@lobehub/chat 1.68.2 → 1.68.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (111) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/docs/usage/providers/azureai.mdx +69 -0
  4. package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
  5. package/docs/usage/providers/deepseek.mdx +3 -3
  6. package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
  7. package/docs/usage/providers/jina.mdx +51 -0
  8. package/docs/usage/providers/jina.zh-CN.mdx +51 -0
  9. package/docs/usage/providers/lmstudio.mdx +75 -0
  10. package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
  11. package/docs/usage/providers/nvidia.mdx +55 -0
  12. package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
  13. package/docs/usage/providers/ppio.mdx +7 -7
  14. package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
  15. package/docs/usage/providers/sambanova.mdx +50 -0
  16. package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
  17. package/docs/usage/providers/tencentcloud.mdx +49 -0
  18. package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
  19. package/docs/usage/providers/vertexai.mdx +59 -0
  20. package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
  21. package/docs/usage/providers/vllm.mdx +98 -0
  22. package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
  23. package/docs/usage/providers/volcengine.mdx +47 -0
  24. package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
  25. package/locales/ar/chat.json +29 -0
  26. package/locales/ar/models.json +48 -0
  27. package/locales/ar/providers.json +3 -0
  28. package/locales/bg-BG/chat.json +29 -0
  29. package/locales/bg-BG/models.json +48 -0
  30. package/locales/bg-BG/providers.json +3 -0
  31. package/locales/de-DE/chat.json +29 -0
  32. package/locales/de-DE/models.json +48 -0
  33. package/locales/de-DE/providers.json +3 -0
  34. package/locales/en-US/chat.json +29 -0
  35. package/locales/en-US/models.json +48 -0
  36. package/locales/en-US/providers.json +3 -3
  37. package/locales/es-ES/chat.json +29 -0
  38. package/locales/es-ES/models.json +48 -0
  39. package/locales/es-ES/providers.json +3 -0
  40. package/locales/fa-IR/chat.json +29 -0
  41. package/locales/fa-IR/models.json +48 -0
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/chat.json +29 -0
  44. package/locales/fr-FR/models.json +48 -0
  45. package/locales/fr-FR/providers.json +3 -0
  46. package/locales/it-IT/chat.json +29 -0
  47. package/locales/it-IT/models.json +48 -0
  48. package/locales/it-IT/providers.json +3 -0
  49. package/locales/ja-JP/chat.json +29 -0
  50. package/locales/ja-JP/models.json +48 -0
  51. package/locales/ja-JP/providers.json +3 -0
  52. package/locales/ko-KR/chat.json +29 -0
  53. package/locales/ko-KR/models.json +48 -0
  54. package/locales/ko-KR/providers.json +3 -0
  55. package/locales/nl-NL/chat.json +29 -0
  56. package/locales/nl-NL/models.json +48 -0
  57. package/locales/nl-NL/providers.json +3 -0
  58. package/locales/pl-PL/chat.json +29 -0
  59. package/locales/pl-PL/models.json +48 -0
  60. package/locales/pl-PL/providers.json +3 -0
  61. package/locales/pt-BR/chat.json +29 -0
  62. package/locales/pt-BR/models.json +48 -0
  63. package/locales/pt-BR/providers.json +3 -0
  64. package/locales/ru-RU/chat.json +29 -0
  65. package/locales/ru-RU/models.json +48 -0
  66. package/locales/ru-RU/providers.json +3 -0
  67. package/locales/tr-TR/chat.json +29 -0
  68. package/locales/tr-TR/models.json +48 -0
  69. package/locales/tr-TR/providers.json +3 -0
  70. package/locales/vi-VN/chat.json +29 -0
  71. package/locales/vi-VN/models.json +48 -0
  72. package/locales/vi-VN/providers.json +3 -0
  73. package/locales/zh-CN/chat.json +29 -0
  74. package/locales/zh-CN/models.json +51 -3
  75. package/locales/zh-CN/providers.json +3 -4
  76. package/locales/zh-TW/chat.json +29 -0
  77. package/locales/zh-TW/models.json +48 -0
  78. package/locales/zh-TW/providers.json +3 -0
  79. package/package.json +1 -1
  80. package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
  81. package/packages/web-crawler/src/crawImpl/jina.ts +1 -1
  82. package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
  83. package/packages/web-crawler/src/urlRules.ts +7 -1
  84. package/packages/web-crawler/src/utils/errorType.ts +7 -0
  85. package/scripts/serverLauncher/startServer.js +11 -7
  86. package/src/config/modelProviders/ppio.ts +1 -1
  87. package/src/features/Conversation/Extras/Assistant.tsx +12 -20
  88. package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
  89. package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
  90. package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
  91. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
  92. package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
  93. package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
  94. package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
  95. package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
  96. package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
  97. package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
  98. package/src/locales/default/chat.ts +30 -1
  99. package/src/server/routers/tools/search.ts +1 -1
  100. package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
  101. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  102. package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
  103. package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
  104. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
  105. package/src/store/chat/slices/message/action.ts +3 -0
  106. package/src/store/global/initialState.ts +1 -0
  107. package/src/store/global/selectors/systemStatus.ts +2 -0
  108. package/src/types/message/base.ts +18 -0
  109. package/src/types/message/chat.ts +4 -3
  110. package/src/utils/fetch/fetchSSE.ts +24 -1
  111. package/src/utils/format.ts +3 -1
@@ -0,0 +1,48 @@
1
+ ---
2
+ title: 在 LobeChat 中使用火山引擎 API Key
3
+ description: 学习如何在 LobeChat 中配置和使用火山引擎 AI 模型,获取 API 密钥并开始对话。
4
+ tags:
5
+ - LobeChat
6
+ - 火山引擎
7
+ - 豆包
8
+ - API密钥
9
+ - Web UI
10
+ ---
11
+
12
+ # 在 LobeChat 中使用火山引擎
13
+
14
+ <Image alt={'在 LobeChat 中使用火山引擎'} cover src={'https://github.com/user-attachments/assets/b9da065e-f964-44f2-8260-59e182be2729'} />
15
+
16
+ [火山引擎](https://www.volcengine.com/)是字节跳动旗下的云服务平台,通过 "火山方舟" 提供大型语言模型 (LLM) 服务,支持多个主流模型如百川智能、Mobvoi 等。
17
+
18
+ 本文档将指导你如何在 LobeChat 中使用火山引擎:
19
+
20
+ <Steps>
21
+ ### 步骤一:获取火山引擎 API 密钥
22
+
23
+ - 首先,访问[火山引擎官网](https://www.volcengine.com/)并完成注册登录
24
+ - 进入火山引擎控制台并导航至[火山方舟](https://console.volcengine.com/ark/)
25
+
26
+ <Image alt={'进入火山方舟API管理页面'} inStep src={'https://github.com/user-attachments/assets/d6ace96f-0398-4847-83e1-75c3004a0e8b'} />
27
+
28
+ - 进入 `API key 管理` 菜单,并点击 `创建 API Key`
29
+ - 复制并保存创建好的 API Key
30
+
31
+ ### 步骤二:在 LobeChat 中配置火山引擎
32
+
33
+ - 访问 LobeChat 的 `应用设置` 的 `AI 服务供应商` 界面
34
+ - 在供应商列表中找到 `火山引擎` 的设置项
35
+
36
+ <Image alt={'填写火山引擎 API 密钥'} inStep src={'https://github.com/user-attachments/assets/237864d6-cc5d-4fe4-8a2b-c278016855c5'} />
37
+
38
+ - 打开火山引擎服务商并填入获取的 API 密钥
39
+ - 为你的助手选择一个火山引擎模型即可开始对话
40
+
41
+ <Image alt={'选择火山引擎模型'} inStep src={'https://github.com/user-attachments/assets/702c191f-8250-4462-aed7-accb18b18dea'} />
42
+
43
+ <Callout type={'warning'}>
44
+ 在使用过程中你可能需要向 API 服务提供商付费,请参考火山引擎的相关费用政策。
45
+ </Callout>
46
+ </Steps>
47
+
48
+ 至此你已经可以在 LobeChat 中使用火山引擎提供的模型进行对话了。
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "يوجد موضوعات فرعية، لا يمكن الحذف",
80
80
  "regenerate": "إعادة الإنشاء"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "نقاط",
85
+ "creditPricing": "التسعير",
86
+ "creditTooltip": "لتسهيل العد، نقوم بتحويل 1$ إلى 1M نقطة، على سبيل المثال، 3$/M رموز تعني 3 نقاط/رمز",
87
+ "pricing": {
88
+ "inputCachedTokens": "مدخلات مخزنة {{amount}}/نقطة · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M حرف",
90
+ "inputMinutes": "${{amount}}/دقيقة",
91
+ "inputTokens": "مدخلات {{amount}}/نقطة · ${{amount}}/M",
92
+ "outputTokens": "مخرجات {{amount}}/نقطة · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "مدخلات",
97
+ "inputAudio": "مدخلات صوتية",
98
+ "inputCached": "مدخلات مخزنة",
99
+ "inputText": "مدخلات نصية",
100
+ "inputTitle": "تفاصيل المدخلات",
101
+ "inputUncached": "مدخلات غير مخزنة",
102
+ "output": "مخرجات",
103
+ "outputAudio": "مخرجات صوتية",
104
+ "outputText": "مخرجات نصية",
105
+ "outputTitle": "تفاصيل المخرجات",
106
+ "reasoning": "تفكير عميق",
107
+ "title": "تفاصيل التوليد",
108
+ "total": "الإجمالي المستهلك"
109
+ }
110
+ },
82
111
  "newAgent": "مساعد جديد",
83
112
  "pin": "تثبيت",
84
113
  "pinOff": "إلغاء التثبيت",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B يدعم 16K توكن، ويوفر قدرة توليد لغوية فعالة وسلسة."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything، أحدث نموذج مفتوح المصدر تم تعديله، يحتوي على 34 مليار معلمة، ويدعم تعديلات متعددة لمشاهد الحوار، مع بيانات تدريب عالية الجودة تتماشى مع تفضيلات البشر."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything، أحدث نموذج مفتوح المصدر تم تعديله، يحتوي على 9 مليار معلمة، ويدعم تعديلات متعددة لمشاهد الحوار، مع بيانات تدريب عالية الجودة تتماشى مع تفضيلات البشر."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro كعضو مهم في سلسلة نماذج 360 AI، يلبي احتياجات معالجة النصوص المتنوعة بفعالية، ويدعم فهم النصوص الطويلة والحوار المتعدد الجولات."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 هو نموذج متعدد اللغات أطلقته Cohere، يدعم 23 لغة، مما يسهل التطبيقات اللغوية المتنوعة."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B هو نموذج لغوي كبير مفتوح المصدر قابل للاستخدام التجاري تم تطويره بواسطة Baichuan Intelligence، ويحتوي على 13 مليار معلمة، وقد حقق أفضل النتائج في المعايير الصينية والإنجليزية."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 مصمم خصيصًا للأدوار التفاعلية والمرافقة العاطفية، يدعم ذاكرة متعددة الجولات طويلة الأمد وحوارات مخصصة، ويستخدم على نطاق واسع."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B هو نموذج لغوي كبير يعتمد على Llama3.3 70B، حيث يحقق أداءً تنافسيًا مماثلاً للنماذج الرائدة الكبيرة من خلال استخدام التعديلات المستندة إلى مخرجات DeepSeek R1."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B هو نموذج لغوي كبير مكرر يعتمد على Llama-3.1-8B-Instruct، تم تدريبه باستخدام مخرجات DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B هو نموذج لغوي كبير مكرر يعتمد على Qwen 2.5 14B، تم تدريبه باستخدام مخرجات DeepSeek R1. لقد تفوق هذا النموذج في العديد من اختبارات المعايير على نموذج OpenAI o1-mini، محققًا أحدث الإنجازات التقنية في النماذج الكثيفة. فيما يلي بعض نتائج اختبارات المعايير:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nتصنيف CodeForces: 1481\nأظهر هذا النموذج أداءً تنافسيًا مماثلاً للنماذج الرائدة الأكبر حجمًا من خلال التعديل المستند إلى مخرجات DeepSeek R1."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B هو نموذج لغوي كبير مكرر يعتمد على Qwen 2.5 32B، تم تدريبه باستخدام مخرجات DeepSeek R1. لقد تفوق هذا النموذج في العديد من اختبارات المعايير على نموذج OpenAI o1-mini، محققًا أحدث الإنجازات التقنية في النماذج الكثيفة. فيما يلي بعض نتائج اختبارات المعايير:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nتصنيف CodeForces: 1691\nأظهر هذا النموذج أداءً تنافسيًا مماثلاً للنماذج الرائدة الأكبر حجمًا من خلال التعديل المستند إلى مخرجات DeepSeek R1."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 هو أحدث نموذج مفتوح المصدر أطلقه فريق DeepSeek، ويتميز بأداء استدلال قوي للغاية، خاصة في المهام الرياضية والبرمجة والاستدلال، حيث وصل إلى مستوى مماثل لنموذج OpenAI o1."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 يعزز بشكل كبير من قدرة النموذج على الاستدلال في ظل وجود بيانات محدودة جدًا. قبل تقديم الإجابة النهائية، يقوم النموذج أولاً بإخراج سلسلة من التفكير لتحسين دقة الإجابة النهائية."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "حقق DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج المفتوحة المصدر، ويمكن مقارنته بأحدث النماذج المغلقة على مستوى العالم. يعتمد DeepSeek-V3 على بنية الانتباه المتعدد الرؤوس (MLA) وبنية DeepSeekMoE، والتي تم التحقق منها بشكل شامل في DeepSeek-V2. بالإضافة إلى ذلك، قدم DeepSeek-V3 استراتيجية مساعدة غير مدمرة للتوازن في الحمل، وحدد أهداف تدريب متعددة التسمية لتحقيق أداء أقوى."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "حقق DeepSeek-V3 تقدمًا كبيرًا في سرعة الاستدلال مقارنة بالنماذج السابقة. يحتل المرتبة الأولى بين النماذج المفتوحة المصدر، ويمكن مقارنته بأحدث النماذج المغلقة على مستوى العالم. يعتمد DeepSeek-V3 على بنية الانتباه المتعدد الرؤوس (MLA) وبنية DeepSeekMoE، والتي تم التحقق منها بشكل شامل في DeepSeek-V2. بالإضافة إلى ذلك، قدم DeepSeek-V3 استراتيجية مساعدة غير مدمرة للتوازن في الحمل، وحدد أهداف تدريب متعددة التسمية لتحقيق أداء أقوى."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "دو باو 1.5 لايت هو نموذج الجيل الجديد الخفيف، مع سرعة استجابة قصوى، حيث يصل الأداء والوقت المستغرق إلى مستوى عالمي."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يتفوق في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة والاستدلال البصري."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "تم تصميم LLaMA 3.2 لمعالجة المهام التي تجمع بين البيانات البصرية والنصية. إنه يتفوق في مهام وصف الصور والأسئلة البصرية، متجاوزًا الفجوة بين توليد اللغة والاستدلال البصري."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "نموذج تم تدريبه باستخدام نموذج Qwen-7B اللغوي، مع إضافة نموذج الصور، بدقة إدخال الصور 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 هو سلسلة جديدة من نماذج اللغة الكبيرة Qwen. Qwen2 7B هو نموذج يعتمد على بنية transformer، ويظهر أداءً ممتازًا في فهم اللغة، والقدرات متعددة اللغات، والبرمجة، والرياضيات، والاستدلال."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 هو سلسلة جديدة من نماذج اللغة الكبيرة، تتمتع بقدرات فهم وتوليد أقوى."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL هو الإصدار الأحدث من نموذج Qwen-VL، وقد حقق أداءً متقدمًا في اختبارات الفهم البصري، بما في ذلك MathVista وDocVQA وRealWorldQA وMTVQA. يمكن لـ Qwen2-VL فهم مقاطع الفيديو التي تزيد مدتها عن 20 دقيقة، مما يتيح إجابات عالية الجودة على الأسئلة المستندة إلى الفيديو، والمحادثات، وإنشاء المحتوى. كما يتمتع بقدرات استدلال واتخاذ قرارات معقدة، ويمكن دمجه مع الأجهزة المحمولة والروبوتات، مما يتيح التشغيل التلقائي بناءً على البيئة البصرية والتعليمات النصية. بالإضافة إلى الإنجليزية والصينية، يدعم Qwen2-VL الآن فهم النصوص بلغات مختلفة في الصور، بما في ذلك معظم اللغات الأوروبية واليابانية والكورية والعربية والفيتنامية."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج 72B بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر النموذج دعمًا متعدد اللغات، يغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. وقد حقق النموذج تحسينات ملحوظة في اتباع التعليمات وفهم البيانات الهيكلية وتوليد المخرجات الهيكلية (خاصة JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct هو أحد أحدث نماذج اللغة الكبيرة التي أصدرتها Alibaba Cloud. يتمتع هذا النموذج 32B بقدرات محسنة بشكل ملحوظ في مجالات الترميز والرياضيات. كما يوفر النموذج دعمًا متعدد اللغات، يغطي أكثر من 29 لغة، بما في ذلك الصينية والإنجليزية. وقد حقق النموذج تحسينات ملحوظة في اتباع التعليمات وفهم البيانات الهيكلية وتوليد المخرجات الهيكلية (خاصة JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "نموذج لغوي موجه للغة الصينية والإنجليزية، يستهدف مجالات اللغة، والبرمجة، والرياضيات، والاستدلال، وغيرها."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "نموذج التضمين من الجيل الجديد، فعال واقتصادي، مناسب لاسترجاع المعرفة وتطبيقات RAG وغيرها."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "الإصدار المفتوح من الجيل الأحدث من نموذج GLM-4 الذي أطلقته Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) يوفر قدرة حسابية معززة من خلال استراتيجيات فعالة وهندسة نموذجية."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity هي شركة رائدة في تقديم نماذج توليد الحوار، تقدم مجموعة من نماذج Llama 3.1 المتقدمة، تدعم التطبيقات عبر الإنترنت وغير المتصلة، وتناسب بشكل خاص مهام معالجة اللغة الطبيعية المعقدة."
91
91
  },
92
+ "ppio": {
93
+ "description": "تقدم PPIO بايو السحابية خدمات واجهة برمجة التطبيقات لنماذج مفتوحة المصدر مستقرة وذات تكلفة فعالة، تدعم جميع سلسلة DeepSeek، وLlama، وQwen، وغيرها من النماذج الكبيرة الرائدة في الصناعة."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen هو نموذج لغة ضخم تم تطويره ذاتيًا بواسطة Alibaba Cloud، يتمتع بقدرات قوية في فهم وتوليد اللغة الطبيعية. يمكنه الإجابة على مجموعة متنوعة من الأسئلة، وكتابة المحتوى، والتعبير عن الآراء، وكتابة الشيفرات، ويؤدي دورًا في مجالات متعددة."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Съществуват подтеми, не можете да изтриете.",
80
80
  "regenerate": "Прегенерирай"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Кредити",
85
+ "creditPricing": "Ценообразуване",
86
+ "creditTooltip": "За удобство при броенето, 1$ се преобразува в 1M кредити, например $3/M токени се преобразува в 3 кредита/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Кеширани входящи {{amount}}/кредити · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M символи",
90
+ "inputMinutes": "${{amount}}/минута",
91
+ "inputTokens": "Входящи {{amount}}/кредити · ${{amount}}/M",
92
+ "outputTokens": "Изходящи {{amount}}/кредити · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Вход",
97
+ "inputAudio": "Аудио вход",
98
+ "inputCached": "Кеширан вход",
99
+ "inputText": "Текстов вход",
100
+ "inputTitle": "Детайли за входа",
101
+ "inputUncached": "Некеширан вход",
102
+ "output": "Изход",
103
+ "outputAudio": "Аудио изход",
104
+ "outputText": "Текстов изход",
105
+ "outputTitle": "Детайли за изхода",
106
+ "reasoning": "Дълбочинно разсъждение",
107
+ "title": "Детайли за генериране",
108
+ "total": "Общо разходи"
109
+ }
110
+ },
82
111
  "newAgent": "Нов агент",
83
112
  "pin": "Закачи",
84
113
  "pinOff": "Откачи",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B поддържа 16K токена, предоставяйки ефективни и плавни способности за генериране на език."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "零一万物, най-новият отворен модел с фина настройка, с 34 милиарда параметри, който поддържа множество диалогови сценарии, с висококачествени обучителни данни, съобразени с човешките предпочитания."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "零一万物, най-новият отворен модел с фина настройка, с 9 милиарда параметри, който поддържа множество диалогови сценарии, с висококачествени обучителни данни, съобразени с човешките предпочитания."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, като важен член на серията AI модели на 360, отговаря на разнообразни приложения на естествения език с ефективни способности за обработка на текст, поддържайки разбиране на дълги текстове и многостепенни диалози."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 е многозначен модел, представен от Cohere, поддържащ 23 езика, предоставяйки удобство за многоезични приложения."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B е отворен, комерсиален голям езиков модел, разработен от Baichuan Intelligence, с 13 милиарда параметри, който постига най-добрите резултати в своя размер на авторитетни бенчмаркове на китайски и английски."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 е проектиран за ролеви игри и емоционално придружаване, поддържаща дълга многократна памет и персонализиран диалог, с широко приложение."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B е голям езиков модел, базиран на Llama3.3 70B, който използва фина настройка на изхода на DeepSeek R1, за да постигне конкурентна производителност, сравнима с големите водещи модели."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B е дестилиран голям езиков модел, базиран на Llama-3.1-8B-Instruct, обучен с изхода на DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B е дестилиран голям езиков модел, базиран на Qwen 2.5 14B, обучен с изхода на DeepSeek R1. Този модел надминава o1-mini на OpenAI в множество бенчмарков, постигащи най-съвременни резултати за плътни модели. Ето някои от резултатите от бенчмарковете:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nТози модел демонстрира конкурентна производителност, сравнима с по-големи водещи модели, благодарение на фина настройка на изхода на DeepSeek R1."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B е дестилиран голям езиков модел, базиран на Qwen 2.5 32B, обучен с изхода на DeepSeek R1. Този модел надминава o1-mini на OpenAI в множество бенчмарков, постигащи най-съвременни резултати за плътни модели. Ето някои от резултатите от бенчмарковете:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nТози модел демонстрира конкурентна производителност, сравнима с по-големи водещи модели, благодарение на фина настройка на изхода на DeepSeek R1."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 е най-новият отворен модел, публикуван от екипа на DeepSeek, който предлага изключителна производителност при извеждане, особено в математически, програмистки и логически задачи, достигайки ниво, сравнимо с модела o1 на OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 значително подобри способността на модела за разсъждение при наличието на много малко маркирани данни. Преди да предостави окончателния отговор, моделът първо ще изведе част от съдържанието на веригата на мислене, за да повиши точността на окончателния отговор."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 постига значителен напредък в скоростта на извеждане в сравнение с предишните модели. Той е на първо място сред отворените модели и може да се сравнява с най-съвременните затворени модели в света. DeepSeek-V3 използва архитектури с многоглаво внимание (MLA) и DeepSeekMoE, които бяха напълно валидирани в DeepSeek-V2. Освен това, DeepSeek-V3 въвежда помощна беззагубна стратегия за баланс на натоварването и задава цели за обучение с множество етикети, за да постигне по-силна производителност."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 постига значителен напредък в скоростта на извеждане в сравнение с предишните модели. Той е на първо място сред отворените модели и може да се сравнява с най-съвременните затворени модели в света. DeepSeek-V3 използва архитектури с многоглаво внимание (MLA) и DeepSeekMoE, които бяха напълно валидирани в DeepSeek-V2. Освен това, DeepSeek-V3 въвежда помощна беззагубна стратегия за баланс на натоварването и задава цели за обучение с множество етикети, за да постигне по-силна производителност."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite е ново поколение лек модел, с изключителна скорост на отговор, който постига световно ниво както по отношение на ефективността, така и на времето за реакция."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 е проектиран да обработва задачи, свързващи визуални и текстови данни. Той показва отлични резултати в задачи като описание на изображения и визуални въпроси, преодолявайки пропастта между генерирането на език и визуалното разсъждение."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 е проектиран да обработва задачи, свързващи визуални и текстови данни. Той показва отлични резултати в задачи като описание на изображения и визуални въпроси, преодолявайки пропастта между генерирането на език и визуалното разсъждение."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Инициализиран с езиковия модел Qwen-7B, добавя модел за изображения, предтренировъчен модел с резолюция на входа от 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 е новата серия големи езикови модели Qwen. Qwen2 7B е модел, базиран на трансформатор, който показва отлични резултати в разбирането на езика, многоезичните способности, програмирането, математиката и разсъжденията."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 е нова серия от големи езикови модели с по-силни способности за разбиране и генериране."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL е най-новата итерация на модела Qwen-VL, постигайки най-съвременни резултати в бенчмарковете за визуално разбиране, включително MathVista, DocVQA, RealWorldQA и MTVQA. Qwen2-VL може да разбира видеа с продължителност над 20 минути, за висококачествени въпроси и отговори, диалози и създаване на съдържание, базирани на видео. Той също така притежава сложни способности за разсъждение и вземане на решения, които могат да се интегрират с мобилни устройства, роботи и др., за автоматични операции на базата на визуална среда и текстови инструкции. Освен английски и китайски, Qwen2-VL сега поддържа и разбиране на текст на различни езици в изображения, включително повечето европейски езици, японски, корейски, арабски и виетнамски."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct е една от най-новите серии големи езикови модели, публикувани от Alibaba Cloud. Този 72B модел има значителни подобрения в области като кодиране и математика. Моделът предлага и многоезична поддръжка, обхващаща над 29 езика, включително китайски и английски. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct е една от най-новите серии големи езикови модели, публикувани от Alibaba Cloud. Този 32B модел има значителни подобрения в области като кодиране и математика. Моделът предлага и многоезична поддръжка, обхващаща над 29 езика, включително китайски и английски. Моделът показва значителни подобрения в следването на инструкции, разбирането на структурирани данни и генерирането на структурирани изходи (особено JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM, насочен към китайски и английски, за области като език, програмиране, математика и разсъждение."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Ефективен и икономичен ново поколение модел за вграждане, подходящ за извличане на знания, RAG приложения и други сценарии."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "GLM-4 е последната версия на предварително обучен модел от серията, публикувана от Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) предлага подобрена изчислителна мощ чрез ефективни стратегии и архитектура на модела."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity е водещ доставчик на модели за генериране на диалози, предлагащ множество напреднали модели Llama 3.1, поддържащи онлайн и офлайн приложения, особено подходящи за сложни задачи по обработка на естествен език."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO ПайОу облак предлага стабилни и икономически изгодни API услуги за отворени модели, поддържащи цялата серия DeepSeek, Llama, Qwen и други водещи модели в индустрията."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen е самостоятелно разработен свръхголям езиков модел на Alibaba Cloud, с мощни способности за разбиране и генериране на естествен език. Може да отговаря на различни въпроси, да създава текстово съдържание, да изразява мнения и да пише код, играейки роля в множество области."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Es gibt Unterthemen, die Löschung ist nicht möglich.",
80
80
  "regenerate": "Neu generieren"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Punkte",
85
+ "creditPricing": "Preisgestaltung",
86
+ "creditTooltip": "Zur Vereinfachung der Zählung rechnen wir 1$ als 1M Punkte um, zum Beispiel werden $3/M Tokens als 3 Punkte/token umgerechnet",
87
+ "pricing": {
88
+ "inputCachedTokens": "Zwischengespeicherte Eingabe {{amount}}/Punkte · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M Zeichen",
90
+ "inputMinutes": "${{amount}}/Minute",
91
+ "inputTokens": "Eingabe {{amount}}/Punkte · ${{amount}}/M",
92
+ "outputTokens": "Ausgabe {{amount}}/Punkte · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Eingabe",
97
+ "inputAudio": "Audioeingabe",
98
+ "inputCached": "Eingabe zwischengespeichert",
99
+ "inputText": "Text-Eingabe",
100
+ "inputTitle": "Eingabedetails",
101
+ "inputUncached": "Eingabe nicht zwischengespeichert",
102
+ "output": "Ausgabe",
103
+ "outputAudio": "Audioausgabe",
104
+ "outputText": "Text-Ausgabe",
105
+ "outputTitle": "Ausgabedetails",
106
+ "reasoning": "Tiefes Denken",
107
+ "title": "Generierungsdetails",
108
+ "total": "Gesamter Verbrauch"
109
+ }
110
+ },
82
111
  "newAgent": "Neuer Assistent",
83
112
  "pin": "Anheften",
84
113
  "pinOff": "Anheften aufheben",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B unterstützt 16K Tokens und bietet effiziente, flüssige Sprachgenerierungsfähigkeiten."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Yi 1.5, das neueste Open-Source-Fine-Tuning-Modell mit 34 Milliarden Parametern, unterstützt verschiedene Dialogszenarien mit hochwertigen Trainingsdaten, die auf menschliche Präferenzen abgestimmt sind."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Yi 1.5, das neueste Open-Source-Fine-Tuning-Modell mit 9 Milliarden Parametern, unterstützt verschiedene Dialogszenarien mit hochwertigen Trainingsdaten, die auf menschliche Präferenzen abgestimmt sind."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro ist ein wichtiger Bestandteil der 360 AI-Modellreihe und erfüllt mit seiner effizienten Textverarbeitungsfähigkeit vielfältige Anwendungen der natürlichen Sprache, unterstützt das Verständnis langer Texte und Mehrfachdialoge."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 ist ein mehrsprachiges Modell von Cohere, das 23 Sprachen unterstützt und die Anwendung in einer Vielzahl von Sprachen erleichtert."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B ist ein Open-Source-Sprachmodell mit 13 Milliarden Parametern, das von Baichuan Intelligence entwickelt wurde und in autorisierten chinesischen und englischen Benchmarks die besten Ergebnisse in seiner Größenordnung erzielt hat."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 ist für Rollenspiele und emotionale Begleitung konzipiert und unterstützt extrem lange Mehrfachgedächtnisse und personalisierte Dialoge, mit breiter Anwendung."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 hat die Schlussfolgerungsfähigkeiten des Modells erheblich verbessert, selbst bei nur wenigen gekennzeichneten Daten. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B ist ein großes Sprachmodell, das auf Llama3.3 70B basiert und durch Feinabstimmung mit den Ausgaben von DeepSeek R1 eine wettbewerbsfähige Leistung erreicht, die mit großen, fortschrittlichen Modellen vergleichbar ist."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B ist ein distilliertes großes Sprachmodell, das auf Llama-3.1-8B-Instruct basiert und durch Training mit den Ausgaben von DeepSeek R1 erstellt wurde."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B ist ein distilliertes großes Sprachmodell, das auf Qwen 2.5 14B basiert und durch Training mit den Ausgaben von DeepSeek R1 erstellt wurde. Dieses Modell hat in mehreren Benchmark-Tests OpenAI's o1-mini übertroffen und die neuesten technologischen Fortschritte bei dichten Modellen (state-of-the-art) erzielt. Hier sind einige Ergebnisse der Benchmark-Tests:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDas Modell zeigt durch Feinabstimmung mit den Ausgaben von DeepSeek R1 eine wettbewerbsfähige Leistung, die mit größeren, fortschrittlichen Modellen vergleichbar ist."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B ist ein distilliertes großes Sprachmodell, das auf Qwen 2.5 32B basiert und durch Training mit den Ausgaben von DeepSeek R1 erstellt wurde. Dieses Modell hat in mehreren Benchmark-Tests OpenAI's o1-mini übertroffen und die neuesten technologischen Fortschritte bei dichten Modellen (state-of-the-art) erzielt. Hier sind einige Ergebnisse der Benchmark-Tests:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDas Modell zeigt durch Feinabstimmung mit den Ausgaben von DeepSeek R1 eine wettbewerbsfähige Leistung, die mit größeren, fortschrittlichen Modellen vergleichbar ist."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 ist das neueste Open-Source-Modell, das vom DeepSeek-Team veröffentlicht wurde und über eine äußerst leistungsstarke Inferenzleistung verfügt, insbesondere in den Bereichen Mathematik, Programmierung und logisches Denken, die mit dem OpenAI o1-Modell vergleichbar ist."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 hat die Schlussfolgerungsfähigkeiten des Modells erheblich verbessert, selbst bei nur wenigen gekennzeichneten Daten. Bevor das Modell die endgültige Antwort ausgibt, gibt es zunächst eine Denkprozesskette aus, um die Genauigkeit der endgültigen Antwort zu erhöhen."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 hat einen bedeutenden Durchbruch in der Inferenzgeschwindigkeit im Vergleich zu früheren Modellen erzielt. Es belegt den ersten Platz unter den Open-Source-Modellen und kann mit den weltweit fortschrittlichsten proprietären Modellen konkurrieren. DeepSeek-V3 verwendet die Multi-Head-Latent-Attention (MLA) und die DeepSeekMoE-Architektur, die in DeepSeek-V2 umfassend validiert wurden. Darüber hinaus hat DeepSeek-V3 eine unterstützende verlustfreie Strategie für die Lastenverteilung eingeführt und mehrere Zielvorgaben für das Training von Mehrfachvorhersagen festgelegt, um eine stärkere Leistung zu erzielen."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 hat einen bedeutenden Durchbruch in der Inferenzgeschwindigkeit im Vergleich zu früheren Modellen erzielt. Es belegt den ersten Platz unter den Open-Source-Modellen und kann mit den weltweit fortschrittlichsten proprietären Modellen konkurrieren. DeepSeek-V3 verwendet die Multi-Head-Latent-Attention (MLA) und die DeepSeekMoE-Architektur, die in DeepSeek-V2 umfassend validiert wurden. Darüber hinaus hat DeepSeek-V3 eine unterstützende verlustfreie Strategie für die Lastenverteilung eingeführt und mehrere Zielvorgaben für das Training von Mehrfachvorhersagen festgelegt, um eine stärkere Leistung zu erzielen."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite ist das neueste leichte Modell der nächsten Generation, das eine extrem schnelle Reaktionszeit bietet und sowohl in der Leistung als auch in der Latenz weltweit erstklassig ist."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellem Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 ist darauf ausgelegt, Aufgaben zu bearbeiten, die visuelle und textuelle Daten kombinieren. Es zeigt hervorragende Leistungen bei Aufgaben wie Bildbeschreibung und visuellem Fragen und Antworten und überbrückt die Kluft zwischen Sprachgenerierung und visueller Schlussfolgerung."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Initiiert mit dem Qwen-7B-Sprachmodell, fügt es ein Bildmodell hinzu, das für Bildeingaben mit einer Auflösung von 448 vortrainiert wurde."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 ist die brandneue Serie von großen Sprachmodellen von Qwen. Qwen2 7B ist ein transformerbasiertes Modell, das in den Bereichen Sprachverständnis, Mehrsprachigkeit, Programmierung, Mathematik und logisches Denken hervorragende Leistungen zeigt."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 ist eine neue Serie großer Sprachmodelle mit stärkeren Verständnis- und Generierungsfähigkeiten."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL ist die neueste Iteration des Qwen-VL-Modells und hat in Benchmark-Tests zur visuellen Verständlichkeit eine fortschrittliche Leistung erreicht, einschließlich MathVista, DocVQA, RealWorldQA und MTVQA. Qwen2-VL kann über 20 Minuten Video verstehen und ermöglicht qualitativ hochwertige, videobasierte Fragen und Antworten, Dialoge und Inhaltserstellung. Es verfügt auch über komplexe Denk- und Entscheidungsfähigkeiten und kann mit mobilen Geräten, Robotern usw. integriert werden, um basierend auf visuellen Umgebungen und Textanweisungen automatisch zu agieren. Neben Englisch und Chinesisch unterstützt Qwen2-VL jetzt auch das Verständnis von Text in Bildern in verschiedenen Sprachen, einschließlich der meisten europäischen Sprachen, Japanisch, Koreanisch, Arabisch und Vietnamesisch."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct ist eines der neuesten großen Sprachmodell-Serien, die von Alibaba Cloud veröffentlicht wurden. Dieses 72B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Das Modell hat signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis von strukturierten Daten und in der Generierung von strukturierten Ausgaben (insbesondere JSON) erzielt."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct ist eines der neuesten großen Sprachmodell-Serien, die von Alibaba Cloud veröffentlicht wurden. Dieses 32B-Modell hat signifikante Verbesserungen in den Bereichen Codierung und Mathematik. Das Modell bietet auch mehrsprachige Unterstützung und deckt über 29 Sprachen ab, einschließlich Chinesisch und Englisch. Das Modell hat signifikante Verbesserungen in der Befolgung von Anweisungen, im Verständnis von strukturierten Daten und in der Generierung von strukturierten Ausgaben (insbesondere JSON) erzielt."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM, das auf Chinesisch und Englisch ausgerichtet ist und sich auf Sprache, Programmierung, Mathematik, Schlussfolgern und andere Bereiche konzentriert."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Effizientes und kostengünstiges neues Embedding-Modell, geeignet für Wissensabruf, RAG-Anwendungen und andere Szenarien."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "Die Open-Source-Version des neuesten vortrainierten Modells der GLM-4-Serie, das von Zhizhu AI veröffentlicht wurde."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) bietet durch effiziente Strategien und Modellarchitekturen verbesserte Rechenfähigkeiten."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity ist ein führender Anbieter von Dialoggenerierungsmodellen und bietet eine Vielzahl fortschrittlicher Llama 3.1-Modelle an, die sowohl für Online- als auch Offline-Anwendungen geeignet sind und sich besonders für komplexe Aufgaben der Verarbeitung natürlicher Sprache eignen."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paiou Cloud bietet stabile und kosteneffiziente Open-Source-Modell-API-Dienste und unterstützt die gesamte DeepSeek-Serie, Llama, Qwen und andere führende große Modelle der Branche."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Tongyi Qianwen ist ein von Alibaba Cloud selbst entwickeltes, groß angelegtes Sprachmodell mit starken Fähigkeiten zur Verarbeitung und Generierung natürlicher Sprache. Es kann eine Vielzahl von Fragen beantworten, Texte erstellen, Meinungen äußern und Code schreiben und spielt in mehreren Bereichen eine Rolle."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "There are subtopics, deletion is not allowed",
80
80
  "regenerate": "Regenerate"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Credits",
85
+ "creditPricing": "Pricing",
86
+ "creditTooltip": "For counting purposes, we convert $1 to 1M credits; for example, $3/M tokens can be converted to 3 credits/token.",
87
+ "pricing": {
88
+ "inputCachedTokens": "Cached input {{amount}}/credits · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M characters",
90
+ "inputMinutes": "${{amount}}/minute",
91
+ "inputTokens": "Input {{amount}}/credits · ${{amount}}/M",
92
+ "outputTokens": "Output {{amount}}/credits · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Input",
97
+ "inputAudio": "Audio Input",
98
+ "inputCached": "Cached Input",
99
+ "inputText": "Text Input",
100
+ "inputTitle": "Input Details",
101
+ "inputUncached": "Uncached Input",
102
+ "output": "Output",
103
+ "outputAudio": "Audio Output",
104
+ "outputText": "Text Output",
105
+ "outputTitle": "Output Details",
106
+ "reasoning": "Deep Thinking",
107
+ "title": "Generation Details",
108
+ "total": "Total Consumption"
109
+ }
110
+ },
82
111
  "newAgent": "New Assistant",
83
112
  "pin": "Pin",
84
113
  "pinOff": "Unpin",