@lobehub/chat 1.68.2 → 1.68.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (111) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/docs/usage/providers/azureai.mdx +69 -0
  4. package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
  5. package/docs/usage/providers/deepseek.mdx +3 -3
  6. package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
  7. package/docs/usage/providers/jina.mdx +51 -0
  8. package/docs/usage/providers/jina.zh-CN.mdx +51 -0
  9. package/docs/usage/providers/lmstudio.mdx +75 -0
  10. package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
  11. package/docs/usage/providers/nvidia.mdx +55 -0
  12. package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
  13. package/docs/usage/providers/ppio.mdx +7 -7
  14. package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
  15. package/docs/usage/providers/sambanova.mdx +50 -0
  16. package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
  17. package/docs/usage/providers/tencentcloud.mdx +49 -0
  18. package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
  19. package/docs/usage/providers/vertexai.mdx +59 -0
  20. package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
  21. package/docs/usage/providers/vllm.mdx +98 -0
  22. package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
  23. package/docs/usage/providers/volcengine.mdx +47 -0
  24. package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
  25. package/locales/ar/chat.json +29 -0
  26. package/locales/ar/models.json +48 -0
  27. package/locales/ar/providers.json +3 -0
  28. package/locales/bg-BG/chat.json +29 -0
  29. package/locales/bg-BG/models.json +48 -0
  30. package/locales/bg-BG/providers.json +3 -0
  31. package/locales/de-DE/chat.json +29 -0
  32. package/locales/de-DE/models.json +48 -0
  33. package/locales/de-DE/providers.json +3 -0
  34. package/locales/en-US/chat.json +29 -0
  35. package/locales/en-US/models.json +48 -0
  36. package/locales/en-US/providers.json +3 -3
  37. package/locales/es-ES/chat.json +29 -0
  38. package/locales/es-ES/models.json +48 -0
  39. package/locales/es-ES/providers.json +3 -0
  40. package/locales/fa-IR/chat.json +29 -0
  41. package/locales/fa-IR/models.json +48 -0
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/chat.json +29 -0
  44. package/locales/fr-FR/models.json +48 -0
  45. package/locales/fr-FR/providers.json +3 -0
  46. package/locales/it-IT/chat.json +29 -0
  47. package/locales/it-IT/models.json +48 -0
  48. package/locales/it-IT/providers.json +3 -0
  49. package/locales/ja-JP/chat.json +29 -0
  50. package/locales/ja-JP/models.json +48 -0
  51. package/locales/ja-JP/providers.json +3 -0
  52. package/locales/ko-KR/chat.json +29 -0
  53. package/locales/ko-KR/models.json +48 -0
  54. package/locales/ko-KR/providers.json +3 -0
  55. package/locales/nl-NL/chat.json +29 -0
  56. package/locales/nl-NL/models.json +48 -0
  57. package/locales/nl-NL/providers.json +3 -0
  58. package/locales/pl-PL/chat.json +29 -0
  59. package/locales/pl-PL/models.json +48 -0
  60. package/locales/pl-PL/providers.json +3 -0
  61. package/locales/pt-BR/chat.json +29 -0
  62. package/locales/pt-BR/models.json +48 -0
  63. package/locales/pt-BR/providers.json +3 -0
  64. package/locales/ru-RU/chat.json +29 -0
  65. package/locales/ru-RU/models.json +48 -0
  66. package/locales/ru-RU/providers.json +3 -0
  67. package/locales/tr-TR/chat.json +29 -0
  68. package/locales/tr-TR/models.json +48 -0
  69. package/locales/tr-TR/providers.json +3 -0
  70. package/locales/vi-VN/chat.json +29 -0
  71. package/locales/vi-VN/models.json +48 -0
  72. package/locales/vi-VN/providers.json +3 -0
  73. package/locales/zh-CN/chat.json +29 -0
  74. package/locales/zh-CN/models.json +51 -3
  75. package/locales/zh-CN/providers.json +3 -4
  76. package/locales/zh-TW/chat.json +29 -0
  77. package/locales/zh-TW/models.json +48 -0
  78. package/locales/zh-TW/providers.json +3 -0
  79. package/package.json +1 -1
  80. package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
  81. package/packages/web-crawler/src/crawImpl/jina.ts +1 -1
  82. package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
  83. package/packages/web-crawler/src/urlRules.ts +7 -1
  84. package/packages/web-crawler/src/utils/errorType.ts +7 -0
  85. package/scripts/serverLauncher/startServer.js +11 -7
  86. package/src/config/modelProviders/ppio.ts +1 -1
  87. package/src/features/Conversation/Extras/Assistant.tsx +12 -20
  88. package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
  89. package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
  90. package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
  91. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
  92. package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
  93. package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
  94. package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
  95. package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
  96. package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
  97. package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
  98. package/src/locales/default/chat.ts +30 -1
  99. package/src/server/routers/tools/search.ts +1 -1
  100. package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
  101. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  102. package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
  103. package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
  104. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
  105. package/src/store/chat/slices/message/action.ts +3 -0
  106. package/src/store/global/initialState.ts +1 -0
  107. package/src/store/global/selectors/systemStatus.ts +2 -0
  108. package/src/types/message/base.ts +18 -0
  109. package/src/types/message/chat.ts +4 -3
  110. package/src/utils/fetch/fetchSSE.ts +24 -1
  111. package/src/utils/format.ts +3 -1
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B obsługuje 16K tokenów, oferując wydajne i płynne zdolności generowania języka."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One, najnowszy model open source z dostrojeniem, zawierający 34 miliardy parametrów, dostosowany do różnych scenariuszy dialogowych, z wysokiej jakości danymi treningowymi, dostosowany do preferencji ludzkich."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One, najnowszy model open source z dostrojeniem, zawierający 9 miliardów parametrów, dostosowany do różnych scenariuszy dialogowych, z wysokiej jakości danymi treningowymi, dostosowany do preferencji ludzkich."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, jako ważny członek serii modeli AI 360, zaspokaja różnorodne potrzeby aplikacji przetwarzania języka naturalnego dzięki wydajnym zdolnościom przetwarzania tekstu, obsługując zrozumienie długich tekstów i wielokrotne dialogi."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 to model wielojęzyczny wydany przez Cohere, wspierający 23 języki, ułatwiający różnorodne zastosowania językowe."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B to otwarty model językowy stworzony przez Baichuan Intelligence, zawierający 13 miliardów parametrów, który osiągnął najlepsze wyniki w swojej klasie w autorytatywnych benchmarkach w języku chińskim i angielskim."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 zaprojektowany z myślą o odgrywaniu ról i emocjonalnym towarzyszeniu, obsługujący ultra-długą pamięć wielokrotną i spersonalizowane dialogi, z szerokim zakresem zastosowań."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 znacznie poprawił zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw wygeneruje fragment myślenia, aby zwiększyć dokładność końcowej odpowiedzi."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B to duży model językowy oparty na Llama3.3 70B, który wykorzystuje dostrojenie na podstawie wyjścia DeepSeek R1, osiągając konkurencyjną wydajność porównywalną z dużymi modelami na czołowej pozycji."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B to destylowany duży model językowy oparty na Llama-3.1-8B-Instruct, wytrenowany przy użyciu wyjścia DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B to destylowany duży model językowy oparty na Qwen 2.5 14B, wytrenowany przy użyciu wyjścia DeepSeek R1. Model ten przewyższył OpenAI o1-mini w wielu testach benchmarkowych, osiągając najnowsze osiągnięcia technologiczne w dziedzinie modeli gęstych (dense models). Oto niektóre wyniki testów benchmarkowych:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nModel ten, dostrojony na podstawie wyjścia DeepSeek R1, wykazuje konkurencyjną wydajność porównywalną z większymi modelami na czołowej pozycji."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B to destylowany duży model językowy oparty na Qwen 2.5 32B, wytrenowany przy użyciu wyjścia DeepSeek R1. Model ten przewyższył OpenAI o1-mini w wielu testach benchmarkowych, osiągając najnowsze osiągnięcia technologiczne w dziedzinie modeli gęstych (dense models). Oto niektóre wyniki testów benchmarkowych:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nModel ten, dostrojony na podstawie wyjścia DeepSeek R1, wykazuje konkurencyjną wydajność porównywalną z większymi modelami na czołowej pozycji."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 to najnowszy model open source wydany przez zespół DeepSeek, który charakteryzuje się bardzo silnymi możliwościami wnioskowania, szczególnie w zadaniach matematycznych, programistycznych i logicznych, osiągając poziom porównywalny z modelem o1 OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 znacznie poprawił zdolności wnioskowania modelu przy minimalnej ilości oznaczonych danych. Przed wygenerowaniem ostatecznej odpowiedzi, model najpierw wygeneruje fragment myślenia, aby zwiększyć dokładność końcowej odpowiedzi."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 osiągnął znaczący przełom w szybkości wnioskowania w porównaniu do wcześniejszych modeli. Zajmuje pierwsze miejsce wśród modeli open source i może konkurować z najnowocześniejszymi modelami zamkniętymi na świecie. DeepSeek-V3 wykorzystuje architekturę wielogłowicowej uwagi (MLA) oraz DeepSeekMoE, które zostały w pełni zweryfikowane w DeepSeek-V2. Ponadto, DeepSeek-V3 wprowadza pomocniczą strategię bezstratną do równoważenia obciążenia oraz ustala cele treningowe dla wieloetykietowego przewidywania, aby uzyskać lepszą wydajność."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 osiągnął znaczący przełom w szybkości wnioskowania w porównaniu do wcześniejszych modeli. Zajmuje pierwsze miejsce wśród modeli open source i może konkurować z najnowocześniejszymi modelami zamkniętymi na świecie. DeepSeek-V3 wykorzystuje architekturę wielogłowicowej uwagi (MLA) oraz DeepSeekMoE, które zostały w pełni zweryfikowane w DeepSeek-V2. Ponadto, DeepSeek-V3 wprowadza pomocniczą strategię bezstratną do równoważenia obciążenia oraz ustala cele treningowe dla wieloetykietowego przewidywania, aby uzyskać lepszą wydajność."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite to nowa generacja modelu o lekkiej konstrukcji, charakteryzująca się ekstremalną szybkością reakcji, osiągając światowy poziom zarówno w zakresie wydajności, jak i opóźnienia."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 jest zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Wykazuje doskonałe wyniki w zadaniach takich jak opisywanie obrazów i wizualne pytania i odpowiedzi, przekraczając granice między generowaniem języka a wnioskowaniem wizualnym."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 jest zaprojektowana do przetwarzania zadań łączących dane wizualne i tekstowe. Wykazuje doskonałe wyniki w zadaniach takich jak opisywanie obrazów i wizualne pytania i odpowiedzi, przekraczając granice między generowaniem języka a wnioskowaniem wizualnym."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Model wstępnie wytrenowany, zainicjowany przez model językowy Qwen-7B, dodający model obrazowy, z rozdzielczością wejściową obrazu wynoszącą 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 to nowa seria dużych modeli językowych Qwen. Qwen2 7B to model oparty na transformatorze, który wykazuje doskonałe wyniki w zakresie rozumienia języka, zdolności wielojęzycznych, programowania, matematyki i wnioskowania."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 to nowa seria dużych modeli językowych, charakteryzująca się silniejszymi zdolnościami rozumienia i generowania."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL to najnowsza iteracja modelu Qwen-VL, która osiągnęła najnowocześniejsze wyniki w testach benchmarkowych dotyczących rozumienia wizualnego, w tym MathVista, DocVQA, RealWorldQA i MTVQA. Qwen2-VL potrafi rozumieć filmy trwające ponad 20 minut, umożliwiając wysokiej jakości pytania i odpowiedzi, dialogi oraz tworzenie treści oparte na wideo. Posiada również zdolności do złożonego wnioskowania i podejmowania decyzji, co pozwala na integrację z urządzeniami mobilnymi, robotami itp., aby automatycznie działać na podstawie środowiska wizualnego i instrukcji tekstowych. Oprócz angielskiego i chińskiego, Qwen2-VL teraz wspiera również rozumienie tekstu w różnych językach w obrazach, w tym większości języków europejskich, japońskiego, koreańskiego, arabskiego i wietnamskiego."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 72B wykazuje znaczną poprawę w obszarach kodowania i matematyki. Model ten oferuje wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model znacząco poprawił zdolność do podążania za instrukcjami, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct to jeden z najnowszych modeli dużych języków wydanych przez Alibaba Cloud. Model 32B wykazuje znaczną poprawę w obszarach kodowania i matematyki. Model ten oferuje wsparcie dla wielu języków, obejmując ponad 29 języków, w tym chiński i angielski. Model znacząco poprawił zdolność do podążania za instrukcjami, rozumienia danych strukturalnych oraz generowania strukturalnych wyników (szczególnie JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM skierowany na język chiński i angielski, skoncentrowany na języku, programowaniu, matematyce, wnioskowaniu i innych dziedzinach."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Nowej generacji model Embedding, efektywny i ekonomiczny, odpowiedni do wyszukiwania wiedzy, aplikacji RAG i innych scenariuszy."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Otwarta wersja najnowszej generacji modelu pretrenowanego GLM-4 wydanego przez Zhipu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) oferuje zwiększoną moc obliczeniową dzięki efektywnym strategiom i architekturze modelu."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity to wiodący dostawca modeli generacji dialogów, oferujący różnorodne zaawansowane modele Llama 3.1, wspierające aplikacje online i offline, szczególnie odpowiednie do złożonych zadań przetwarzania języka naturalnego."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paiou Cloud oferuje stabilne i opłacalne usługi API modeli open source, wspierające pełną gamę DeepSeek, Llama, Qwen i inne wiodące modele w branży."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Tongyi Qianwen to samodzielnie opracowany przez Alibaba Cloud model językowy o dużej skali, charakteryzujący się silnymi zdolnościami rozumienia i generowania języka naturalnego. Może odpowiadać na różnorodne pytania, tworzyć treści pisemne, wyrażać opinie, pisać kod i działać w wielu dziedzinach."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Existem subtópicos, não é possível deletar.",
80
80
  "regenerate": "Regenerar"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Créditos",
85
+ "creditPricing": "Precificação",
86
+ "creditTooltip": "Para facilitar a contagem, consideramos 1$ como 1M créditos, por exemplo, $3/M tokens se converte em 3 créditos/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Entrada em cache {{amount}}/créditos · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M caracteres",
90
+ "inputMinutes": "${{amount}}/minuto",
91
+ "inputTokens": "Entrada {{amount}}/créditos · ${{amount}}/M",
92
+ "outputTokens": "Saída {{amount}}/créditos · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Entrada",
97
+ "inputAudio": "Entrada de áudio",
98
+ "inputCached": "Entrada em cache",
99
+ "inputText": "Entrada de texto",
100
+ "inputTitle": "Detalhes da entrada",
101
+ "inputUncached": "Entrada não cacheada",
102
+ "output": "Saída",
103
+ "outputAudio": "Saída de áudio",
104
+ "outputText": "Saída de texto",
105
+ "outputTitle": "Detalhes da saída",
106
+ "reasoning": "Raciocínio profundo",
107
+ "title": "Detalhes da geração",
108
+ "total": "Total consumido"
109
+ }
110
+ },
82
111
  "newAgent": "Novo Assistente",
83
112
  "pin": "Fixar",
84
113
  "pinOff": "Desafixar",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B suporta 16K Tokens, oferecendo capacidade de geração de linguagem eficiente e fluida."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero Um, o mais recente modelo de ajuste fino de código aberto, com 34 bilhões de parâmetros, suporta múltiplos cenários de diálogo, com dados de treinamento de alta qualidade, alinhados às preferências humanas."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero Um, o mais recente modelo de ajuste fino de código aberto, com 9 bilhões de parâmetros, suporta múltiplos cenários de diálogo, com dados de treinamento de alta qualidade, alinhados às preferências humanas."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, como um membro importante da série de modelos de IA da 360, atende a diversas aplicações de linguagem natural com sua capacidade eficiente de processamento de texto, suportando compreensão de longos textos e diálogos em múltiplas rodadas."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 é um modelo multilíngue lançado pela Cohere, suportando 23 idiomas, facilitando aplicações linguísticas diversificadas."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B é um modelo de linguagem de código aberto e comercializável desenvolvido pela Baichuan Intelligence, contendo 13 bilhões de parâmetros, alcançando os melhores resultados em benchmarks de chinês e inglês na mesma dimensão."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "O CharGLM-3 é projetado para interpretação de personagens e companhia emocional, suportando memória de múltiplas rodadas e diálogos personalizados, com ampla aplicação."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 melhorou significativamente a capacidade de raciocínio do modelo com muito poucos dados rotulados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B é um grande modelo de linguagem baseado no Llama3.3 70B, que utiliza o ajuste fino da saída do DeepSeek R1 para alcançar um desempenho competitivo comparável aos grandes modelos de ponta."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B é um modelo de linguagem grande destilado baseado no Llama-3.1-8B-Instruct, treinado usando a saída do DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B é um modelo de linguagem grande destilado baseado no Qwen 2.5 14B, treinado usando a saída do DeepSeek R1. Este modelo superou o o1-mini da OpenAI em vários benchmarks, alcançando os mais recentes avanços tecnológicos em modelos densos (state-of-the-art). Aqui estão alguns resultados de benchmarks:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nClassificação CodeForces: 1481\nEste modelo, ajustado a partir da saída do DeepSeek R1, demonstrou desempenho competitivo comparável a modelos de ponta de maior escala."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B é um modelo de linguagem grande destilado baseado no Qwen 2.5 32B, treinado usando a saída do DeepSeek R1. Este modelo superou o o1-mini da OpenAI em vários benchmarks, alcançando os mais recentes avanços tecnológicos em modelos densos (state-of-the-art). Aqui estão alguns resultados de benchmarks:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nClassificação CodeForces: 1691\nEste modelo, ajustado a partir da saída do DeepSeek R1, demonstrou desempenho competitivo comparável a modelos de ponta de maior escala."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 é o mais recente modelo de código aberto lançado pela equipe DeepSeek, com desempenho de inferência extremamente robusto, especialmente em tarefas de matemática, programação e raciocínio, alcançando níveis comparáveis ao modelo o1 da OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 melhorou significativamente a capacidade de raciocínio do modelo com muito poucos dados rotulados. Antes de fornecer a resposta final, o modelo gera uma cadeia de pensamento para aumentar a precisão da resposta final."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 alcançou um avanço significativo na velocidade de inferência em comparação com os modelos anteriores. Classificado como o número um entre os modelos de código aberto, pode competir com os modelos fechados mais avançados do mundo. DeepSeek-V3 utiliza a arquitetura de Atenção Multi-Cabeça (MLA) e DeepSeekMoE, que foram amplamente validadas no DeepSeek-V2. Além disso, DeepSeek-V3 introduziu uma estratégia auxiliar sem perdas para balanceamento de carga e definiu objetivos de treinamento de previsão de múltiplos rótulos para obter um desempenho mais forte."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 alcançou um avanço significativo na velocidade de inferência em comparação com os modelos anteriores. Classificado como o número um entre os modelos de código aberto, pode competir com os modelos fechados mais avançados do mundo. DeepSeek-V3 utiliza a arquitetura de Atenção Multi-Cabeça (MLA) e DeepSeekMoE, que foram amplamente validadas no DeepSeek-V2. Além disso, DeepSeek-V3 introduziu uma estratégia auxiliar sem perdas para balanceamento de carga e definiu objetivos de treinamento de previsão de múltiplos rótulos para obter um desempenho mais forte."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite é a nova geração de modelo leve, com velocidade de resposta extrema, alcançando níveis de desempenho e latência de classe mundial."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 é projetado para lidar com tarefas que combinam dados visuais e textuais. Ele se destaca em tarefas como descrição de imagens e perguntas visuais, superando a lacuna entre geração de linguagem e raciocínio visual."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 é projetado para lidar com tarefas que combinam dados visuais e textuais. Ele se destaca em tarefas como descrição de imagens e perguntas visuais, superando a lacuna entre geração de linguagem e raciocínio visual."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Inicializado com o modelo de linguagem Qwen-7B, adicionando um modelo de imagem, um modelo pré-treinado com resolução de entrada de imagem de 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 é uma nova série de modelos de linguagem grande Qwen. Qwen2 7B é um modelo baseado em transformer, com excelente desempenho em compreensão de linguagem, capacidade multilíngue, programação, matemática e raciocínio."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 é uma nova série de grandes modelos de linguagem, com capacidades de compreensão e geração mais robustas."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL é a versão mais recente do modelo Qwen-VL, alcançando desempenho de ponta em benchmarks de compreensão visual, incluindo MathVista, DocVQA, RealWorldQA e MTVQA. Qwen2-VL é capaz de entender vídeos de mais de 20 minutos, permitindo perguntas e respostas, diálogos e criação de conteúdo de alta qualidade baseados em vídeo. Ele também possui capacidades complexas de raciocínio e tomada de decisão, podendo ser integrado a dispositivos móveis, robôs, etc., para operações automáticas baseadas em ambientes visuais e instruções textuais. Além do inglês e do chinês, o Qwen2-VL agora também suporta a compreensão de texto em diferentes idiomas em imagens, incluindo a maioria das línguas europeias, japonês, coreano, árabe e vietnamita."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct é uma das mais recentes séries de modelos de linguagem grande lançadas pela Alibaba Cloud. Este modelo de 72B apresenta capacidades significativamente aprimoradas em áreas como codificação e matemática. O modelo também oferece suporte a múltiplas línguas, cobrindo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct é uma das mais recentes séries de modelos de linguagem grande lançadas pela Alibaba Cloud. Este modelo de 32B apresenta capacidades significativamente aprimoradas em áreas como codificação e matemática. O modelo oferece suporte a múltiplas línguas, cobrindo mais de 29 idiomas, incluindo chinês e inglês. O modelo teve melhorias significativas em seguir instruções, entender dados estruturados e gerar saídas estruturadas (especialmente JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM voltado para chinês e inglês, focado em linguagem, programação, matemática, raciocínio e outras áreas."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Modelo de Embedding de nova geração, eficiente e econômico, adequado para recuperação de conhecimento, aplicações RAG e outros cenários."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Versão de código aberto da última geração do modelo pré-treinado GLM-4, lançado pela Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) oferece capacidade de computação aprimorada através de estratégias e arquiteturas de modelo eficientes."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity é um fornecedor líder de modelos de geração de diálogo, oferecendo uma variedade de modelos avançados Llama 3.1, suportando aplicações online e offline, especialmente adequados para tarefas complexas de processamento de linguagem natural."
91
91
  },
92
+ "ppio": {
93
+ "description": "O PPIO Paiouyun oferece serviços de API de modelos de código aberto estáveis e com alto custo-benefício, suportando toda a linha DeepSeek, Llama, Qwen e outros grandes modelos líderes da indústria."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen é um modelo de linguagem de grande escala desenvolvido pela Alibaba Cloud, com forte capacidade de compreensão e geração de linguagem natural. Ele pode responder a várias perguntas, criar conteúdo escrito, expressar opiniões e escrever código, atuando em vários campos."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Существуют подтемы, удаление невозможно",
80
80
  "regenerate": "Пересоздать"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Кредиты",
85
+ "creditPricing": "Ценообразование",
86
+ "creditTooltip": "Для удобства подсчета мы приравниваем 1$ к 1M кредитов, например, $3/M токенов эквивалентно 3 кредитам/токен",
87
+ "pricing": {
88
+ "inputCachedTokens": "Кэшированные входные {{amount}}/кредиты · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M символов",
90
+ "inputMinutes": "${{amount}}/минуту",
91
+ "inputTokens": "Входные {{amount}}/кредиты · ${{amount}}/M",
92
+ "outputTokens": "Выходные {{amount}}/кредиты · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Вход",
97
+ "inputAudio": "Аудиовход",
98
+ "inputCached": "Кэшированный вход",
99
+ "inputText": "Текстовый вход",
100
+ "inputTitle": "Детали входа",
101
+ "inputUncached": "Некэшированный вход",
102
+ "output": "Выход",
103
+ "outputAudio": "Аудиовыход",
104
+ "outputText": "Текстовый выход",
105
+ "outputTitle": "Детали выхода",
106
+ "reasoning": "Глубокое мышление",
107
+ "title": "Детали генерации",
108
+ "total": "Общее потребление"
109
+ }
110
+ },
82
111
  "newAgent": "Создать помощника",
83
112
  "pin": "Закрепить",
84
113
  "pinOff": "Открепить",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B поддерживает 16K токенов, обеспечивая эффективные и плавные возможности генерации языка."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "零一万物 — это последняя версия открытой доработанной модели с 34 миллиардами параметров, которая поддерживает различные сценарии диалога, используя высококачественные обучающие данные, соответствующие человеческим предпочтениям."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "零一万物 — это последняя версия открытой доработанной модели с 9 миллиардами параметров, которая поддерживает различные сценарии диалога, используя высококачественные обучающие данные, соответствующие человеческим предпочтениям."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, как важный член серии моделей AI от 360, удовлетворяет разнообразные приложения обработки текста с высокой эффективностью, поддерживает понимание длинных текстов и многораундные диалоги."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 — это многоязычная модель, выпущенная Cohere, поддерживающая 23 языка, обеспечивая удобство для многоязычных приложений."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B — это открытая коммерческая крупная языковая модель с 13 миллиардами параметров, разработанная Baichuan Intelligence, которая показала лучшие результаты среди моделей того же размера на авторитетных бенчмарках на китайском и английском языках."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 разработан для ролевых игр и эмоционального сопровождения, поддерживает сверхдлинную многократную память и персонализированные диалоги, имеет широкое применение."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 значительно улучшила способности модели к рассуждению при наличии лишь очень ограниченных размеченных данных. Перед тем как предоставить окончательный ответ, модель сначала выводит цепочку размышлений, чтобы повысить точность окончательного ответа."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B — это крупная языковая модель на основе Llama3.3 70B, которая использует доработку, полученную от DeepSeek R1, для достижения конкурентоспособной производительности, сопоставимой с крупными передовыми моделями."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B — это дистиллированная большая языковая модель на основе Llama-3.1-8B-Instruct, обученная с использованием выходных данных DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B — это дистиллированная большая языковая модель на основе Qwen 2.5 14B, обученная с использованием выходных данных DeepSeek R1. Эта модель превзошла o1-mini от OpenAI в нескольких бенчмарках, достигнув последних достижений в области плотных моделей (state-of-the-art). Вот некоторые результаты бенчмарков:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nРейтинг CodeForces: 1481\nЭта модель, доработанная на основе выходных данных DeepSeek R1, демонстрирует конкурентоспособную производительность, сопоставимую с более крупными передовыми моделями."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B — это дистиллированная большая языковая модель на основе Qwen 2.5 32B, обученная с использованием выходных данных DeepSeek R1. Эта модель превзошла o1-mini от OpenAI в нескольких бенчмарках, достигнув последних достижений в области плотных моделей (state-of-the-art). Вот некоторые результаты бенчмарков:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nРейтинг CodeForces: 1691\nЭта модель, доработанная на основе выходных данных DeepSeek R1, демонстрирует конкурентоспособную производительность, сопоставимую с более крупными передовыми моделями."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 — это последняя версия открытой модели, выпущенной командой DeepSeek, обладающая выдающимися возможностями вывода, особенно в математических, программных и логических задачах, достигая уровня, сопоставимого с моделью o1 от OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 значительно улучшила способности модели к рассуждению при наличии лишь очень ограниченных размеченных данных. Перед тем как предоставить окончательный ответ, модель сначала выводит цепочку размышлений, чтобы повысить точность окончательного ответа."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 достиг значительного прорыва в скорости вывода по сравнению с предыдущими моделями. Она занимает первое место среди открытых моделей и может соперничать с самыми современными закрытыми моделями в мире. DeepSeek-V3 использует архитектуры многоголового потенциального внимания (MLA) и DeepSeekMoE, которые были полностью проверены в DeepSeek-V2. Кроме того, DeepSeek-V3 внедрила вспомогательную безубыточную стратегию для балансировки нагрузки и установила цели обучения для многомаркерного прогнозирования для достижения более высокой производительности."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 достиг значительного прорыва в скорости вывода по сравнению с предыдущими моделями. Она занимает первое место среди открытых моделей и может соперничать с самыми современными закрытыми моделями в мире. DeepSeek-V3 использует архитектуры многоголового потенциального внимания (MLA) и DeepSeekMoE, которые были полностью проверены в DeepSeek-V2. Кроме того, DeepSeek-V3 внедрила вспомогательную безубыточную стратегию для балансировки нагрузки и установила цели обучения для многомаркерного прогнозирования для достижения более высокой производительности."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite - совершенно новое поколение легкой модели, с максимальной скоростью отклика, результаты и задержка достигают мирового уровня."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 предназначена для обработки задач, сочетающих визуальные и текстовые данные. Она демонстрирует отличные результаты в задачах описания изображений и визуального вопросно-ответного взаимодействия, преодолевая разрыв между генерацией языка и визуальным выводом."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 предназначена для обработки задач, сочетающих визуальные и текстовые данные. Она демонстрирует отличные результаты в задачах описания изображений и визуального вопросно-ответного взаимодействия, преодолевая разрыв между генерацией языка и визуальным выводом."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Инициализированная языковой моделью Qwen-7B, добавлена модель изображения, предобученная модель с разрешением входного изображения 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 — это новая серия больших языковых моделей Qwen. Qwen2 7B — это модель на основе трансформера, которая демонстрирует отличные результаты в понимании языка, многоязычных способностях, программировании, математике и логическом рассуждении."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 — это новая серия крупных языковых моделей с более сильными возможностями понимания и генерации."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL — это последняя итерация модели Qwen-VL, достигшая передовых результатов в бенчмарках визуального понимания, включая MathVista, DocVQA, RealWorldQA и MTVQA. Qwen2-VL может понимать видео продолжительностью более 20 минут для высококачественного видеозапроса, диалога и создания контента. Она также обладает сложными способностями к рассуждению и принятию решений, может интегрироваться с мобильными устройствами, роботами и выполнять автоматические операции на основе визуальной среды и текстовых инструкций. Кроме английского и китайского, Qwen2-VL теперь также поддерживает понимание текста на разных языках в изображениях, включая большинство европейских языков, японский, корейский, арабский и вьетнамский."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct — это одна из последних серий больших языковых моделей, выпущенных Alibaba Cloud. Эта модель 72B демонстрирует значительные улучшения в области кодирования и математики. Модель также поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct — это одна из последних серий больших языковых моделей, выпущенных Alibaba Cloud. Эта модель 32B демонстрирует значительные улучшения в области кодирования и математики. Модель поддерживает множество языков, охватывающих более 29 языков, включая китайский и английский. Она значительно улучшила выполнение инструкций, понимание структурированных данных и генерацию структурированных выходных данных (особенно JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM, ориентированная на китайский и английский языки, охватывающая области языка, программирования, математики, рассуждений и др."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Эффективная и экономичная новая генерация модели Embedding, подходящая для поиска знаний, приложений RAG и других сценариев."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Открытая версия последнего поколения предобученной модели GLM-4, выпущенной Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) обеспечивает повышенные вычислительные возможности благодаря эффективным стратегиям и архитектуре модели."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity — это ведущий поставщик моделей генерации диалогов, предлагающий множество передовых моделей Llama 3.1, поддерживающих онлайн и оффлайн приложения, особенно подходящих для сложных задач обработки естественного языка."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paiouyun предоставляет стабильные и высокоэффективные API-сервисы для открытых моделей, поддерживающие всю серию DeepSeek, Llama, Qwen и другие ведущие модели в отрасли."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen — это сверхбольшая языковая модель, разработанная Alibaba Cloud, обладающая мощными возможностями понимания и генерации естественного языка. Она может отвечать на различные вопросы, создавать текстовый контент, выражать мнения и писать код, играя важную роль в различных областях."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Alt konular mevcut, silinemez",
80
80
  "regenerate": "Yeniden Oluştur"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Kredi",
85
+ "creditPricing": "Fiyatlandırma",
86
+ "creditTooltip": "Hesaplamayı kolaylaştırmak için, 1$'ı 1M kredi olarak hesaplıyoruz; örneğin, $3/M token, 3 kredi/token olarak hesaplanır.",
87
+ "pricing": {
88
+ "inputCachedTokens": "Önceden yüklenmiş giriş {{amount}}/kredi · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M karakter",
90
+ "inputMinutes": "${{amount}}/dakika",
91
+ "inputTokens": "Giriş {{amount}}/kredi · ${{amount}}/M",
92
+ "outputTokens": "Çıkış {{amount}}/kredi · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Giriş",
97
+ "inputAudio": "Ses girişi",
98
+ "inputCached": "Önceden yüklenmiş giriş",
99
+ "inputText": "Metin girişi",
100
+ "inputTitle": "Giriş detayları",
101
+ "inputUncached": "Önceden yüklenmemiş giriş",
102
+ "output": "Çıkış",
103
+ "outputAudio": "Ses çıkışı",
104
+ "outputText": "Metin çıkışı",
105
+ "outputTitle": "Çıkış detayları",
106
+ "reasoning": "Derin düşünme",
107
+ "title": "Üretim detayları",
108
+ "total": "Toplam tüketim"
109
+ }
110
+ },
82
111
  "newAgent": "Yeni Asistan",
83
112
  "pin": "Pin",
84
113
  "pinOff": "Unpin",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B, 16K Token desteği sunar, etkili ve akıcı dil oluşturma yeteneği sağlar."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything, en son açık kaynak ince ayar modelidir, 34 milyar parametreye sahiptir, ince ayar çeşitli diyalog senaryolarını destekler, yüksek kaliteli eğitim verileri ile insan tercihleri ile hizalanmıştır."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything, en son açık kaynak ince ayar modelidir, 9 milyar parametreye sahiptir, ince ayar çeşitli diyalog senaryolarını destekler, yüksek kaliteli eğitim verileri ile insan tercihleri ile hizalanmıştır."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, 360 AI model serisinin önemli bir üyesi olarak, çeşitli doğal dil uygulama senaryolarını karşılamak için etkili metin işleme yeteneği sunar, uzun metin anlama ve çoklu diyalog gibi işlevleri destekler."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23, Cohere tarafından sunulan çok dilli bir modeldir, 23 dili destekler ve çok dilli uygulamalar için kolaylık sağlar."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B, Baichuan Zhi Neng tarafından geliştirilen 130 milyar parametreye sahip açık kaynaklı ticari bir büyük dil modelidir ve yetkili Çince ve İngilizce benchmark'larda aynı boyuttaki en iyi sonuçları elde etmiştir."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3, rol yapma ve duygusal destek için tasarlanmış, ultra uzun çok turlu bellek ve kişiselleştirilmiş diyalog desteği sunan bir modeldir, geniş bir uygulama yelpazesine sahiptir."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1, yalnızca çok az etiketli veri ile modelin akıl yürütme yeteneğini büyük ölçüde artırır. Model, nihai yanıtı vermeden önce bir düşünce zinciri içeriği sunarak nihai yanıtın doğruluğunu artırır."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B, Llama3.3 70B tabanlı büyük bir dil modelidir ve DeepSeek R1'in çıktısını kullanarak ince ayar yaparak büyük öncü modellerle rekabet edebilecek bir performans elde etmiştir."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B, Llama-3.1-8B-Instruct tabanlı bir damıtılmış büyük dil modelidir ve DeepSeek R1'in çıktısını kullanarak eğitilmiştir."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B, Qwen 2.5 14B tabanlı bir damıtılmış büyük dil modelidir ve DeepSeek R1'in çıktısını kullanarak eğitilmiştir. Bu model, birçok benchmark testinde OpenAI'nin o1-mini'sini geçerek yoğun modellerin (dense models) en son teknik liderlik başarılarını elde etmiştir. İşte bazı benchmark test sonuçları:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nBu model, DeepSeek R1'in çıktısından ince ayar yaparak daha büyük ölçekli öncü modellerle karşılaştırılabilir bir performans sergilemiştir."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B, Qwen 2.5 32B tabanlı bir damıtılmış büyük dil modelidir ve DeepSeek R1'in çıktısını kullanarak eğitilmiştir. Bu model, birçok benchmark testinde OpenAI'nin o1-mini'sini geçerek yoğun modellerin (dense models) en son teknik liderlik başarılarını elde etmiştir. İşte bazı benchmark test sonuçları:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nBu model, DeepSeek R1'in çıktısından ince ayar yaparak daha büyük ölçekli öncü modellerle karşılaştırılabilir bir performans sergilemiştir."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1, DeepSeek ekibinin yayınladığı en son açık kaynak modelidir ve özellikle matematik, programlama ve akıl yürütme görevlerinde OpenAI'nin o1 modeli ile karşılaştırılabilir bir çıkarım performansına sahiptir."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1, yalnızca çok az etiketli veri ile modelin akıl yürütme yeteneğini büyük ölçüde artırır. Model, nihai yanıtı vermeden önce bir düşünce zinciri içeriği sunarak nihai yanıtın doğruluğunu artırır."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3, çıkarım hızında önceki modellere göre önemli bir atılım gerçekleştirmiştir. Açık kaynak modeller arasında birinci sırada yer almakta ve dünya çapındaki en gelişmiş kapalı kaynak modellerle rekabet edebilmektedir. DeepSeek-V3, DeepSeek-V2'de kapsamlı bir şekilde doğrulanan çok başlı potansiyel dikkat (MLA) ve DeepSeekMoE mimarilerini kullanmaktadır. Ayrıca, DeepSeek-V3, yük dengeleme için yardımcı kayıpsız bir strateji geliştirmiştir ve daha güçlü bir performans elde etmek için çok etiketli tahmin eğitim hedefleri belirlemiştir."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3, çıkarım hızında önceki modellere göre önemli bir atılım gerçekleştirmiştir. Açık kaynak modeller arasında birinci sırada yer almakta ve dünya çapındaki en gelişmiş kapalı kaynak modellerle rekabet edebilmektedir. DeepSeek-V3, DeepSeek-V2'de kapsamlı bir şekilde doğrulanan çok başlı potansiyel dikkat (MLA) ve DeepSeekMoE mimarilerini kullanmaktadır. Ayrıca, DeepSeek-V3, yük dengeleme için yardımcı kayıpsız bir strateji geliştirmiştir ve daha güçlü bir performans elde etmek için çok etiketli tahmin eğitim hedefleri belirlemiştir."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite, tamamen yeni nesil hafif modeldir, olağanüstü yanıt hızı ile etkisi ve gecikmesi dünya standartlarında bir seviyeye ulaşmıştır."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2, görsel ve metin verilerini birleştiren görevleri işlemek için tasarlanmıştır. Görüntü tanımlama ve görsel soru yanıtlama gibi görevlerde mükemmel performans sergileyerek dil üretimi ve görsel akıl yürütme arasındaki boşluğu kapatmaktadır."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2, görsel ve metin verilerini birleştiren görevleri işlemek için tasarlanmıştır. Görüntü tanımlama ve görsel soru yanıtlama gibi görevlerde mükemmel performans sergileyerek dil üretimi ve görsel akıl yürütme arasındaki boşluğu kapatmaktadır."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Qwen-7B dil modeli ile başlatılan, 448 çözünürlükte görüntü girişi olan önceden eğitilmiş bir modeldir."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2, tamamen yeni bir Qwen büyük dil modeli serisidir. Qwen2 7B, dil anlama, çok dilli yetenek, programlama, matematik ve akıl yürütme konularında mükemmel performans sergileyen bir transformer tabanlı modeldir."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2, daha güçlü anlama ve üretme yeteneklerine sahip yeni bir büyük dil modeli serisidir."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL, Qwen-VL modelinin en son yineleme versiyonudur ve MathVista, DocVQA, RealWorldQA ve MTVQA gibi görsel anlama benchmark testlerinde en gelişmiş performansa ulaşmıştır. Qwen2-VL, yüksek kaliteli video tabanlı soru-cevap, diyalog ve içerik oluşturma için 20 dakikadan fazla videoyu anlayabilmektedir. Ayrıca, karmaşık akıl yürütme ve karar verme yeteneklerine sahiptir ve mobil cihazlar, robotlar gibi sistemlerle entegre olarak görsel ortam ve metin talimatlarına dayalı otomatik işlemler gerçekleştirebilmektedir. İngilizce ve Çince'nin yanı sıra, Qwen2-VL artık çoğu Avrupa dili, Japonca, Korece, Arapça ve Vietnamca gibi farklı dillerdeki metinleri de anlayabilmektedir."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct, Alibaba Cloud tarafından yayınlanan en son büyük dil modeli serilerinden biridir. Bu 72B modeli, kodlama ve matematik gibi alanlarda önemli iyileştirmelere sahiptir. Model ayrıca, Çince, İngilizce gibi 29'dan fazla dili kapsayan çok dilli destek sunmaktadır. Model, talimat takibi, yapılandırılmış verileri anlama ve yapılandırılmış çıktı (özellikle JSON) üretme konularında önemli gelişmeler göstermektedir."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct, Alibaba Cloud tarafından yayınlanan en son büyük dil modeli serilerinden biridir. Bu 32B modeli, kodlama ve matematik gibi alanlarda önemli iyileştirmelere sahiptir. Model, Çince, İngilizce gibi 29'dan fazla dili kapsayan çok dilli destek sunmaktadır. Model, talimat takibi, yapılandırılmış verileri anlama ve yapılandırılmış çıktı (özellikle JSON) üretme konularında önemli gelişmeler göstermektedir."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "Çince ve İngilizce'ye yönelik LLM, dil, programlama, matematik, akıl yürütme gibi alanlara odaklanır."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Verimli ve ekonomik yeni nesil Embedding modeli, bilgi arama, RAG uygulamaları gibi senaryolar için uygundur."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Zhi Pu AI tarafından yayınlanan GLM-4 serisinin en son nesil ön eğitim modelinin açık kaynak versiyonudur."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B), etkili stratejiler ve model mimarisi ile artırılmış hesaplama yetenekleri sunar."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity, çeşitli gelişmiş Llama 3.1 modelleri sunan önde gelen bir diyalog üretim modeli sağlayıcısıdır. Hem çevrimiçi hem de çevrimdışı uygulamaları desteklemekte olup, özellikle karmaşık doğal dil işleme görevleri için uygundur."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paiou Cloud, istikrarlı ve yüksek maliyet etkinliğe sahip açık kaynak model API hizmeti sunar, DeepSeek'in tüm serisi, Llama, Qwen gibi sektörün önde gelen büyük modellerini destekler."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Tongyi Qianwen, Alibaba Cloud tarafından geliştirilen büyük ölçekli bir dil modelidir ve güçlü doğal dil anlama ve üretme yeteneklerine sahiptir. Çeşitli soruları yanıtlayabilir, metin içeriği oluşturabilir, görüşlerini ifade edebilir ve kod yazabilir. Birçok alanda etkili bir şekilde kullanılmaktadır."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Có chủ đề con, không thể xóa",
80
80
  "regenerate": "Tạo lại"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Điểm",
85
+ "creditPricing": "Định giá",
86
+ "creditTooltip": "Để thuận tiện cho việc tính toán, chúng tôi quy đổi 1$ thành 1M điểm, ví dụ $3/M token sẽ được quy đổi thành 3 điểm/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Nhập cached {{amount}}/điểm · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M ký tự",
90
+ "inputMinutes": "${{amount}}/phút",
91
+ "inputTokens": "Nhập {{amount}}/điểm · ${{amount}}/M",
92
+ "outputTokens": "Xuất {{amount}}/điểm · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Nhập",
97
+ "inputAudio": "Âm thanh nhập",
98
+ "inputCached": "Nhập cached",
99
+ "inputText": "Văn bản nhập",
100
+ "inputTitle": "Chi tiết nhập",
101
+ "inputUncached": "Nhập chưa cached",
102
+ "output": "Xuất",
103
+ "outputAudio": "Âm thanh xuất",
104
+ "outputText": "Văn bản xuất",
105
+ "outputTitle": "Chi tiết xuất",
106
+ "reasoning": "Suy nghĩ sâu sắc",
107
+ "title": "Chi tiết tạo ra",
108
+ "total": "Tổng tiêu thụ"
109
+ }
110
+ },
82
111
  "newAgent": "Tạo trợ lý mới",
83
112
  "pin": "Ghim",
84
113
  "pinOff": "Bỏ ghim",