@lobehub/chat 1.68.3 → 1.68.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (112) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/README.md +3 -3
  3. package/README.zh-CN.md +14 -17
  4. package/changelog/v1.json +18 -0
  5. package/docs/usage/providers/azureai.mdx +69 -0
  6. package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
  7. package/docs/usage/providers/deepseek.mdx +3 -3
  8. package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
  9. package/docs/usage/providers/jina.mdx +51 -0
  10. package/docs/usage/providers/jina.zh-CN.mdx +51 -0
  11. package/docs/usage/providers/lmstudio.mdx +75 -0
  12. package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
  13. package/docs/usage/providers/nvidia.mdx +55 -0
  14. package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
  15. package/docs/usage/providers/ppio.mdx +7 -7
  16. package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
  17. package/docs/usage/providers/sambanova.mdx +50 -0
  18. package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
  19. package/docs/usage/providers/tencentcloud.mdx +49 -0
  20. package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
  21. package/docs/usage/providers/vertexai.mdx +59 -0
  22. package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
  23. package/docs/usage/providers/vllm.mdx +98 -0
  24. package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
  25. package/docs/usage/providers/volcengine.mdx +47 -0
  26. package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
  27. package/locales/ar/chat.json +29 -0
  28. package/locales/ar/models.json +48 -0
  29. package/locales/ar/providers.json +3 -0
  30. package/locales/bg-BG/chat.json +29 -0
  31. package/locales/bg-BG/models.json +48 -0
  32. package/locales/bg-BG/providers.json +3 -0
  33. package/locales/de-DE/chat.json +29 -0
  34. package/locales/de-DE/models.json +48 -0
  35. package/locales/de-DE/providers.json +3 -0
  36. package/locales/en-US/chat.json +29 -0
  37. package/locales/en-US/models.json +48 -0
  38. package/locales/en-US/providers.json +3 -3
  39. package/locales/es-ES/chat.json +29 -0
  40. package/locales/es-ES/models.json +48 -0
  41. package/locales/es-ES/providers.json +3 -0
  42. package/locales/fa-IR/chat.json +29 -0
  43. package/locales/fa-IR/models.json +48 -0
  44. package/locales/fa-IR/providers.json +3 -0
  45. package/locales/fr-FR/chat.json +29 -0
  46. package/locales/fr-FR/models.json +48 -0
  47. package/locales/fr-FR/providers.json +3 -0
  48. package/locales/it-IT/chat.json +29 -0
  49. package/locales/it-IT/models.json +48 -0
  50. package/locales/it-IT/providers.json +3 -0
  51. package/locales/ja-JP/chat.json +29 -0
  52. package/locales/ja-JP/models.json +48 -0
  53. package/locales/ja-JP/providers.json +3 -0
  54. package/locales/ko-KR/chat.json +29 -0
  55. package/locales/ko-KR/models.json +48 -0
  56. package/locales/ko-KR/providers.json +3 -0
  57. package/locales/nl-NL/chat.json +29 -0
  58. package/locales/nl-NL/models.json +48 -0
  59. package/locales/nl-NL/providers.json +3 -0
  60. package/locales/pl-PL/chat.json +29 -0
  61. package/locales/pl-PL/models.json +48 -0
  62. package/locales/pl-PL/providers.json +3 -0
  63. package/locales/pt-BR/chat.json +29 -0
  64. package/locales/pt-BR/models.json +48 -0
  65. package/locales/pt-BR/providers.json +3 -0
  66. package/locales/ru-RU/chat.json +29 -0
  67. package/locales/ru-RU/models.json +48 -0
  68. package/locales/ru-RU/providers.json +3 -0
  69. package/locales/tr-TR/chat.json +29 -0
  70. package/locales/tr-TR/models.json +48 -0
  71. package/locales/tr-TR/providers.json +3 -0
  72. package/locales/vi-VN/chat.json +29 -0
  73. package/locales/vi-VN/models.json +48 -0
  74. package/locales/vi-VN/providers.json +3 -0
  75. package/locales/zh-CN/chat.json +29 -0
  76. package/locales/zh-CN/models.json +51 -3
  77. package/locales/zh-CN/providers.json +3 -4
  78. package/locales/zh-TW/chat.json +29 -0
  79. package/locales/zh-TW/models.json +48 -0
  80. package/locales/zh-TW/providers.json +3 -0
  81. package/package.json +1 -1
  82. package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
  83. package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
  84. package/packages/web-crawler/src/utils/errorType.ts +7 -0
  85. package/scripts/serverLauncher/startServer.js +11 -7
  86. package/src/config/modelProviders/index.ts +1 -1
  87. package/src/config/modelProviders/ppio.ts +1 -1
  88. package/src/features/Conversation/Extras/Assistant.tsx +12 -20
  89. package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
  90. package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
  91. package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
  92. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
  93. package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
  94. package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
  95. package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
  96. package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
  97. package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
  98. package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
  99. package/src/locales/default/chat.ts +30 -1
  100. package/src/server/routers/tools/search.ts +1 -1
  101. package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
  102. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  103. package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
  104. package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
  105. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
  106. package/src/store/chat/slices/message/action.ts +3 -0
  107. package/src/store/global/initialState.ts +1 -0
  108. package/src/store/global/selectors/systemStatus.ts +2 -0
  109. package/src/types/message/base.ts +18 -0
  110. package/src/types/message/chat.ts +4 -3
  111. package/src/utils/fetch/fetchSSE.ts +24 -1
  112. package/src/utils/format.ts +3 -1
@@ -0,0 +1,98 @@
1
+ ---
2
+ title: 在 LobeChat 中使用 vLLM API Key
3
+ description: 学习如何在 LobeChat 中配置和使用 vLLM 语言模型,获取 API 密钥并开始对话。
4
+ tags:
5
+ - LobeChat
6
+ - vLLM
7
+ - API密钥
8
+ - Web UI
9
+ ---
10
+
11
+ # 在 LobeChat 中使用 vLLM
12
+
13
+ <Image alt={'在 LobeChat 中使用 vLLM'} cover src={'https://github.com/user-attachments/assets/1d77cca4-7363-4a46-9ad5-10604e111d7c'} />
14
+
15
+ [vLLM](https://github.com/vllm-project/vllm)是一个开源的本地大型语言模型(LLM)部署工具,允许用户在本地设备上高效运行 LLM 模型,并提供兼容 OpenAI API 的服务接口。
16
+
17
+ 本文档将指导你如何在 LobeChat 中使用 vLLM:
18
+
19
+ <Steps>
20
+ ### 步骤一:准备工作
21
+
22
+ vLLM 对于硬件和软件环境均有一定要求,请无比根据以下要求进行配置:
23
+
24
+ | 硬件需求 | |
25
+ | --------- | ----------------------------------------------------------------------- |
26
+ | GPU | - NVIDIA CUDA <br /> - AMD ROCm <br /> - Intel XPU |
27
+ | CPU | - Intel/AMD x86 <br /> - ARM AArch64 <br /> - Apple silicon |
28
+ | 其他 AI 加速器 | - Google TPU <br /> - Intel Gaudi <br /> - AWS Neuron <br /> - OpenVINO |
29
+
30
+ | 软件需求 |
31
+ | --------------------------------------- |
32
+ | - OS: Linux <br /> - Python: 3.9 – 3.12 |
33
+
34
+ ### 步骤二:安装 vLLM
35
+
36
+ 如果你正在使用 NVIDIA GPU,你可以直接使用`pip`安装 vLLM。但这里建议使用`uv`,它一个非常快速的 Python 环境管理器,来创建和管理 Python 环境。请按照[文档](https://docs.astral.sh/uv/#getting-started)安装 uv。安装 uv 后,你可以使用以下命令创建一个新的 Python 环境并安装 vLLM:
37
+
38
+ ```shell
39
+ uv venv myenv --python 3.12 --seed
40
+ source myenv/bin/activate
41
+ uv pip install vllm
42
+ ```
43
+
44
+ 另一种方法是使用`uv run`与`--with [dependency]`选项,这允许你运行`vllm serve`等命令而无需创建环境:
45
+
46
+ ```shell
47
+ uv run --with vllm vllm --help
48
+ ```
49
+
50
+ 你也可以使用 [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html) 来创建和管理你的 Python 环境。
51
+
52
+ ```shell
53
+ conda create -n myenv python=3.12 -y
54
+ conda activate myenv
55
+ pip install vllm
56
+ ```
57
+
58
+ <Callout type={"note"}>
59
+ 对于非 CUDA 平台,请参考[官方文档](https://docs.vllm.ai/en/latest/getting_started/installation/index.html#installation-index)了解如何安装 vLLM
60
+ </Callout>
61
+
62
+ ### 步骤三:启动本地服务
63
+
64
+ vLLM 可以部署为一个 OpenAI API 协议兼容的服务器。默认情况下,它将在 `http://localhost:8000` 启动服务器。你可以使用 `--host` 和 `--port` 参数指定地址。服务器目前一次仅运行一个模型。
65
+
66
+ 以下命令将启动一个 vLLM 服务器并运行 `Qwen2.5-1.5B-Instruct` 模型:
67
+
68
+ ```shell
69
+ vllm serve Qwen/Qwen2.5-1.5B-Instruct
70
+ ```
71
+
72
+ 你可以通过传递参数 `--api-key` 或环境变量 `VLLM_API_KEY` 来启用服务器检查头部中的 API 密钥。如不设置,则无需 API Key 即可访问。
73
+
74
+ <Callout type={'note'}>
75
+ 更详细的 vLLM 服务器配置,请参考[官方文档](https://docs.vllm.ai/en/latest/)
76
+ </Callout>
77
+
78
+ ### 步骤四:在 LobeChat 中配置 vLLM
79
+
80
+ - 访问 LobeChat 的 `应用设置`界面
81
+ - 在 `语言模型` 下找到 `vLLM` 的设置项
82
+
83
+ <Image alt={'填写 vLLM API 密钥'} inStep src={'https://github.com/user-attachments/assets/669c68bf-3f85-4a6f-bb08-d0d7fb7f7417'} />
84
+
85
+ - 打开 vLLM 服务商并填入 API 服务地址以及 API Key
86
+
87
+ <Callout type={"warning"}>
88
+ * 如果你的 vLLM 没有配置 API Key,请将 API Key 留空
89
+ * 如果你的 vLLM 运行在本地,请确保打开`客户端请求模式`
90
+ </Callout>
91
+
92
+ - 在下方的模型列表中添加你运行的模型
93
+ - 为你的助手选择一个 vLLM 运行的模型即可开始对话
94
+
95
+ <Image alt={'选择 vLLM 模型'} inStep src={'https://github.com/user-attachments/assets/fcdfb9c5-819a-488f-b28d-0857fe861219'} />
96
+ </Steps>
97
+
98
+ 至此你已经可以在 LobeChat 中使用 vLLM 提供的模型进行对话了。
@@ -0,0 +1,47 @@
1
+ ---
2
+ title: Using the Volcano Engine API Key in LobeChat
3
+ description: Learn how to configure and use the Volcano Engine AI model in LobeChat, obtain API keys, and start conversations.
4
+ tags:
5
+ - LobeChat
6
+ - Volcengine
7
+ - Doubao
8
+ - API Key
9
+ - Web UI
10
+ ---
11
+ # Using Volcengine in LobeChat
12
+
13
+ <Image alt={'Using Volcengine in LobeChat'} cover src={'https://github.com/user-attachments/assets/b9da065e-f964-44f2-8260-59e182be2729'} />
14
+
15
+ [Volcengine](https://www.volcengine.com/) is a cloud service platform under ByteDance that provides large language model (LLM) services through "Volcano Ark," supporting multiple mainstream models such as Baichuan Intelligent, Mobvoi, and more.
16
+
17
+ This document will guide you on how to use Volcengine in LobeChat:
18
+
19
+ <Steps>
20
+ ### Step 1: Obtain the Volcengine API Key
21
+ - First, visit the [Volcengine official website](https://www.volcengine.com/) and complete the registration and login process.
22
+ - Access the Volcengine console and navigate to [Volcano Ark](https://console.volcengine.com/ark/).
23
+
24
+ <Image alt={'Entering Volcano Ark API Management Page'} inStep src={'https://github.com/user-attachments/assets/d6ace96f-0398-4847-83e1-75c3004a0e8b'} />
25
+
26
+ - Go to the `API Key Management` menu and click `Create API Key`.
27
+ - Copy and save the created API Key.
28
+
29
+ ### Step 2: Configure Volcengine in LobeChat
30
+
31
+ - Navigate to the `Application Settings` page in LobeChat and select `AI Service Providers`.
32
+ - Find the `Volcengine` option in the provider list.
33
+
34
+ <Image alt={'Entering Volcengine API Key'} inStep src={'https://github.com/user-attachments/assets/237864d6-cc5d-4fe4-8a2b-c278016855c5'} />
35
+
36
+ - Open the Volcengine service provider and enter the obtained API Key.
37
+ - Choose a Volcengine model for your assistant to start the conversation.
38
+
39
+ <Image alt={'Selecting a Volcengine Model'} inStep src={'https://github.com/user-attachments/assets/702c191f-8250-4462-aed7-accb18b18dea'} />
40
+
41
+ <Callout type={'warning'}>
42
+ During usage, you may need to pay the API service provider, so please refer to Volcengine's pricing policy.
43
+ </Callout>
44
+
45
+ </Steps>
46
+
47
+ You can now use the models provided by Volcengine for conversations in LobeChat.
@@ -0,0 +1,48 @@
1
+ ---
2
+ title: 在 LobeChat 中使用火山引擎 API Key
3
+ description: 学习如何在 LobeChat 中配置和使用火山引擎 AI 模型,获取 API 密钥并开始对话。
4
+ tags:
5
+ - LobeChat
6
+ - 火山引擎
7
+ - 豆包
8
+ - API密钥
9
+ - Web UI
10
+ ---
11
+
12
+ # 在 LobeChat 中使用火山引擎
13
+
14
+ <Image alt={'在 LobeChat 中使用火山引擎'} cover src={'https://github.com/user-attachments/assets/b9da065e-f964-44f2-8260-59e182be2729'} />
15
+
16
+ [火山引擎](https://www.volcengine.com/)是字节跳动旗下的云服务平台,通过 "火山方舟" 提供大型语言模型 (LLM) 服务,支持多个主流模型如百川智能、Mobvoi 等。
17
+
18
+ 本文档将指导你如何在 LobeChat 中使用火山引擎:
19
+
20
+ <Steps>
21
+ ### 步骤一:获取火山引擎 API 密钥
22
+
23
+ - 首先,访问[火山引擎官网](https://www.volcengine.com/)并完成注册登录
24
+ - 进入火山引擎控制台并导航至[火山方舟](https://console.volcengine.com/ark/)
25
+
26
+ <Image alt={'进入火山方舟API管理页面'} inStep src={'https://github.com/user-attachments/assets/d6ace96f-0398-4847-83e1-75c3004a0e8b'} />
27
+
28
+ - 进入 `API key 管理` 菜单,并点击 `创建 API Key`
29
+ - 复制并保存创建好的 API Key
30
+
31
+ ### 步骤二:在 LobeChat 中配置火山引擎
32
+
33
+ - 访问 LobeChat 的 `应用设置` 的 `AI 服务供应商` 界面
34
+ - 在供应商列表中找到 `火山引擎` 的设置项
35
+
36
+ <Image alt={'填写火山引擎 API 密钥'} inStep src={'https://github.com/user-attachments/assets/237864d6-cc5d-4fe4-8a2b-c278016855c5'} />
37
+
38
+ - 打开火山引擎服务商并填入获取的 API 密钥
39
+ - 为你的助手选择一个火山引擎模型即可开始对话
40
+
41
+ <Image alt={'选择火山引擎模型'} inStep src={'https://github.com/user-attachments/assets/702c191f-8250-4462-aed7-accb18b18dea'} />
42
+
43
+ <Callout type={'warning'}>
44
+ 在使用过程中你可能需要向 API 服务提供商付费,请参考火山引擎的相关费用政策。
45
+ </Callout>
46
+ </Steps>
47
+
48
+ 至此你已经可以在 LobeChat 中使用火山引擎提供的模型进行对话了。
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "يوجد موضوعات فرعية، لا يمكن الحذف",
80
80
  "regenerate": "إعادة الإنشاء"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "نقاط",
85
+ "creditPricing": "التسعير",
86
+ "creditTooltip": "لتسهيل العد، نقوم بتحويل 1$ إلى 1M نقطة، على سبيل المثال، 3$/M رموز تعني 3 نقاط/رمز",
87
+ "pricing": {
88
+ "inputCachedTokens": "مدخلات مخزنة {{amount}}/نقطة · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M حرف",
90
+ "inputMinutes": "${{amount}}/دقيقة",
91
+ "inputTokens": "مدخلات {{amount}}/نقطة · ${{amount}}/M",
92
+ "outputTokens": "مخرجات {{amount}}/نقطة · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "مدخلات",
97
+ "inputAudio": "مدخلات صوتية",
98
+ "inputCached": "مدخلات مخزنة",
99
+ "inputText": "مدخلات نصية",
100
+ "inputTitle": "تفاصيل المدخلات",
101
+ "inputUncached": "مدخلات غير مخزنة",
102
+ "output": "مخرجات",
103
+ "outputAudio": "مخرجات صوتية",
104
+ "outputText": "مخرجات نصية",
105
+ "outputTitle": "تفاصيل المخرجات",
106
+ "reasoning": "تفكير عميق",
107
+ "title": "تفاصيل التوليد",
108
+ "total": "الإجمالي المستهلك"
109
+ }
110
+ },
82
111
  "newAgent": "مساعد جديد",
83
112
  "pin": "تثبيت",
84
113
  "pinOff": "إلغاء التثبيت",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B يدعم 16K توكن، ويوفر قدرة توليد لغوية فعالة وسلسة."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything، أحدث نموذج مفتوح المصدر تم تعديله، يحتوي على 34 مليار معلمة، ويدعم تعديلات متعددة لمشاهد الحوار، مع بيانات تدريب عالية الجودة تتماشى مع تفضيلات البشر."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything، أحدث نموذج مفتوح المصدر تم تعديله، يحتوي على 9 مليار معلمة، ويدعم تعديلات متعددة لمشاهد الحوار، مع بيانات تدريب عالية الجودة تتماشى مع تفضيلات البشر."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro كعضو مهم في سلسلة نماذج 360 AI، يلبي احتياجات معالجة النصوص المتنوعة بفعالية، ويدعم فهم النصوص الطويلة والحوار المتعدد الجولات."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 هو نموذج متعدد اللغات أطلقته Cohere، يدعم 23 لغة، مما يسهل التطبيقات اللغوية المتنوعة."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B هو نموذج لغوي كبير مفتوح المصدر قابل للاستخدام التجاري تم تطويره بواسطة Baichuan Intelligence، ويحتوي على 13 مليار معلمة، وقد حقق أفضل النتائج في المعايير الصينية والإنجليزية."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 مصمم خصيصًا للأدوار التفاعلية والمرافقة العاطفية، يدعم ذاكرة متعددة الجولات طويلة الأمد وحوارات مخصصة، ويستخدم على نطاق واسع."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B هو نموذج لغوي كبير يعتمد على Llama3.3 70B، حيث يحقق أداءً تنافسيًا مماثلاً للنماذج الرائدة الكبيرة من خلال استخدام التعديلات المستندة إلى مخرجات DeepSeek R1."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B هو نموذج لغوي كبير مكرر يعتمد على Llama-3.1-8B-Instruct، تم تدريبه باستخدام مخرجات DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B هو نموذج لغوي كبير مكرر يعتمد على Qwen 2.5 14B، تم تدريبه باستخدام مخرجات DeepSeek R1. لقد تفوق هذا النموذج في العديد من اختبارات المعايير على نموذج OpenAI o1-mini، محققًا أحدث الإنجازات التقنية في النماذج الكثيفة. فيما يلي بعض نتائج اختبارات المعايير:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nتصنيف CodeForces: 1481\nأظهر هذا النموذج أداءً تنافسيًا مماثلاً للنماذج الرائدة الأكبر حجمًا من خلال التعديل المستند إلى مخرجات DeepSeek R1."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B هو نموذج لغوي كبير مكرر يعتمد على Qwen 2.5 32B، تم تدريبه باستخدام مخرجات DeepSeek R1. لقد تفوق هذا النموذج في العديد من اختبارات المعايير على نموذج OpenAI o1-mini، محققًا أحدث الإنجازات التقنية في النماذج الكثيفة. فيما يلي بعض نتائج اختبارات المعايير:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nتصنيف CodeForces: 1691\nأظهر هذا النموذج أداءً تنافسيًا مماثلاً للنماذج الرائدة الأكبر حجمًا من خلال التعديل المستند إلى مخرجات DeepSeek R1."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 هو أحدث نموذج مفتوح المصدر أطلقه فريق DeepSeek، ويتميز بأداء استدلال قوي للغاية، خاصة في المهام الرياضية والبرمجة والاستدلال، حيث وصل إلى مستوى مماثل لنموذج OpenAI o1."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "حقق DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج المفتوحة المصدر، ويمكن مقارنته بأحدث النماذج المغلقة على مستوى العالم. يعتمد DeepSeek-V3 على بنية الانتباه المتعدد الرؤوس (MLA) وبنية DeepSeekMoE، والتي تم التحقق منها بشكل شامل في DeepSeek-V2. بالإضافة إلى ذلك، قدم DeepSeek-V3 استراتيجية مساعدة غير مدمرة للتوازن في الحمل، وحدد أهداف تدريب متعددة التسمية لتحقيق أداء أقوى."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "حقق DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج المفتوحة المصدر، ويمكن مقارنته بأحدث النماذج المغلقة على مستوى العالم. يعتمد DeepSeek-V3 على بنية الانتباه المتعدد الرؤوس (MLA) وبنية DeepSeekMoE، والتي تم التحقق منها بشكل شامل في DeepSeek-V2. بالإضافة إلى ذلك، قدم DeepSeek-V3 استراتيجية مساعدة غير مدمرة للتوازن في الحمل، وحدد أهداف تدريب متعددة التسمية لتحقيق أداء أقوى."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "دو باو 1.5 لايت هو نموذج الجيل الجديد الخفيف، مع سرعة استجابة قصوى، حيث يصل الأداء والوقت المستغرق إلى مستوى عالمي."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يتفوق في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة والاستدلال البصري."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يتفوق في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة والاستدلال البصري."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "نموذج تم تدريبه باستخدام نموذج Qwen-7B اللغوي، مع إضافة نموذج الصور، بدقة إدخال الصور 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 هو سلسلة جديدة من نماذج اللغة الكبيرة Qwen. Qwen2 7B هو نموذج يعتمد على بنية transformer، ويظهر أداءً ممتازًا في فهم اللغة، والقدرات متعددة اللغات، والبرمجة، والرياضيات، والاستدلال."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 هو سلسلة جديدة من نماذج اللغة الكبيرة، تتمتع بقدرات فهم وتوليد أقوى."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL هو الإصدار الأحدث من نموذج Qwen-VL، وقد حقق أداءً متقدمًا في اختبارات الفهم البصري، بما في ذلك MathVista وDocVQA وRealWorldQA وMTVQA. يمكن لـ Qwen2-VL فهم مقاطع الفيديو التي تزيد مدتها عن 20 دقيقة، مما يتيح إجابات عالية الجودة على الأسئلة المستندة إلى الفيديو، والمحادثات، وإنشاء المحتوى. كما يتمتع بقدرات استدلال واتخاذ قرارات معقدة، ويمكن دمجه مع الأجهزة المحمولة والروبوتات، مما يتيح التشغيل التلقائي بناءً على البيئة البصرية والتعليمات النصية. بالإضافة إلى الإنجليزية والصينية، يدعم Qwen2-VL الآن فهم النصوص بلغات مختلفة في الصور، بما في ذلك معظم اللغات الأوروبية واليابانية والكورية والعربية والفيتنامية."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج 72B بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر النموذج دعمًا متعدد اللغات، يغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. وقد حقق النموذج تحسينات ملحوظة في اتباع التعليمات وفهم البيانات الهيكلية وتوليد المخرجات الهيكلية (خاصة JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج 32B بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر النموذج دعمًا متعدد اللغات، يغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. وقد حقق النموذج تحسينات ملحوظة في اتباع التعليمات وفهم البيانات الهيكلية وتوليد المخرجات الهيكلية (خاصة JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "نموذج لغوي موجه للغة الصينية والإنجليزية، يستهدف مجالات اللغة، والبرمجة، والرياضيات، والاستدلال، وغيرها."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "نموذج التضمين من الجيل الجديد، فعال واقتصادي، مناسب لاسترجاع المعرفة وتطبيقات RAG وغيرها."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "الإصدار المفتوح من الجيل الأحدث من نموذج GLM-4 الذي أطلقته Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) يوفر قدرة حسابية معززة من خلال استراتيجيات فعالة وهندسة نموذجية."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity هي شركة رائدة في تقديم نماذج توليد الحوار، تقدم مجموعة من نماذج Llama 3.1 المتقدمة، تدعم التطبيقات عبر الإنترنت وغير المتصلة، وتناسب بشكل خاص مهام معالجة اللغة الطبيعية المعقدة."
91
91
  },
92
+ "ppio": {
93
+ "description": "تقدم PPIO بايو السحابية خدمات واجهة برمجة التطبيقات لنماذج مفتوحة المصدر مستقرة وذات تكلفة فعالة، تدعم جميع سلسلة DeepSeek، وLlama، وQwen، وغيرها من النماذج الكبيرة الرائدة في الصناعة."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen هو نموذج لغة ضخم تم تطويره ذاتيًا بواسطة Alibaba Cloud، يتمتع بقدرات قوية في فهم وتوليد اللغة الطبيعية. يمكنه الإجابة على مجموعة متنوعة من الأسئلة، وكتابة المحتوى، والتعبير عن الآراء، وكتابة الشيفرات، ويؤدي دورًا في مجالات متعددة."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Съществуват подтеми, не можете да изтриете.",
80
80
  "regenerate": "Прегенерирай"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Кредити",
85
+ "creditPricing": "Ценообразуване",
86
+ "creditTooltip": "За удобство при броенето, 1$ се преобразува в 1M кредити, например $3/M токени се преобразува в 3 кредита/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Кеширани входящи {{amount}}/кредити · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M символи",
90
+ "inputMinutes": "${{amount}}/минута",
91
+ "inputTokens": "Входящи {{amount}}/кредити · ${{amount}}/M",
92
+ "outputTokens": "Изходящи {{amount}}/кредити · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Вход",
97
+ "inputAudio": "Аудио вход",
98
+ "inputCached": "Кеширан вход",
99
+ "inputText": "Текстов вход",
100
+ "inputTitle": "Детайли за входа",
101
+ "inputUncached": "Некеширан вход",
102
+ "output": "Изход",
103
+ "outputAudio": "Аудио изход",
104
+ "outputText": "Текстов изход",
105
+ "outputTitle": "Детайли за изхода",
106
+ "reasoning": "Дълбочинно разсъждение",
107
+ "title": "Детайли за генериране",
108
+ "total": "Общо разходи"
109
+ }
110
+ },
82
111
  "newAgent": "Нов агент",
83
112
  "pin": "Закачи",
84
113
  "pinOff": "Откачи",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B поддържа 16K токена, предоставяйки ефективни и плавни способности за генериране на език."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "零一万物, най-новият отворен модел с фина настройка, с 34 милиарда параметри, който поддържа множество диалогови сценарии, с висококачествени обучителни данни, съобразени с човешките предпочитания."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "零一万物, най-новият отворен модел с фина настройка, с 9 милиарда параметри, който поддържа множество диалогови сценарии, с висококачествени обучителни данни, съобразени с човешките предпочитания."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, като важен член на серията AI модели на 360, отговаря на разнообразни приложения на естествения език с ефективни способности за обработка на текст, поддържайки разбиране на дълги текстове и многостепенни диалози."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 е многозначен модел, представен от Cohere, поддържащ 23 езика, предоставяйки удобство за многоезични приложения."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B е отворен, комерсиален голям езиков модел, разработен от Baichuan Intelligence, с 13 милиарда параметри, който постига най-добрите резултати в своя размер на авторитетни бенчмаркове на китайски и английски."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 е проектиран за ролеви игри и емоционално придружаване, поддържаща дълга многократна памет и персонализиран диалог, с широко приложение."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B е голям езиков модел, базиран на Llama3.3 70B, който използва фина настройка на изхода на DeepSeek R1, за да постигне конкурентна производителност, сравнима с големите водещи модели."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B е дестилиран голям езиков модел, базиран на Llama-3.1-8B-Instruct, обучен с изхода на DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B е дестилиран голям езиков модел, базиран на Qwen 2.5 14B, обучен с изхода на DeepSeek R1. Този модел надминава o1-mini на OpenAI в множество бенчмарков, постигащи най-съвременни резултати за плътни модели. Ето някои от резултатите от бенчмарковете:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nТози модел демонстрира конкурентна производителност, сравнима с по-големи водещи модели, благодарение на фина настройка на изхода на DeepSeek R1."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B е дестилиран голям езиков модел, базиран на Qwen 2.5 32B, обучен с изхода на DeepSeek R1. Този модел надминава o1-mini на OpenAI в множество бенчмарков, постигащи най-съвременни резултати за плътни модели. Ето някои от резултатите от бенчмарковете:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nТози модел демонстрира конкурентна производителност, сравнима с по-големи водещи модели, благодарение на фина настройка на изхода на DeepSeek R1."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 е най-новият отворен модел, публикуван от екипа на DeepSeek, който предлага изключителна производителност при извеждане, особено в математически, програмистки и логически задачи, достигайки ниво, сравнимо с модела o1 на OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 постига значителен напредък в скоростта на извеждане в сравнение с предишните модели. Той е на първо място сред отворените модели и може да се сравнява с най-съвременните затворени модели в света. DeepSeek-V3 използва архитектури с многоглаво внимание (MLA) и DeepSeekMoE, които бяха напълно валидирани в DeepSeek-V2. Освен това, DeepSeek-V3 въвежда помощна беззагубна стратегия за баланс на натоварването и задава цели за обучение с множество етикети, за да постигне по-силна производителност."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 постига значителен напредък в скоростта на извеждане в сравнение с предишните модели. Той е на първо място сред отворените модели и може да се сравнява с най-съвременните затворени модели в света. DeepSeek-V3 използва архитектури с многоглаво внимание (MLA) и DeepSeekMoE, които бяха напълно валидирани в DeepSeek-V2. Освен това, DeepSeek-V3 въвежда помощна беззагубна стратегия за баланс на натоварването и задава цели за обучение с множество етикети, за да постигне по-силна производителност."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite е ново поколение лек модел, с изключителна скорост на отговор, който постига световно ниво както по отношение на ефективността, така и на времето за реакция."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 е проектиран да обработва задачи, свързващи визуални и текстови данни. Той показва отлични резултати в задачи като описание на изображения и визуални въпроси, преодолявайки пропастта между генерирането на език и визуалното разсъждение."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 е проектиран да обработва задачи, свързващи визуални и текстови данни. Той показва отлични резултати в задачи като описание на изображения и визуални въпроси, преодолявайки пропастта между генерирането на език и визуалното разсъждение."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Инициализиран с езиковия модел Qwen-7B, добавя модел за изображения, предтренировъчен модел с резолюция на входа от 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 е новата серия големи езикови модели Qwen. Qwen2 7B е модел, базиран на трансформатор, който показва отлични резултати в разбирането на езика, многоезичните способности, програмирането, математиката и разсъжденията."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 е нова серия от големи езикови модели с по-силни способности за разбиране и генериране."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL е най-новата итерация на модела Qwen-VL, постигайки най-съвременни резултати в бенчмарковете за визуално разбиране, включително MathVista, DocVQA, RealWorldQA и MTVQA. Qwen2-VL може да разбира видеа с продължителност над 20 минути, за висококачествени въпроси и отговори, диалози и създаване на съдържание, базирани на видео. Той също така притежава сложни способности за разсъждение и вземане на решения, които могат да се интегрират с мобилни устройства, роботи и др., за автоматични операции на базата на визуална среда и текстови инструкции. Освен английски и китайски, Qwen2-VL сега поддържа и разбиране на текст на различни езици в изображения, включително повечето европейски езици, японски, корейски, арабски и виетнамски."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct е една от най-новите серии големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел има значителни подобрения в области като кодиране и математика. Моделът предлага и многоезична поддръжка, обхващаща над 29 езика, включително китайски и английски. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct е една от най-новите серии големи езикови модели, публикувани от Alibaba Cloud. Този 32B модел има значителни подобрения в области като кодиране и математика. Моделът предлага и многоезична поддръжка, обхващаща над 29 езика, включително китайски и английски. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM, насочен към китайски и английски, за области като език, програмиране, математика и разсъждение."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Ефективен и икономичен ново поколение модел за вграждане, подходящ за извличане на знания, RAG приложения и други сценарии."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "GLM-4 е последната версия на предварително обучен модел от серията, публикувана от Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) предлага подобрена изчислителна мощ чрез ефективни стратегии и архитектура на модела."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity е водещ доставчик на модели за генериране на диалози, предлагащ множество напреднали модели Llama 3.1, поддържащи онлайн и офлайн приложения, особено подходящи за сложни задачи по обработка на естествен език."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO ПайОу облак предлага стабилни и икономически изгодни API услуги за отворени модели, поддържащи цялата серия DeepSeek, Llama, Qwen и други водещи модели в индустрията."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen е самостоятелно разработен свръхголям езиков модел на Alibaba Cloud, с мощни способности за разбиране и генериране на естествен език. Може да отговаря на различни въпроси, да създава текстово съдържание, да изразява мнения и да пише код, играейки роля в множество области."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Es gibt Unterthemen, die Löschung ist nicht möglich.",
80
80
  "regenerate": "Neu generieren"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Punkte",
85
+ "creditPricing": "Preisgestaltung",
86
+ "creditTooltip": "Zur Vereinfachung der Zählung rechnen wir 1$ als 1M Punkte um, zum Beispiel werden $3/M Tokens als 3 Punkte/token umgerechnet",
87
+ "pricing": {
88
+ "inputCachedTokens": "Zwischengespeicherte Eingabe {{amount}}/Punkte · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M Zeichen",
90
+ "inputMinutes": "${{amount}}/Minute",
91
+ "inputTokens": "Eingabe {{amount}}/Punkte · ${{amount}}/M",
92
+ "outputTokens": "Ausgabe {{amount}}/Punkte · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Eingabe",
97
+ "inputAudio": "Audioeingabe",
98
+ "inputCached": "Eingabe zwischengespeichert",
99
+ "inputText": "Text-Eingabe",
100
+ "inputTitle": "Eingabedetails",
101
+ "inputUncached": "Eingabe nicht zwischengespeichert",
102
+ "output": "Ausgabe",
103
+ "outputAudio": "Audioausgabe",
104
+ "outputText": "Text-Ausgabe",
105
+ "outputTitle": "Ausgabedetails",
106
+ "reasoning": "Tiefes Denken",
107
+ "title": "Generierungsdetails",
108
+ "total": "Gesamter Verbrauch"
109
+ }
110
+ },
82
111
  "newAgent": "Neuer Assistent",
83
112
  "pin": "Anheften",
84
113
  "pinOff": "Anheften aufheben",