@lobehub/chat 1.68.2 → 1.68.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (111) hide show
  1. package/CHANGELOG.md +50 -0
  2. package/changelog/v1.json +18 -0
  3. package/docs/usage/providers/azureai.mdx +69 -0
  4. package/docs/usage/providers/azureai.zh-CN.mdx +69 -0
  5. package/docs/usage/providers/deepseek.mdx +3 -3
  6. package/docs/usage/providers/deepseek.zh-CN.mdx +5 -4
  7. package/docs/usage/providers/jina.mdx +51 -0
  8. package/docs/usage/providers/jina.zh-CN.mdx +51 -0
  9. package/docs/usage/providers/lmstudio.mdx +75 -0
  10. package/docs/usage/providers/lmstudio.zh-CN.mdx +75 -0
  11. package/docs/usage/providers/nvidia.mdx +55 -0
  12. package/docs/usage/providers/nvidia.zh-CN.mdx +55 -0
  13. package/docs/usage/providers/ppio.mdx +7 -7
  14. package/docs/usage/providers/ppio.zh-CN.mdx +6 -6
  15. package/docs/usage/providers/sambanova.mdx +50 -0
  16. package/docs/usage/providers/sambanova.zh-CN.mdx +50 -0
  17. package/docs/usage/providers/tencentcloud.mdx +49 -0
  18. package/docs/usage/providers/tencentcloud.zh-CN.mdx +49 -0
  19. package/docs/usage/providers/vertexai.mdx +59 -0
  20. package/docs/usage/providers/vertexai.zh-CN.mdx +59 -0
  21. package/docs/usage/providers/vllm.mdx +98 -0
  22. package/docs/usage/providers/vllm.zh-CN.mdx +98 -0
  23. package/docs/usage/providers/volcengine.mdx +47 -0
  24. package/docs/usage/providers/volcengine.zh-CN.mdx +48 -0
  25. package/locales/ar/chat.json +29 -0
  26. package/locales/ar/models.json +48 -0
  27. package/locales/ar/providers.json +3 -0
  28. package/locales/bg-BG/chat.json +29 -0
  29. package/locales/bg-BG/models.json +48 -0
  30. package/locales/bg-BG/providers.json +3 -0
  31. package/locales/de-DE/chat.json +29 -0
  32. package/locales/de-DE/models.json +48 -0
  33. package/locales/de-DE/providers.json +3 -0
  34. package/locales/en-US/chat.json +29 -0
  35. package/locales/en-US/models.json +48 -0
  36. package/locales/en-US/providers.json +3 -3
  37. package/locales/es-ES/chat.json +29 -0
  38. package/locales/es-ES/models.json +48 -0
  39. package/locales/es-ES/providers.json +3 -0
  40. package/locales/fa-IR/chat.json +29 -0
  41. package/locales/fa-IR/models.json +48 -0
  42. package/locales/fa-IR/providers.json +3 -0
  43. package/locales/fr-FR/chat.json +29 -0
  44. package/locales/fr-FR/models.json +48 -0
  45. package/locales/fr-FR/providers.json +3 -0
  46. package/locales/it-IT/chat.json +29 -0
  47. package/locales/it-IT/models.json +48 -0
  48. package/locales/it-IT/providers.json +3 -0
  49. package/locales/ja-JP/chat.json +29 -0
  50. package/locales/ja-JP/models.json +48 -0
  51. package/locales/ja-JP/providers.json +3 -0
  52. package/locales/ko-KR/chat.json +29 -0
  53. package/locales/ko-KR/models.json +48 -0
  54. package/locales/ko-KR/providers.json +3 -0
  55. package/locales/nl-NL/chat.json +29 -0
  56. package/locales/nl-NL/models.json +48 -0
  57. package/locales/nl-NL/providers.json +3 -0
  58. package/locales/pl-PL/chat.json +29 -0
  59. package/locales/pl-PL/models.json +48 -0
  60. package/locales/pl-PL/providers.json +3 -0
  61. package/locales/pt-BR/chat.json +29 -0
  62. package/locales/pt-BR/models.json +48 -0
  63. package/locales/pt-BR/providers.json +3 -0
  64. package/locales/ru-RU/chat.json +29 -0
  65. package/locales/ru-RU/models.json +48 -0
  66. package/locales/ru-RU/providers.json +3 -0
  67. package/locales/tr-TR/chat.json +29 -0
  68. package/locales/tr-TR/models.json +48 -0
  69. package/locales/tr-TR/providers.json +3 -0
  70. package/locales/vi-VN/chat.json +29 -0
  71. package/locales/vi-VN/models.json +48 -0
  72. package/locales/vi-VN/providers.json +3 -0
  73. package/locales/zh-CN/chat.json +29 -0
  74. package/locales/zh-CN/models.json +51 -3
  75. package/locales/zh-CN/providers.json +3 -4
  76. package/locales/zh-TW/chat.json +29 -0
  77. package/locales/zh-TW/models.json +48 -0
  78. package/locales/zh-TW/providers.json +3 -0
  79. package/package.json +1 -1
  80. package/packages/web-crawler/src/crawImpl/__test__/jina.test.ts +169 -0
  81. package/packages/web-crawler/src/crawImpl/jina.ts +1 -1
  82. package/packages/web-crawler/src/crawImpl/naive.ts +29 -3
  83. package/packages/web-crawler/src/urlRules.ts +7 -1
  84. package/packages/web-crawler/src/utils/errorType.ts +7 -0
  85. package/scripts/serverLauncher/startServer.js +11 -7
  86. package/src/config/modelProviders/ppio.ts +1 -1
  87. package/src/features/Conversation/Extras/Assistant.tsx +12 -20
  88. package/src/features/Conversation/Extras/Usage/UsageDetail/ModelCard.tsx +130 -0
  89. package/src/features/Conversation/Extras/Usage/UsageDetail/TokenProgress.tsx +71 -0
  90. package/src/features/Conversation/Extras/Usage/UsageDetail/index.tsx +146 -0
  91. package/src/features/Conversation/Extras/Usage/UsageDetail/tokens.ts +94 -0
  92. package/src/features/Conversation/Extras/Usage/index.tsx +40 -0
  93. package/src/libs/agent-runtime/utils/streams/anthropic.test.ts +14 -0
  94. package/src/libs/agent-runtime/utils/streams/anthropic.ts +25 -0
  95. package/src/libs/agent-runtime/utils/streams/openai.test.ts +100 -10
  96. package/src/libs/agent-runtime/utils/streams/openai.ts +30 -4
  97. package/src/libs/agent-runtime/utils/streams/protocol.ts +4 -0
  98. package/src/locales/default/chat.ts +30 -1
  99. package/src/server/routers/tools/search.ts +1 -1
  100. package/src/store/aiInfra/slices/aiModel/initialState.ts +3 -1
  101. package/src/store/aiInfra/slices/aiModel/selectors.test.ts +1 -0
  102. package/src/store/aiInfra/slices/aiModel/selectors.ts +5 -0
  103. package/src/store/aiInfra/slices/aiProvider/action.ts +3 -1
  104. package/src/store/chat/slices/aiChat/actions/generateAIChat.ts +5 -1
  105. package/src/store/chat/slices/message/action.ts +3 -0
  106. package/src/store/global/initialState.ts +1 -0
  107. package/src/store/global/selectors/systemStatus.ts +2 -0
  108. package/src/types/message/base.ts +18 -0
  109. package/src/types/message/chat.ts +4 -3
  110. package/src/utils/fetch/fetchSSE.ts +24 -1
  111. package/src/utils/format.ts +3 -1
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B supporta 16K Tokens, offrendo capacità di generazione linguistica efficienti e fluide."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything, il più recente modello open source fine-tuned, con 34 miliardi di parametri, supporta vari scenari di dialogo, con dati di addestramento di alta qualità, allineati alle preferenze umane."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything, il più recente modello open source fine-tuned, con 9 miliardi di parametri, supporta vari scenari di dialogo, con dati di addestramento di alta qualità, allineati alle preferenze umane."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, come membro importante della serie di modelli AI di 360, soddisfa le diverse applicazioni del linguaggio naturale con un'efficace capacità di elaborazione del testo, supportando la comprensione di testi lunghi e conversazioni a più turni."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 è un modello multilingue lanciato da Cohere, supporta 23 lingue, facilitando applicazioni linguistiche diversificate."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B è un modello di linguaggio open source sviluppato da Baichuan Intelligence, con 13 miliardi di parametri, che ha ottenuto i migliori risultati nella sua categoria in benchmark autorevoli sia in cinese che in inglese."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 è progettato per il gioco di ruolo e la compagnia emotiva, supporta una memoria multi-turno ultra-lunga e dialoghi personalizzati, con ampie applicazioni."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B è un grande modello di linguaggio basato su Llama3.3 70B, che utilizza il fine-tuning dell'output di DeepSeek R1 per raggiungere prestazioni competitive paragonabili a quelle dei modelli all'avanguardia di grandi dimensioni."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B è un modello di linguaggio distillato basato su Llama-3.1-8B-Instruct, addestrato utilizzando l'output di DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B è un modello di linguaggio distillato basato su Qwen 2.5 14B, addestrato utilizzando l'output di DeepSeek R1. Questo modello ha superato OpenAI's o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia per i modelli densi. Ecco alcuni risultati dei benchmark:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nQuesto modello, attraverso il fine-tuning dell'output di DeepSeek R1, ha dimostrato prestazioni competitive paragonabili a modelli all'avanguardia di dimensioni maggiori."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B è un modello di linguaggio distillato basato su Qwen 2.5 32B, addestrato utilizzando l'output di DeepSeek R1. Questo modello ha superato OpenAI's o1-mini in diversi benchmark, raggiungendo risultati all'avanguardia per i modelli densi. Ecco alcuni risultati dei benchmark:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nQuesto modello, attraverso il fine-tuning dell'output di DeepSeek R1, ha dimostrato prestazioni competitive paragonabili a modelli all'avanguardia di dimensioni maggiori."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 è l'ultimo modello open source rilasciato dal team di DeepSeek, con prestazioni di inferenza eccezionali, in particolare nei compiti di matematica, programmazione e ragionamento, raggiungendo livelli comparabili a quelli del modello o1 di OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 ha notevolmente migliorato le capacità di ragionamento del modello con pochissimi dati etichettati. Prima di fornire la risposta finale, il modello genera una catena di pensiero per migliorare l'accuratezza della risposta finale."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 ha realizzato un significativo progresso nella velocità di inferenza rispetto ai modelli precedenti. Si posiziona al primo posto tra i modelli open source e può competere con i modelli closed source più avanzati al mondo. DeepSeek-V3 utilizza l'architettura Multi-Head Latent Attention (MLA) e DeepSeekMoE, che sono state ampiamente validate in DeepSeek-V2. Inoltre, DeepSeek-V3 ha introdotto una strategia ausiliaria senza perdita per il bilanciamento del carico e ha stabilito obiettivi di addestramento per la previsione multi-etichetta per ottenere prestazioni superiori."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 ha realizzato un significativo progresso nella velocità di inferenza rispetto ai modelli precedenti. Si posiziona al primo posto tra i modelli open source e può competere con i modelli closed source più avanzati al mondo. DeepSeek-V3 utilizza l'architettura Multi-Head Latent Attention (MLA) e DeepSeekMoE, che sono state ampiamente validate in DeepSeek-V2. Inoltre, DeepSeek-V3 ha introdotto una strategia ausiliaria senza perdita per il bilanciamento del carico e ha stabilito obiettivi di addestramento per la previsione multi-etichetta per ottenere prestazioni superiori."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite è un modello leggero di nuova generazione, con una velocità di risposta eccezionale, raggiungendo standard di livello mondiale sia in termini di prestazioni che di latenza."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Si distingue in compiti come la descrizione delle immagini e il question answering visivo, colmando il divario tra generazione del linguaggio e ragionamento visivo."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 è progettato per gestire compiti che combinano dati visivi e testuali. Si distingue in compiti come la descrizione delle immagini e il question answering visivo, colmando il divario tra generazione del linguaggio e ragionamento visivo."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Inizializzato con il modello di linguaggio Qwen-7B, aggiunge un modello di immagine, con una risoluzione di input dell'immagine di 448."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 è la nuova serie di modelli di linguaggio Qwen. Qwen2 7B è un modello basato su transformer, che mostra prestazioni eccezionali nella comprensione del linguaggio, nelle capacità multilingue, nella programmazione, nella matematica e nel ragionamento."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 è una nuova serie di modelli di linguaggio di grandi dimensioni, con capacità di comprensione e generazione più forti."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL è l'ultima iterazione del modello Qwen-VL, raggiungendo prestazioni all'avanguardia nei benchmark di comprensione visiva, inclusi MathVista, DocVQA, RealWorldQA e MTVQA. Qwen2-VL è in grado di comprendere video di oltre 20 minuti, per domande e risposte, dialoghi e creazione di contenuti di alta qualità basati su video. Ha anche capacità di ragionamento e decisione complesse, che possono essere integrate con dispositivi mobili, robot e altro, per operazioni automatiche basate su ambienti visivi e istruzioni testuali. Oltre all'inglese e al cinese, Qwen2-VL ora supporta anche la comprensione di testi in diverse lingue all'interno delle immagini, comprese la maggior parte delle lingue europee, giapponese, coreano, arabo e vietnamita."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct è uno dei più recenti modelli di linguaggio rilasciati da Alibaba Cloud. Questo modello da 72B ha capacità notevolmente migliorate in campi come la codifica e la matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (in particolare JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct è uno dei più recenti modelli di linguaggio rilasciati da Alibaba Cloud. Questo modello da 32B ha capacità notevolmente migliorate in campi come la codifica e la matematica. Il modello offre anche supporto multilingue, coprendo oltre 29 lingue, tra cui cinese e inglese. Ha mostrato miglioramenti significativi nel seguire istruzioni, comprendere dati strutturati e generare output strutturati (in particolare JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM orientato al cinese e all'inglese, focalizzato su linguaggio, programmazione, matematica, ragionamento e altro."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Modello di Embedding di nuova generazione, efficiente ed economico, adatto per la ricerca di conoscenza, applicazioni RAG e altri scenari."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "La versione open source dell'ultima generazione del modello pre-addestrato GLM-4 rilasciato da Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) offre capacità di calcolo potenziate attraverso strategie e architetture di modelli efficienti."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity è un fornitore leader di modelli di generazione di dialogo, offrendo vari modelli avanzati Llama 3.1, supportando applicazioni online e offline, particolarmente adatti per compiti complessi di elaborazione del linguaggio naturale."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO Paeou Cloud offre servizi API per modelli open source stabili e ad alto rapporto qualità-prezzo, supportando l'intera gamma di DeepSeek, Llama, Qwen e altri modelli di grandi dimensioni leader del settore."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Qwen è un modello di linguaggio di grande scala sviluppato autonomamente da Alibaba Cloud, con potenti capacità di comprensione e generazione del linguaggio naturale. Può rispondere a varie domande, creare contenuti testuali, esprimere opinioni e scrivere codice, svolgendo un ruolo in vari settori."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "サブトピックが存在するため、削除できません。",
80
80
  "regenerate": "再生成"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "クレジット",
85
+ "creditPricing": "価格設定",
86
+ "creditTooltip": "カウントを容易にするために、1ドルを1Mクレジットに換算します。例えば、$3/Mトークンは3クレジット/トークンに相当します。",
87
+ "pricing": {
88
+ "inputCachedTokens": "キャッシュ入力 {{amount}}/クレジット · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M 文字",
90
+ "inputMinutes": "${{amount}}/分",
91
+ "inputTokens": "入力 {{amount}}/クレジット · ${{amount}}/M",
92
+ "outputTokens": "出力 {{amount}}/クレジット · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "入力",
97
+ "inputAudio": "音声入力",
98
+ "inputCached": "キャッシュ入力",
99
+ "inputText": "テキスト入力",
100
+ "inputTitle": "入力の詳細",
101
+ "inputUncached": "未キャッシュ入力",
102
+ "output": "出力",
103
+ "outputAudio": "音声出力",
104
+ "outputText": "テキスト出力",
105
+ "outputTitle": "出力の詳細",
106
+ "reasoning": "深い思考",
107
+ "title": "生成の詳細",
108
+ "total": "合計消費"
109
+ }
110
+ },
82
111
  "newAgent": "新しいエージェント",
83
112
  "pin": "ピン留め",
84
113
  "pinOff": "ピン留め解除",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9Bは16Kトークンをサポートし、高効率でスムーズな言語生成能力を提供します。"
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "零一万物、最新のオープンソース微調整モデル、340億パラメータ、微調整は多様な対話シーンをサポートし、高品質なトレーニングデータで人間の好みに合わせています。"
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "零一万物、最新のオープンソース微調整モデル、90億パラメータ、微調整は多様な対話シーンをサポートし、高品質なトレーニングデータで人間の好みに合わせています。"
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Proは360 AIモデルシリーズの重要なメンバーであり、高効率なテキスト処理能力を持ち、多様な自然言語アプリケーションシーンに対応し、長文理解や多輪対話などの機能をサポートします。"
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23は、Cohereが提供する多言語モデルであり、23の言語をサポートし、多様な言語アプリケーションを便利にします。"
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13Bは百川智能が開発した130億パラメータを持つオープンソースの商用大規模言語モデルで、権威ある中国語と英語のベンチマークで同サイズの中で最良の結果を達成しています。"
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3はキャラクター演技と感情的な伴侶のために設計されており、超長期の多段階記憶と個別化された対話をサポートし、幅広い用途に適しています。"
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70BはLlama3.3 70Bに基づく大規模言語モデルで、DeepSeek R1の出力を微調整に利用し、大規模な最前線モデルと同等の競争力のある性能を実現しています。"
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8BはLlama-3.1-8B-Instructに基づく蒸留大言語モデルで、DeepSeek R1の出力を使用してトレーニングされています。"
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14BはQwen 2.5 14Bに基づく蒸留大言語モデルで、DeepSeek R1の出力を使用してトレーニングされています。このモデルは複数のベンチマークテストでOpenAIのo1-miniを超え、密なモデル(dense models)の最新技術の成果を達成しました。以下は一部のベンチマークテストの結果です:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nこのモデルはDeepSeek R1の出力から微調整を行い、より大規模な最前線モデルと同等の競争力のある性能を示しています。"
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32BはQwen 2.5 32Bに基づく蒸留大言語モデルで、DeepSeek R1の出力を使用してトレーニングされています。このモデルは複数のベンチマークテストでOpenAIのo1-miniを超え、密なモデル(dense models)の最新技術の成果を達成しました。以下は一部のベンチマークテストの結果です:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nこのモデルはDeepSeek R1の出力から微調整を行い、より大規模な最前線モデルと同等の競争力のある性能を示しています。"
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1はDeepSeekチームが発表した最新のオープンソースモデルで、特に数学、プログラミング、推論タスクにおいてOpenAIのo1モデルと同等の推論性能を持っています。"
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1は、わずかなラベル付きデータしかない状況で、モデルの推論能力を大幅に向上させました。最終的な回答を出力する前に、モデルは思考の連鎖を出力し、最終的な答えの正確性を向上させます。"
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3は推論速度において前のモデルに比べて大きなブレークスルーを達成しました。オープンソースモデルの中で1位にランクインし、世界の最先端のクローズドモデルと肩を並べることができます。DeepSeek-V3はマルチヘッド潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用しており、これらのアーキテクチャはDeepSeek-V2で完全に検証されています。さらに、DeepSeek-V3は負荷分散のための補助的な非損失戦略を開発し、より強力な性能を得るためにマルチラベル予測トレーニング目標を設定しました。"
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3は推論速度において前のモデルに比べて大きなブレークスルーを達成しました。オープンソースモデルの中で1位にランクインし、世界の最先端のクローズドモデルと肩を並べることができます。DeepSeek-V3はマルチヘッド潜在注意(MLA)とDeepSeekMoEアーキテクチャを採用しており、これらのアーキテクチャはDeepSeek-V2で完全に検証されています。さらに、DeepSeek-V3は負荷分散のための補助的な非損失戦略を開発し、より強力な性能を得るためにマルチラベル予測トレーニング目標を設定しました。"
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-liteは全く新しい世代の軽量版モデルで、極限の応答速度を実現し、効果と遅延の両方で世界トップレベルに達しています。"
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2は、視覚とテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的な質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを超えています。"
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2は、視覚とテキストデータを組み合わせたタスクを処理することを目的としています。画像の説明や視覚的な質問応答などのタスクで優れたパフォーマンスを発揮し、言語生成と視覚推論の間のギャップを超えています。"
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Qwen-7B言語モデルを初期化し、画像モデルを追加した、画像入力解像度448の事前トレーニングモデルです。"
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2は全く新しいQwen大規模言語モデルシリーズです。Qwen2 7Bはトランスフォーマーに基づくモデルで、言語理解、多言語能力、プログラミング、数学、推論において優れた性能を示しています。"
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2は全く新しい大型言語モデルシリーズで、より強力な理解と生成能力を備えています。"
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VLはQwen-VLモデルの最新のイテレーションで、MathVista、DocVQA、RealWorldQA、MTVQAなどの視覚理解ベンチマークテストで最先端の性能を達成しました。Qwen2-VLは20分以上のビデオを理解し、高品質なビデオベースの質問応答、対話、コンテンツ作成を行うことができます。また、複雑な推論と意思決定能力を備えており、モバイルデバイスやロボットなどと統合し、視覚環境とテキスト指示に基づいて自動操作を行うことができます。英語と中国語に加えて、Qwen2-VLは現在、ほとんどのヨーロッパ言語、日本語、韓国語、アラビア語、ベトナム語など、異なる言語のテキストを画像内で理解することもサポートしています。"
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instructはアリババクラウドが発表した最新の大言語モデルシリーズの一つです。この72Bモデルはコーディングや数学などの分野で顕著な能力の向上を示しています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の追従、構造化データの理解、構造化出力(特にJSON)の生成においても顕著な向上を示しています。"
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instructはアリババクラウドが発表した最新の大言語モデルシリーズの一つです。この32Bモデルはコーディングや数学などの分野で顕著な能力の向上を示しています。このモデルは29以上の言語をカバーする多言語サポートも提供しており、中国語、英語などが含まれています。モデルは指示の追従、構造化データの理解、構造化出力(特にJSON)の生成においても顕著な向上を示しています。"
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "中国語と英語に対応したLLMで、言語、プログラミング、数学、推論などの分野に特化しています。"
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "効率的で経済的な次世代埋め込みモデル、知識検索やRAGアプリケーションなどのシーンに適しています"
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "智谱AIが発表したGLM-4シリーズの最新世代の事前トレーニングモデルのオープンソース版です。"
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B)は、高効率の戦略とモデルアーキテクチャを通じて、強化された計算能力を提供します。"
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexityは、先進的な対話生成モデルの提供者であり、さまざまなLlama 3.1モデルを提供し、オンラインおよびオフラインアプリケーションをサポートし、特に複雑な自然言語処理タスクに適しています。"
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO パイオ云は、安定した高コストパフォーマンスのオープンソースモデル API サービスを提供し、DeepSeek の全シリーズ、Llama、Qwen などの業界をリードする大規模モデルをサポートしています。"
94
+ },
92
95
  "qwen": {
93
96
  "description": "通義千問は、アリババクラウドが独自に開発した超大規模言語モデルであり、強力な自然言語理解と生成能力を持っています。さまざまな質問に答えたり、文章を創作したり、意見を表現したり、コードを執筆したりすることができ、さまざまな分野で活躍しています。"
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "하위 주제가 존재하여 삭제할 수 없습니다.",
80
80
  "regenerate": "다시 생성"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "포인트",
85
+ "creditPricing": "가격",
86
+ "creditTooltip": "계산을 용이하게 하기 위해, 1$를 1M 포인트로 환산합니다. 예를 들어, $3/M 토큰은 3포인트/토큰으로 환산됩니다.",
87
+ "pricing": {
88
+ "inputCachedTokens": "캐시된 입력 {{amount}}/포인트 · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M 문자",
90
+ "inputMinutes": "${{amount}}/분",
91
+ "inputTokens": "입력 {{amount}}/포인트 · ${{amount}}/M",
92
+ "outputTokens": "출력 {{amount}}/포인트 · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "입력",
97
+ "inputAudio": "오디오 입력",
98
+ "inputCached": "입력 캐시",
99
+ "inputText": "텍스트 입력",
100
+ "inputTitle": "입력 세부사항",
101
+ "inputUncached": "입력 비캐시",
102
+ "output": "출력",
103
+ "outputAudio": "오디오 출력",
104
+ "outputText": "텍스트 출력",
105
+ "outputTitle": "출력 세부사항",
106
+ "reasoning": "심층 사고",
107
+ "title": "생성 세부사항",
108
+ "total": "총 소모"
109
+ }
110
+ },
82
111
  "newAgent": "새 도우미",
83
112
  "pin": "고정",
84
113
  "pinOff": "고정 해제",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B는 16K 토큰을 지원하며, 효율적이고 매끄러운 언어 생성 능력을 제공합니다."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "제로일 만물, 최신 오픈 소스 미세 조정 모델로, 340억 개의 매개변수를 가지고 있으며, 다양한 대화 시나리오를 지원하는 미세 조정, 고품질 훈련 데이터, 인간의 선호에 맞춘 조정을 제공합니다."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "제로일 만물, 최신 오픈 소스 미세 조정 모델로, 90억 개의 매개변수를 가지고 있으며, 다양한 대화 시나리오를 지원하는 미세 조정, 고품질 훈련 데이터, 인간의 선호에 맞춘 조정을 제공합니다."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro는 360 AI 모델 시리즈의 중요한 구성원으로, 다양한 자연어 응용 시나리오에 맞춘 효율적인 텍스트 처리 능력을 갖추고 있으며, 긴 텍스트 이해 및 다중 회화 기능을 지원합니다."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23은 Cohere에서 출시한 다국어 모델로, 23개 언어를 지원하여 다양한 언어 응용에 편리함을 제공합니다."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B는 백천 인공지능이 개발한 130억 개의 매개변수를 가진 오픈 소스 상용 대형 언어 모델로, 권위 있는 중국어 및 영어 벤치마크에서 동일한 크기에서 최고의 성과를 달성했습니다."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3는 역할 수행 및 감정 동반을 위해 설계된 모델로, 초장 다회 기억 및 개인화된 대화를 지원하여 광범위하게 사용됩니다."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B는 Llama3.3 70B를 기반으로 한 대형 언어 모델로, DeepSeek R1의 출력을 활용하여 대형 최첨단 모델과 동등한 경쟁 성능을 달성했습니다."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B는 Llama-3.1-8B-Instruct를 기반으로 한 증류 대형 언어 모델로, DeepSeek R1의 출력을 사용하여 훈련되었습니다."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B는 Qwen 2.5 14B를 기반으로 한 증류 대형 언어 모델로, DeepSeek R1의 출력을 사용하여 훈련되었습니다. 이 모델은 여러 벤치마크 테스트에서 OpenAI의 o1-mini를 초월하며, 밀집 모델(dense models)에서 최신 기술 선도 성과(state-of-the-art)를 달성했습니다. 다음은 몇 가지 벤치마크 테스트 결과입니다:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\n이 모델은 DeepSeek R1의 출력을 미세 조정하여 더 큰 규모의 최첨단 모델과 동등한 경쟁 성능을 보여주었습니다."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B는 Qwen 2.5 32B를 기반으로 한 증류 대형 언어 모델로, DeepSeek R1의 출력을 사용하여 훈련되었습니다. 이 모델은 여러 벤치마크 테스트에서 OpenAI의 o1-mini를 초월하며, 밀집 모델(dense models)에서 최신 기술 선도 성과(state-of-the-art)를 달성했습니다. 다음은 몇 가지 벤치마크 테스트 결과입니다:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\n이 모델은 DeepSeek R1의 출력을 미세 조정하여 더 큰 규모의 최첨단 모델과 동등한 경쟁 성능을 보여주었습니다."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1은 DeepSeek 팀이 발표한 최신 오픈 소스 모델로, 특히 수학, 프로그래밍 및 추론 작업에서 OpenAI의 o1 모델과 동등한 수준의 강력한 추론 성능을 갖추고 있습니다."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1은 극히 적은 주석 데이터로 모델의 추론 능력을 크게 향상시킵니다. 최종 답변을 출력하기 전에 모델은 먼저 사고의 연쇄 내용을 출력하여 최종 답변의 정확성을 높입니다."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3는 추론 속도에서 이전 모델에 비해 중대한 돌파구를 이루었습니다. 오픈 소스 모델 중 1위를 차지하며, 세계에서 가장 진보된 폐쇄형 모델과 견줄 수 있습니다. DeepSeek-V3는 다중 헤드 잠재 주의(Multi-Head Latent Attention, MLA)와 DeepSeekMoE 아키텍처를 채택하였으며, 이 아키텍처는 DeepSeek-V2에서 철저히 검증되었습니다. 또한, DeepSeek-V3는 부하 균형을 위한 보조 무손실 전략을 개척하고, 더 강력한 성능을 위해 다중 레이블 예측 훈련 목표를 설정했습니다."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3는 추론 속도에서 이전 모델에 비해 중대한 돌파구를 이루었습니다. 오픈 소스 모델 중 1위를 차지하며, 세계에서 가장 진보된 폐쇄형 모델과 견줄 수 있습니다. DeepSeek-V3는 다중 헤드 잠재 주의(Multi-Head Latent Attention, MLA)와 DeepSeekMoE 아키텍처를 채택하였으며, 이 아키텍처는 DeepSeek-V2에서 철저히 검증되었습니다. 또한, DeepSeek-V3는 부하 균형을 위한 보조 무손실 전략을 개척하고, 더 강력한 성능을 위해 다중 레이블 예측 훈련 목표를 설정했습니다."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite는 전혀 새로운 세대의 경량 모델로, 극한의 응답 속도를 자랑하며, 효과와 지연 모두 세계 최고 수준에 도달했습니다."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2는 시각 및 텍스트 데이터를 결합한 작업을 처리하기 위해 설계되었습니다. 이미지 설명 및 시각적 질문 응답과 같은 작업에서 뛰어난 성능을 보이며, 언어 생성과 시각적 추론 간의 간극을 넘습니다."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Qwen-7B 언어 모델로 초기화된 모델로, 이미지 모델을 추가하여 이미지 입력 해상도가 448인 사전 훈련 모델입니다."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2는 새로운 Qwen 대형 언어 모델 시리즈입니다. Qwen2 7B는 트랜스포머 기반 모델로, 언어 이해, 다국어 능력, 프로그래밍, 수학 및 추론에서 뛰어난 성능을 보여줍니다."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2는 더 강력한 이해 및 생성 능력을 갖춘 새로운 대형 언어 모델 시리즈입니다."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL은 Qwen-VL 모델의 최신 반복 버전으로, MathVista, DocVQA, RealWorldQA 및 MTVQA와 같은 시각적 이해 벤치마크 테스트에서 최첨단 성능을 달성했습니다. Qwen2-VL은 20분 이상의 비디오를 이해할 수 있으며, 고품질의 비디오 기반 질문 응답, 대화 및 콘텐츠 생성에 사용됩니다. 또한 복잡한 추론 및 의사 결정 능력을 갖추고 있어, 모바일 장치, 로봇 등과 통합되어 시각적 환경 및 텍스트 지침에 따라 자동으로 작업을 수행할 수 있습니다. 영어와 중국어 외에도 Qwen2-VL은 이제 대부분의 유럽 언어, 일본어, 한국어, 아랍어 및 베트남어 등 다양한 언어의 텍스트를 이해할 수 있습니다."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct는 알리바바 클라우드에서 발표한 최신 대형 언어 모델 시리즈 중 하나입니다. 이 72B 모델은 코딩 및 수학 등 분야에서 현저한 개선된 능력을 가지고 있습니다. 이 모델은 또한 29개 이상의 언어를 포함한 다국어 지원을 제공하며, 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 현저한 향상을 보였습니다."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct는 알리바바 클라우드에서 발표한 최신 대형 언어 모델 시리즈 중 하나입니다. 이 32B 모델은 코딩 및 수학 등 분야에서 현저한 개선된 능력을 가지고 있습니다. 이 모델은 29개 이상의 언어를 포함한 다국어 지원을 제공하며, 지침 준수, 구조화된 데이터 이해 및 구조화된 출력 생성(특히 JSON)에서 현저한 향상을 보였습니다."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "중국어와 영어를 위한 LLM으로, 언어, 프로그래밍, 수학, 추론 등 다양한 분야를 다룹니다."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "효율적이고 경제적인 차세대 임베딩 모델로, 지식 검색, RAG 애플리케이션 등 다양한 상황에 적합합니다."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "지프 AI가 발표한 GLM-4 시리즈 최신 세대의 사전 훈련 모델의 오픈 소스 버전입니다."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B)는 효율적인 전략과 모델 아키텍처를 통해 향상된 계산 능력을 제공합니다."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity는 선도적인 대화 생성 모델 제공업체로, 다양한 고급 Llama 3.1 모델을 제공하며, 온라인 및 오프라인 응용 프로그램을 지원하고 복잡한 자연어 처리 작업에 특히 적합합니다."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO 파이오 클라우드는 안정적이고 비용 효율적인 오픈 소스 모델 API 서비스를 제공하며, DeepSeek 전 시리즈, Llama, Qwen 등 업계 선도 대모델을 지원합니다."
94
+ },
92
95
  "qwen": {
93
96
  "description": "통의천문은 알리바바 클라우드가 자주 개발한 초대형 언어 모델로, 강력한 자연어 이해 및 생성 능력을 갖추고 있습니다. 다양한 질문에 답변하고, 텍스트 콘텐츠를 창작하며, 의견을 표현하고, 코드를 작성하는 등 여러 분야에서 활용됩니다."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Er zijn subonderwerpen, verwijderen is niet mogelijk.",
80
80
  "regenerate": "Opnieuw genereren"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Credits",
85
+ "creditPricing": "Prijsstelling",
86
+ "creditTooltip": "Voor de eenvoud van de berekening beschouwen we $1 als 1M credits, bijvoorbeeld $3/M tokens wordt omgezet naar 3 credits/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Gecacheerde invoer {{amount}}/credits · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M tekens",
90
+ "inputMinutes": "${{amount}}/minuut",
91
+ "inputTokens": "Invoer {{amount}}/credits · ${{amount}}/M",
92
+ "outputTokens": "Uitvoer {{amount}}/credits · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Invoer",
97
+ "inputAudio": "Audio-invoer",
98
+ "inputCached": "Gecacheerde invoer",
99
+ "inputText": "Tekstinvoer",
100
+ "inputTitle": "Invoerdetails",
101
+ "inputUncached": "Ongecacheerde invoer",
102
+ "output": "Uitvoer",
103
+ "outputAudio": "Audio-uitvoer",
104
+ "outputText": "Tekstuitvoer",
105
+ "outputTitle": "Uitvoerdetails",
106
+ "reasoning": "Diep nadenken",
107
+ "title": "Genereren van details",
108
+ "total": "Totaal verbruik"
109
+ }
110
+ },
82
111
  "newAgent": "Nieuwe assistent",
83
112
  "pin": "Vastzetten",
84
113
  "pinOff": "Vastzetten uitschakelen",
@@ -8,6 +8,12 @@
8
8
  "01-ai/Yi-1.5-9B-Chat-16K": {
9
9
  "description": "Yi-1.5 9B ondersteunt 16K tokens en biedt efficiënte, vloeiende taalgeneratiecapaciteiten."
10
10
  },
11
+ "01-ai/yi-1.5-34b-chat": {
12
+ "description": "Zero One Everything, het nieuwste open-source fine-tuning model, met 34 miljard parameters, dat fine-tuning ondersteunt voor verschillende dialoogscenario's, met hoogwaardige trainingsdata die zijn afgestemd op menselijke voorkeuren."
13
+ },
14
+ "01-ai/yi-1.5-9b-chat": {
15
+ "description": "Zero One Everything, het nieuwste open-source fine-tuning model, met 9 miljard parameters, dat fine-tuning ondersteunt voor verschillende dialoogscenario's, met hoogwaardige trainingsdata die zijn afgestemd op menselijke voorkeuren."
16
+ },
11
17
  "360gpt-pro": {
12
18
  "description": "360GPT Pro, als een belangrijk lid van de 360 AI-modelreeks, voldoet aan de diverse natuurlijke taaltoepassingsscenario's met efficiënte tekstverwerkingscapaciteiten en ondersteunt lange tekstbegrip en meerdaagse gesprekken."
13
19
  },
@@ -503,6 +509,9 @@
503
509
  "aya:35b": {
504
510
  "description": "Aya 23 is een meertalig model van Cohere, ondersteunt 23 talen en biedt gemak voor diverse taaltoepassingen."
505
511
  },
512
+ "baichuan/baichuan2-13b-chat": {
513
+ "description": "Baichuan-13B is een open-source, commercieel bruikbaar groot taalmodel ontwikkeld door Baichuan Intelligent, met 13 miljard parameters, dat de beste prestaties in zijn klasse heeft behaald op gezaghebbende Chinese en Engelse benchmarks."
514
+ },
506
515
  "charglm-3": {
507
516
  "description": "CharGLM-3 is ontworpen voor rollenspellen en emotionele begeleiding, ondersteunt zeer lange meerdaagse herinneringen en gepersonaliseerde gesprekken, met brede toepassingen."
508
517
  },
@@ -683,9 +692,30 @@
683
692
  "deepseek/deepseek-r1": {
684
693
  "description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
685
694
  },
695
+ "deepseek/deepseek-r1-distill-llama-70b": {
696
+ "description": "DeepSeek R1 Distill Llama 70B is een groot taalmodel gebaseerd op Llama3.3 70B, dat gebruikmaakt van de fine-tuning van DeepSeek R1-output en vergelijkbare concurrentieprestaties bereikt als grote vooraanstaande modellen."
697
+ },
698
+ "deepseek/deepseek-r1-distill-llama-8b": {
699
+ "description": "DeepSeek R1 Distill Llama 8B is een gedistilleerd groot taalmodel gebaseerd op Llama-3.1-8B-Instruct, dat is getraind met behulp van de output van DeepSeek R1."
700
+ },
701
+ "deepseek/deepseek-r1-distill-qwen-14b": {
702
+ "description": "DeepSeek R1 Distill Qwen 14B is een gedistilleerd groot taalmodel gebaseerd op Qwen 2.5 14B, dat is getraind met behulp van de output van DeepSeek R1. Dit model heeft in verschillende benchmarktests OpenAI's o1-mini overtroffen en heeft de nieuwste technologische vooruitgang behaald voor dichte modellen (state-of-the-art). Hier zijn enkele resultaten van benchmarktests:\nAIME 2024 pass@1: 69.7\nMATH-500 pass@1: 93.9\nCodeForces Rating: 1481\nDit model toont concurrentieprestaties die vergelijkbaar zijn met grotere vooraanstaande modellen door fine-tuning op de output van DeepSeek R1."
703
+ },
704
+ "deepseek/deepseek-r1-distill-qwen-32b": {
705
+ "description": "DeepSeek R1 Distill Qwen 32B is een gedistilleerd groot taalmodel gebaseerd op Qwen 2.5 32B, dat is getraind met behulp van de output van DeepSeek R1. Dit model heeft in verschillende benchmarktests OpenAI's o1-mini overtroffen en heeft de nieuwste technologische vooruitgang behaald voor dichte modellen (state-of-the-art). Hier zijn enkele resultaten van benchmarktests:\nAIME 2024 pass@1: 72.6\nMATH-500 pass@1: 94.3\nCodeForces Rating: 1691\nDit model toont concurrentieprestaties die vergelijkbaar zijn met grotere vooraanstaande modellen door fine-tuning op de output van DeepSeek R1."
706
+ },
707
+ "deepseek/deepseek-r1/community": {
708
+ "description": "DeepSeek R1 is het nieuwste open-source model dat door het DeepSeek-team is uitgebracht, met zeer krachtige inferentieprestaties, vooral op het gebied van wiskunde, programmeren en redeneringstaken, en bereikt een niveau dat vergelijkbaar is met het o1-model van OpenAI."
709
+ },
686
710
  "deepseek/deepseek-r1:free": {
687
711
  "description": "DeepSeek-R1 heeft de redeneringscapaciteiten van het model aanzienlijk verbeterd, zelfs met zeer weinig gelabelde gegevens. Voordat het model het uiteindelijke antwoord geeft, genereert het eerst een denkproces om de nauwkeurigheid van het uiteindelijke antwoord te verbeteren."
688
712
  },
713
+ "deepseek/deepseek-v3": {
714
+ "description": "DeepSeek-V3 heeft een belangrijke doorbraak bereikt in inferentiesnelheid ten opzichte van eerdere modellen. Het staat op de eerste plaats onder open-source modellen en kan zich meten met de meest geavanceerde gesloten modellen ter wereld. DeepSeek-V3 maakt gebruik van Multi-Head Latent Attention (MLA) en de DeepSeekMoE-architectuur, die grondig zijn gevalideerd in DeepSeek-V2. Bovendien introduceert DeepSeek-V3 een aanvullende verliesloze strategie voor load balancing en stelt het multi-label voorspellingsdoelen in om sterkere prestaties te behalen."
715
+ },
716
+ "deepseek/deepseek-v3/community": {
717
+ "description": "DeepSeek-V3 heeft een belangrijke doorbraak bereikt in inferentiesnelheid ten opzichte van eerdere modellen. Het staat op de eerste plaats onder open-source modellen en kan zich meten met de meest geavanceerde gesloten modellen ter wereld. DeepSeek-V3 maakt gebruik van Multi-Head Latent Attention (MLA) en de DeepSeekMoE-architectuur, die grondig zijn gevalideerd in DeepSeek-V2. Bovendien introduceert DeepSeek-V3 een aanvullende verliesloze strategie voor load balancing en stelt het multi-label voorspellingsdoelen in om sterkere prestaties te behalen."
718
+ },
689
719
  "doubao-1.5-lite-32k": {
690
720
  "description": "Doubao-1.5-lite is de nieuwste generatie lichtgewicht model, met extreme responssnelheid en prestaties die wereldwijd tot de top behoren."
691
721
  },
@@ -1253,6 +1283,9 @@
1253
1283
  "meta-llama/llama-3.2-11b-vision-instruct": {
1254
1284
  "description": "LLaMA 3.2 is ontworpen voor taken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
1255
1285
  },
1286
+ "meta-llama/llama-3.2-3b-instruct": {
1287
+ "description": "meta-llama/llama-3.2-3b-instruct"
1288
+ },
1256
1289
  "meta-llama/llama-3.2-90b-vision-instruct": {
1257
1290
  "description": "LLaMA 3.2 is ontworpen voor taken die visuele en tekstuele gegevens combineren. Het presteert uitstekend in taken zoals afbeeldingsbeschrijving en visuele vraag-en-antwoord, en overbrugt de kloof tussen taalgeneratie en visuele redenering."
1258
1291
  },
@@ -1517,9 +1550,21 @@
1517
1550
  "qwen-vl-v1": {
1518
1551
  "description": "Geïnitieerd met het Qwen-7B taalmodel, voegt het een afbeeldingsmodel toe, met een invoerresolutie van 448 voor het voorgetrainde model."
1519
1552
  },
1553
+ "qwen/qwen-2-7b-instruct": {
1554
+ "description": "Qwen2 is de gloednieuwe serie van grote taalmodellen van Qwen. Qwen2 7B is een transformer-gebaseerd model dat uitblinkt in taalbegrip, meertalige capaciteiten, programmeren, wiskunde en redenering."
1555
+ },
1520
1556
  "qwen/qwen-2-7b-instruct:free": {
1521
1557
  "description": "Qwen2 is een gloednieuwe serie grote taalmodellen met sterkere begrip- en generatiecapaciteiten."
1522
1558
  },
1559
+ "qwen/qwen-2-vl-72b-instruct": {
1560
+ "description": "Qwen2-VL is de nieuwste iteratie van het Qwen-VL-model en heeft geavanceerde prestaties behaald in visuele begrip benchmarktests, waaronder MathVista, DocVQA, RealWorldQA en MTVQA. Qwen2-VL kan video's van meer dan 20 minuten begrijpen voor hoogwaardige video-gebaseerde vraag-en-antwoord, dialoog en contentcreatie. Het heeft ook complexe redenerings- en besluitvormingscapaciteiten en kan worden geïntegreerd met mobiele apparaten, robots, enzovoort, voor automatische operaties op basis van visuele omgevingen en tekstinstructies. Naast Engels en Chinees ondersteunt Qwen2-VL nu ook het begrijpen van tekst in verschillende talen in afbeeldingen, waaronder de meeste Europese talen, Japans, Koreaans, Arabisch en Vietnamees."
1561
+ },
1562
+ "qwen/qwen-2.5-72b-instruct": {
1563
+ "description": "Qwen2.5-72B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 72B-model heeft aanzienlijke verbeteringen in codering en wiskunde. Het model biedt ook ondersteuning voor meerdere talen, met meer dan 29 talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde output (vooral JSON)."
1564
+ },
1565
+ "qwen/qwen2.5-32b-instruct": {
1566
+ "description": "Qwen2.5-32B-Instruct is een van de nieuwste grote taalmodellen die door Alibaba Cloud is uitgebracht. Dit 32B-model heeft aanzienlijke verbeteringen in codering en wiskunde. Het model biedt ook ondersteuning voor meerdere talen, met meer dan 29 talen, waaronder Chinees en Engels. Het model heeft aanzienlijke verbeteringen in het volgen van instructies, het begrijpen van gestructureerde gegevens en het genereren van gestructureerde output (vooral JSON)."
1567
+ },
1523
1568
  "qwen/qwen2.5-7b-instruct": {
1524
1569
  "description": "LLM gericht op zowel Chinees als Engels, gericht op taal, programmeren, wiskunde, redeneren en meer."
1525
1570
  },
@@ -1667,6 +1712,9 @@
1667
1712
  "text-embedding-3-small": {
1668
1713
  "description": "Een efficiënte en kosteneffectieve nieuwe generatie Embedding model, geschikt voor kennisretrieval, RAG-toepassingen en andere scenario's."
1669
1714
  },
1715
+ "thudm/glm-4-9b-chat": {
1716
+ "description": "De open-source versie van de nieuwste generatie voorgetrainde modellen van de GLM-4-serie, uitgebracht door Zhizhu AI."
1717
+ },
1670
1718
  "togethercomputer/StripedHyena-Nous-7B": {
1671
1719
  "description": "StripedHyena Nous (7B) biedt verbeterde rekenkracht door middel van efficiënte strategieën en modelarchitectuur."
1672
1720
  },
@@ -89,6 +89,9 @@
89
89
  "perplexity": {
90
90
  "description": "Perplexity is een toonaangevende aanbieder van dialooggeneratiemodellen, die verschillende geavanceerde Llama 3.1-modellen aanbiedt, die zowel online als offline toepassingen ondersteunen, en bijzonder geschikt zijn voor complexe natuurlijke taalverwerkingstaken."
91
91
  },
92
+ "ppio": {
93
+ "description": "PPIO biedt stabiele en kosteneffectieve open source model API-diensten, die ondersteuning bieden voor de volledige DeepSeek-serie, Llama, Qwen en andere toonaangevende grote modellen in de industrie."
94
+ },
92
95
  "qwen": {
93
96
  "description": "Tongyi Qianwen is een door Alibaba Cloud zelf ontwikkeld grootschalig taalmodel met krachtige mogelijkheden voor natuurlijke taalbegrip en -generatie. Het kan verschillende vragen beantwoorden, tekstinhoud creëren, meningen uiten, code schrijven, en speelt een rol in verschillende domeinen."
94
97
  },
@@ -79,6 +79,35 @@
79
79
  "deleteDisabledByThreads": "Istnieją podwątki, nie można usunąć",
80
80
  "regenerate": "Wygeneruj ponownie"
81
81
  },
82
+ "messages": {
83
+ "modelCard": {
84
+ "credit": "Punkty",
85
+ "creditPricing": "Cennik",
86
+ "creditTooltip": "Aby ułatwić obliczenia, przeliczamy 1$ na 1M punktów, na przykład $3/M tokenów to 3 punkty/token",
87
+ "pricing": {
88
+ "inputCachedTokens": "Zbuforowane wejście {{amount}}/punktów · ${{amount}}/M",
89
+ "inputCharts": "${{amount}}/M znaków",
90
+ "inputMinutes": "${{amount}}/minutę",
91
+ "inputTokens": "Wejście {{amount}}/punktów · ${{amount}}/M",
92
+ "outputTokens": "Wyjście {{amount}}/punktów · ${{amount}}/M"
93
+ }
94
+ },
95
+ "tokenDetails": {
96
+ "input": "Wejście",
97
+ "inputAudio": "Wejście audio",
98
+ "inputCached": "Zbuforowane wejście",
99
+ "inputText": "Wejście tekstowe",
100
+ "inputTitle": "Szczegóły wejścia",
101
+ "inputUncached": "Wejście niezbuforowane",
102
+ "output": "Wyjście",
103
+ "outputAudio": "Wyjście audio",
104
+ "outputText": "Wyjście tekstowe",
105
+ "outputTitle": "Szczegóły wyjścia",
106
+ "reasoning": "Głębokie myślenie",
107
+ "title": "Szczegóły generacji",
108
+ "total": "Całkowite zużycie"
109
+ }
110
+ },
82
111
  "newAgent": "Nowy asystent",
83
112
  "pin": "Przypnij",
84
113
  "pinOff": "Odepnij",