernière génération de modèles pré-entraînés de la série GLM-4 publiée par Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) offre une capacité de calcul améliorée grâce à des stratégies et une architecture de modèle efficaces."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity est un fournisseur de modèles de génération de dialogue de premier plan, offrant divers modèles avancés Llama 3.1, prenant en charge les applications en ligne et hors ligne, particulièrement adaptés aux tâches complexes de traitement du langage naturel."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paiouyun offre des services API de modèles open source stables et rentables, prenant en charge toute la gamme DeepSeek, Llama, Qwen et d'autres grands modèles de pointe dans l'industrie."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Tongyi Qianwen est un modèle de langage à grande échelle développé de manière autonome par Alibaba Cloud, doté de puissantes capacités de compréhension et de génération du langage naturel. Il peut répondre à diverses questions, créer du contenu écrit, exprimer des opinions, rédiger du code, etc., jouant un rôle dans plusieurs domaines."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Esistono sottoargomenti, non è possibile eliminare",
80
80
  "regenerate": "Rigenera"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Crediti",
85
+ "creditPricing": "Prezzo",
86
+ "creditTooltip": "Per facilitare il conteggio, consideriamo 1$ equivalente a 1M crediti, ad esempio $3/M token equivalgono a 3 crediti/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Input memorizzato {{amount}}/crediti · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M caratteri",
90
+ "inputMinutes": "${{amount}}/minuto",
91
+ "inputTokens": "Input {{amount}}/crediti · ${{amount}}/M",
92
+ "outputTokens": "Output {{amount}}/crediti · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Input",
97
+ "inputAudio": "Input audio",
98
+ "inputCached": "Input memorizzato",
99
+ "inputText": "Input testo",
100
+ "inputTitle": "Dettagli input",
101
+ "inputUncached": "Input non memorizzato",
102
+ "output": "Output",
103
+ "outputAudio": "Output audio",
104
+ "outputText": "Output testo",
105
+ "outputTitle": "Dettagli output",
106
+ "reasoning": "Ragionamento profondo",
107
+ "title": "Dettagli generati",
108
+ "total": "Totale consumato"
109
+ }
110
+ },
82
111
  "newAgent": "Nuovo assistente",
83
112
  "pin": "Fissa in alto",
84
113
  "pinOff": "Annulla fissaggio in alto",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B supporta 16K Tokens, offrendo capacità di generazione linguistica efficienti e fluide."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything, il più recente modello open source fine-tuned, con 34 miliardi di parametri, supporta vari scenari di dialogo, con dati di addestramento di alta qualità, allineati alle preferenze umane."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything, il più recente modello open source fine-tuned, con 9 miliardi di parametri, supporta vari scenari di dialogo, con dati di addestramento di alta qualità, allineati alle preferenze umane."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, come membro importante della serie di modelli AI di 360, soddisfa le diverse applicazioni del linguaggio naturale con un'efficace capacità di elaborazione del testo, supportando la comprensione di testi lunghi e conversazioni a più turni."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 è un modello multilingue lanciato da Cohere, supporta 23 lingue, facilitando applicazioni linguistiche diversificate."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B è un modello di linguaggio open source sviluppato da Baichuan Intelligence, con 13 miliardi di parametri, che ha ottenuto i migliori risultati nella sua categoria in benchmark autorevoli sia in cinese che in inglese."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 è progettato per il gioco di ruolo e la compagnia emotiva, supporta una memoria multi-turno ultra-lunga e dialoghi personalizzati, con ampie applicazioni."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B è un grande modello di linguaggio basato su Llama3.3 70B, che utilizza il fine-tuning dell'output di DeepSeek R1 per raggiungere prestazioni competitive paragonabili a quelle dei modelli all'avanguardia di grandi dimensioni."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B è un modello di linguaggio distillato basato su Llama-3.1-8B-Instruct, addestrato utilizzando l'output di DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B è un modello di linguaggio distillato basato su Qwen 2.5 14B, addestrato utilizzando l'output di DeepSeek R1. Questo modello ha superato OpenAI's o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia per i modelli densi. Ecco alcuni risultati dei benchmark:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nQuesto modello, attraverso il fine-tuning dell'output di DeepSeek R1, ha dimostrato prestazioni competitive paragonabili a modelli all'avanguardia di dimensioni maggiori."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B è un modello di linguaggio distillato basato su Qwen 2.5 32B, addestrato utilizzando l'output di DeepSeek R1. Questo modello ha superato OpenAI's o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia per i modelli densi. Ecco alcuni risultati dei benchmark:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nQuesto modello, attraverso il fine-tuning dell'output di DeepSeek R1, ha dimostrato prestazioni competitive paragonabili a modelli all'avanguardia di dimensioni maggiori."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 è l'ultimo modello open source rilasciato dal team di DeepSeek, con prestazioni di inferenza eccezionali, in particolare nei compiti di matematica, programmazione e ragionamento, raggiungendo livelli comparabili a quelli del modello o1 di OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 ha realizzato un significativo progresso nella velocità di inferenza rispetto ai modelli precedenti. Si posiziona al primo posto tra i modelli open source e può competere con i modelli closed source più avanzati al mondo. DeepSeek-V3 utilizza l'architettura Multi-Head Latent Attention (MLA) e DeepSeekMoE, che sono state ampiamente validate in DeepSeek-V2. Inoltre, DeepSeek-V3 ha introdotto una strategia ausiliaria senza perdita per il bilanciamento del carico e ha stabilito obiettivi di addestramento per la previsione multi-etichetta per ottenere prestazioni superiori."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 ha realizzato un significativo progresso nella velocità di inferenza rispetto ai modelli precedenti. Si posiziona al primo posto tra i modelli open source e può competere con i modelli closed source più avanzati al mondo. DeepSeek-V3 utilizza l'architettura Multi-Head Latent Attention (MLA) e DeepSeekMoE, che sono state ampiamente validate in DeepSeek-V2. Inoltre, DeepSeek-V3 ha introdotto una strategia ausiliaria senza perdita per il bilanciamento del carico e ha stabilito obiettivi di addestramento per la previsione multi-etichetta per ottenere prestazioni superiori."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite è un modello leggero di nuova generazione, con una velocità di risposta eccezionale, raggiungendo standard di livello mondiale sia in termini di prestazioni che di latenza."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Si distingue in compiti come la descrizione delle immagini e il question answering visivo, colmando il divario tra generazione del linguaggio e ragionamento visivo."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Si distingue in compiti come la descrizione delle immagini e il question answering visivo, colmando il divario tra generazione del linguaggio e ragionamento visivo."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Inizializzato con il modello di linguaggio Qwen-7B, aggiunge un modello di immagine, con una risoluzione di input dell'immagine di 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 è la nuova serie di modelli di linguaggio Qwen. Qwen2 7B è un modello basato su transformer, che mostra prestazioni eccezionali nella comprensione del linguaggio, nelle capacità multilingue, nella programmazione, nella matematica e nel ragionamento."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 è una nuova serie di modelli di linguaggio di grandi dimensioni, con capacità di comprensione e generazione più forti."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL è l'ultima iterazione del modello Qwen-VL, raggiungendo prestazioni all'avanguardia nei benchmark di comprensione visiva, inclusi MathVista, DocVQA, RealWorldQA e MTVQA. Qwen2-VL è in grado di comprendere video di oltre 20 minuti, per domande e risposte, dialoghi e creazione di contenuti di alta qualità basati su video. Ha anche capacità di ragionamento e decisione complesse, che possono essere integrate con dispositivi mobili, robot e altro, per operazioni automatiche basate su ambienti visivi e istruzioni testuali. Oltre all'inglese e al cinese, Qwen2-VL ora supporta anche la comprensione di testi in diverse lingue all'interno delle immagini, comprese la maggior parte delle lingue europee, giapponese, coreano, arabo e vietnamita."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct è uno dei più recenti modelli di linguaggio rilasciati da Alibaba Cloud. Questo modello da 72B ha capacità notevolmente migliorate in campi come la codifica e la matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (in particolare JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct è uno dei più recenti modelli di linguaggio rilasciati da Alibaba Cloud. Questo modello da 32B ha capacità notevolmente migliorate in campi come la codifica e la matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (in particolare JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM orientato al cinese e all'inglese, focalizzato su linguaggio, programmazione, matematica, ragionamento e altro."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Modello di Embedding di nuova generazione, efficiente ed economico, adatto per la ricerca di conoscenza, applicazioni RAG e altri scenari."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "La versione open source dell'ultima generazione del modello pre-addestrato GLM-4 rilasciato da Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) offre capacità di calcolo potenziate attraverso strategie e architetture di modelli efficienti."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity è un fornitore leader di modelli di generazione di dialogo, offrendo vari modelli avanzati Llama 3.1, supportando applicazioni online e offline, particolarmente adatti per compiti complessi di elaborazione del linguaggio naturale."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paeou Cloud offre servizi API per modelli open source stabili e ad alto rapporto qualità-prezzo, supportando l'intera gamma di DeepSeek, Llama, Qwen e altri modelli di grandi dimensioni leader del settore."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen è un modello di linguaggio di grande scala sviluppato autonomamente da Alibaba Cloud, con potenti capacità di comprensione e generazione del linguaggio naturale. Può rispondere a varie domande, creare contenuti testuali, esprimere opinioni e scrivere codice, svolgendo un ruolo in vari settori."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "サブトピックが存在するため、削除できません。",
80
80
  "regenerate": "再生成"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "クレジット",
85
+ "creditPricing": "価格設定",
86
+ "creditTooltip": "カウントを容易にするために、1ドルを1Mクレジットに換算します。例えば、$3/Mトークンは3クレジット/トークンに相当します。",
87
+ "pricing": {
88
+ "inputCachedTokens": "キャッシュ入力 {{amount}}/クレジット · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M 文字",
90
+ "inputMinutes": "${{amount}}/分",
91
+ "inputTokens": "入力 {{amount}}/クレジット · ${{amount}}/M",
92
+ "outputTokens": "出力 {{amount}}/クレジット · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "入力",
97
+ "inputAudio": "音声入力",
98
+ "inputCached": "キャッシュ入力",
99
+ "inputText": "テキスト入力",
100
+ "inputTitle": "入力の詳細",
101
+ "inputUncached": "未キャッシュ入力",
102
+ "output": "出力",
103
+ "outputAudio": "音声出力",
104
+ "outputText": "テキスト出力",
105
+ "outputTitle": "出力の詳細",
106
+ "reasoning": "深い思考",
107
+ "title": "生成の詳細",
108
+ "total": "合計消費"
109
+ }
110
+ },
82
111
  "newAgent": "新しいエージェント",
83
112
  "pin": "ピン留め",
84
113
  "pinOff": "ピン留め解除",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9Bは16Kトークンをサポートし、高効率でスムーズな言語生成能力を提供します。"
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "零一万物、最新のオープンソース微調整モデル、340億パラメータ、微調整は多様な対話シーンをサポートし、高品質なトレーニングデータで人間の好みに合わせています。"
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "零一万物、最新のオープンソース微調整モデル、90億パラメータ、微調整は多様な対話シーンをサポートし、高品質なトレーニングデータで人間の好みに合わせています。"
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Proは360 AIモデルシリーズの重要なメンバーであり、高効率なテキスト処理能力を持ち、多様な自然言語アプリケーションシーンに対応し、長文理解や多輪対話などの機能をサポートします。"
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23は、Cohereが提供する多言語モデルであり、23の言語をサポートし、多様な言語アプリケーションを便利にします。"
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13Bは百川智能が開発した130億パラメータを持つオープンソースの商用大規模言語モデルで、権威ある中国語と英語のベンチマークで同サイズの中で最良の結果を達成しています。"
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3はキャラクター演技と感情的な伴侶のために設計されており、超長期の多段階記憶と個別化された対話をサポートし、幅広い用途に適しています。"
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70BはLlama3.3 70Bに基づく大規模言語モデルで、DeepSeek R1の出力を微調整に利用し、大規模な最前線モデルと同等の競争力のある性能を実現しています。"
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8BはLlama-3.1-8B-Instructに基づく蒸留大言語モデルで、DeepSeek R1の出力を使用してトレーニングされています。"
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14BはQwen 2.5 14Bに基づく蒸留大言語モデルで、DeepSeek R1の出力を使用してトレーニングされています。このモデルは複数のベンチマークテストでOpenAIのo1-miniを超え、密なモデル(dense models)の最新技術の成果を達成しました。以下は一部のベンチマークテストの結果です:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nこのモデルはDeepSeek R1の出力から微調整を行い、より大規模な最前線モデルと同等の競争力のある性能を示しています。"
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32BはQwen 2.5 32Bに基づく蒸留大言語モデルで、DeepSeek R1の出力を使用してトレーニングされています。このモデルは複数のベンチマークテストでOpenAIのo1-miniを超え、密なモデル(dense models)の最新技術の成果を達成しました。以下は一部のベンチマークテストの結果です:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nこのモデルはDeepSeek R1の出力から微調整を行い、より大規模な最前線モデルと同等の競争力のある性能を示しています。"
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1はDeepSeekチームが発表した最新のオープンソースモデルで、特に数学、プログラミング、推論タスクにおいてOpenAIのo1モデルと同等の推論性能を持っています。"
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3は推論速度において前のモデルに比べて大きなブレークスルーを達成しました。オープンソースモデルの中で1位にランクインし、世界の最先端のクローズドモデルと肩を並べることができます。DeepSeek-V3はマルチヘッド潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用しており、これらのアーキテクチャはDeepSeek-V2で完全に検証されています。さらに、DeepSeek-V3は負荷分散のための補助的な非損失戦略を開発し、より強力な性能を得るためにマルチラベル予測トレーニング目標を設定しました。"
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3は推論速度において前のモデルに比べて大きなブレークスルーを達成しました。オープンソースモデルの中で1位にランクインし、世界の最先端のクローズドモデルと肩を並べることができます。DeepSeek-V3はマルチヘッド潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用しており、これらのアーキテクチャはDeepSeek-V2で完全に検証されています。さらに、DeepSeek-V3は負荷分散のための補助的な非損失戦略を開発し、より強力な性能を得るためにマルチラベル予測トレーニング目標を設定しました。"
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-liteは全く新しい世代の軽量版モデルで、極限の応答速度を実現し、効果と遅延の両方で世界トップレベルに達しています。"
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2は、視覚とテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的な質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを超えています。"
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2は、視覚とテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的な質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを超えています。"
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Qwen-7B言語モデルを初期化し、画像モデルを追加した、画像入力解像度448の事前トレーニングモデルです。"
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2は全く新しいQwen大規模言語モデルシリーズです。Qwen2 7Bはトランスフォーマーに基づくモデルで、言語理解、多言語能力、プログラミング、数学、推論において優れた性能を示しています。"
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2は全く新しい大型言語モデルシリーズで、より強力な理解と生成能力を備えています。"
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VLはQwen-VLモデルの最新のイテレーションで、MathVista、DocVQA、RealWorldQA、MTVQAなどの視覚理解ベンチマークテストで最先端の性能を達成しました。Qwen2-VLは20分以上のビデオを理解し、高品質なビデオベースの質問応答、対話、コンテンツ作成を行うことができます。また、複雑な推論と意思決定能力を備えており、モバイルデバイスやロボットなどと統合し、視覚環境とテキスト指示に基づいて自動操作を行うことができます。英語と中国語に加えて、Qwen2-VLは現在、ほとんどのヨーロッパ言語、日本語、韓国語、アラビア語、ベトナム語など、異なる言語のテキストを画像内で理解することもサポートしています。"
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instructはアリババクラウドが発表した最新の大言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の向上を示しています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の追従、構造化データの理解、構造化出力(特にJSON)の生成においても顕著な向上を示しています。"
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instructはアリババクラウドが発表した最新の大言語モデルシリーズの一つです。この32Bモデルはコーディングや数学などの分野で顕著な能力の向上を示しています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の追従、構造化データの理解、構造化出力(特にJSON)の生成においても顕著な向上を示しています。"
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "中国語と英語に対応したLLMで、言語、プログラミング、数学、推論などの分野に特化しています。"
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "効率的で経済的な次世代埋め込みモデル、知識検索やRAGアプリケーションなどのシーンに適しています"
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "智谱AIが発表したGLM-4シリーズの最新世代の事前トレーニングモデルのオープンソース版です。"
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B)は、高効率の戦略とモデルアーキテクチャを通じて、強化された計算能力を提供します。"
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexityは、先進的な対話生成モデルの提供者であり、さまざまなLlama 3.1モデルを提供し、オンラインおよびオフラインアプリケーションをサポートし、特に複雑な自然言語処理タスクに適しています。"
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO パイオ云は、安定した高コストパフォーマンスのオープンソースモデル API サービスを提供し、DeepSeek の全シリーズ、Llama、Qwen などの業界をリードする大規模モデルをサポートしています。"
94
+ },
92
95
  "qwen": {
93
96
  "description": "通義千問は、アリババクラウドが独自に開発した超大規模言語モデルであり、強力な自然言語理解と生成能力を持っています。さまざまな質問に答えたり、文章を創作したり、意見を表現したり、コードを執筆したりすることができ、さまざまな分野で活躍しています。"
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "하위 주제가 존재하여 삭제할 수 없습니다.",
80
80
  "regenerate": "다시 생성"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "포인트",
85
+ "creditPricing": "가격",
86
+ "creditTooltip": "계산을 용이하게 하기 위해, 1$를 1M 포인트로 환산합니다. 예를 들어, $3/M 토큰은 3포인트/토큰으로 환산됩니다.",
87
+ "pricing": {
88
+ "inputCachedTokens": "캐시된 입력 {{amount}}/포인트 · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M 문자",
90
+ "inputMinutes": "${{amount}}/분",
91
+ "inputTokens": "입력 {{amount}}/포인트 · ${{amount}}/M",
92
+ "outputTokens": "출력 {{amount}}/포인트 · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "입력",
97
+ "inputAudio": "오디오 입력",
98
+ "inputCached": "입력 캐시",
99
+ "inputText": "텍스트 입력",
100
+ "inputTitle": "입력 세부사항",
101
+ "inputUncached": "입력 비캐시",
102
+ "output": "출력",
103
+ "outputAudio": "오디오 출력",
104
+ "outputText": "텍스트 출력",
105
+ "outputTitle": "출력 세부사항",
106
+ "reasoning": "심층 사고",
107
+ "title": "생성 세부사항",
108
+ "total": "총 소모"
109
+ }
110
+ },
82
111
  "newAgent": "새 도우미",
83
112
  "pin": "고정",
84
113
  "pinOff": "고정 해제",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B는 16K 토큰을 지원하며, 효율적이고 매끄러운 언어 생성 능력을 제공합니다."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "제로일 만물, 최신 오픈 소스 미세 조정 모델로, 340억 개의 매개변수를 가지고 있으며, 다양한 대화 시나리오를 지원하는 미세 조정, 고품질 훈련 데이터, 인간의 선호에 맞춘 조정을 제공합니다."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "제로일 만물, 최신 오픈 소스 미세 조정 모델로, 90억 개의 매개변수를 가지고 있으며, 다양한 대화 시나리오를 지원하는 미세 조정, 고품질 훈련 데이터, 인간의 선호에 맞춘 조정을 제공합니다."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro는 360 AI 모델 시리즈의 중요한 구성원으로, 다양한 자연어 응용 시나리오에 맞춘 효율적인 텍스트 처리 능력을 갖추고 있으며, 긴 텍스트 이해 및 다중 회화 기능을 지원합니다."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23은 Cohere에서 출시한 다국어 모델로, 23개 언어를 지원하여 다양한 언어 응용에 편리함을 제공합니다."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B는 백천 인공지능이 개발한 130억 개의 매개변수를 가진 오픈 소스 상용 대형 언어 모델로, 권위 있는 중국어 및 영어 벤치마크에서 동일한 크기에서 최고의 성과를 달성했습니다."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3는 역할 수행 및 감정 동반을 위해 설계된 모델로, 초장 다회 기억 및 개인화된 대화를 지원하여 광범위하게 사용됩니다."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B는 Llama3.3 70B를 기반으로 한 대형 언어 모델로, DeepSeek R1의 출력을 활용하여 대형 최첨단 모델과 동등한 경쟁 성능을 달성했습니다."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B는 Llama-3.1-8B-Instruct를 기반으로 한 증류 대형 언어 모델로, DeepSeek R1의 출력을 사용하여 훈련되었습니다."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B는 Qwen 2.5 14B를 기반으로 한 증류 대형 언어 모델로, DeepSeek R1의 출력을 사용하여 훈련되었습니다. 이 모델은 여러 벤치마크 테스트에서 OpenAI의 o1-mini를 초월하며, 밀집 모델(dense models)에서 최신 기술 선도 성과(state-of-the-art)를 달성했습니다. 다음은 몇 가지 벤치마크 테스트 결과입니다:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\n이 모델은 DeepSeek R1의 출력을 미세 조정하여 더 큰 규모의 최첨단 모델과 동등한 경쟁 성능을 보여주었습니다."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B는 Qwen 2.5 32B를 기반으로 한 증류 대형 언어 모델로, DeepSeek R1의 출력을 사용하여 훈련되었습니다. 이 모델은 여러 벤치마크 테스트에서 OpenAI의 o1-mini를 초월하며, 밀집 모델(dense models)에서 최신 기술 선도 성과(state-of-the-art)를 달성했습니다. 다음은 몇 가지 벤치마크 테스트 결과입니다:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\n이 모델은 DeepSeek R1의 출력을 미세 조정하여 더 큰 규모의 최첨단 모델과 동등한 경쟁 성능을 보여주었습니다."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1은 DeepSeek 팀이 발표한 최신 오픈 소스 모델로, 특히 수학, 프로그래밍 및 추론 작업에서 OpenAI의 o1 모델과 동등한 수준의 강력한 추론 성능을 갖추고 있습니다."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3는 추론 속도에서 이전 모델에 비해 중대한 돌파구를 이루었습니다. 오픈 소스 모델 중 1위를 차지하며, 세계에서 가장 진보된 폐쇄형 모델과 견줄 수 있습니다. DeepSeek-V3는 다중 헤드 잠재 주의(Multi-Head Latent Attention, MLA)와 DeepSeekMoE 아키텍처를 채택하였으며, 이 아키텍처는 DeepSeek-V2에서 철저히 검증되었습니다. 또한, DeepSeek-V3는 부하 균형을 위한 보조 무손실 전략을 개척하고, 더 강력한 성능을 위해 다중 레이블 예측 훈련 목표를 설정했습니다."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3는 추론 속도에서 이전 모델에 비해 중대한 돌파구를 이루었습니다. 오픈 소스 모델 중 1위를 차지하며, 세계에서 가장 진보된 폐쇄형 모델과 견줄 수 있습니다. DeepSeek-V3는 다중 헤드 잠재 주의(Multi-Head Latent Attention, MLA)와 DeepSeekMoE 아키텍처를 채택하였으며, 이 아키텍처는 DeepSeek-V2에서 철저히 검증되었습니다. 또한, DeepSeek-V3는 부하 균형을 위한 보조 무손실 전략을 개척하고, 더 강력한 성능을 위해 다중 레이블 예측 훈련 목표를 설정했습니다."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite는 전혀 새로운 세대의 경량 모델로, 극한의 응답 속도를 자랑하며, 효과와 지연 모두 세계 최고 수준에 도달했습니다."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Qwen-7B 언어 모델로 초기화된 모델로, 이미지 모델을 추가하여 이미지 입력 해상도가 448인 사전 훈련 모델입니다."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2는 새로운 Qwen 대형 언어 모델 시리즈입니다. Qwen2 7B는 트랜스포머 기반 모델로, 언어 이해, 다국어 능력, 프로그래밍, 수학 및 추론에서 뛰어난 성능을 보여줍니다."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2는 더 강력한 이해 및 생성 능력을 갖춘 새로운 대형 언어 모델 시리즈입니다."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL은 Qwen-VL 모델의 최신 반복 버전으로, MathVista, DocVQA, RealWorldQA 및 MTVQA와 같은 시각적 이해 벤치마크 테스트에서 최첨단 성능을 달성했습니다. Qwen2-VL은 20분 이상의 비디오를 이해할 수 있으며, 고품질의 비디오 기반 질문 응답, 대화 및 콘텐츠 생성에 사용됩니다. 또한 복잡한 추론 및 의사 결정 능력을 갖추고 있어, 모바일 장치, 로봇 등과 통합되어 시각적 환경 및 텍스트 지침에 따라 자동으로 작업을 수행할 수 있습니다. 영어와 중국어 외에도 Qwen2-VL은 이제 대부분의 유럽 언어, 일본어, 한국어, 아랍어 및 베트남어 등 다양한 언어의 텍스트를 이해할 수 있습니다."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct는 알리바바 클라우드에서 발표한 최신 대형 언어 모델 시리즈 중 하나입니다. 이 72B 모델은 코딩 및 수학 등 분야에서 현저한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공하며, 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 현저한 향상을 보였습니다."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct는 알리바바 클라우드에서 발표한 최신 대형 언어 모델 시리즈 중 하나입니다. 이 32B 모델은 코딩 및 수학 등 분야에서 현저한 개선된 능력을 가지고 있습니다. 이 모델은 29개 이상의 언어를 포함한 다국어 지원을 제공하며, 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 현저한 향상을 보였습니다."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "중국어와 영어를 위한 LLM으로, 언어, 프로그래밍, 수학, 추론 등 다양한 분야를 다룹니다."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "효율적이고 경제적인 차세대 임베딩 모델로, 지식 검색, RAG 애플리케이션 등 다양한 상황에 적합합니다."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "지프 AI가 발표한 GLM-4 시리즈 최신 세대의 사전 훈련 모델의 오픈 소스 버전입니다."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B)는 효율적인 전략과 모델 아키텍처를 통해 향상된 계산 능력을 제공합니다."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity는 선도적인 대화 생성 모델 제공업체로, 다양한 고급 Llama 3.1 모델을 제공하며, 온라인 및 오프라인 응용 프로그램을 지원하고 복잡한 자연어 처리 작업에 특히 적합합니다."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO 파이오 클라우드는 안정적이고 비용 효율적인 오픈 소스 모델 API 서비스를 제공하며, DeepSeek 전 시리즈, Llama, Qwen 등 업계 선도 대모델을 지원합니다."
94
+ },
92
95
  "qwen": {
93
96
  "description": "통의천문은 알리바바 클라우드가 자주 개발한 초대형 언어 모델로, 강력한 자연어 이해 및 생성 능력을 갖추고 있습니다. 다양한 질문에 답변하고, 텍스트 콘텐츠를 창작하며, 의견을 표현하고, 코드를 작성하는 등 여러 분야에서 활용됩니다."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Er zijn subonderwerpen, verwijderen is niet mogelijk.",
80
80
  "regenerate": "Opnieuw genereren"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Credits",
85
+ "creditPricing": "Prijsstelling",
86
+ "creditTooltip": "Voor de eenvoud van de berekening beschouwen we $1 als 1M credits, bijvoorbeeld $3/M tokens wordt omgezet naar 3 credits/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Gecacheerde invoer {{amount}}/credits · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M tekens",
90
+ "inputMinutes": "${{amount}}/minuut",
91
+ "inputTokens": "Invoer {{amount}}/credits · ${{amount}}/M",
92
+ "outputTokens": "Uitvoer {{amount}}/credits · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Invoer",
97
+ "inputAudio": "Audio-invoer",
98
+ "inputCached": "Gecacheerde invoer",
99
+ "inputText": "Tekstinvoer",
100
+ "inputTitle": "Invoerdetails",
101
+ "inputUncached": "Ongecacheerde invoer",
102
+ "output": "Uitvoer",
103
+ "outputAudio": "Audio-uitvoer",
104
+ "outputText": "Tekstuitvoer",
105
+ "outputTitle": "Uitvoerdetails",
106
+ "reasoning": "Diep nadenken",
107
+ "title": "Genereren van details",
108
+ "total": "Totaal verbruik"
109
+ }
110
+ },
82
111
  "newAgent": "Nieuwe assistent",
83
112
  "pin": "Vastzetten",
84
113
  "pinOff": "Vastzetten uitschakelen",