@lobehub/chat 1.68.2 → 1.68.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +50 -0
- package/changelog/v1.json +18 -0
- package/docs/usage/providers/azureai.mdx +69 -0
- package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
- package/docs/usage/providers/deepseek.mdx +3 -3
- package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
- package/docs/usage/providers/jina.mdx +51 -0
- package/docs/usage/providers/jina.zh-CN.mdx +51 -0
- package/docs/usage/providers/lmstudio.mdx +75 -0
- package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
- package/docs/usage/providers/nvidia.mdx +55 -0
- package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
- package/docs/usage/providers/ppio.mdx +7 -7
- package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
- package/docs/usage/providers/sambanova.mdx +50 -0
- package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
- package/docs/usage/providers/tencentcloud.mdx +49 -0
- package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
- package/docs/usage/providers/vertexai.mdx +59 -0
- package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
- package/docs/usage/providers/vllm.mdx +98 -0
- package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
- package/docs/usage/providers/volcengine.mdx +47 -0
- package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
- package/locales/ar/chat.json +29 -0
- package/locales/ar/models.json +48 -0
- package/locales/ar/providers.json +3 -0
- package/locales/bg-BG/chat.json +29 -0
- package/locales/bg-BG/models.json +48 -0
- package/locales/bg-BG/providers.json +3 -0
- package/locales/de-DE/chat.json +29 -0
- package/locales/de-DE/models.json +48 -0
- package/locales/de-DE/providers.json +3 -0
- package/locales/en-US/chat.json +29 -0
- package/locales/en-US/models.json +48 -0
- package/locales/en-US/providers.json +3 -3
- package/locales/es-ES/chat.json +29 -0
- package/locales/es-ES/models.json +48 -0
- package/locales/es-ES/providers.json +3 -0
- package/locales/fa-IR/chat.json +29 -0
- package/locales/fa-IR/models.json +48 -0
- package/locales/fa-IR/providers.json +3 -0
- package/locales/fr-FR/chat.json +29 -0
- package/locales/fr-FR/models.json +48 -0
- package/locales/fr-FR/providers.json +3 -0
- package/locales/it-IT/chat.json +29 -0
- package/locales/it-IT/models.json +48 -0
- package/locales/it-IT/providers.json +3 -0
- package/locales/ja-JP/chat.json +29 -0
- package/locales/ja-JP/models.json +48 -0
- package/locales/ja-JP/providers.json +3 -0
- package/locales/ko-KR/chat.json +29 -0
- package/locales/ko-KR/models.json +48 -0
- package/locales/ko-KR/providers.json +3 -0
- package/locales/nl-NL/chat.json +29 -0
- package/locales/nl-NL/models.json +48 -0
- package/locales/nl-NL/providers.json +3 -0
- package/locales/pl-PL/chat.json +29 -0
- package/locales/pl-PL/models.json +48 -0
- package/locales/pl-PL/providers.json +3 -0
- package/locales/pt-BR/chat.json +29 -0
- package/locales/pt-BR/models.json +48 -0
- package/locales/pt-BR/providers.json +3 -0
- package/locales/ru-RU/chat.json +29 -0
- package/locales/ru-RU/models.json +48 -0
- package/locales/ru-RU/providers.json +3 -0
- package/locales/tr-TR/chat.json +29 -0
- package/locales/tr-TR/models.json +48 -0
- package/locales/tr-TR/providers.json +3 -0
- package/locales/vi-VN/chat.json +29 -0
- package/locales/vi-VN/models.json +48 -0
- package/locales/vi-VN/providers.json +3 -0
- package/locales/zh-CN/chat.json +29 -0
- package/locales/zh-CN/models.json +51 -3
- package/locales/zh-CN/providers.json +3 -4
- package/locales/zh-TW/chat.json +29 -0
- package/locales/zh-TW/models.json +48 -0
- package/locales/zh-TW/providers.json +3 -0
- package/package.json +1 -1
- package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
- package/packages/web-crawler/src/crawImpl/jina.ts +1 -1
- package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
- package/packages/web-crawler/src/urlRules.ts +7 -1
- package/packages/web-crawler/src/utils/errorType.ts +7 -0
- package/scripts/serverLauncher/startServer.js +11 -7
- package/src/config/modelProviders/ppio.ts +1 -1
- package/src/features/Conversation/Extras/Assistant.tsx +12 -20
- package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
- package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
- package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
- package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
- package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
- package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
- package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
- package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
- package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
- package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
- package/src/locales/default/chat.ts +30 -1
- package/src/server/routers/tools/search.ts +1 -1
- package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
- package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
- package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
- package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
- package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
- package/src/store/chat/slices/message/action.ts +3 -0
- package/src/store/global/initialState.ts +1 -0
- package/src/store/global/selectors/systemStatus.ts +2 -0
- package/src/types/message/base.ts +18 -0
- package/src/types/message/chat.ts +4 -3
- package/src/utils/fetch/fetchSSE.ts +24 -1
- package/src/utils/format.ts +3 -1
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B supports 16K tokens, providing efficient and smooth language generation capabilities."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Zero One Everything, the latest open-source fine-tuned model with 34 billion parameters, supports various dialogue scenarios with high-quality training data aligned with human preferences."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Zero One Everything, the latest open-source fine-tuned model with 9 billion parameters, supports various dialogue scenarios with high-quality training data aligned with human preferences."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro, as an important member of the 360 AI model series, meets diverse natural language application scenarios with efficient text processing capabilities, supporting long text understanding and multi-turn dialogue."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 is a multilingual model launched by Cohere, supporting 23 languages, facilitating diverse language applications."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B is an open-source, commercially usable large language model developed by Baichuan Intelligence, containing 13 billion parameters, achieving the best results in its size on authoritative Chinese and English benchmarks."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 is designed for role-playing and emotional companionship, supporting ultra-long multi-turn memory and personalized dialogue, with wide applications."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 significantly enhances model reasoning capabilities with minimal labeled data. Before outputting the final answer, the model first provides a chain of thought to improve the accuracy of the final response."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B is a large language model based on Llama3.3 70B, which achieves competitive performance comparable to large cutting-edge models by utilizing fine-tuning from DeepSeek R1 outputs."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B is a distilled large language model based on Llama-3.1-8B-Instruct, trained using outputs from DeepSeek R1."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B is a distilled large language model based on Qwen 2.5 14B, trained using outputs from DeepSeek R1. This model has surpassed OpenAI's o1-mini in several benchmark tests, achieving state-of-the-art results for dense models. Here are some benchmark results:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nThis model demonstrates competitive performance comparable to larger cutting-edge models through fine-tuning from DeepSeek R1 outputs."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B is a distilled large language model based on Qwen 2.5 32B, trained using outputs from DeepSeek R1. This model has surpassed OpenAI's o1-mini in several benchmark tests, achieving state-of-the-art results for dense models. Here are some benchmark results:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nThis model demonstrates competitive performance comparable to larger cutting-edge models through fine-tuning from DeepSeek R1 outputs."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 is the latest open-source model released by the DeepSeek team, featuring impressive inference performance, particularly in mathematics, programming, and reasoning tasks, reaching levels comparable to OpenAI's o1 model."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 significantly enhances model reasoning capabilities with minimal labeled data. Before outputting the final answer, the model first provides a chain of thought to improve the accuracy of the final response."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 has achieved a significant breakthrough in inference speed compared to previous models. It ranks first among open-source models and can compete with the world's most advanced closed-source models. DeepSeek-V3 employs Multi-Head Latent Attention (MLA) and DeepSeekMoE architectures, which have been thoroughly validated in DeepSeek-V2. Additionally, DeepSeek-V3 introduces an auxiliary lossless strategy for load balancing and sets multi-label prediction training objectives for enhanced performance."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 has achieved a significant breakthrough in inference speed compared to previous models. It ranks first among open-source models and can compete with the world's most advanced closed-source models. DeepSeek-V3 employs Multi-Head Latent Attention (MLA) and DeepSeekMoE architectures, which have been thoroughly validated in DeepSeek-V2. Additionally, DeepSeek-V3 introduces an auxiliary lossless strategy for load balancing and sets multi-label prediction training objectives for enhanced performance."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "Doubao-1.5-lite is a new generation lightweight model, offering extreme response speed with performance and latency at a world-class level."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 is designed to handle tasks that combine visual and textual data. It excels in tasks such as image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 is designed to handle tasks that combine visual and textual data. It excels in tasks such as image description and visual question answering, bridging the gap between language generation and visual reasoning."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "Initialized with the Qwen-7B language model, this pre-trained model adds an image model with an input resolution of 448."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 is a brand new series of large language models. Qwen2 7B is a transformer-based model that excels in language understanding, multilingual capabilities, programming, mathematics, and reasoning."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 is a brand new series of large language models with enhanced understanding and generation capabilities."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL is the latest iteration of the Qwen-VL model, achieving state-of-the-art performance in visual understanding benchmarks, including MathVista, DocVQA, RealWorldQA, and MTVQA. Qwen2-VL can understand videos over 20 minutes long for high-quality video-based Q&A, dialogue, and content creation. It also possesses complex reasoning and decision-making capabilities, allowing integration with mobile devices, robots, and more for automated operations based on visual environments and text instructions. In addition to English and Chinese, Qwen2-VL now supports understanding text in different languages within images, including most European languages, Japanese, Korean, Arabic, and Vietnamese."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct is one of the latest large language model series released by Alibaba Cloud. This 72B model has significantly improved capabilities in coding and mathematics. The model also offers multilingual support, covering over 29 languages, including Chinese and English. It shows significant enhancements in instruction following, understanding structured data, and generating structured outputs (especially JSON)."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct is one of the latest large language model series released by Alibaba Cloud. This 32B model has significantly improved capabilities in coding and mathematics. The model provides multilingual support, covering over 29 languages, including Chinese and English. It shows significant enhancements in instruction following, understanding structured data, and generating structured outputs (especially JSON)."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "An LLM focused on both Chinese and English, targeting language, programming, mathematics, reasoning, and more."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "An efficient and cost-effective next-generation embedding model, suitable for knowledge retrieval, RAG applications, and more."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "The open-source version of the latest generation pre-trained model from the GLM-4 series released by Zhiyuan AI."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) provides enhanced computational capabilities through efficient strategies and model architecture."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity is a leading provider of conversational generation models, offering various advanced Llama 3.1 models that support both online and offline applications, particularly suited for complex natural language processing tasks."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO supports stable and cost-efficient open-source LLM APIs, such as DeepSeek, Llama, Qwen etc."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "Tongyi Qianwen is a large-scale language model independently developed by Alibaba Cloud, featuring strong natural language understanding and generation capabilities. It can answer various questions, create written content, express opinions, and write code, playing a role in multiple fields."
|
94
97
|
},
|
@@ -139,8 +142,5 @@
|
|
139
142
|
},
|
140
143
|
"zhipu": {
|
141
144
|
"description": "Zhipu AI offers an open platform for multimodal and language models, supporting a wide range of AI application scenarios, including text processing, image understanding, and programming assistance."
|
142
|
-
},
|
143
|
-
"ppio": {
|
144
|
-
"description": "PPIO supports stable and cost-efficient open-source LLM APIs, such as DeepSeek, Llama, Qwen etc."
|
145
145
|
}
|
146
146
|
}
|
package/locales/es-ES/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "Existen subtemas, no se puede eliminar",
|
80
80
|
"regenerate": "Regenerar"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "Créditos",
|
85
|
+
"creditPricing": "Precios",
|
86
|
+
"creditTooltip": "Para facilitar el conteo, convertimos 1$ en 1M créditos, por ejemplo, $3/M tokens se convierte en 3 créditos/token",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "Entradas en caché {{amount}}/créditos · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M caracteres",
|
90
|
+
"inputMinutes": "${{amount}}/minuto",
|
91
|
+
"inputTokens": "Entradas {{amount}}/créditos · ${{amount}}/M",
|
92
|
+
"outputTokens": "Salidas {{amount}}/créditos · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "Entrada",
|
97
|
+
"inputAudio": "Entrada de audio",
|
98
|
+
"inputCached": "Entrada en caché",
|
99
|
+
"inputText": "Entrada de texto",
|
100
|
+
"inputTitle": "Detalles de entrada",
|
101
|
+
"inputUncached": "Entrada no en caché",
|
102
|
+
"output": "Salida",
|
103
|
+
"outputAudio": "Salida de audio",
|
104
|
+
"outputText": "Salida de texto",
|
105
|
+
"outputTitle": "Detalles de salida",
|
106
|
+
"reasoning": "Razonamiento profundo",
|
107
|
+
"title": "Detalles de generación",
|
108
|
+
"total": "Total consumido"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "Nuevo asistente",
|
83
112
|
"pin": "Fijar",
|
84
113
|
"pinOff": "Desfijar",
|
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B soporta 16K Tokens, proporcionando una capacidad de generación de lenguaje eficiente y fluida."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Cero Uno, el último modelo de ajuste fino de código abierto, cuenta con 34 mil millones de parámetros, con ajuste fino que admite múltiples escenarios de conversación y datos de entrenamiento de alta calidad, alineados con las preferencias humanas."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Cero Uno, el último modelo de ajuste fino de código abierto, cuenta con 9 mil millones de parámetros, con ajuste fino que admite múltiples escenarios de conversación y datos de entrenamiento de alta calidad, alineados con las preferencias humanas."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro, como un miembro importante de la serie de modelos de IA de 360, satisface diversas aplicaciones de procesamiento de lenguaje natural con su eficiente capacidad de manejo de textos, soportando la comprensión de textos largos y funciones de diálogo en múltiples turnos."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 es un modelo multilingüe lanzado por Cohere, que admite 23 idiomas, facilitando aplicaciones de lenguaje diversas."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B es un modelo de lenguaje de gran escala de código abierto y comercializable desarrollado por Baichuan Intelligence, que cuenta con 13 mil millones de parámetros y ha logrado los mejores resultados en benchmarks autorizados en chino e inglés."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 está diseñado para juegos de rol y acompañamiento emocional, soportando memoria de múltiples rondas y diálogos personalizados, con aplicaciones amplias."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 mejora significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de proporcionar la respuesta final, el modelo genera una cadena de pensamiento para mejorar la precisión de la respuesta final."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B es un modelo de lenguaje de gran tamaño basado en Llama3.3 70B, que utiliza el ajuste fino de la salida de DeepSeek R1 para lograr un rendimiento competitivo comparable a los modelos de vanguardia de gran tamaño."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B es un modelo de lenguaje grande destilado basado en Llama-3.1-8B-Instruct, entrenado utilizando la salida de DeepSeek R1."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B es un modelo de lenguaje grande destilado basado en Qwen 2.5 14B, entrenado utilizando la salida de DeepSeek R1. Este modelo ha superado a o1-mini de OpenAI en múltiples pruebas de referencia, logrando resultados de vanguardia en modelos densos. A continuación se presentan algunos resultados de las pruebas de referencia:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCalificación de CodeForces: 1481\nEste modelo, ajustado a partir de la salida de DeepSeek R1, muestra un rendimiento competitivo comparable al de modelos de vanguardia de mayor escala."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B es un modelo de lenguaje grande destilado basado en Qwen 2.5 32B, entrenado utilizando la salida de DeepSeek R1. Este modelo ha superado a o1-mini de OpenAI en múltiples pruebas de referencia, logrando resultados de vanguardia en modelos densos. A continuación se presentan algunos resultados de las pruebas de referencia:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCalificación de CodeForces: 1691\nEste modelo, ajustado a partir de la salida de DeepSeek R1, muestra un rendimiento competitivo comparable al de modelos de vanguardia de mayor escala."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 es el último modelo de código abierto lanzado por el equipo de DeepSeek, que cuenta con un rendimiento de inferencia excepcional, especialmente en tareas de matemáticas, programación y razonamiento, alcanzando niveles comparables al modelo o1 de OpenAI."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 mejora significativamente la capacidad de razonamiento del modelo con muy pocos datos etiquetados. Antes de proporcionar la respuesta final, el modelo genera una cadena de pensamiento para mejorar la precisión de la respuesta final."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 ha logrado un avance significativo en la velocidad de inferencia en comparación con modelos anteriores. Se clasifica como el número uno entre los modelos de código abierto y puede competir con los modelos cerrados más avanzados del mundo. DeepSeek-V3 utiliza la arquitectura de atención multi-cabeza (MLA) y DeepSeekMoE, que han sido completamente validadas en DeepSeek-V2. Además, DeepSeek-V3 ha introducido una estrategia auxiliar sin pérdidas para el balanceo de carga y ha establecido objetivos de entrenamiento de predicción de múltiples etiquetas para lograr un rendimiento más robusto."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 ha logrado un avance significativo en la velocidad de inferencia en comparación con modelos anteriores. Se clasifica como el número uno entre los modelos de código abierto y puede competir con los modelos cerrados más avanzados del mundo. DeepSeek-V3 utiliza la arquitectura de atención multi-cabeza (MLA) y DeepSeekMoE, que han sido completamente validadas en DeepSeek-V2. Además, DeepSeek-V3 ha introducido una estrategia auxiliar sin pérdidas para el balanceo de carga y ha establecido objetivos de entrenamiento de predicción de múltiples etiquetas para lograr un rendimiento más robusto."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "Doubao-1.5-lite es un modelo ligero de nueva generación, con una velocidad de respuesta extrema, alcanzando niveles de rendimiento y latencia de clase mundial."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Destaca en tareas como la descripción de imágenes y preguntas visuales, superando la brecha entre la generación de lenguaje y el razonamiento visual."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 está diseñado para manejar tareas que combinan datos visuales y textuales. Destaca en tareas como la descripción de imágenes y preguntas visuales, superando la brecha entre la generación de lenguaje y el razonamiento visual."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "Iniciado con el modelo de lenguaje Qwen-7B, se añade un modelo de imagen, un modelo preentrenado con una resolución de entrada de imagen de 448."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 es una nueva serie de modelos de lenguaje grande Qwen. Qwen2 7B es un modelo basado en transformador que destaca en comprensión del lenguaje, capacidades multilingües, programación, matemáticas y razonamiento."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 es una nueva serie de modelos de lenguaje de gran tamaño, con una mayor capacidad de comprensión y generación."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL es la última iteración del modelo Qwen-VL, alcanzando un rendimiento de vanguardia en pruebas de comprensión visual, incluyendo MathVista, DocVQA, RealWorldQA y MTVQA. Qwen2-VL puede entender videos de más de 20 minutos, permitiendo preguntas y respuestas, diálogos y creación de contenido de alta calidad basados en video. También posee capacidades complejas de razonamiento y toma de decisiones, pudiendo integrarse con dispositivos móviles, robots, etc., para realizar operaciones automáticas basadas en el entorno visual y las instrucciones de texto. Además del inglés y el chino, Qwen2-VL ahora también admite la comprensión de texto en diferentes idiomas dentro de imágenes, incluyendo la mayoría de los idiomas europeos, japonés, coreano, árabe y vietnamita."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct es una de las últimas series de modelos de lenguaje grande lanzadas por Alibaba Cloud. Este modelo de 72B presenta capacidades significativamente mejoradas en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mejorado notablemente en el seguimiento de instrucciones, la comprensión de datos estructurados y la generación de salidas estructuradas (especialmente JSON)."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct es una de las últimas series de modelos de lenguaje grande lanzadas por Alibaba Cloud. Este modelo de 32B presenta capacidades significativamente mejoradas en áreas como codificación y matemáticas. También ofrece soporte multilingüe, abarcando más de 29 idiomas, incluidos chino e inglés. El modelo ha mejorado notablemente en el seguimiento de instrucciones, la comprensión de datos estructurados y la generación de salidas estructuradas (especialmente JSON)."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "LLM orientado a chino e inglés, enfocado en áreas como lenguaje, programación, matemáticas y razonamiento."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "Un modelo de Embedding de nueva generación, eficiente y económico, adecuado para la recuperación de conocimiento, aplicaciones RAG y más."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "Versión de código abierto de la última generación del modelo preentrenado GLM-4 lanzado por Zhizhu AI."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) proporciona una capacidad de cálculo mejorada a través de estrategias y arquitecturas de modelos eficientes."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity es un proveedor líder de modelos de generación de diálogos, ofreciendo varios modelos avanzados de Llama 3.1, que son adecuados para aplicaciones en línea y fuera de línea, especialmente para tareas complejas de procesamiento del lenguaje natural."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO Paiouyun ofrece servicios de API de modelos de código abierto estables y de alto rendimiento, que admiten toda la serie DeepSeek, Llama, Qwen y otros modelos grandes líderes en la industria."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "Tongyi Qianwen es un modelo de lenguaje de gran escala desarrollado de forma independiente por Alibaba Cloud, con potentes capacidades de comprensión y generación de lenguaje natural. Puede responder a diversas preguntas, crear contenido escrito, expresar opiniones y redactar código, desempeñando un papel en múltiples campos."
|
94
97
|
},
|
package/locales/fa-IR/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "زیرموضوع وجود دارد، نمیتوان حذف کرد",
|
80
80
|
"regenerate": "بازتولید"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "اعتبار",
|
85
|
+
"creditPricing": "قیمت گذاری",
|
86
|
+
"creditTooltip": "برای سهولت در شمارش، ما 1$ را به 1M اعتبار تبدیل میکنیم، به عنوان مثال $3/M توکنها معادل 3 اعتبار/token است",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "ورودی کش شده {{amount}}/اعتبار · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M کاراکتر",
|
90
|
+
"inputMinutes": "${{amount}}/دقیقه",
|
91
|
+
"inputTokens": "ورودی {{amount}}/اعتبار · ${{amount}}/M",
|
92
|
+
"outputTokens": "خروجی {{amount}}/اعتبار · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "ورودی",
|
97
|
+
"inputAudio": "ورودی صوتی",
|
98
|
+
"inputCached": "ورودی کش شده",
|
99
|
+
"inputText": "ورودی متنی",
|
100
|
+
"inputTitle": "جزئیات ورودی",
|
101
|
+
"inputUncached": "ورودی غیر کش شده",
|
102
|
+
"output": "خروجی",
|
103
|
+
"outputAudio": "خروجی صوتی",
|
104
|
+
"outputText": "خروجی متنی",
|
105
|
+
"outputTitle": "جزئیات خروجی",
|
106
|
+
"reasoning": "تفکر عمیق",
|
107
|
+
"title": "جزئیات تولید",
|
108
|
+
"total": "مجموع مصرف"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "دستیار جدید",
|
83
112
|
"pin": "سنجاق کردن",
|
84
113
|
"pinOff": "لغو سنجاق",
|
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B از 16K توکن پشتیبانی میکند و توانایی تولید زبان بهصورت کارآمد و روان را ارائه میدهد."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Zero One Everything، جدیدترین مدل متن باز تنظیم شده با 34 میلیارد پارامتر، که تنظیمات آن از چندین سناریوی گفتگویی پشتیبانی میکند و دادههای آموزشی با کیفیت بالا را برای همراستایی با ترجیحات انسانی فراهم میکند."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Zero One Everything، جدیدترین مدل متن باز تنظیم شده با 9 میلیارد پارامتر، که تنظیمات آن از چندین سناریوی گفتگویی پشتیبانی میکند و دادههای آموزشی با کیفیت بالا را برای همراستایی با ترجیحات انسانی فراهم میکند."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro به عنوان یکی از اعضای مهم سری مدلهای 360 AI، با توانایی پردازش متون بهصورت کارآمد، نیازهای متنوع در زمینههای مختلف کاربردهای زبان طبیعی را برآورده میکند و از قابلیتهایی مانند درک متون طولانی و مکالمات چندمرحلهای پشتیبانی میکند."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 یک مدل چندزبانه است که توسط Cohere ارائه شده و از 23 زبان پشتیبانی میکند و استفاده از برنامههای چندزبانه را تسهیل مینماید."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B یک مدل زبان بزرگ متن باز و قابل تجاری با 130 میلیارد پارامتر است که در آزمونهای معتبر چینی و انگلیسی بهترین عملکرد را در اندازه مشابه به دست آورده است."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 بهطور ویژه برای نقشآفرینی و همراهی عاطفی طراحی شده است، از حافظه طولانیمدت و مکالمات شخصیسازیشده پشتیبانی میکند و کاربردهای گستردهای دارد."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B یک مدل زبان بزرگ مبتنی بر Llama3.3 70B است که با استفاده از تنظیمات DeepSeek R1 به عملکرد رقابتی معادل مدلهای پیشرفته بزرگ دست یافته است."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B یک مدل زبان بزرگ تقطیر شده مبتنی بر Llama-3.1-8B-Instruct است که با استفاده از خروجی DeepSeek R1 آموزش دیده است."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B یک مدل زبان بزرگ تقطیر شده مبتنی بر Qwen 2.5 14B است که با استفاده از خروجی DeepSeek R1 آموزش دیده است. این مدل در چندین آزمون معیار از o1-mini OpenAI پیشی گرفته و به آخرین دستاوردهای فناوری مدلهای متراکم (dense models) دست یافته است. نتایج برخی از آزمونهای معیار به شرح زیر است:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nاین مدل با تنظیمات خروجی DeepSeek R1، عملکرد رقابتی معادل مدلهای پیشرفته بزرگتر را نشان میدهد."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B یک مدل زبان بزرگ تقطیر شده مبتنی بر Qwen 2.5 32B است که با استفاده از خروجی DeepSeek R1 آموزش دیده است. این مدل در چندین آزمون معیار از o1-mini OpenAI پیشی گرفته و به آخرین دستاوردهای فناوری مدلهای متراکم (dense models) دست یافته است. نتایج برخی از آزمونهای معیار به شرح زیر است:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nاین مدل با تنظیمات خروجی DeepSeek R1، عملکرد رقابتی معادل مدلهای پیشرفته بزرگتر را نشان میدهد."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 جدیدترین مدل متن باز منتشر شده توسط تیم DeepSeek است که دارای عملکرد استدلال بسیار قوی است و به ویژه در وظایف ریاضی، برنامهنویسی و استدلال به سطحی معادل مدل o1 OpenAI رسیده است."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 با وجود دادههای برچسبگذاری شده بسیار کم، توانایی استدلال مدل را به طرز چشمگیری افزایش میدهد. قبل از ارائه پاسخ نهایی، مدل ابتدا یک زنجیره تفکر را تولید میکند تا دقت پاسخ نهایی را افزایش دهد."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 در سرعت استدلال به یک پیشرفت عمده نسبت به مدلهای قبلی دست یافته است. این مدل در بین مدلهای متن باز رتبه اول را دارد و میتواند با پیشرفتهترین مدلهای بسته جهانی رقابت کند. DeepSeek-V3 از معماری توجه چندسر (MLA) و DeepSeekMoE استفاده میکند که این معماریها در DeepSeek-V2 به طور کامل تأیید شدهاند. علاوه بر این، DeepSeek-V3 یک استراتژی کمکی بدون ضرر برای تعادل بار معرفی کرده و اهداف آموزشی پیشبینی چند برچسبی را برای بهبود عملکرد تعیین کرده است."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 در سرعت استدلال به یک پیشرفت عمده نسبت به مدلهای قبلی دست یافته است. این مدل در بین مدلهای متن باز رتبه اول را دارد و میتواند با پیشرفتهترین مدلهای بسته جهانی رقابت کند. DeepSeek-V3 از معماری توجه چندسر (MLA) و DeepSeekMoE استفاده میکند که این معماریها در DeepSeek-V2 به طور کامل تأیید شدهاند. علاوه بر این، DeepSeek-V3 یک استراتژی کمکی بدون ضرر برای تعادل بار معرفی کرده و اهداف آموزشی پیشبینی چند برچسبی را برای بهبود عملکرد تعیین کرده است."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "مدل سبک نسل جدید Doubao-1.5-lite، با سرعت پاسخدهی فوقالعاده، عملکرد و تأخیر در سطح جهانی را ارائه میدهد."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 برای انجام وظایفی که ترکیبی از دادههای بصری و متنی هستند طراحی شده است. این مدل در وظایفی مانند توصیف تصویر و پرسش و پاسخ بصری عملکرد بسیار خوبی دارد و فاصله بین تولید زبان و استدلال بصری را پر میکند."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 برای انجام وظایفی طراحی شده است که دادههای بصری و متنی را با هم ترکیب میکند. این مدل در وظایفی مانند توصیف تصویر و پرسش و پاسخ بصری عملکرد بسیار خوبی دارد و فاصله بین تولید زبان و استدلال بصری را پر میکند."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "مدل زبان Qwen-7B با اضافه کردن مدل تصویر و وضوح ورودی تصویر 448، به عنوان یک مدل پیشآموزششده، اولیهسازی شده است."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 یک سری جدید از مدلهای زبان بزرگ Qwen است. Qwen2 7B یک مدل مبتنی بر ترنسفورمر است که در درک زبان، قابلیتهای چند زبانه، برنامهنویسی، ریاضی و استدلال عملکرد عالی دارد."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 یک سری جدید از مدلهای زبان بزرگ است که دارای تواناییهای درک و تولید قویتری میباشد."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL جدیدترین نسخه از مدل Qwen-VL است که در آزمونهای معیار درک بصری به عملکرد پیشرفتهای دست یافته است، از جمله MathVista، DocVQA، RealWorldQA و MTVQA. Qwen2-VL قادر به درک ویدیوهای بیش از 20 دقیقه است و برای پرسش و پاسخ، گفتگو و تولید محتوا مبتنی بر ویدیو با کیفیت بالا استفاده میشود. این مدل همچنین دارای قابلیتهای پیچیده استدلال و تصمیمگیری است و میتواند با دستگاههای موبایل، رباتها و غیره ادغام شود و بر اساس محیط بصری و دستورات متنی به طور خودکار عمل کند. علاوه بر انگلیسی و چینی، Qwen2-VL اکنون از درک متنهای مختلف زبان در تصاویر نیز پشتیبانی میکند، از جمله بیشتر زبانهای اروپایی، ژاپنی، کرهای، عربی و ویتنامی."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct یکی از جدیدترین سری مدلهای زبان بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 72B در زمینههای کدنویسی و ریاضی دارای قابلیتهای بهبود یافته قابل توجهی است. این مدل همچنین از چندین زبان پشتیبانی میکند و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) بهبودهای قابل توجهی داشته است."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct یکی از جدیدترین سری مدلهای زبان بزرگ منتشر شده توسط Alibaba Cloud است. این مدل 32B در زمینههای کدنویسی و ریاضی دارای قابلیتهای بهبود یافته قابل توجهی است. این مدل از چندین زبان پشتیبانی میکند و بیش از 29 زبان از جمله چینی و انگلیسی را پوشش میدهد. این مدل در پیروی از دستورات، درک دادههای ساختاری و تولید خروجیهای ساختاری (به ویژه JSON) بهبودهای قابل توجهی داشته است."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "مدل LLM برای زبانهای چینی و انگلیسی که در زمینههای زبان، برنامهنویسی، ریاضیات و استدلال تخصص دارد."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "مدل جدید و کارآمد Embedding، مناسب برای جستجوی دانش، کاربردهای RAG و سایر سناریوها."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "نسخه متن باز جدیدترین نسل مدلهای پیشآموزش GLM-4 منتشر شده توسط Zhizhu AI."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) با استفاده از استراتژیها و معماری مدل کارآمد، توان محاسباتی بهبودیافتهای را ارائه میدهد."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity یک ارائهدهنده پیشرو در مدلهای تولید مکالمه است که انواع مدلهای پیشرفته Llama 3.1 را ارائه میدهد و از برنامههای آنلاین و آفلاین پشتیبانی میکند. این مدلها بهویژه برای وظایف پیچیده پردازش زبان طبیعی مناسب هستند."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO پایو کلود خدمات API مدلهای متن باز با ثبات و با قیمت مناسب را ارائه میدهد و از تمام سریهای DeepSeek، Llama، Qwen و سایر مدلهای بزرگ پیشرو در صنعت پشتیبانی میکند."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "چوان یی چیان ون یک مدل زبان بسیار بزرگ است که توسط علیکلود بهطور مستقل توسعه یافته و دارای تواناییهای قدرتمند درک و تولید زبان طبیعی است. این مدل میتواند به انواع سوالات پاسخ دهد، محتوای متنی خلق کند، نظرات و دیدگاهها را بیان کند، کد بنویسد و در حوزههای مختلف نقش ایفا کند."
|
94
97
|
},
|
package/locales/fr-FR/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "Il existe des sous-sujets, la suppression n'est pas possible.",
|
80
80
|
"regenerate": "Régénérer"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "Crédit",
|
85
|
+
"creditPricing": "Tarification",
|
86
|
+
"creditTooltip": "Pour faciliter le comptage, nous convertissons 1 $ en 1M de crédits, par exemple, 3 $/M tokens équivaut à 3 crédits/token",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "Entrée mise en cache {{amount}}/crédit · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M caractères",
|
90
|
+
"inputMinutes": "${{amount}}/minute",
|
91
|
+
"inputTokens": "Entrée {{amount}}/crédit · ${{amount}}/M",
|
92
|
+
"outputTokens": "Sortie {{amount}}/crédit · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "Entrée",
|
97
|
+
"inputAudio": "Entrée audio",
|
98
|
+
"inputCached": "Entrée mise en cache",
|
99
|
+
"inputText": "Entrée texte",
|
100
|
+
"inputTitle": "Détails de l'entrée",
|
101
|
+
"inputUncached": "Entrée non mise en cache",
|
102
|
+
"output": "Sortie",
|
103
|
+
"outputAudio": "Sortie audio",
|
104
|
+
"outputText": "Sortie texte",
|
105
|
+
"outputTitle": "Détails de la sortie",
|
106
|
+
"reasoning": "Raisonnement approfondi",
|
107
|
+
"title": "Détails de génération",
|
108
|
+
"total": "Total consommé"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "Nouvel agent",
|
83
112
|
"pin": "Épingler",
|
84
113
|
"pinOff": "Désépingler",
|
@@ -8,6 +8,12 @@
|
|
8
8
|
"01-ai/Yi-1.5-9B-Chat-16K": {
|
9
9
|
"description": "Yi-1.5 9B supporte 16K Tokens, offrant une capacité de génération de langage efficace et fluide."
|
10
10
|
},
|
11
|
+
"01-ai/yi-1.5-34b-chat": {
|
12
|
+
"description": "Zero One Everything, le dernier modèle de fine-tuning open source, avec 34 milliards de paramètres, prend en charge divers scénarios de dialogue, avec des données d'entraînement de haute qualité, alignées sur les préférences humaines."
|
13
|
+
},
|
14
|
+
"01-ai/yi-1.5-9b-chat": {
|
15
|
+
"description": "Zero One Everything, le dernier modèle de fine-tuning open source, avec 9 milliards de paramètres, prend en charge divers scénarios de dialogue, avec des données d'entraînement de haute qualité, alignées sur les préférences humaines."
|
16
|
+
},
|
11
17
|
"360gpt-pro": {
|
12
18
|
"description": "360GPT Pro, en tant que membre important de la série de modèles AI de 360, répond à des applications variées de traitement de texte avec une efficacité élevée, supportant la compréhension de longs textes et les dialogues multi-tours."
|
13
19
|
},
|
@@ -503,6 +509,9 @@
|
|
503
509
|
"aya:35b": {
|
504
510
|
"description": "Aya 23 est un modèle multilingue lancé par Cohere, prenant en charge 23 langues, facilitant les applications linguistiques diversifiées."
|
505
511
|
},
|
512
|
+
"baichuan/baichuan2-13b-chat": {
|
513
|
+
"description": "Baichuan-13B est un modèle de langage open source et commercialisable développé par Baichuan Intelligence, contenant 13 milliards de paramètres, qui a obtenu les meilleurs résultats dans des benchmarks chinois et anglais de référence."
|
514
|
+
},
|
506
515
|
"charglm-3": {
|
507
516
|
"description": "CharGLM-3 est conçu pour le jeu de rôle et l'accompagnement émotionnel, prenant en charge une mémoire multi-tours ultra-longue et des dialogues personnalisés, avec des applications variées."
|
508
517
|
},
|
@@ -683,9 +692,30 @@
|
|
683
692
|
"deepseek/deepseek-r1": {
|
684
693
|
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
685
694
|
},
|
695
|
+
"deepseek/deepseek-r1-distill-llama-70b": {
|
696
|
+
"description": "DeepSeek R1 Distill Llama 70B est un modèle de langage de grande taille basé sur Llama3.3 70B, qui utilise le fine-tuning des sorties de DeepSeek R1 pour atteindre des performances compétitives comparables aux grands modèles de pointe."
|
697
|
+
},
|
698
|
+
"deepseek/deepseek-r1-distill-llama-8b": {
|
699
|
+
"description": "DeepSeek R1 Distill Llama 8B est un modèle de langage distillé basé sur Llama-3.1-8B-Instruct, entraîné en utilisant les sorties de DeepSeek R1."
|
700
|
+
},
|
701
|
+
"deepseek/deepseek-r1-distill-qwen-14b": {
|
702
|
+
"description": "DeepSeek R1 Distill Qwen 14B est un modèle de langage distillé basé sur Qwen 2.5 14B, entraîné en utilisant les sorties de DeepSeek R1. Ce modèle a surpassé l'o1-mini d'OpenAI dans plusieurs benchmarks, atteignant des résultats de pointe pour les modèles denses. Voici quelques résultats de benchmarks :\nAIME 2024 pass@1 : 69.7\nMATH-500 pass@1 : 93.9\nCodeForces Rating : 1481\nCe modèle, affiné à partir des sorties de DeepSeek R1, démontre des performances compétitives comparables à celles de modèles de pointe de plus grande taille."
|
703
|
+
},
|
704
|
+
"deepseek/deepseek-r1-distill-qwen-32b": {
|
705
|
+
"description": "DeepSeek R1 Distill Qwen 32B est un modèle de langage distillé basé sur Qwen 2.5 32B, entraîné en utilisant les sorties de DeepSeek R1. Ce modèle a surpassé l'o1-mini d'OpenAI dans plusieurs benchmarks, atteignant des résultats de pointe pour les modèles denses. Voici quelques résultats de benchmarks :\nAIME 2024 pass@1 : 72.6\nMATH-500 pass@1 : 94.3\nCodeForces Rating : 1691\nCe modèle, affiné à partir des sorties de DeepSeek R1, démontre des performances compétitives comparables à celles de modèles de pointe de plus grande taille."
|
706
|
+
},
|
707
|
+
"deepseek/deepseek-r1/community": {
|
708
|
+
"description": "DeepSeek R1 est le dernier modèle open source publié par l'équipe DeepSeek, offrant des performances d'inférence très puissantes, atteignant des niveaux comparables à ceux du modèle o1 d'OpenAI, en particulier dans les tâches de mathématiques, de programmation et de raisonnement."
|
709
|
+
},
|
686
710
|
"deepseek/deepseek-r1:free": {
|
687
711
|
"description": "DeepSeek-R1 améliore considérablement les capacités de raisonnement du modèle avec très peu de données annotées. Avant de fournir la réponse finale, le modèle génère d'abord une chaîne de pensée pour améliorer l'exactitude de la réponse finale."
|
688
712
|
},
|
713
|
+
"deepseek/deepseek-v3": {
|
714
|
+
"description": "DeepSeek-V3 a réalisé une percée majeure en termes de vitesse d'inférence par rapport aux modèles précédents. Il se classe au premier rang des modèles open source et peut rivaliser avec les modèles fermés les plus avancés au monde. DeepSeek-V3 utilise une architecture d'attention multi-tête (MLA) et DeepSeekMoE, qui ont été entièrement validées dans DeepSeek-V2. De plus, DeepSeek-V3 a introduit une stratégie auxiliaire sans perte pour l'équilibrage de charge et a établi des objectifs d'entraînement de prédiction multi-étiquettes pour obtenir de meilleures performances."
|
715
|
+
},
|
716
|
+
"deepseek/deepseek-v3/community": {
|
717
|
+
"description": "DeepSeek-V3 a réalisé une percée majeure en termes de vitesse d'inférence par rapport aux modèles précédents. Il se classe au premier rang des modèles open source et peut rivaliser avec les modèles fermés les plus avancés au monde. DeepSeek-V3 utilise une architecture d'attention multi-tête (MLA) et DeepSeekMoE, qui ont été entièrement validées dans DeepSeek-V2. De plus, DeepSeek-V3 a introduit une stratégie auxiliaire sans perte pour l'équilibrage de charge et a établi des objectifs d'entraînement de prédiction multi-étiquettes pour obtenir de meilleures performances."
|
718
|
+
},
|
689
719
|
"doubao-1.5-lite-32k": {
|
690
720
|
"description": "Doubao-1.5-lite est un modèle léger de nouvelle génération, offrant une vitesse de réponse extrême, avec des performances et des délais atteignant des niveaux de classe mondiale."
|
691
721
|
},
|
@@ -1253,6 +1283,9 @@
|
|
1253
1283
|
"meta-llama/llama-3.2-11b-vision-instruct": {
|
1254
1284
|
"description": "LLaMA 3.2 est conçu pour traiter des tâches combinant des données visuelles et textuelles. Il excelle dans des tâches telles que la description d'images et les questions-réponses visuelles, comblant le fossé entre la génération de langage et le raisonnement visuel."
|
1255
1285
|
},
|
1286
|
+
"meta-llama/llama-3.2-3b-instruct": {
|
1287
|
+
"description": "meta-llama/llama-3.2-3b-instruct"
|
1288
|
+
},
|
1256
1289
|
"meta-llama/llama-3.2-90b-vision-instruct": {
|
1257
1290
|
"description": "LLaMA 3.2 est conçu pour traiter des tâches combinant des données visuelles et textuelles. Il excelle dans des tâches telles que la description d'images et les questions-réponses visuelles, comblant le fossé entre la génération de langage et le raisonnement visuel."
|
1258
1291
|
},
|
@@ -1517,9 +1550,21 @@
|
|
1517
1550
|
"qwen-vl-v1": {
|
1518
1551
|
"description": "Initialisé avec le modèle de langage Qwen-7B, ajoutant un modèle d'image, un modèle pré-entraîné avec une résolution d'entrée d'image de 448."
|
1519
1552
|
},
|
1553
|
+
"qwen/qwen-2-7b-instruct": {
|
1554
|
+
"description": "Qwen2 est la toute nouvelle série de modèles de langage de grande taille Qwen. Qwen2 7B est un modèle basé sur le transformateur, qui excelle dans la compréhension du langage, les capacités multilingues, la programmation, les mathématiques et le raisonnement."
|
1555
|
+
},
|
1520
1556
|
"qwen/qwen-2-7b-instruct:free": {
|
1521
1557
|
"description": "Qwen2 est une toute nouvelle série de modèles de langage de grande taille, offrant des capacités de compréhension et de génération plus puissantes."
|
1522
1558
|
},
|
1559
|
+
"qwen/qwen-2-vl-72b-instruct": {
|
1560
|
+
"description": "Qwen2-VL est la dernière version itérée du modèle Qwen-VL, atteignant des performances de pointe dans les benchmarks de compréhension visuelle, y compris MathVista, DocVQA, RealWorldQA et MTVQA. Qwen2-VL peut comprendre des vidéos de plus de 20 minutes pour des questions-réponses, des dialogues et de la création de contenu de haute qualité basés sur la vidéo. Il possède également des capacités de raisonnement et de décision complexes, pouvant être intégré à des appareils mobiles, des robots, etc., pour des opérations automatiques basées sur l'environnement visuel et des instructions textuelles. En plus de l'anglais et du chinois, Qwen2-VL prend désormais en charge la compréhension du texte dans différentes langues dans les images, y compris la plupart des langues européennes, le japonais, le coréen, l'arabe et le vietnamien."
|
1561
|
+
},
|
1562
|
+
"qwen/qwen-2.5-72b-instruct": {
|
1563
|
+
"description": "Qwen2.5-72B-Instruct est l'un des derniers modèles de langage de grande taille publiés par Alibaba Cloud. Ce modèle de 72B présente des capacités significativement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre également un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
1564
|
+
},
|
1565
|
+
"qwen/qwen2.5-32b-instruct": {
|
1566
|
+
"description": "Qwen2.5-32B-Instruct est l'un des derniers modèles de langage de grande taille publiés par Alibaba Cloud. Ce modèle de 32B présente des capacités significativement améliorées dans des domaines tels que le codage et les mathématiques. Le modèle offre un support multilingue, couvrant plus de 29 langues, y compris le chinois et l'anglais. Il a montré des améliorations significatives dans le suivi des instructions, la compréhension des données structurées et la génération de sorties structurées (en particulier JSON)."
|
1567
|
+
},
|
1523
1568
|
"qwen/qwen2.5-7b-instruct": {
|
1524
1569
|
"description": "LLM orienté vers le chinois et l'anglais, ciblant des domaines tels que la langue, la programmation, les mathématiques et le raisonnement."
|
1525
1570
|
},
|
@@ -1667,6 +1712,9 @@
|
|
1667
1712
|
"text-embedding-3-small": {
|
1668
1713
|
"description": "Un modèle d'Embedding de nouvelle génération, efficace et économique, adapté à la recherche de connaissances, aux applications RAG, etc."
|
1669
1714
|
},
|
1715
|
+
"thudm/glm-4-9b-chat": {
|
1716
|
+
"description": "Version open source de la dernière génération de modèles pré-entraînés de la série GLM-4 publiée par Zhizhu AI."
|
1717
|
+
},
|
1670
1718
|
"togethercomputer/StripedHyena-Nous-7B": {
|
1671
1719
|
"description": "StripedHyena Nous (7B) offre une capacité de calcul améliorée grâce à des stratégies et une architecture de modèle efficaces."
|
1672
1720
|
},
|
@@ -89,6 +89,9 @@
|
|
89
89
|
"perplexity": {
|
90
90
|
"description": "Perplexity est un fournisseur de modèles de génération de dialogue de premier plan, offrant divers modèles avancés Llama 3.1, prenant en charge les applications en ligne et hors ligne, particulièrement adaptés aux tâches complexes de traitement du langage naturel."
|
91
91
|
},
|
92
|
+
"ppio": {
|
93
|
+
"description": "PPIO Paiouyun offre des services API de modèles open source stables et rentables, prenant en charge toute la gamme DeepSeek, Llama, Qwen et d'autres grands modèles de pointe dans l'industrie."
|
94
|
+
},
|
92
95
|
"qwen": {
|
93
96
|
"description": "Tongyi Qianwen est un modèle de langage à grande échelle développé de manière autonome par Alibaba Cloud, doté de puissantes capacités de compréhension et de génération du langage naturel. Il peut répondre à diverses questions, créer du contenu écrit, exprimer des opinions, rédiger du code, etc., jouant un rôle dans plusieurs domaines."
|
94
97
|
},
|
package/locales/it-IT/chat.json
CHANGED
@@ -79,6 +79,35 @@
|
|
79
79
|
"deleteDisabledByThreads": "Esistono sottoargomenti, non è possibile eliminare",
|
80
80
|
"regenerate": "Rigenera"
|
81
81
|
},
|
82
|
+
"messages": {
|
83
|
+
"modelCard": {
|
84
|
+
"credit": "Crediti",
|
85
|
+
"creditPricing": "Prezzo",
|
86
|
+
"creditTooltip": "Per facilitare il conteggio, consideriamo 1$ equivalente a 1M crediti, ad esempio $3/M token equivalgono a 3 crediti/token",
|
87
|
+
"pricing": {
|
88
|
+
"inputCachedTokens": "Input memorizzato {{amount}}/crediti · ${{amount}}/M",
|
89
|
+
"inputCharts": "${{amount}}/M caratteri",
|
90
|
+
"inputMinutes": "${{amount}}/minuto",
|
91
|
+
"inputTokens": "Input {{amount}}/crediti · ${{amount}}/M",
|
92
|
+
"outputTokens": "Output {{amount}}/crediti · ${{amount}}/M"
|
93
|
+
}
|
94
|
+
},
|
95
|
+
"tokenDetails": {
|
96
|
+
"input": "Input",
|
97
|
+
"inputAudio": "Input audio",
|
98
|
+
"inputCached": "Input memorizzato",
|
99
|
+
"inputText": "Input testo",
|
100
|
+
"inputTitle": "Dettagli input",
|
101
|
+
"inputUncached": "Input non memorizzato",
|
102
|
+
"output": "Output",
|
103
|
+
"outputAudio": "Output audio",
|
104
|
+
"outputText": "Output testo",
|
105
|
+
"outputTitle": "Dettagli output",
|
106
|
+
"reasoning": "Ragionamento profondo",
|
107
|
+
"title": "Dettagli generati",
|
108
|
+
"total": "Totale consumato"
|
109
|
+
}
|
110
|
+
},
|
82
111
|
"newAgent": "Nuovo assistente",
|
83
112
|
"pin": "Fissa in alto",
|
84
113
|
"pinOff": "Annulla fissaggio in alto",
|