@datagrok/eda 1.4.3 → 1.4.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +4 -0
- package/dist/_d4c0.js +279 -0
- package/dist/_d4c0.js.map +1 -0
- package/dist/node_modules_datagrok-libraries_math_src_dbscan_wasm_clustering-worker_js.js +279 -0
- package/dist/node_modules_datagrok-libraries_math_src_dbscan_wasm_clustering-worker_js.js.map +1 -0
- package/dist/node_modules_datagrok-libraries_ml_src_MCL_mcl-sparse-matrix-mult-worker_js.js +59 -0
- package/dist/node_modules_datagrok-libraries_ml_src_MCL_mcl-sparse-matrix-mult-worker_js.js.map +1 -0
- package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_distance-matrix-worker_js.js +284 -0
- package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_distance-matrix-worker_js.js.map +1 -0
- package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_single-value-knn-worker_js.js +265 -0
- package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_single-value-knn-worker_js.js.map +1 -0
- package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-worker_js.js +287 -0
- package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-worker_js.js.map +1 -0
- package/dist/package-test.js +26140 -1
- package/dist/package-test.js.map +1 -1
- package/dist/package.js +30337 -1
- package/dist/package.js.map +1 -1
- package/dist/src_workers_softmax-worker_ts.js +154 -0
- package/dist/src_workers_softmax-worker_ts.js.map +1 -0
- package/dist/src_workers_tsne-worker_ts.js +244 -0
- package/dist/src_workers_tsne-worker_ts.js.map +1 -0
- package/dist/src_workers_umap-worker_ts.js +252 -0
- package/dist/src_workers_umap-worker_ts.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_math_src_dbscan_wasm_dbscan_js.js +1253 -0
- package/dist/vendors-node_modules_datagrok-libraries_math_src_dbscan_wasm_dbscan_js.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_math_src_hierarchical-clustering_wasm_clustering-worker_js.js +942 -0
- package/dist/vendors-node_modules_datagrok-libraries_math_src_hierarchical-clustering_wasm_clustering-worker_js.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_math_src_webGPU_sparse-matrix_webGPU-sparse-matrix_js-07693f.js +1525 -0
- package/dist/vendors-node_modules_datagrok-libraries_math_src_webGPU_sparse-matrix_webGPU-sparse-matrix_js-07693f.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_MCL_mcl-worker_js-node_modules_datagrok-librar-e4203d.js +2244 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_MCL_mcl-worker_js-node_modules_datagrok-librar-e4203d.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-threshold-worker_js.js +286 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-threshold-worker_js.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-worker_js.js +280 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-worker_js.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-threshold-worker_js.js +282 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-threshold-worker_js.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_utils_js-node_modules_datagrok-72c7b2.js +1821 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_utils_js-node_modules_datagrok-72c7b2.js.map +1 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_multi-column-dimensionality-reduction_mulit-co-3800a0.js +7776 -0
- package/dist/vendors-node_modules_datagrok-libraries_ml_src_multi-column-dimensionality-reduction_mulit-co-3800a0.js.map +1 -0
- package/dist/vendors-node_modules_keckelt_tsne_lib_index_js.js +379 -0
- package/dist/vendors-node_modules_keckelt_tsne_lib_index_js.js.map +1 -0
- package/dist/vendors-node_modules_ml-matrix_matrix_mjs.js +5946 -0
- package/dist/vendors-node_modules_ml-matrix_matrix_mjs.js.map +1 -0
- package/dist/vendors-node_modules_umap-js_dist_index_js.js +2284 -0
- package/dist/vendors-node_modules_umap-js_dist_index_js.js.map +1 -0
- package/dist/wasm_EDAForWebWorker_js-wasm_callWasmForWebWorker_js.js +779 -0
- package/dist/wasm_EDAForWebWorker_js-wasm_callWasmForWebWorker_js.js.map +1 -0
- package/dist/wasm_workers_errorWorker_js.js +267 -0
- package/dist/wasm_workers_errorWorker_js.js.map +1 -0
- package/dist/wasm_workers_fitLinearRegressionParamsWithDataNormalizingWorker_js.js +267 -0
- package/dist/wasm_workers_fitLinearRegressionParamsWithDataNormalizingWorker_js.js.map +1 -0
- package/dist/wasm_workers_fitLinearRegressionParamsWorker_js.js +267 -0
- package/dist/wasm_workers_fitLinearRegressionParamsWorker_js.js.map +1 -0
- package/dist/wasm_workers_fitSoftmaxWorker_js.js +267 -0
- package/dist/wasm_workers_fitSoftmaxWorker_js.js.map +1 -0
- package/dist/wasm_workers_generateDatasetWorker_js.js +267 -0
- package/dist/wasm_workers_generateDatasetWorker_js.js.map +1 -0
- package/dist/wasm_workers_normalizeDatasetWorker_js.js +267 -0
- package/dist/wasm_workers_normalizeDatasetWorker_js.js.map +1 -0
- package/dist/wasm_workers_partialLeastSquareRegressionWorker_js.js +267 -0
- package/dist/wasm_workers_partialLeastSquareRegressionWorker_js.js.map +1 -0
- package/dist/wasm_workers_predictByLSSVMWorker_js.js +267 -0
- package/dist/wasm_workers_predictByLSSVMWorker_js.js.map +1 -0
- package/dist/wasm_workers_principalComponentAnalysisNipalsWorker_js.js +267 -0
- package/dist/wasm_workers_principalComponentAnalysisNipalsWorker_js.js.map +1 -0
- package/dist/wasm_workers_principalComponentAnalysisWorkerUpd_js.js +271 -0
- package/dist/wasm_workers_principalComponentAnalysisWorkerUpd_js.js.map +1 -0
- package/dist/wasm_workers_trainAndAnalyzeLSSVMWorker_js.js +267 -0
- package/dist/wasm_workers_trainAndAnalyzeLSSVMWorker_js.js.map +1 -0
- package/dist/wasm_workers_trainLSSVMWorker_js.js +267 -0
- package/dist/wasm_workers_trainLSSVMWorker_js.js.map +1 -0
- package/dist/wasm_workers_xgboostWorker_js.js +279 -0
- package/dist/wasm_workers_xgboostWorker_js.js.map +1 -0
- package/package.json +5 -4
- package/src/package-api.ts +259 -0
- package/src/package.g.ts +522 -0
- package/src/package.ts +907 -678
- package/test-console-output-1.log +78 -93
- package/test-record-1.mp4 +0 -0
- package/tsconfig.json +2 -2
- package/webpack.config.js +5 -0
- package/dist/111.js +0 -2
- package/dist/111.js.map +0 -1
- package/dist/128.js +0 -2
- package/dist/128.js.map +0 -1
- package/dist/153.js +0 -2
- package/dist/153.js.map +0 -1
- package/dist/23.js +0 -2
- package/dist/23.js.map +0 -1
- package/dist/234.js +0 -2
- package/dist/234.js.map +0 -1
- package/dist/242.js +0 -2
- package/dist/242.js.map +0 -1
- package/dist/260.js +0 -2
- package/dist/260.js.map +0 -1
- package/dist/33.js +0 -2
- package/dist/33.js.map +0 -1
- package/dist/348.js +0 -2
- package/dist/348.js.map +0 -1
- package/dist/377.js +0 -2
- package/dist/377.js.map +0 -1
- package/dist/412.js +0 -2
- package/dist/412.js.map +0 -1
- package/dist/415.js +0 -2
- package/dist/415.js.map +0 -1
- package/dist/501.js +0 -2
- package/dist/501.js.map +0 -1
- package/dist/531.js +0 -2
- package/dist/531.js.map +0 -1
- package/dist/583.js +0 -2
- package/dist/583.js.map +0 -1
- package/dist/589.js +0 -2
- package/dist/589.js.map +0 -1
- package/dist/603.js +0 -2
- package/dist/603.js.map +0 -1
- package/dist/656.js +0 -2
- package/dist/656.js.map +0 -1
- package/dist/682.js +0 -2
- package/dist/682.js.map +0 -1
- package/dist/705.js +0 -2
- package/dist/705.js.map +0 -1
- package/dist/727.js +0 -2
- package/dist/727.js.map +0 -1
- package/dist/731.js +0 -2
- package/dist/731.js.map +0 -1
- package/dist/738.js +0 -3
- package/dist/738.js.LICENSE.txt +0 -51
- package/dist/738.js.map +0 -1
- package/dist/763.js +0 -2
- package/dist/763.js.map +0 -1
- package/dist/778.js +0 -2
- package/dist/778.js.map +0 -1
- package/dist/783.js +0 -2
- package/dist/783.js.map +0 -1
- package/dist/793.js +0 -2
- package/dist/793.js.map +0 -1
- package/dist/801.js +0 -2
- package/dist/801.js.map +0 -1
- package/dist/810.js +0 -2
- package/dist/810.js.map +0 -1
- package/dist/860.js +0 -2
- package/dist/860.js.map +0 -1
- package/dist/907.js +0 -2
- package/dist/907.js.map +0 -1
- package/dist/950.js +0 -2
- package/dist/950.js.map +0 -1
- package/dist/980.js +0 -2
- package/dist/980.js.map +0 -1
- package/dist/990.js +0 -2
- package/dist/990.js.map +0 -1
package/src/package.g.ts
ADDED
|
@@ -0,0 +1,522 @@
|
|
|
1
|
+
import {PackageFunctions} from './package';
|
|
2
|
+
import * as DG from 'datagrok-api/dg';
|
|
3
|
+
|
|
4
|
+
export function info() : void {
|
|
5
|
+
PackageFunctions.info();
|
|
6
|
+
}
|
|
7
|
+
|
|
8
|
+
//tags: init
|
|
9
|
+
export async function init() : Promise<void> {
|
|
10
|
+
await PackageFunctions.init();
|
|
11
|
+
}
|
|
12
|
+
|
|
13
|
+
//name: DBSCAN
|
|
14
|
+
//description: Density-based spatial clustering of applications with noise (DBSCAN)
|
|
15
|
+
//input: dataframe df
|
|
16
|
+
//input: column xCol { type: numerical }
|
|
17
|
+
//input: column yCol { type: numerical }
|
|
18
|
+
//input: double epsilon { caption: Epsilon; default: 0.02; description: The maximum distance between two samples for them to be considered as in the same neighborhood. }
|
|
19
|
+
//input: int minPts { caption: Minimum points; default: 4; description: The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. }
|
|
20
|
+
//output: column result
|
|
21
|
+
//top-menu: ML | Cluster | DBSCAN...
|
|
22
|
+
export async function dbScan(df: DG.DataFrame, xCol: DG.Column, yCol: DG.Column, epsilon: number, minPts: number) : Promise<any> {
|
|
23
|
+
return await PackageFunctions.dbScan(df, xCol, yCol, epsilon, minPts);
|
|
24
|
+
}
|
|
25
|
+
|
|
26
|
+
//description: Principal component analysis (PCA)
|
|
27
|
+
//input: dataframe table { caption: Table }
|
|
28
|
+
//input: column_list features { type: numerical; nullable: false }
|
|
29
|
+
//input: int components { showPlusMinus: true; caption: Components; nullable: false; min: 1; default: 2; description: Number of components. }
|
|
30
|
+
//input: bool center { caption: Center; default: false; description: Indicating whether the variables should be shifted to be zero centered. }
|
|
31
|
+
//input: bool scale { caption: Scale; default: false; description: Indicating whether the variables should be scaled to have unit variance. }
|
|
32
|
+
//top-menu: ML | Analyze | PCA...
|
|
33
|
+
//help-url: /help/explore/dim-reduction#pca
|
|
34
|
+
export async function PCA(table: DG.DataFrame, features: DG.ColumnList, components: number, center: boolean, scale: boolean) : Promise<void> {
|
|
35
|
+
await PackageFunctions.PCA(table, features, components, center, scale);
|
|
36
|
+
}
|
|
37
|
+
|
|
38
|
+
//name: DBSCAN clustering
|
|
39
|
+
//tags: dim-red-postprocessing-function
|
|
40
|
+
//input: column col1
|
|
41
|
+
//input: column col2
|
|
42
|
+
//input: double epsilon { default: 0.01; description: Minimum distance between two points to be considered as in the same neighborhood. }
|
|
43
|
+
//input: int minimumPoints { default: 5; description: Minimum number of points to form a dense region. }
|
|
44
|
+
//meta.defaultPostProcessingFunction: true
|
|
45
|
+
export async function dbscanPostProcessingFunction(col1: DG.Column, col2: DG.Column, epsilon: number, minimumPoints: number) : Promise<void> {
|
|
46
|
+
await PackageFunctions.dbscanPostProcessingFunction(col1, col2, epsilon, minimumPoints);
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
//name: None (number)
|
|
50
|
+
//tags: dim-red-preprocessing-function
|
|
51
|
+
//input: column col
|
|
52
|
+
//input: string _metric { optional: true }
|
|
53
|
+
//output: object result
|
|
54
|
+
//meta.supportedTypes: int,float,double,qnum
|
|
55
|
+
//meta.supportedDistanceFunctions: Difference
|
|
56
|
+
export function numberPreprocessingFunction(col: DG.Column, _metric: string) {
|
|
57
|
+
return PackageFunctions.numberPreprocessingFunction(col, _metric);
|
|
58
|
+
}
|
|
59
|
+
|
|
60
|
+
//name: None (string)
|
|
61
|
+
//tags: dim-red-preprocessing-function
|
|
62
|
+
//input: column col
|
|
63
|
+
//input: string _metric { optional: true }
|
|
64
|
+
//output: object result
|
|
65
|
+
//meta.supportedTypes: string
|
|
66
|
+
//meta.supportedDistanceFunctions: One-Hot,Levenshtein,Hamming
|
|
67
|
+
export function stringPreprocessingFunction(col: DG.Column, _metric: string) {
|
|
68
|
+
return PackageFunctions.stringPreprocessingFunction(col, _metric);
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
//name: Multi Column Dimensionality Reduction
|
|
72
|
+
//top-menu: ML | Reduce Dimensionality...
|
|
73
|
+
export async function reduceDimensionality() : Promise<void> {
|
|
74
|
+
await PackageFunctions.reduceDimensionality();
|
|
75
|
+
}
|
|
76
|
+
|
|
77
|
+
//tags: editor
|
|
78
|
+
//input: funccall call
|
|
79
|
+
export function GetMCLEditor(call: DG.FuncCall) : void {
|
|
80
|
+
PackageFunctions.GetMCLEditor(call);
|
|
81
|
+
}
|
|
82
|
+
|
|
83
|
+
//description: Markov clustering (MCL) is an unsupervised clustering algorithm for graphs based on simulation of stochastic flow.
|
|
84
|
+
//input: dataframe df
|
|
85
|
+
//input: list<column> cols
|
|
86
|
+
//input: list<string> metrics
|
|
87
|
+
//input: list<double> weights
|
|
88
|
+
//input: string aggregationMethod
|
|
89
|
+
//input: list<func> preprocessingFuncs
|
|
90
|
+
//input: object preprocessingFuncArgs
|
|
91
|
+
//input: int threshold { default: 80 }
|
|
92
|
+
//input: int maxIterations { default: 10 }
|
|
93
|
+
//input: bool useWebGPU { default: false }
|
|
94
|
+
//input: double inflate { default: 2 }
|
|
95
|
+
//input: int minClusterSize { default: 5 }
|
|
96
|
+
//top-menu: ML | Cluster | MCL...
|
|
97
|
+
//editor: EDA:GetMCLEditor
|
|
98
|
+
export async function MCLClustering(df: DG.DataFrame, cols: DG.Column[], metrics: any, weights: number[], aggregationMethod: any, preprocessingFuncs: any[], preprocessingFuncArgs: any[], threshold: number, maxIterations: number, useWebGPU: boolean, inflate: number, minClusterSize: number) : Promise<any> {
|
|
99
|
+
return await PackageFunctions.MCLClustering(df, cols, metrics, weights, aggregationMethod, preprocessingFuncs, preprocessingFuncArgs, threshold, maxIterations, useWebGPU, inflate, minClusterSize);
|
|
100
|
+
}
|
|
101
|
+
|
|
102
|
+
//name: MCL
|
|
103
|
+
//description: Markov clustering viewer
|
|
104
|
+
//tags: viewer
|
|
105
|
+
//output: viewer result
|
|
106
|
+
export function markovClusteringViewer() : any {
|
|
107
|
+
return PackageFunctions.markovClusteringViewer();
|
|
108
|
+
}
|
|
109
|
+
|
|
110
|
+
//description: Compute partial least squares (PLS) regression analysis components: prediction, regression coefficients, T- & U-scores, X-loadings.
|
|
111
|
+
//input: dataframe table
|
|
112
|
+
//input: column_list features { type: numerical }
|
|
113
|
+
//input: column predict { type: numerical }
|
|
114
|
+
//input: int components { default: 3 }
|
|
115
|
+
//input: column names { type: string }
|
|
116
|
+
//output: object plsResults
|
|
117
|
+
export async function PLS(table: DG.DataFrame, features: DG.ColumnList, predict: DG.Column, components: number, names: DG.Column) : Promise<any> {
|
|
118
|
+
return await PackageFunctions.PLS(table, features, predict, components, names);
|
|
119
|
+
}
|
|
120
|
+
|
|
121
|
+
//description: Compute partial least squares (PLS) regression components. They maximally summarize the variation of the predictors while maximizing correlation with the response variable.
|
|
122
|
+
//top-menu: ML | Analyze | PLS...
|
|
123
|
+
export async function topMenuPLS() : Promise<void> {
|
|
124
|
+
await PackageFunctions.topMenuPLS();
|
|
125
|
+
}
|
|
126
|
+
|
|
127
|
+
//name: multivariateAnalysis
|
|
128
|
+
//description: Multidimensional data analysis using partial least squares (PLS) regression.
|
|
129
|
+
//top-menu: ML | Analyze | Multivariate Analysis...
|
|
130
|
+
export async function MVA() : Promise<void> {
|
|
131
|
+
await PackageFunctions.MVA();
|
|
132
|
+
}
|
|
133
|
+
|
|
134
|
+
//name: MVA demo
|
|
135
|
+
//description: Multidimensional data analysis using partial least squares (PLS) regression. It identifies latent factors and constructs a linear model based on them.
|
|
136
|
+
//meta.demoPath: Compute | Multivariate Analysis
|
|
137
|
+
export async function demoMultivariateAnalysis() : Promise<void> {
|
|
138
|
+
await PackageFunctions.demoMultivariateAnalysis();
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
//input: dataframe df
|
|
142
|
+
//input: column predictColumn
|
|
143
|
+
//input: double gamma { category: Hyperparameters; default: 1.0 }
|
|
144
|
+
//output: dynamic result
|
|
145
|
+
//meta.mlname: linear kernel LS-SVM
|
|
146
|
+
//meta.mlrole: train
|
|
147
|
+
export async function trainLinearKernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number) : Promise<any> {
|
|
148
|
+
return await PackageFunctions.trainLinearKernelSVM(df, predictColumn, gamma);
|
|
149
|
+
}
|
|
150
|
+
|
|
151
|
+
//input: dataframe df
|
|
152
|
+
//input: dynamic model
|
|
153
|
+
//output: dataframe result
|
|
154
|
+
//meta.mlname: linear kernel LS-SVM
|
|
155
|
+
//meta.mlrole: apply
|
|
156
|
+
export async function applyLinearKernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
|
|
157
|
+
return await PackageFunctions.applyLinearKernelSVM(df, model);
|
|
158
|
+
}
|
|
159
|
+
|
|
160
|
+
//input: dataframe df
|
|
161
|
+
//input: column predictColumn
|
|
162
|
+
//output: bool result
|
|
163
|
+
//meta.mlname: linear kernel LS-SVM
|
|
164
|
+
//meta.mlrole: isApplicable
|
|
165
|
+
export async function isApplicableLinearKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
166
|
+
return await PackageFunctions.isApplicableLinearKernelSVM(df, predictColumn);
|
|
167
|
+
}
|
|
168
|
+
|
|
169
|
+
//input: dataframe df
|
|
170
|
+
//input: column predictColumn
|
|
171
|
+
//output: bool result
|
|
172
|
+
//meta.mlname: linear kernel LS-SVM
|
|
173
|
+
//meta.mlrole: isInteractive
|
|
174
|
+
export async function isInteractiveLinearKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
175
|
+
return await PackageFunctions.isInteractiveLinearKernelSVM(df, predictColumn);
|
|
176
|
+
}
|
|
177
|
+
|
|
178
|
+
//input: dataframe df
|
|
179
|
+
//input: column targetColumn
|
|
180
|
+
//input: column predictColumn
|
|
181
|
+
//input: dynamic model
|
|
182
|
+
//output: dynamic result
|
|
183
|
+
//meta.mlname: linear kernel LS-SVM
|
|
184
|
+
//meta.mlrole: visualize
|
|
185
|
+
export async function visualizeLinearKernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
|
|
186
|
+
return await PackageFunctions.visualizeLinearKernelSVM(df, targetColumn, predictColumn, model);
|
|
187
|
+
}
|
|
188
|
+
|
|
189
|
+
//input: dataframe df
|
|
190
|
+
//input: column predictColumn
|
|
191
|
+
//input: double gamma { category: Hyperparameters; default: 1.0 }
|
|
192
|
+
//input: double sigma { category: Hyperparameters; default: 1.5 }
|
|
193
|
+
//output: dynamic result
|
|
194
|
+
//meta.mlname: RBF-kernel LS-SVM
|
|
195
|
+
//meta.mlrole: train
|
|
196
|
+
export async function trainRBFkernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number, sigma: number) : Promise<any> {
|
|
197
|
+
return await PackageFunctions.trainRBFkernelSVM(df, predictColumn, gamma, sigma);
|
|
198
|
+
}
|
|
199
|
+
|
|
200
|
+
//input: dataframe df
|
|
201
|
+
//input: dynamic model
|
|
202
|
+
//output: dataframe result
|
|
203
|
+
//meta.mlname: RBF-kernel LS-SVM
|
|
204
|
+
//meta.mlrole: apply
|
|
205
|
+
export async function applyRBFkernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
|
|
206
|
+
return await PackageFunctions.applyRBFkernelSVM(df, model);
|
|
207
|
+
}
|
|
208
|
+
|
|
209
|
+
//input: dataframe df
|
|
210
|
+
//input: column predictColumn
|
|
211
|
+
//output: bool result
|
|
212
|
+
//meta.mlname: RBF-kernel LS-SVM
|
|
213
|
+
//meta.mlrole: isApplicable
|
|
214
|
+
export async function isApplicableRBFkernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
215
|
+
return await PackageFunctions.isApplicableRBFkernelSVM(df, predictColumn);
|
|
216
|
+
}
|
|
217
|
+
|
|
218
|
+
//input: dataframe df
|
|
219
|
+
//input: column predictColumn
|
|
220
|
+
//output: bool result
|
|
221
|
+
//meta.mlname: RBF-kernel LS-SVM
|
|
222
|
+
//meta.mlrole: isInteractive
|
|
223
|
+
export async function isInteractiveRBFkernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
224
|
+
return await PackageFunctions.isInteractiveRBFkernelSVM(df, predictColumn);
|
|
225
|
+
}
|
|
226
|
+
|
|
227
|
+
//input: dataframe df
|
|
228
|
+
//input: column targetColumn
|
|
229
|
+
//input: column predictColumn
|
|
230
|
+
//input: dynamic model
|
|
231
|
+
//output: dynamic result
|
|
232
|
+
//meta.mlname: RBF-kernel LS-SVM
|
|
233
|
+
//meta.mlrole: visualize
|
|
234
|
+
export async function visualizeRBFkernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
|
|
235
|
+
return await PackageFunctions.visualizeRBFkernelSVM(df, targetColumn, predictColumn, model);
|
|
236
|
+
}
|
|
237
|
+
|
|
238
|
+
//input: dataframe df
|
|
239
|
+
//input: column predictColumn
|
|
240
|
+
//input: double gamma { category: Hyperparameters; default: 1.0 }
|
|
241
|
+
//input: double c { category: Hyperparameters; default: 1 }
|
|
242
|
+
//input: double d { category: Hyperparameters; default: 2 }
|
|
243
|
+
//output: dynamic result
|
|
244
|
+
//meta.mlname: polynomial kernel LS-SVM
|
|
245
|
+
//meta.mlrole: train
|
|
246
|
+
export async function trainPolynomialKernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number, c: number, d: number) : Promise<any> {
|
|
247
|
+
return await PackageFunctions.trainPolynomialKernelSVM(df, predictColumn, gamma, c, d);
|
|
248
|
+
}
|
|
249
|
+
|
|
250
|
+
//input: dataframe df
|
|
251
|
+
//input: dynamic model
|
|
252
|
+
//output: dataframe result
|
|
253
|
+
//meta.mlname: polynomial kernel LS-SVM
|
|
254
|
+
//meta.mlrole: apply
|
|
255
|
+
export async function applyPolynomialKernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
|
|
256
|
+
return await PackageFunctions.applyPolynomialKernelSVM(df, model);
|
|
257
|
+
}
|
|
258
|
+
|
|
259
|
+
//input: dataframe df
|
|
260
|
+
//input: column predictColumn
|
|
261
|
+
//output: bool result
|
|
262
|
+
//meta.mlname: polynomial kernel LS-SVM
|
|
263
|
+
//meta.mlrole: isApplicable
|
|
264
|
+
export async function isApplicablePolynomialKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
265
|
+
return await PackageFunctions.isApplicablePolynomialKernelSVM(df, predictColumn);
|
|
266
|
+
}
|
|
267
|
+
|
|
268
|
+
//input: dataframe df
|
|
269
|
+
//input: column predictColumn
|
|
270
|
+
//output: bool result
|
|
271
|
+
//meta.mlname: polynomial kernel LS-SVM
|
|
272
|
+
//meta.mlrole: isInteractive
|
|
273
|
+
export async function isInteractivePolynomialKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
274
|
+
return await PackageFunctions.isInteractivePolynomialKernelSVM(df, predictColumn);
|
|
275
|
+
}
|
|
276
|
+
|
|
277
|
+
//input: dataframe df
|
|
278
|
+
//input: column targetColumn
|
|
279
|
+
//input: column predictColumn
|
|
280
|
+
//input: dynamic model
|
|
281
|
+
//output: dynamic widget
|
|
282
|
+
//meta.mlname: polynomial kernel LS-SVM
|
|
283
|
+
//meta.mlrole: visualize
|
|
284
|
+
export async function visualizePolynomialKernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
|
|
285
|
+
return await PackageFunctions.visualizePolynomialKernelSVM(df, targetColumn, predictColumn, model);
|
|
286
|
+
}
|
|
287
|
+
|
|
288
|
+
//input: dataframe df
|
|
289
|
+
//input: column predictColumn
|
|
290
|
+
//input: double gamma { category: Hyperparameters; default: 1.0 }
|
|
291
|
+
//input: double kappa { category: Hyperparameters; default: 1 }
|
|
292
|
+
//input: double theta { category: Hyperparameters; default: 1 }
|
|
293
|
+
//output: dynamic result
|
|
294
|
+
//meta.mlname: sigmoid kernel LS-SVM
|
|
295
|
+
//meta.mlrole: train
|
|
296
|
+
export async function trainSigmoidKernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number, kappa: number, theta: number) : Promise<any> {
|
|
297
|
+
return await PackageFunctions.trainSigmoidKernelSVM(df, predictColumn, gamma, kappa, theta);
|
|
298
|
+
}
|
|
299
|
+
|
|
300
|
+
//input: dataframe df
|
|
301
|
+
//input: dynamic model
|
|
302
|
+
//output: dataframe result
|
|
303
|
+
//meta.mlname: sigmoid kernel LS-SVM
|
|
304
|
+
//meta.mlrole: apply
|
|
305
|
+
export async function applySigmoidKernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
|
|
306
|
+
return await PackageFunctions.applySigmoidKernelSVM(df, model);
|
|
307
|
+
}
|
|
308
|
+
|
|
309
|
+
//input: dataframe df
|
|
310
|
+
//input: column predictColumn
|
|
311
|
+
//output: bool result
|
|
312
|
+
//meta.mlname: sigmoid kernel LS-SVM
|
|
313
|
+
//meta.mlrole: isApplicable
|
|
314
|
+
export async function isApplicableSigmoidKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
315
|
+
return await PackageFunctions.isApplicableSigmoidKernelSVM(df, predictColumn);
|
|
316
|
+
}
|
|
317
|
+
|
|
318
|
+
//input: dataframe df
|
|
319
|
+
//input: column predictColumn
|
|
320
|
+
//output: bool result
|
|
321
|
+
//meta.mlname: sigmoid kernel LS-SVM
|
|
322
|
+
//meta.mlrole: isInteractive
|
|
323
|
+
export async function isInteractiveSigmoidKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
|
|
324
|
+
return await PackageFunctions.isInteractiveSigmoidKernelSVM(df, predictColumn);
|
|
325
|
+
}
|
|
326
|
+
|
|
327
|
+
//input: dataframe df
|
|
328
|
+
//input: column targetColumn
|
|
329
|
+
//input: column predictColumn
|
|
330
|
+
//input: dynamic model
|
|
331
|
+
//output: dynamic result
|
|
332
|
+
//meta.mlname: sigmoid kernel LS-SVM
|
|
333
|
+
//meta.mlrole: visualize
|
|
334
|
+
export async function visualizeSigmoidKernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
|
|
335
|
+
return await PackageFunctions.visualizeSigmoidKernelSVM(df, targetColumn, predictColumn, model);
|
|
336
|
+
}
|
|
337
|
+
|
|
338
|
+
//name: ANOVA
|
|
339
|
+
//description: One-way analysis of variances (ANOVA) determines whether the examined factor has a significant impact on the explored feature.
|
|
340
|
+
//top-menu: ML | Analyze | ANOVA...
|
|
341
|
+
export function anova() : void {
|
|
342
|
+
PackageFunctions.anova();
|
|
343
|
+
}
|
|
344
|
+
|
|
345
|
+
//name: KNN impute
|
|
346
|
+
//description: Missing values imputation using the k-nearest neighbors method (KNN)
|
|
347
|
+
//top-menu: ML | Impute Missing Values...
|
|
348
|
+
export function kNNImputation() : void {
|
|
349
|
+
PackageFunctions.kNNImputation();
|
|
350
|
+
}
|
|
351
|
+
|
|
352
|
+
//name: KNN imputation for a table
|
|
353
|
+
//description: Missing values imputation using the k-nearest neighbors method
|
|
354
|
+
//input: dataframe table
|
|
355
|
+
export async function kNNImputationForTable(table: DG.DataFrame) : Promise<void> {
|
|
356
|
+
await PackageFunctions.kNNImputationForTable(table);
|
|
357
|
+
}
|
|
358
|
+
|
|
359
|
+
//input: dataframe df
|
|
360
|
+
//input: column predictColumn
|
|
361
|
+
//output: dynamic model
|
|
362
|
+
//meta.mlname: Linear Regression
|
|
363
|
+
//meta.mlrole: train
|
|
364
|
+
export async function trainLinearRegression(df: DG.DataFrame, predictColumn: DG.Column) : Promise<Uint8Array> {
|
|
365
|
+
return await PackageFunctions.trainLinearRegression(df, predictColumn);
|
|
366
|
+
}
|
|
367
|
+
|
|
368
|
+
//input: dataframe df
|
|
369
|
+
//input: dynamic model
|
|
370
|
+
//output: dataframe result
|
|
371
|
+
//meta.mlname: Linear Regression
|
|
372
|
+
//meta.mlrole: apply
|
|
373
|
+
export function applyLinearRegression(df: DG.DataFrame, model: any) : any {
|
|
374
|
+
return PackageFunctions.applyLinearRegression(df, model);
|
|
375
|
+
}
|
|
376
|
+
|
|
377
|
+
//input: dataframe df
|
|
378
|
+
//input: column predictColumn
|
|
379
|
+
//output: bool result
|
|
380
|
+
//meta.mlname: Linear Regression
|
|
381
|
+
//meta.mlrole: isApplicable
|
|
382
|
+
export function isApplicableLinearRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
383
|
+
return PackageFunctions.isApplicableLinearRegression(df, predictColumn);
|
|
384
|
+
}
|
|
385
|
+
|
|
386
|
+
//input: dataframe df
|
|
387
|
+
//input: column predictColumn
|
|
388
|
+
//output: bool result
|
|
389
|
+
//meta.mlname: Linear Regression
|
|
390
|
+
//meta.mlrole: isInteractive
|
|
391
|
+
export function isInteractiveLinearRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
392
|
+
return PackageFunctions.isInteractiveLinearRegression(df, predictColumn);
|
|
393
|
+
}
|
|
394
|
+
|
|
395
|
+
//input: dataframe df
|
|
396
|
+
//input: column predictColumn
|
|
397
|
+
//input: double rate { category: Hyperparameters; default: 1.0; min: 0.001; max: 20; description: Learning rate. }
|
|
398
|
+
//input: double iterations { category: Hyperparameters; default: 100; min: 1; max: 10000; step: 10; description: Fitting iterations count }
|
|
399
|
+
//input: double penalty { category: Hyperparameters; default: 0.1; min: 0.0001; max: 1; description: Regularization rate. }
|
|
400
|
+
//input: double tolerance { category: Hyperparameters; default: 0.001; min: 0.00001; max: 0.1; description: Fitting tolerance. }
|
|
401
|
+
//output: dynamic model
|
|
402
|
+
//meta.mlname: Softmax
|
|
403
|
+
//meta.mlrole: train
|
|
404
|
+
export async function trainSoftmax(df: DG.DataFrame, predictColumn: DG.Column, rate: number, iterations: number, penalty: number, tolerance: number) : Promise<Uint8Array> {
|
|
405
|
+
return await PackageFunctions.trainSoftmax(df, predictColumn, rate, iterations, penalty, tolerance);
|
|
406
|
+
}
|
|
407
|
+
|
|
408
|
+
//input: dataframe df
|
|
409
|
+
//input: dynamic model
|
|
410
|
+
//output: dataframe result
|
|
411
|
+
//meta.mlname: Softmax
|
|
412
|
+
//meta.mlrole: apply
|
|
413
|
+
export function applySoftmax(df: DG.DataFrame, model: any) : any {
|
|
414
|
+
return PackageFunctions.applySoftmax(df, model);
|
|
415
|
+
}
|
|
416
|
+
|
|
417
|
+
//input: dataframe df
|
|
418
|
+
//input: column predictColumn
|
|
419
|
+
//output: bool result
|
|
420
|
+
//meta.mlname: Softmax
|
|
421
|
+
//meta.mlrole: isApplicable
|
|
422
|
+
export function isApplicableSoftmax(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
423
|
+
return PackageFunctions.isApplicableSoftmax(df, predictColumn);
|
|
424
|
+
}
|
|
425
|
+
|
|
426
|
+
//input: dataframe df
|
|
427
|
+
//input: column predictColumn
|
|
428
|
+
//output: bool result
|
|
429
|
+
//meta.mlname: Softmax
|
|
430
|
+
//meta.mlrole: isInteractive
|
|
431
|
+
export function isInteractiveSoftmax(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
432
|
+
return PackageFunctions.isInteractiveSoftmax(df, predictColumn);
|
|
433
|
+
}
|
|
434
|
+
|
|
435
|
+
//input: dataframe df
|
|
436
|
+
//input: column predictColumn
|
|
437
|
+
//input: int components { min: 1; max: 10; default: 3; description: Number of latent components. }
|
|
438
|
+
//output: dynamic model
|
|
439
|
+
//meta.mlname: PLS Regression
|
|
440
|
+
//meta.mlrole: train
|
|
441
|
+
export async function trainPLSRegression(df: DG.DataFrame, predictColumn: DG.Column, components: number) : Promise<Uint8Array> {
|
|
442
|
+
return await PackageFunctions.trainPLSRegression(df, predictColumn, components);
|
|
443
|
+
}
|
|
444
|
+
|
|
445
|
+
//input: dataframe df
|
|
446
|
+
//input: dynamic model
|
|
447
|
+
//output: dataframe result
|
|
448
|
+
//meta.mlname: PLS Regression
|
|
449
|
+
//meta.mlrole: apply
|
|
450
|
+
export function applyPLSRegression(df: DG.DataFrame, model: any) : any {
|
|
451
|
+
return PackageFunctions.applyPLSRegression(df, model);
|
|
452
|
+
}
|
|
453
|
+
|
|
454
|
+
//input: dataframe df
|
|
455
|
+
//input: column predictColumn
|
|
456
|
+
//output: bool result
|
|
457
|
+
//meta.mlname: PLS Regression
|
|
458
|
+
//meta.mlrole: isApplicable
|
|
459
|
+
export function isApplicablePLSRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
460
|
+
return PackageFunctions.isApplicablePLSRegression(df, predictColumn);
|
|
461
|
+
}
|
|
462
|
+
|
|
463
|
+
//input: dataframe df
|
|
464
|
+
//input: column targetColumn
|
|
465
|
+
//input: column predictColumn
|
|
466
|
+
//input: dynamic model
|
|
467
|
+
//output: dynamic result
|
|
468
|
+
//meta.mlname: PLS Regression
|
|
469
|
+
//meta.mlrole: visualize
|
|
470
|
+
export async function visualizePLSRegression(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
|
|
471
|
+
return await PackageFunctions.visualizePLSRegression(df, targetColumn, predictColumn, model);
|
|
472
|
+
}
|
|
473
|
+
|
|
474
|
+
//input: dataframe df
|
|
475
|
+
//input: column predictColumn
|
|
476
|
+
//output: bool result
|
|
477
|
+
//meta.mlname: PLS Regression
|
|
478
|
+
//meta.mlrole: isInteractive
|
|
479
|
+
export function isInteractivePLSRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
480
|
+
return PackageFunctions.isInteractivePLSRegression(df, predictColumn);
|
|
481
|
+
}
|
|
482
|
+
|
|
483
|
+
//input: dataframe df
|
|
484
|
+
//input: column predictColumn
|
|
485
|
+
//input: int iterations { min: 1; max: 100; default: 20; description: Number of training iterations. }
|
|
486
|
+
//input: double eta { caption: Rate; min: 0; max: 1; default: 0.3; description: Learning rate. }
|
|
487
|
+
//input: int maxDepth { min: 0; max: 20; default: 6; description: Maximum depth of a tree. }
|
|
488
|
+
//input: double lambda { min: 0; max: 100; default: 1; description: L2 regularization term. }
|
|
489
|
+
//input: double alpha { min: 0; max: 100; default: 0; description: L1 regularization term. }
|
|
490
|
+
//output: dynamic model
|
|
491
|
+
//meta.mlname: XGBoost
|
|
492
|
+
//meta.mlrole: train
|
|
493
|
+
export async function trainXGBooster(df: DG.DataFrame, predictColumn: DG.Column, iterations: number, eta: number, maxDepth: number, lambda: number, alpha: number) : Promise<Uint8Array> {
|
|
494
|
+
return await PackageFunctions.trainXGBooster(df, predictColumn, iterations, eta, maxDepth, lambda, alpha);
|
|
495
|
+
}
|
|
496
|
+
|
|
497
|
+
//input: dataframe df
|
|
498
|
+
//input: dynamic model
|
|
499
|
+
//output: dataframe result
|
|
500
|
+
//meta.mlname: XGBoost
|
|
501
|
+
//meta.mlrole: apply
|
|
502
|
+
export function applyXGBooster(df: DG.DataFrame, model: any) : any {
|
|
503
|
+
return PackageFunctions.applyXGBooster(df, model);
|
|
504
|
+
}
|
|
505
|
+
|
|
506
|
+
//input: dataframe df
|
|
507
|
+
//input: column predictColumn
|
|
508
|
+
//output: bool result
|
|
509
|
+
//meta.mlname: XGBoost
|
|
510
|
+
//meta.mlrole: isInteractive
|
|
511
|
+
export function isInteractiveXGBooster(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
512
|
+
return PackageFunctions.isInteractiveXGBooster(df, predictColumn);
|
|
513
|
+
}
|
|
514
|
+
|
|
515
|
+
//input: dataframe df
|
|
516
|
+
//input: column predictColumn
|
|
517
|
+
//output: bool result
|
|
518
|
+
//meta.mlname: XGBoost
|
|
519
|
+
//meta.mlrole: isApplicable
|
|
520
|
+
export function isApplicableXGBooster(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
|
|
521
|
+
return PackageFunctions.isApplicableXGBooster(df, predictColumn);
|
|
522
|
+
}
|