@lobehub/chat 1.68.3 → 1.68.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/README.md +3 -3
- package/README.zh-CN.md +14 -17
- package/changelog/v1.json +18 -0
- package/docs/usage/providers/azureai.mdx +69 -0
- package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
- package/docs/usage/providers/deepseek.mdx +3 -3
- package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
- package/docs/usage/providers/jina.mdx +51 -0
- package/docs/usage/providers/jina.zh-CN.mdx +51 -0
- package/docs/usage/providers/lmstudio.mdx +75 -0
- package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
- package/docs/usage/providers/nvidia.mdx +55 -0
- package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
- package/docs/usage/providers/ppio.mdx +7 -7
- package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
- package/docs/usage/providers/sambanova.mdx +50 -0
- package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
- package/docs/usage/providers/tencentcloud.mdx +49 -0
- package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
- package/docs/usage/providers/vertexai.mdx +59 -0
- package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
- package/docs/usage/providers/vllm.mdx +98 -0
- package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
- package/docs/usage/providers/volcengine.mdx +47 -0
- package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
- package/locales/ar/chat.json +29 -0
- package/locales/ar/models.json +48 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/chat.json +29 -0
- package/locales/bg-BG/models.json +48 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/chat.json +29 -0
- package/locales/de-DE/models.json +48 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/chat.json +29 -0
- package/locales/en-US/models.json +48 -0
- package/locales/en-US/providers.json +3 -3
- package/locales/es-ES/chat.json +29 -0
- package/locales/es-ES/models.json +48 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/chat.json +29 -0
- package/locales/fa-IR/models.json +48 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/chat.json +29 -0
- package/locales/fr-FR/models.json +48 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/chat.json +29 -0
- package/locales/it-IT/models.json +48 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/chat.json +29 -0
- package/locales/ja-JP/models.json +48 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/chat.json +29 -0
- package/locales/ko-KR/models.json +48 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/chat.json +29 -0
- package/locales/nl-NL/models.json +48 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/chat.json +29 -0
- package/locales/pl-PL/models.json +48 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/chat.json +29 -0
- package/locales/pt-BR/models.json +48 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/chat.json +29 -0
- package/locales/ru-RU/models.json +48 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/chat.json +29 -0
- package/locales/tr-TR/models.json +48 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/chat.json +29 -0
- package/locales/vi-VN/models.json +48 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/chat.json +29 -0
- package/locales/zh-CN/models.json +51 -3
- package/locales/zh-CN/providers.json +3 -4
- package/locales/zh-TW/chat.json +29 -0
- package/locales/zh-TW/models.json +48 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
- package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
- package/packages/web-crawler/src/utils/errorType.ts +7 -0
- package/scripts/serverLauncher/startServer.js +11 -7
- package/src/config/modelProviders/index.ts +1 -1
- package/src/config/modelProviders/ppio.ts +1 -1
- package/src/features/Conversation/Extras/Assistant.tsx +12 -20
- package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
- package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
- package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
- package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
- package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
- package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
- package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
- package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
- package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
- package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
- package/src/locales/default/chat.ts +30 -1
- package/src/server/routers/tools/search.ts +1 -1
- package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
- package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
- package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
- package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
- package/src/store/chat/slices/message/action.ts +3 -0
- package/src/store/global/initialState.ts +1 -0
- package/src/store/global/selectors/systemStatus.ts +2 -0
- package/src/types/message/base.ts +18 -0
- package/src/types/message/chat.ts +4 -3
- package/src/utils/fetch/fetchSSE.ts +24 -1
- package/src/utils/format.ts +3 -1
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B unterstützt 16K Tokens und bietet effiziente, flüssige Sprachgenerierungsfähigkeiten."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Yi 1.5, das neueste Open-Source-Fine-Tuning-Modell mit 34 Milliarden Parametern, unterstützt verschiedene Dialogszenarien mit hochwertigen Trainingsdaten, die auf menschliche Präferenzen abgestimmt sind."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Yi 1.5, das neueste Open-Source-Fine-Tuning-Modell mit 9 Milliarden Parametern, unterstützt verschiedene Dialogszenarien mit hochwertigen Trainingsdaten, die auf menschliche Präferenzen abgestimmt sind."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro ist ein wichtiger Bestandteil der 360 AI-Modellreihe und erfüllt mit seiner effizienten Textverarbeitungsfähigkeit vielfältige Anwendungen der natürlichen Sprache, unterstützt das Verständnis langer Texte und Mehrfachdialoge."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 ist ein mehrsprachiges Modell von Cohere, das 23 Sprachen unterstützt und die Anwendung in einer Vielzahl von Sprachen erleichtert."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B ist ein Open-Source-Sprachmodell mit 13 Milliarden Parametern, das von Baichuan Intelligence entwickelt wurde und in autorisierten chinesischen und englischen Benchmarks die besten Ergebnisse in seiner Größenordnung erzielt hat."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 ist für Rollenspiele und emotionale Begleitung konzipiert und unterstützt extrem lange Mehrfachgedächtnisse und personalisierte Dialoge, mit breiter Anwendung."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 hat die Schlussfolgerungsfähigkeiten des Modells erheblich verbessert, selbst bei nur wenigen gekennzeichneten Daten. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B ist ein großes Sprachmodell, das auf Llama3.3 70B basiert und durch Feinabstimmung mit den Ausgaben von DeepSeek R1 eine wettbewerbsfähige Leistung erreicht, die mit großen, fortschrittlichen Modellen vergleichbar ist."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B ist ein distilliertes großes Sprachmodell, das auf Llama-3.1-8B-Instruct basiert und durch Training mit den Ausgaben von DeepSeek R1 erstellt wurde."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B ist ein distilliertes großes Sprachmodell, das auf Qwen 2.5 14B basiert und durch Training mit den Ausgaben von DeepSeek R1 erstellt wurde. Dieses Modell hat in mehreren Benchmark-Tests OpenAI's o1-mini übertroffen und die neuesten technologischen Fortschritte bei dichten Modellen (state-of-the-art) erzielt. Hier sind einige Ergebnisse der Benchmark-Tests:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDas Modell zeigt durch Feinabstimmung mit den Ausgaben von DeepSeek R1 eine wettbewerbsfähige Leistung, die mit größeren, fortschrittlichen Modellen vergleichbar ist."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B ist ein distilliertes großes Sprachmodell, das auf Qwen 2.5 32B basiert und durch Training mit den Ausgaben von DeepSeek R1 erstellt wurde. Dieses Modell hat in mehreren Benchmark-Tests OpenAI's o1-mini übertroffen und die neuesten technologischen Fortschritte bei dichten Modellen (state-of-the-art) erzielt. Hier sind einige Ergebnisse der Benchmark-Tests:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDas Modell zeigt durch Feinabstimmung mit den Ausgaben von DeepSeek R1 eine wettbewerbsfähige Leistung, die mit größeren, fortschrittlichen Modellen vergleichbar ist."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 ist das neueste Open-Source-Modell, das vom DeepSeek-Team veröffentlicht wurde und über eine äußerst leistungsstarke Inferenzleistung verfügt, insbesondere in den Bereichen Mathematik, Programmierung und logisches Denken, die mit dem OpenAI o1-Modell vergleichbar ist."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 hat die Schlussfolgerungsfähigkeiten des Modells erheblich verbessert, selbst bei nur wenigen gekennzeichneten Daten. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 hat einen bedeutenden Durchbruch in der Inferenzgeschwindigkeit im Vergleich zu früheren Modellen erzielt. Es belegt den ersten Platz unter den Open-Source-Modellen und kann mit den weltweit fortschrittlichsten proprietären Modellen konkurrieren. DeepSeek-V3 verwendet die Multi-Head-Latent-Attention (MLA) und die DeepSeekMoE-Architektur, die in DeepSeek-V2 umfassend validiert wurden. Darüber hinaus hat DeepSeek-V3 eine unterstützende verlustfreie Strategie für die Lastenverteilung eingeführt und mehrere Zielvorgaben für das Training von Mehrfachvorhersagen festgelegt, um eine stärkere Leistung zu erzielen."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 hat einen bedeutenden Durchbruch in der Inferenzgeschwindigkeit im Vergleich zu früheren Modellen erzielt. Es belegt den ersten Platz unter den Open-Source-Modellen und kann mit den weltweit fortschrittlichsten proprietären Modellen konkurrieren. DeepSeek-V3 verwendet die Multi-Head-Latent-Attention (MLA) und die DeepSeekMoE-Architektur, die in DeepSeek-V2 umfassend validiert wurden. Darüber hinaus hat DeepSeek-V3 eine unterstützende verlustfreie Strategie für die Lastenverteilung eingeführt und mehrere Zielvorgaben für das Training von Mehrfachvorhersagen festgelegt, um eine stärkere Leistung zu erzielen."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "Doubao-1.5-lite ist das neueste leichte Modell der nächsten Generation, das eine extrem schnelle Reaktionszeit bietet und sowohl in der Leistung als auch in der Latenz weltweit erstklassig ist."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellem Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellem Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "Initiiert mit dem Qwen-7B-Sprachmodell, fügt es ein Bildmodell hinzu, das für Bildeingaben mit einer Auflösung von 448 vortrainiert wurde."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 ist die brandneue Serie von großen Sprachmodellen von Qwen. Qwen2 7B ist ein transformerbasiertes Modell, das in den Bereichen Sprachverständnis, Mehrsprachigkeit, Programmierung, Mathematik und logisches Denken hervorragende Leistungen zeigt."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 ist eine neue Serie großer Sprachmodelle mit stärkeren Verständnis- und Generierungsfähigkeiten."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL ist die neueste Iteration des Qwen-VL-Modells und hat in Benchmark-Tests zur visuellen Verständlichkeit eine fortschrittliche Leistung erreicht, einschließlich MathVista, DocVQA, RealWorldQA und MTVQA. Qwen2-VL kann über 20 Minuten Video verstehen und ermöglicht qualitativ hochwertige, videobasierte Fragen und Antworten, Dialoge und Inhaltserstellung. Es verfügt auch über komplexe Denk- und Entscheidungsfähigkeiten und kann mit mobilen Geräten, Robotern usw. integriert werden, um basierend auf visuellen Umgebungen und Textanweisungen automatisch zu agieren. Neben Englisch und Chinesisch unterstützt Qwen2-VL jetzt auch das Verständnis von Text in Bildern in verschiedenen Sprachen, einschließlich der meisten europäischen Sprachen, Japanisch, Koreanisch, Arabisch und Vietnamesisch."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodell-Serien, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Das Modell hat signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis von strukturierten Daten und in der Generierung von strukturierten Ausgaben (insbesondere JSON) erzielt."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct ist eines der neuesten großen Sprachmodell-Serien, die von Alibaba Cloud veröffentlicht wurden. Dieses 32B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Das Modell hat signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis von strukturierten Daten und in der Generierung von strukturierten Ausgaben (insbesondere JSON) erzielt."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "LLM, das auf Chinesisch und Englisch ausgerichtet ist und sich auf Sprache, Programmierung, Mathematik, Schlussfolgern und andere Bereiche konzentriert."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "Effizientes und kostengünstiges neues Embedding-Modell, geeignet für Wissensabruf, RAG-Anwendungen und andere Szenarien."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "Die Open-Source-Version des neuesten vortrainierten Modells der GLM-4-Serie, das von Zhizhu AI veröffentlicht wurde."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) bietet durch effiziente Strategien und Modellarchitekturen verbesserte Rechenfähigkeiten."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity ist ein führender Anbieter von Dialoggenerierungsmodellen und bietet eine Vielzahl fortschrittlicher Llama 3.1-Modelle an, die sowohl für Online- als auch Offline-Anwendungen geeignet sind und sich besonders für komplexe Aufgaben der Verarbeitung natürlicher Sprache eignen."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO Paiou Cloud bietet stabile und kosteneffiziente Open-Source-Modell-API-Dienste und unterstützt die gesamte DeepSeek-Serie, Llama, Qwen und andere führende große Modelle der Branche."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "Tongyi Qianwen ist ein von Alibaba Cloud selbst entwickeltes, groß angelegtes Sprachmodell mit starken Fähigkeiten zur Verarbeitung und Generierung natürlicher Sprache. Es kann eine Vielzahl von Fragen beantworten, Texte erstellen, Meinungen äußern und Code schreiben und spielt in mehreren Bereichen eine Rolle."
|
94
97
|
},
|
package/locales/en-US/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "There are subtopics, deletion is not allowed",
|
80
80
|
"regenerate": "Regenerate"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "Credits",
|
85
|
+
"creditPricing": "Pricing",
|
86
|
+
"creditTooltip": "For counting purposes, we convert $1 to 1M credits; for example, $3/M tokens can be converted to 3 credits/token.",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "Cached input {{amount}}/credits · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M characters",
|
90
|
+
"inputMinutes": "${{amount}}/minute",
|
91
|
+
"inputTokens": "Input {{amount}}/credits · ${{amount}}/M",
|
92
|
+
"outputTokens": "Output {{amount}}/credits · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "Input",
|
97
|
+
"inputAudio": "Audio Input",
|
98
|
+
"inputCached": "Cached Input",
|
99
|
+
"inputText": "Text Input",
|
100
|
+
"inputTitle": "Input Details",
|
101
|
+
"inputUncached": "Uncached Input",
|
102
|
+
"output": "Output",
|
103
|
+
"outputAudio": "Audio Output",
|
104
|
+
"outputText": "Text Output",
|
105
|
+
"outputTitle": "Output Details",
|
106
|
+
"reasoning": "Deep Thinking",
|
107
|
+
"title": "Generation Details",
|
108
|
+
"total": "Total Consumption"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "New Assistant",
|
83
112
|
"pin": "Pin",
|
84
113
|
"pinOff": "Unpin",
|
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B supports 16K tokens, providing efficient and smooth language generation capabilities."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Zero One Everything, the latest open-source fine-tuned model with 34 billion parameters, supports various dialogue scenarios with high-quality training data aligned with human preferences."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Zero One Everything, the latest open-source fine-tuned model with 9 billion parameters, supports various dialogue scenarios with high-quality training data aligned with human preferences."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro, as an important member of the 360 AI model series, meets diverse natural language application scenarios with efficient text processing capabilities, supporting long text understanding and multi-turn dialogue."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 is a multilingual model launched by Cohere, supporting 23 languages, facilitating diverse language applications."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B is an open-source, commercially usable large language model developed by Baichuan Intelligence, containing 13 billion parameters, achieving the best results in its size on authoritative Chinese and English benchmarks."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 is designed for role-playing and emotional companionship, supporting ultra-long multi-turn memory and personalized dialogue, with wide applications."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 significantly enhances model reasoning capabilities with minimal labeled data. Before outputting the final answer, the model first provides a chain of thought to improve the accuracy of the final response."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B is a large language model based on Llama3.3 70B, which achieves competitive performance comparable to large cutting-edge models by utilizing fine-tuning from DeepSeek R1 outputs."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B is a distilled large language model based on Llama-3.1-8B-Instruct, trained using outputs from DeepSeek R1."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B is a distilled large language model based on Qwen 2.5 14B, trained using outputs from DeepSeek R1. This model has surpassed OpenAI's o1-mini in several benchmark tests, achieving state-of-the-art results for dense models. Here are some benchmark results:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nThis model demonstrates competitive performance comparable to larger cutting-edge models through fine-tuning from DeepSeek R1 outputs."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B is a distilled large language model based on Qwen 2.5 32B, trained using outputs from DeepSeek R1. This model has surpassed OpenAI's o1-mini in several benchmark tests, achieving state-of-the-art results for dense models. Here are some benchmark results:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nThis model demonstrates competitive performance comparable to larger cutting-edge models through fine-tuning from DeepSeek R1 outputs."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 is the latest open-source model released by the DeepSeek team, featuring impressive inference performance, particularly in mathematics, programming, and reasoning tasks, reaching levels comparable to OpenAI's o1 model."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 significantly enhances model reasoning capabilities with minimal labeled data. Before outputting the final answer, the model first provides a chain of thought to improve the accuracy of the final response."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 has achieved a significant breakthrough in inference speed compared to previous models. It ranks first among open-source models and can compete with the world's most advanced closed-source models. DeepSeek-V3 employs Multi-Head Latent Attention (MLA) and DeepSeekMoE architectures, which have been thoroughly validated in DeepSeek-V2. Additionally, DeepSeek-V3 introduces an auxiliary lossless strategy for load balancing and sets multi-label prediction training objectives for enhanced performance."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 has achieved a significant breakthrough in inference speed compared to previous models. It ranks first among open-source models and can compete with the world's most advanced closed-source models. DeepSeek-V3 employs Multi-Head Latent Attention (MLA) and DeepSeekMoE architectures, which have been thoroughly validated in DeepSeek-V2. Additionally, DeepSeek-V3 introduces an auxiliary lossless strategy for load balancing and sets multi-label prediction training objectives for enhanced performance."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "Doubao-1.5-lite is a new generation lightweight model, offering extreme response speed with performance and latency at a world-class level."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 is designed to handle tasks that combine visual and textual data. It excels in tasks such as image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 is designed to handle tasks that combine visual and textual data. It excels in tasks such as image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "Initialized with the Qwen-7B language model, this pre-trained model adds an image model with an input resolution of 448."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 is a brand new series of large language models. Qwen2 7B is a transformer-based model that excels in language understanding, multilingual capabilities, programming, mathematics, and reasoning."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 is a brand new series of large language models with enhanced understanding and generation capabilities."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL is the latest iteration of the Qwen-VL model, achieving state-of-the-art performance in visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, and MTVQA. Qwen2-VL can understand videos over 20 minutes long for high-quality video-based Q&A, dialogue, and content creation. It also possesses complex reasoning and decision-making capabilities, allowing integration with mobile devices, robots, and more for automated operations based on visual environments and text instructions. In addition to English and Chinese, Qwen2-VL now supports understanding text in different languages within images, including most European languages, Japanese, Korean, Arabic, and Vietnamese."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct is one of the latest large language model series released by Alibaba Cloud. This 72B model has significantly improved capabilities in coding and mathematics. The model also offers multilingual support, covering over 29 languages, including Chinese and English. It shows significant enhancements in instruction following, understanding structured data, and generating structured outputs (especially JSON)."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct is one of the latest large language model series released by Alibaba Cloud. This 32B model has significantly improved capabilities in coding and mathematics. The model provides multilingual support, covering over 29 languages, including Chinese and English. It shows significant enhancements in instruction following, understanding structured data, and generating structured outputs (especially JSON)."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "An LLM focused on both Chinese and English, targeting language, programming, mathematics, reasoning, and more."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "An efficient and cost-effective next-generation embedding model, suitable for knowledge retrieval, RAG applications, and more."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "The open-source version of the latest generation pre-trained model from the GLM-4 series released by Zhiyuan AI."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) provides enhanced computational capabilities through efficient strategies and model architecture."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity is a leading provider of conversational generation models, offering various advanced Llama 3.1 models that support both online and offline applications, particularly suited for complex natural language processing tasks."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO supports stable and cost-efficient open-source LLM APIs, such as DeepSeek, Llama, Qwen etc."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "Tongyi Qianwen is a large-scale language model independently developed by Alibaba Cloud, featuring strong natural language understanding and generation capabilities. It can answer various questions, create written content, express opinions, and write code, playing a role in multiple fields."
|
94
97
|
},
|
@@ -139,8 +142,5 @@
|
|
139
142
|
},
|
140
143
|
"zhipu": {
|
141
144
|
"description": "Zhipu AI offers an open platform for multimodal and language models, supporting a wide range of AI application scenarios, including text processing, image understanding, and programming assistance."
|
142
|
-
},
|
143
|
-
"ppio": {
|
144
|
-
"description": "PPIO supports stable and cost-efficient open-source LLM APIs, such as DeepSeek, Llama, Qwen etc."
|
145
145
|
}
|
146
146
|
}
|
package/locales/es-ES/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "Existen subtemas, no se puede eliminar",
|
80
80
|
"regenerate": "Regenerar"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "Créditos",
|
85
|
+
"creditPricing": "Precios",
|
86
|
+
"creditTooltip": "Para facilitar el conteo, convertimos 1$ en 1M créditos, por ejemplo, $3/M tokens se convierte en 3 créditos/token",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "Entradas en caché {{amount}}/créditos · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M caracteres",
|
90
|
+
"inputMinutes": "${{amount}}/minuto",
|
91
|
+
"inputTokens": "Entradas {{amount}}/créditos · ${{amount}}/M",
|
92
|
+
"outputTokens": "Salidas {{amount}}/créditos · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "Entrada",
|
97
|
+
"inputAudio": "Entrada de audio",
|
98
|
+
"inputCached": "Entrada en caché",
|
99
|
+
"inputText": "Entrada de texto",
|
100
|
+
"inputTitle": "Detalles de entrada",
|
101
|
+
"inputUncached": "Entrada no en caché",
|
102
|
+
"output": "Salida",
|
103
|
+
"outputAudio": "Salida de audio",
|
104
|
+
"outputText": "Salida de texto",
|
105
|
+
"outputTitle": "Detalles de salida",
|
106
|
+
"reasoning": "Razonamiento profundo",
|
107
|
+
"title": "Detalles de generación",
|
108
|
+
"total": "Total consumido"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "Nuevo asistente",
|
83
112
|
"pin": "Fijar",
|
84
113
|
"pinOff": "Desfijar",
|
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B soporta 16K Tokens, proporcionando una capacidad de generación de lenguaje eficiente y fluida."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Cero Uno, el último modelo de ajuste fino de código abierto, cuenta con 34 mil millones de parámetros, con ajuste fino que admite múltiples escenarios de conversación y datos de entrenamiento de alta calidad, alineados con las preferencias humanas."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Cero Uno, el último modelo de ajuste fino de código abierto, cuenta con 9 mil millones de parámetros, con ajuste fino que admite múltiples escenarios de conversación y datos de entrenamiento de alta calidad, alineados con las preferencias humanas."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro, como un miembro importante de la serie de modelos de IA de 360, satisface diversas aplicaciones de procesamiento de lenguaje natural con su eficiente capacidad de manejo de textos, soportando la comprensión de textos largos y funciones de diálogo en múltiples turnos."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 es un modelo multilingüe lanzado por Cohere, que admite 23 idiomas, facilitando aplicaciones de lenguaje diversas."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B es un modelo de lenguaje de gran escala de código abierto y comercializable desarrollado por Baichuan Intelligence, que cuenta con 13 mil millones de parámetros y ha logrado los mejores resultados en benchmarks autorizados en chino e inglés."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 está diseñado para juegos de rol y acompañamiento emocional, soportando memoria de múltiples rondas y diálogos personalizados, con aplicaciones amplias."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 mejora significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de proporcionar la respuesta final, el modelo genera una cadena de pensamiento para mejorar la precisión de la respuesta final."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B es un modelo de lenguaje de gran tamaño basado en Llama3.3 70B, que utiliza el ajuste fino de la salida de DeepSeek R1 para lograr un rendimiento competitivo comparable a los modelos de vanguardia de gran tamaño."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B es un modelo de lenguaje grande destilado basado en Llama-3.1-8B-Instruct, entrenado utilizando la salida de DeepSeek R1."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B es un modelo de lenguaje grande destilado basado en Qwen 2.5 14B, entrenado utilizando la salida de DeepSeek R1. Este modelo ha superado a o1-mini de OpenAI en múltiples pruebas de referencia, logrando resultados de vanguardia en modelos densos. A continuación se presentan algunos resultados de las pruebas de referencia:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCalificación de CodeForces: 1481\nEste modelo, ajustado a partir de la salida de DeepSeek R1, muestra un rendimiento competitivo comparable al de modelos de vanguardia de mayor escala."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B es un modelo de lenguaje grande destilado basado en Qwen 2.5 32B, entrenado utilizando la salida de DeepSeek R1. Este modelo ha superado a o1-mini de OpenAI en múltiples pruebas de referencia, logrando resultados de vanguardia en modelos densos. A continuación se presentan algunos resultados de las pruebas de referencia:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCalificación de CodeForces: 1691\nEste modelo, ajustado a partir de la salida de DeepSeek R1, muestra un rendimiento competitivo comparable al de modelos de vanguardia de mayor escala."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 es el último modelo de código abierto lanzado por el equipo de DeepSeek, que cuenta con un rendimiento de inferencia excepcional, especialmente en tareas de matemáticas, programación y razonamiento, alcanzando niveles comparables al modelo o1 de OpenAI."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 mejora significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de proporcionar la respuesta final, el modelo genera una cadena de pensamiento para mejorar la precisión de la respuesta final."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 ha logrado un avance significativo en la velocidad de inferencia en comparación con modelos anteriores. Se clasifica como el número uno entre los modelos de código abierto y puede competir con los modelos cerrados más avanzados del mundo. DeepSeek-V3 utiliza la arquitectura de atención multi-cabeza (MLA) y DeepSeekMoE, que han sido completamente validadas en DeepSeek-V2. Además, DeepSeek-V3 ha introducido una estrategia auxiliar sin pérdidas para el balanceo de carga y ha establecido objetivos de entrenamiento de predicción de múltiples etiquetas para lograr un rendimiento más robusto."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 ha logrado un avance significativo en la velocidad de inferencia en comparación con modelos anteriores. Se clasifica como el número uno entre los modelos de código abierto y puede competir con los modelos cerrados más avanzados del mundo. DeepSeek-V3 utiliza la arquitectura de atención multi-cabeza (MLA) y DeepSeekMoE, que han sido completamente validadas en DeepSeek-V2. Además, DeepSeek-V3 ha introducido una estrategia auxiliar sin pérdidas para el balanceo de carga y ha establecido objetivos de entrenamiento de predicción de múltiples etiquetas para lograr un rendimiento más robusto."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "Doubao-1.5-lite es un modelo ligero de nueva generación, con una velocidad de respuesta extrema, alcanzando niveles de rendimiento y latencia de clase mundial."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Destaca en tareas como la descripción de imágenes y preguntas visuales, superando la brecha entre la generación de lenguaje y el razonamiento visual."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Destaca en tareas como la descripción de imágenes y preguntas visuales, superando la brecha entre la generación de lenguaje y el razonamiento visual."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "Iniciado con el modelo de lenguaje Qwen-7B, se añade un modelo de imagen, un modelo preentrenado con una resolución de entrada de imagen de 448."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 es una nueva serie de modelos de lenguaje grande Qwen. Qwen2 7B es un modelo basado en transformador que destaca en comprensión del lenguaje, capacidades multilingües, programación, matemáticas y razonamiento."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 es una nueva serie de modelos de lenguaje de gran tamaño, con una mayor capacidad de comprensión y generación."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL es la última iteración del modelo Qwen-VL, alcanzando un rendimiento de vanguardia en pruebas de comprensión visual, incluyendo MathVista, DocVQA, RealWorldQA y MTVQA. Qwen2-VL puede entender videos de más de 20 minutos, permitiendo preguntas y respuestas, diálogos y creación de contenido de alta calidad basados en video. También posee capacidades complejas de razonamiento y toma de decisiones, pudiendo integrarse con dispositivos móviles, robots, etc., para realizar operaciones automáticas basadas en el entorno visual y las instrucciones de texto. Además del inglés y el chino, Qwen2-VL ahora también admite la comprensión de texto en diferentes idiomas dentro de imágenes, incluyendo la mayoría de los idiomas europeos, japonés, coreano, árabe y vietnamita."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct es una de las últimas series de modelos de lenguaje grande lanzadas por Alibaba Cloud. Este modelo de 72B presenta capacidades significativamente mejoradas en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mejorado notablemente en el seguimiento de instrucciones, la comprensión de datos estructurados y la generación de salidas estructuradas (especialmente JSON)."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct es una de las últimas series de modelos de lenguaje grande lanzadas por Alibaba Cloud. Este modelo de 32B presenta capacidades significativamente mejoradas en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mejorado notablemente en el seguimiento de instrucciones, la comprensión de datos estructurados y la generación de salidas estructuradas (especialmente JSON)."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "LLM orientado a chino e inglés, enfocado en áreas como lenguaje, programación, matemáticas y razonamiento."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "Un modelo de Embedding de nueva generación, eficiente y económico, adecuado para la recuperación de conocimiento, aplicaciones RAG y más."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "Versión de código abierto de la última generación del modelo preentrenado GLM-4 lanzado por Zhizhu AI."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) proporciona una capacidad de cálculo mejorada a través de estrategias y arquitecturas de modelos eficientes."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity es un proveedor líder de modelos de generación de diálogos, ofreciendo varios modelos avanzados de Llama 3.1, que son adecuados para aplicaciones en línea y fuera de línea, especialmente para tareas complejas de procesamiento del lenguaje natural."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO Paiouyun ofrece servicios de API de modelos de código abierto estables y de alto rendimiento, que admiten toda la serie DeepSeek, Llama, Qwen y otros modelos grandes líderes en la industria."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "Tongyi Qianwen es un modelo de lenguaje de gran escala desarrollado de forma independiente por Alibaba Cloud, con potentes capacidades de comprensión y generación de lenguaje natural. Puede responder a diversas preguntas, crear contenido escrito, expresar opiniones y redactar código, desempeñando un papel en múltiples campos."
|
94
97
|
},
|
package/locales/fa-IR/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "زیرموضوع وجود دارد، نمیتوان حذف کرد",
|
80
80
|
"regenerate": "بازتولید"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "اعتبار",
|
85
|
+
"creditPricing": "قیمت گذاری",
|
86
|
+
"creditTooltip": "برای سهولت در شمارش، ما 1$ را به 1M اعتبار تبدیل میکنیم، به عنوان مثال $3/M توکنها معادل 3 اعتبار/token است",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "ورودی کش شده {{amount}}/اعتبار · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M کاراکتر",
|
90
|
+
"inputMinutes": "${{amount}}/دقیقه",
|
91
|
+
"inputTokens": "ورودی {{amount}}/اعتبار · ${{amount}}/M",
|
92
|
+
"outputTokens": "خروجی {{amount}}/اعتبار · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "ورودی",
|
97
|
+
"inputAudio": "ورودی صوتی",
|
98
|
+
"inputCached": "ورودی کش شده",
|
99
|
+
"inputText": "ورودی متنی",
|
100
|
+
"inputTitle": "جزئیات ورودی",
|
101
|
+
"inputUncached": "ورودی غیر کش شده",
|
102
|
+
"output": "خروجی",
|
103
|
+
"outputAudio": "خروجی صوتی",
|
104
|
+
"outputText": "خروجی متنی",
|
105
|
+
"outputTitle": "جزئیات خروجی",
|
106
|
+
"reasoning": "تفکر عمیق",
|
107
|
+
"title": "جزئیات تولید",
|
108
|
+
"total": "مجموع مصرف"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "دستیار جدید",
|
83
112
|
"pin": "سنجاق کردن",
|
84
113
|
"pinOff": "لغو سنجاق",
|
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B از 16K توکن پشتیبانی میکند و توانایی تولید زبان بهصورت کارآمد و روان را ارائه میدهد."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Zero One Everything، جدیدترین مدل متن باز تنظیم شده با 34 میلیارد پارامتر، که تنظیمات آن از چندین سناریوی گفتگویی پشتیبانی میکند و دادههای آموزشی با کیفیت بالا را برای همراستایی با ترجیحات انسانی فراهم میکند."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Zero One Everything، جدیدترین مدل متن باز تنظیم شده با 9 میلیارد پارامتر، که تنظیمات آن از چندین سناریوی گفتگویی پشتیبانی میکند و دادههای آموزشی با کیفیت بالا را برای همراستایی با ترجیحات انسانی فراهم میکند."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro به عنوان یکی از اعضای مهم سری مدلهای 360 AI، با توانایی پردازش متون بهصورت کارآمد، نیازهای متنوع در زمینههای مختلف کاربردهای زبان طبیعی را برآورده میکند و از قابلیتهایی مانند درک متون طولانی و مکالمات چندمرحلهای پشتیبانی میکند."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 یک مدل چندزبانه است که توسط Cohere ارائه شده و از 23 زبان پشتیبانی میکند و استفاده از برنامههای چندزبانه را تسهیل مینماید."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B یک مدل زبان بزرگ متن باز و قابل تجاری با 130 میلیارد پارامتر است که در آزمونهای معتبر چینی و انگلیسی بهترین عملکرد را در اندازه مشابه به دست آورده است."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 بهطور ویژه برای نقشآفرینی و همراهی عاطفی طراحی شده است، از حافظه طولانیمدت و مکالمات شخصیسازیشده پشتیبانی میکند و کاربردهای گستردهای دارد."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B یک مدل زبان بزرگ مبتنی بر Llama3.3 70B است که با استفاده از تنظیمات DeepSeek R1 به عملکرد رقابتی معادل مدلهای پیشرفته بزرگ دست یافته است."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B یک مدل زبان بزرگ تقطیر شده مبتنی بر Llama-3.1-8B-Instruct است که با استفاده از خروجی DeepSeek R1 آموزش دیده است."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B یک مدل زبان بزرگ تقطیر شده مبتنی بر Qwen 2.5 14B است که با استفاده از خروجی DeepSeek R1 آموزش دیده است. این مدل در چندین آزمون معیار از o1-mini OpenAI پیشی گرفته و به آخرین دستاوردهای فناوری مدلهای متراکم (dense models) دست یافته است. نتایج برخی از آزمونهای معیار به شرح زیر است:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nاین مدل با تنظیمات خروجی DeepSeek R1، عملکرد رقابتی معادل مدلهای پیشرفته بزرگتر را نشان میدهد."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B یک مدل زبان بزرگ تقطیر شده مبتنی بر Qwen 2.5 32B است که با استفاده از خروجی DeepSeek R1 آموزش دیده است. این مدل در چندین آزمون معیار از o1-mini OpenAI پیشی گرفته و به آخرین دستاوردهای فناوری مدلهای متراکم (dense models) دست یافته است. نتایج برخی از آزمونهای معیار به شرح زیر است:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nاین مدل با تنظیمات خروجی DeepSeek R1، عملکرد رقابتی معادل مدلهای پیشرفته بزرگتر را نشان میدهد."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 جدیدترین مدل متن باز منتشر شده توسط تیم DeepSeek است که دارای عملکرد استدلال بسیار قوی است و به ویژه در وظایف ریاضی، برنامهنویسی و استدلال به سطحی معادل مدل o1 OpenAI رسیده است."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 در سرعت استدلال به یک پیشرفت عمده نسبت به مدلهای قبلی دست یافته است. این مدل در بین مدلهای متن باز رتبه اول را دارد و میتواند با پیشرفتهترین مدلهای بسته جهانی رقابت کند. DeepSeek-V3 از معماری توجه چندسر (MLA) و DeepSeekMoE استفاده میکند که این معماریها در DeepSeek-V2 به طور کامل تأیید شدهاند. علاوه بر این، DeepSeek-V3 یک استراتژی کمکی بدون ضرر برای تعادل بار معرفی کرده و اهداف آموزشی پیشبینی چند برچسبی را برای بهبود عملکرد تعیین کرده است."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 در سرعت استدلال به یک پیشرفت عمده نسبت به مدلهای قبلی دست یافته است. این مدل در بین مدلهای متن باز رتبه اول را دارد و میتواند با پیشرفتهترین مدلهای بسته جهانی رقابت کند. DeepSeek-V3 از معماری توجه چندسر (MLA) و DeepSeekMoE استفاده میکند که این معماریها در DeepSeek-V2 به طور کامل تأیید شدهاند. علاوه بر این، DeepSeek-V3 یک استراتژی کمکی بدون ضرر برای تعادل بار معرفی کرده و اهداف آموزشی پیشبینی چند برچسبی را برای بهبود عملکرد تعیین کرده است."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "مدل سبک نسل جدید Doubao-1.5-lite، با سرعت پاسخدهی فوقالعاده، عملکرد و تأخیر در سطح جهانی را ارائه میدهد."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 برای انجام وظایفی که ترکیبی از دادههای بصری و متنی هستند طراحی شده است. این مدل در وظایفی مانند توصیف تصویر و پرسش و پاسخ بصری عملکرد بسیار خوبی دارد و فاصله بین تولید زبان و استدلال بصری را پر میکند."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 برای انجام وظایفی طراحی شده است که دادههای بصری و متنی را با هم ترکیب میکند. این مدل در وظایفی مانند توصیف تصویر و پرسش و پاسخ بصری عملکرد بسیار خوبی دارد و فاصله بین تولید زبان و استدلال بصری را پر میکند."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "مدل زبان Qwen-7B با اضافه کردن مدل تصویر و وضوح ورودی تصویر 448، به عنوان یک مدل پیشآموزششده، اولیهسازی شده است."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 یک سری جدید از مدلهای زبان بزرگ Qwen است. Qwen2 7B یک مدل مبتنی بر ترنسفورمر است که در درک زبان، قابلیتهای چند زبانه، برنامهنویسی، ریاضی و استدلال عملکرد عالی دارد."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 یک سری جدید از مدلهای زبان بزرگ است که دارای تواناییهای درک و تولید قویتری میباشد."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL جدیدترین نسخه از مدل Qwen-VL است که در آزمونهای معیار درک بصری به عملکرد پیشرفتهای دست یافته است، از جمله MathVista، DocVQA، RealWorldQA و MTVQA. Qwen2-VL قادر به درک ویدیوهای بیش از 20 دقیقه است و برای پرسش و پاسخ، گفتگو و تولید محتوا مبتنی بر ویدیو با کیفیت بالا استفاده میشود. این مدل همچنین دارای قابلیتهای پیچیده استدلال و تصمیمگیری است و میتواند با دستگاههای موبایل، رباتها و غیره ادغام شود و بر اساس محیط بصری و دستورات متنی به طور خودکار عمل کند. علاوه بر انگلیسی و چینی، Qwen2-VL اکنون از درک متنهای مختلف زبان در تصاویر نیز پشتیبانی میکند، از جمله بیشتر زبانهای اروپایی، ژاپنی، کرهای، عربی و ویتنامی."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct یکی از جدیدترین سری مدلهای زبان بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 72B در زمینههای کدنویسی و ریاضی دارای قابلیتهای بهبود یافته قابل توجهی است. این مدل همچنین از چندین زبان پشتیبانی میکند و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) بهبودهای قابل توجهی داشته است."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct یکی از جدیدترین سری مدلهای زبان بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 32B در زمینههای کدنویسی و ریاضی دارای قابلیتهای بهبود یافته قابل توجهی است. این مدل از چندین زبان پشتیبانی میکند و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) بهبودهای قابل توجهی داشته است."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "مدل LLM برای زبانهای چینی و انگلیسی که در زمینههای زبان، برنامهنویسی، ریاضیات و استدلال تخصص دارد."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "مدل جدید و کارآمد Embedding، مناسب برای جستجوی دانش، کاربردهای RAG و سایر سناریوها."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "نسخه متن باز جدیدترین نسل مدلهای پیشآموزش GLM-4 منتشر شده توسط Zhizhu AI."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) با استفاده از استراتژیها و معماری مدل کارآمد، توان محاسباتی بهبودیافتهای را ارائه میدهد."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity یک ارائهدهنده پیشرو در مدلهای تولید مکالمه است که انواع مدلهای پیشرفته Llama 3.1 را ارائه میدهد و از برنامههای آنلاین و آفلاین پشتیبانی میکند. این مدلها بهویژه برای وظایف پیچیده پردازش زبان طبیعی مناسب هستند."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO پایو کلود خدمات API مدلهای متن باز با ثبات و با قیمت مناسب را ارائه میدهد و از تمام سریهای DeepSeek، Llama، Qwen و سایر مدلهای بزرگ پیشرو در صنعت پشتیبانی میکند."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "چوان یی چیان ون یک مدل زبان بسیار بزرگ است که توسط علیکلود بهطور مستقل توسعه یافته و دارای تواناییهای قدرتمند درک و تولید زبان طبیعی است. این مدل میتواند به انواع سوالات پاسخ دهد، محتوای متنی خلق کند، نظرات و دیدگاهها را بیان کند، کد بنویسد و در حوزههای مختلف نقش ایفا کند."
|
94
97
|
},
|
package/locales/fr-FR/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "Il existe des sous-sujets, la suppression n'est pas possible.",
|
80
80
|
"regenerate": "Régénérer"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "Crédit",
|
85
|
+
"creditPricing": "Tarification",
|
86
|
+
"creditTooltip": "Pour faciliter le comptage, nous convertissons 1 $ en 1M de crédits, par exemple, 3 $/M tokens équivaut à 3 crédits/token",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "Entrée mise en cache {{amount}}/crédit · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M caractères",
|
90
|
+
"inputMinutes": "${{amount}}/minute",
|
91
|
+
"inputTokens": "Entrée {{amount}}/crédit · ${{amount}}/M",
|
92
|
+
"outputTokens": "Sortie {{amount}}/crédit · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "Entrée",
|
97
|
+
"inputAudio": "Entrée audio",
|
98
|
+
"inputCached": "Entrée mise en cache",
|
99
|
+
"inputText": "Entrée texte",
|
100
|
+
"inputTitle": "Détails de l'entrée",
|
101
|
+
"inputUncached": "Entrée non mise en cache",
|
102
|
+
"output": "Sortie",
|
103
|
+
"outputAudio": "Sortie audio",
|
104
|
+
"outputText": "Sortie texte",
|
105
|
+
"outputTitle": "Détails de la sortie",
|
106
|
+
"reasoning": "Raisonnement approfondi",
|
107
|
+
"title": "Détails de génération",
|
108
|
+
"total": "Total consommé"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "Nouvel agent",
|
83
112
|
"pin": "Épingler",
|
84
113
|
"pinOff": "Désépingler",
|