@datagrok/eda 1.4.3 → 1.4.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (152) hide show
  1. package/CHANGELOG.md +4 -0
  2. package/dist/_d4c0.js +279 -0
  3. package/dist/_d4c0.js.map +1 -0
  4. package/dist/node_modules_datagrok-libraries_math_src_dbscan_wasm_clustering-worker_js.js +279 -0
  5. package/dist/node_modules_datagrok-libraries_math_src_dbscan_wasm_clustering-worker_js.js.map +1 -0
  6. package/dist/node_modules_datagrok-libraries_ml_src_MCL_mcl-sparse-matrix-mult-worker_js.js +59 -0
  7. package/dist/node_modules_datagrok-libraries_ml_src_MCL_mcl-sparse-matrix-mult-worker_js.js.map +1 -0
  8. package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_distance-matrix-worker_js.js +284 -0
  9. package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_distance-matrix-worker_js.js.map +1 -0
  10. package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_single-value-knn-worker_js.js +265 -0
  11. package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_single-value-knn-worker_js.js.map +1 -0
  12. package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-worker_js.js +287 -0
  13. package/dist/node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-worker_js.js.map +1 -0
  14. package/dist/package-test.js +26140 -1
  15. package/dist/package-test.js.map +1 -1
  16. package/dist/package.js +30337 -1
  17. package/dist/package.js.map +1 -1
  18. package/dist/src_workers_softmax-worker_ts.js +154 -0
  19. package/dist/src_workers_softmax-worker_ts.js.map +1 -0
  20. package/dist/src_workers_tsne-worker_ts.js +244 -0
  21. package/dist/src_workers_tsne-worker_ts.js.map +1 -0
  22. package/dist/src_workers_umap-worker_ts.js +252 -0
  23. package/dist/src_workers_umap-worker_ts.js.map +1 -0
  24. package/dist/vendors-node_modules_datagrok-libraries_math_src_dbscan_wasm_dbscan_js.js +1253 -0
  25. package/dist/vendors-node_modules_datagrok-libraries_math_src_dbscan_wasm_dbscan_js.js.map +1 -0
  26. package/dist/vendors-node_modules_datagrok-libraries_math_src_hierarchical-clustering_wasm_clustering-worker_js.js +942 -0
  27. package/dist/vendors-node_modules_datagrok-libraries_math_src_hierarchical-clustering_wasm_clustering-worker_js.js.map +1 -0
  28. package/dist/vendors-node_modules_datagrok-libraries_math_src_webGPU_sparse-matrix_webGPU-sparse-matrix_js-07693f.js +1525 -0
  29. package/dist/vendors-node_modules_datagrok-libraries_math_src_webGPU_sparse-matrix_webGPU-sparse-matrix_js-07693f.js.map +1 -0
  30. package/dist/vendors-node_modules_datagrok-libraries_ml_src_MCL_mcl-worker_js-node_modules_datagrok-librar-e4203d.js +2244 -0
  31. package/dist/vendors-node_modules_datagrok-libraries_ml_src_MCL_mcl-worker_js-node_modules_datagrok-librar-e4203d.js.map +1 -0
  32. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-threshold-worker_js.js +286 -0
  33. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-threshold-worker_js.js.map +1 -0
  34. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-worker_js.js +280 -0
  35. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_knn-worker_js.js.map +1 -0
  36. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-threshold-worker_js.js +282 -0
  37. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_sparse-matrix-threshold-worker_js.js.map +1 -0
  38. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_utils_js-node_modules_datagrok-72c7b2.js +1821 -0
  39. package/dist/vendors-node_modules_datagrok-libraries_ml_src_distance-matrix_utils_js-node_modules_datagrok-72c7b2.js.map +1 -0
  40. package/dist/vendors-node_modules_datagrok-libraries_ml_src_multi-column-dimensionality-reduction_mulit-co-3800a0.js +7776 -0
  41. package/dist/vendors-node_modules_datagrok-libraries_ml_src_multi-column-dimensionality-reduction_mulit-co-3800a0.js.map +1 -0
  42. package/dist/vendors-node_modules_keckelt_tsne_lib_index_js.js +379 -0
  43. package/dist/vendors-node_modules_keckelt_tsne_lib_index_js.js.map +1 -0
  44. package/dist/vendors-node_modules_ml-matrix_matrix_mjs.js +5946 -0
  45. package/dist/vendors-node_modules_ml-matrix_matrix_mjs.js.map +1 -0
  46. package/dist/vendors-node_modules_umap-js_dist_index_js.js +2284 -0
  47. package/dist/vendors-node_modules_umap-js_dist_index_js.js.map +1 -0
  48. package/dist/wasm_EDAForWebWorker_js-wasm_callWasmForWebWorker_js.js +779 -0
  49. package/dist/wasm_EDAForWebWorker_js-wasm_callWasmForWebWorker_js.js.map +1 -0
  50. package/dist/wasm_workers_errorWorker_js.js +267 -0
  51. package/dist/wasm_workers_errorWorker_js.js.map +1 -0
  52. package/dist/wasm_workers_fitLinearRegressionParamsWithDataNormalizingWorker_js.js +267 -0
  53. package/dist/wasm_workers_fitLinearRegressionParamsWithDataNormalizingWorker_js.js.map +1 -0
  54. package/dist/wasm_workers_fitLinearRegressionParamsWorker_js.js +267 -0
  55. package/dist/wasm_workers_fitLinearRegressionParamsWorker_js.js.map +1 -0
  56. package/dist/wasm_workers_fitSoftmaxWorker_js.js +267 -0
  57. package/dist/wasm_workers_fitSoftmaxWorker_js.js.map +1 -0
  58. package/dist/wasm_workers_generateDatasetWorker_js.js +267 -0
  59. package/dist/wasm_workers_generateDatasetWorker_js.js.map +1 -0
  60. package/dist/wasm_workers_normalizeDatasetWorker_js.js +267 -0
  61. package/dist/wasm_workers_normalizeDatasetWorker_js.js.map +1 -0
  62. package/dist/wasm_workers_partialLeastSquareRegressionWorker_js.js +267 -0
  63. package/dist/wasm_workers_partialLeastSquareRegressionWorker_js.js.map +1 -0
  64. package/dist/wasm_workers_predictByLSSVMWorker_js.js +267 -0
  65. package/dist/wasm_workers_predictByLSSVMWorker_js.js.map +1 -0
  66. package/dist/wasm_workers_principalComponentAnalysisNipalsWorker_js.js +267 -0
  67. package/dist/wasm_workers_principalComponentAnalysisNipalsWorker_js.js.map +1 -0
  68. package/dist/wasm_workers_principalComponentAnalysisWorkerUpd_js.js +271 -0
  69. package/dist/wasm_workers_principalComponentAnalysisWorkerUpd_js.js.map +1 -0
  70. package/dist/wasm_workers_trainAndAnalyzeLSSVMWorker_js.js +267 -0
  71. package/dist/wasm_workers_trainAndAnalyzeLSSVMWorker_js.js.map +1 -0
  72. package/dist/wasm_workers_trainLSSVMWorker_js.js +267 -0
  73. package/dist/wasm_workers_trainLSSVMWorker_js.js.map +1 -0
  74. package/dist/wasm_workers_xgboostWorker_js.js +279 -0
  75. package/dist/wasm_workers_xgboostWorker_js.js.map +1 -0
  76. package/package.json +5 -4
  77. package/src/package-api.ts +259 -0
  78. package/src/package.g.ts +522 -0
  79. package/src/package.ts +907 -678
  80. package/test-console-output-1.log +78 -93
  81. package/test-record-1.mp4 +0 -0
  82. package/tsconfig.json +2 -2
  83. package/webpack.config.js +5 -0
  84. package/dist/111.js +0 -2
  85. package/dist/111.js.map +0 -1
  86. package/dist/128.js +0 -2
  87. package/dist/128.js.map +0 -1
  88. package/dist/153.js +0 -2
  89. package/dist/153.js.map +0 -1
  90. package/dist/23.js +0 -2
  91. package/dist/23.js.map +0 -1
  92. package/dist/234.js +0 -2
  93. package/dist/234.js.map +0 -1
  94. package/dist/242.js +0 -2
  95. package/dist/242.js.map +0 -1
  96. package/dist/260.js +0 -2
  97. package/dist/260.js.map +0 -1
  98. package/dist/33.js +0 -2
  99. package/dist/33.js.map +0 -1
  100. package/dist/348.js +0 -2
  101. package/dist/348.js.map +0 -1
  102. package/dist/377.js +0 -2
  103. package/dist/377.js.map +0 -1
  104. package/dist/412.js +0 -2
  105. package/dist/412.js.map +0 -1
  106. package/dist/415.js +0 -2
  107. package/dist/415.js.map +0 -1
  108. package/dist/501.js +0 -2
  109. package/dist/501.js.map +0 -1
  110. package/dist/531.js +0 -2
  111. package/dist/531.js.map +0 -1
  112. package/dist/583.js +0 -2
  113. package/dist/583.js.map +0 -1
  114. package/dist/589.js +0 -2
  115. package/dist/589.js.map +0 -1
  116. package/dist/603.js +0 -2
  117. package/dist/603.js.map +0 -1
  118. package/dist/656.js +0 -2
  119. package/dist/656.js.map +0 -1
  120. package/dist/682.js +0 -2
  121. package/dist/682.js.map +0 -1
  122. package/dist/705.js +0 -2
  123. package/dist/705.js.map +0 -1
  124. package/dist/727.js +0 -2
  125. package/dist/727.js.map +0 -1
  126. package/dist/731.js +0 -2
  127. package/dist/731.js.map +0 -1
  128. package/dist/738.js +0 -3
  129. package/dist/738.js.LICENSE.txt +0 -51
  130. package/dist/738.js.map +0 -1
  131. package/dist/763.js +0 -2
  132. package/dist/763.js.map +0 -1
  133. package/dist/778.js +0 -2
  134. package/dist/778.js.map +0 -1
  135. package/dist/783.js +0 -2
  136. package/dist/783.js.map +0 -1
  137. package/dist/793.js +0 -2
  138. package/dist/793.js.map +0 -1
  139. package/dist/801.js +0 -2
  140. package/dist/801.js.map +0 -1
  141. package/dist/810.js +0 -2
  142. package/dist/810.js.map +0 -1
  143. package/dist/860.js +0 -2
  144. package/dist/860.js.map +0 -1
  145. package/dist/907.js +0 -2
  146. package/dist/907.js.map +0 -1
  147. package/dist/950.js +0 -2
  148. package/dist/950.js.map +0 -1
  149. package/dist/980.js +0 -2
  150. package/dist/980.js.map +0 -1
  151. package/dist/990.js +0 -2
  152. package/dist/990.js.map +0 -1
@@ -0,0 +1,522 @@
1
+ import {PackageFunctions} from './package';
2
+ import * as DG from 'datagrok-api/dg';
3
+
4
+ export function info() : void {
5
+ PackageFunctions.info();
6
+ }
7
+
8
+ //tags: init
9
+ export async function init() : Promise<void> {
10
+ await PackageFunctions.init();
11
+ }
12
+
13
+ //name: DBSCAN
14
+ //description: Density-based spatial clustering of applications with noise (DBSCAN)
15
+ //input: dataframe df
16
+ //input: column xCol { type: numerical }
17
+ //input: column yCol { type: numerical }
18
+ //input: double epsilon { caption: Epsilon; default: 0.02; description: The maximum distance between two samples for them to be considered as in the same neighborhood. }
19
+ //input: int minPts { caption: Minimum points; default: 4; description: The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. }
20
+ //output: column result
21
+ //top-menu: ML | Cluster | DBSCAN...
22
+ export async function dbScan(df: DG.DataFrame, xCol: DG.Column, yCol: DG.Column, epsilon: number, minPts: number) : Promise<any> {
23
+ return await PackageFunctions.dbScan(df, xCol, yCol, epsilon, minPts);
24
+ }
25
+
26
+ //description: Principal component analysis (PCA)
27
+ //input: dataframe table { caption: Table }
28
+ //input: column_list features { type: numerical; nullable: false }
29
+ //input: int components { showPlusMinus: true; caption: Components; nullable: false; min: 1; default: 2; description: Number of components. }
30
+ //input: bool center { caption: Center; default: false; description: Indicating whether the variables should be shifted to be zero centered. }
31
+ //input: bool scale { caption: Scale; default: false; description: Indicating whether the variables should be scaled to have unit variance. }
32
+ //top-menu: ML | Analyze | PCA...
33
+ //help-url: /help/explore/dim-reduction#pca
34
+ export async function PCA(table: DG.DataFrame, features: DG.ColumnList, components: number, center: boolean, scale: boolean) : Promise<void> {
35
+ await PackageFunctions.PCA(table, features, components, center, scale);
36
+ }
37
+
38
+ //name: DBSCAN clustering
39
+ //tags: dim-red-postprocessing-function
40
+ //input: column col1
41
+ //input: column col2
42
+ //input: double epsilon { default: 0.01; description: Minimum distance between two points to be considered as in the same neighborhood. }
43
+ //input: int minimumPoints { default: 5; description: Minimum number of points to form a dense region. }
44
+ //meta.defaultPostProcessingFunction: true
45
+ export async function dbscanPostProcessingFunction(col1: DG.Column, col2: DG.Column, epsilon: number, minimumPoints: number) : Promise<void> {
46
+ await PackageFunctions.dbscanPostProcessingFunction(col1, col2, epsilon, minimumPoints);
47
+ }
48
+
49
+ //name: None (number)
50
+ //tags: dim-red-preprocessing-function
51
+ //input: column col
52
+ //input: string _metric { optional: true }
53
+ //output: object result
54
+ //meta.supportedTypes: int,float,double,qnum
55
+ //meta.supportedDistanceFunctions: Difference
56
+ export function numberPreprocessingFunction(col: DG.Column, _metric: string) {
57
+ return PackageFunctions.numberPreprocessingFunction(col, _metric);
58
+ }
59
+
60
+ //name: None (string)
61
+ //tags: dim-red-preprocessing-function
62
+ //input: column col
63
+ //input: string _metric { optional: true }
64
+ //output: object result
65
+ //meta.supportedTypes: string
66
+ //meta.supportedDistanceFunctions: One-Hot,Levenshtein,Hamming
67
+ export function stringPreprocessingFunction(col: DG.Column, _metric: string) {
68
+ return PackageFunctions.stringPreprocessingFunction(col, _metric);
69
+ }
70
+
71
+ //name: Multi Column Dimensionality Reduction
72
+ //top-menu: ML | Reduce Dimensionality...
73
+ export async function reduceDimensionality() : Promise<void> {
74
+ await PackageFunctions.reduceDimensionality();
75
+ }
76
+
77
+ //tags: editor
78
+ //input: funccall call
79
+ export function GetMCLEditor(call: DG.FuncCall) : void {
80
+ PackageFunctions.GetMCLEditor(call);
81
+ }
82
+
83
+ //description: Markov clustering (MCL) is an unsupervised clustering algorithm for graphs based on simulation of stochastic flow.
84
+ //input: dataframe df
85
+ //input: list<column> cols
86
+ //input: list<string> metrics
87
+ //input: list<double> weights
88
+ //input: string aggregationMethod
89
+ //input: list<func> preprocessingFuncs
90
+ //input: object preprocessingFuncArgs
91
+ //input: int threshold { default: 80 }
92
+ //input: int maxIterations { default: 10 }
93
+ //input: bool useWebGPU { default: false }
94
+ //input: double inflate { default: 2 }
95
+ //input: int minClusterSize { default: 5 }
96
+ //top-menu: ML | Cluster | MCL...
97
+ //editor: EDA:GetMCLEditor
98
+ export async function MCLClustering(df: DG.DataFrame, cols: DG.Column[], metrics: any, weights: number[], aggregationMethod: any, preprocessingFuncs: any[], preprocessingFuncArgs: any[], threshold: number, maxIterations: number, useWebGPU: boolean, inflate: number, minClusterSize: number) : Promise<any> {
99
+ return await PackageFunctions.MCLClustering(df, cols, metrics, weights, aggregationMethod, preprocessingFuncs, preprocessingFuncArgs, threshold, maxIterations, useWebGPU, inflate, minClusterSize);
100
+ }
101
+
102
+ //name: MCL
103
+ //description: Markov clustering viewer
104
+ //tags: viewer
105
+ //output: viewer result
106
+ export function markovClusteringViewer() : any {
107
+ return PackageFunctions.markovClusteringViewer();
108
+ }
109
+
110
+ //description: Compute partial least squares (PLS) regression analysis components: prediction, regression coefficients, T- & U-scores, X-loadings.
111
+ //input: dataframe table
112
+ //input: column_list features { type: numerical }
113
+ //input: column predict { type: numerical }
114
+ //input: int components { default: 3 }
115
+ //input: column names { type: string }
116
+ //output: object plsResults
117
+ export async function PLS(table: DG.DataFrame, features: DG.ColumnList, predict: DG.Column, components: number, names: DG.Column) : Promise<any> {
118
+ return await PackageFunctions.PLS(table, features, predict, components, names);
119
+ }
120
+
121
+ //description: Compute partial least squares (PLS) regression components. They maximally summarize the variation of the predictors while maximizing correlation with the response variable.
122
+ //top-menu: ML | Analyze | PLS...
123
+ export async function topMenuPLS() : Promise<void> {
124
+ await PackageFunctions.topMenuPLS();
125
+ }
126
+
127
+ //name: multivariateAnalysis
128
+ //description: Multidimensional data analysis using partial least squares (PLS) regression.
129
+ //top-menu: ML | Analyze | Multivariate Analysis...
130
+ export async function MVA() : Promise<void> {
131
+ await PackageFunctions.MVA();
132
+ }
133
+
134
+ //name: MVA demo
135
+ //description: Multidimensional data analysis using partial least squares (PLS) regression. It identifies latent factors and constructs a linear model based on them.
136
+ //meta.demoPath: Compute | Multivariate Analysis
137
+ export async function demoMultivariateAnalysis() : Promise<void> {
138
+ await PackageFunctions.demoMultivariateAnalysis();
139
+ }
140
+
141
+ //input: dataframe df
142
+ //input: column predictColumn
143
+ //input: double gamma { category: Hyperparameters; default: 1.0 }
144
+ //output: dynamic result
145
+ //meta.mlname: linear kernel LS-SVM
146
+ //meta.mlrole: train
147
+ export async function trainLinearKernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number) : Promise<any> {
148
+ return await PackageFunctions.trainLinearKernelSVM(df, predictColumn, gamma);
149
+ }
150
+
151
+ //input: dataframe df
152
+ //input: dynamic model
153
+ //output: dataframe result
154
+ //meta.mlname: linear kernel LS-SVM
155
+ //meta.mlrole: apply
156
+ export async function applyLinearKernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
157
+ return await PackageFunctions.applyLinearKernelSVM(df, model);
158
+ }
159
+
160
+ //input: dataframe df
161
+ //input: column predictColumn
162
+ //output: bool result
163
+ //meta.mlname: linear kernel LS-SVM
164
+ //meta.mlrole: isApplicable
165
+ export async function isApplicableLinearKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
166
+ return await PackageFunctions.isApplicableLinearKernelSVM(df, predictColumn);
167
+ }
168
+
169
+ //input: dataframe df
170
+ //input: column predictColumn
171
+ //output: bool result
172
+ //meta.mlname: linear kernel LS-SVM
173
+ //meta.mlrole: isInteractive
174
+ export async function isInteractiveLinearKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
175
+ return await PackageFunctions.isInteractiveLinearKernelSVM(df, predictColumn);
176
+ }
177
+
178
+ //input: dataframe df
179
+ //input: column targetColumn
180
+ //input: column predictColumn
181
+ //input: dynamic model
182
+ //output: dynamic result
183
+ //meta.mlname: linear kernel LS-SVM
184
+ //meta.mlrole: visualize
185
+ export async function visualizeLinearKernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
186
+ return await PackageFunctions.visualizeLinearKernelSVM(df, targetColumn, predictColumn, model);
187
+ }
188
+
189
+ //input: dataframe df
190
+ //input: column predictColumn
191
+ //input: double gamma { category: Hyperparameters; default: 1.0 }
192
+ //input: double sigma { category: Hyperparameters; default: 1.5 }
193
+ //output: dynamic result
194
+ //meta.mlname: RBF-kernel LS-SVM
195
+ //meta.mlrole: train
196
+ export async function trainRBFkernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number, sigma: number) : Promise<any> {
197
+ return await PackageFunctions.trainRBFkernelSVM(df, predictColumn, gamma, sigma);
198
+ }
199
+
200
+ //input: dataframe df
201
+ //input: dynamic model
202
+ //output: dataframe result
203
+ //meta.mlname: RBF-kernel LS-SVM
204
+ //meta.mlrole: apply
205
+ export async function applyRBFkernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
206
+ return await PackageFunctions.applyRBFkernelSVM(df, model);
207
+ }
208
+
209
+ //input: dataframe df
210
+ //input: column predictColumn
211
+ //output: bool result
212
+ //meta.mlname: RBF-kernel LS-SVM
213
+ //meta.mlrole: isApplicable
214
+ export async function isApplicableRBFkernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
215
+ return await PackageFunctions.isApplicableRBFkernelSVM(df, predictColumn);
216
+ }
217
+
218
+ //input: dataframe df
219
+ //input: column predictColumn
220
+ //output: bool result
221
+ //meta.mlname: RBF-kernel LS-SVM
222
+ //meta.mlrole: isInteractive
223
+ export async function isInteractiveRBFkernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
224
+ return await PackageFunctions.isInteractiveRBFkernelSVM(df, predictColumn);
225
+ }
226
+
227
+ //input: dataframe df
228
+ //input: column targetColumn
229
+ //input: column predictColumn
230
+ //input: dynamic model
231
+ //output: dynamic result
232
+ //meta.mlname: RBF-kernel LS-SVM
233
+ //meta.mlrole: visualize
234
+ export async function visualizeRBFkernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
235
+ return await PackageFunctions.visualizeRBFkernelSVM(df, targetColumn, predictColumn, model);
236
+ }
237
+
238
+ //input: dataframe df
239
+ //input: column predictColumn
240
+ //input: double gamma { category: Hyperparameters; default: 1.0 }
241
+ //input: double c { category: Hyperparameters; default: 1 }
242
+ //input: double d { category: Hyperparameters; default: 2 }
243
+ //output: dynamic result
244
+ //meta.mlname: polynomial kernel LS-SVM
245
+ //meta.mlrole: train
246
+ export async function trainPolynomialKernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number, c: number, d: number) : Promise<any> {
247
+ return await PackageFunctions.trainPolynomialKernelSVM(df, predictColumn, gamma, c, d);
248
+ }
249
+
250
+ //input: dataframe df
251
+ //input: dynamic model
252
+ //output: dataframe result
253
+ //meta.mlname: polynomial kernel LS-SVM
254
+ //meta.mlrole: apply
255
+ export async function applyPolynomialKernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
256
+ return await PackageFunctions.applyPolynomialKernelSVM(df, model);
257
+ }
258
+
259
+ //input: dataframe df
260
+ //input: column predictColumn
261
+ //output: bool result
262
+ //meta.mlname: polynomial kernel LS-SVM
263
+ //meta.mlrole: isApplicable
264
+ export async function isApplicablePolynomialKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
265
+ return await PackageFunctions.isApplicablePolynomialKernelSVM(df, predictColumn);
266
+ }
267
+
268
+ //input: dataframe df
269
+ //input: column predictColumn
270
+ //output: bool result
271
+ //meta.mlname: polynomial kernel LS-SVM
272
+ //meta.mlrole: isInteractive
273
+ export async function isInteractivePolynomialKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
274
+ return await PackageFunctions.isInteractivePolynomialKernelSVM(df, predictColumn);
275
+ }
276
+
277
+ //input: dataframe df
278
+ //input: column targetColumn
279
+ //input: column predictColumn
280
+ //input: dynamic model
281
+ //output: dynamic widget
282
+ //meta.mlname: polynomial kernel LS-SVM
283
+ //meta.mlrole: visualize
284
+ export async function visualizePolynomialKernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
285
+ return await PackageFunctions.visualizePolynomialKernelSVM(df, targetColumn, predictColumn, model);
286
+ }
287
+
288
+ //input: dataframe df
289
+ //input: column predictColumn
290
+ //input: double gamma { category: Hyperparameters; default: 1.0 }
291
+ //input: double kappa { category: Hyperparameters; default: 1 }
292
+ //input: double theta { category: Hyperparameters; default: 1 }
293
+ //output: dynamic result
294
+ //meta.mlname: sigmoid kernel LS-SVM
295
+ //meta.mlrole: train
296
+ export async function trainSigmoidKernelSVM(df: DG.DataFrame, predictColumn: DG.Column, gamma: number, kappa: number, theta: number) : Promise<any> {
297
+ return await PackageFunctions.trainSigmoidKernelSVM(df, predictColumn, gamma, kappa, theta);
298
+ }
299
+
300
+ //input: dataframe df
301
+ //input: dynamic model
302
+ //output: dataframe result
303
+ //meta.mlname: sigmoid kernel LS-SVM
304
+ //meta.mlrole: apply
305
+ export async function applySigmoidKernelSVM(df: DG.DataFrame, model: any) : Promise<any> {
306
+ return await PackageFunctions.applySigmoidKernelSVM(df, model);
307
+ }
308
+
309
+ //input: dataframe df
310
+ //input: column predictColumn
311
+ //output: bool result
312
+ //meta.mlname: sigmoid kernel LS-SVM
313
+ //meta.mlrole: isApplicable
314
+ export async function isApplicableSigmoidKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
315
+ return await PackageFunctions.isApplicableSigmoidKernelSVM(df, predictColumn);
316
+ }
317
+
318
+ //input: dataframe df
319
+ //input: column predictColumn
320
+ //output: bool result
321
+ //meta.mlname: sigmoid kernel LS-SVM
322
+ //meta.mlrole: isInteractive
323
+ export async function isInteractiveSigmoidKernelSVM(df: DG.DataFrame, predictColumn: DG.Column) : Promise<boolean> {
324
+ return await PackageFunctions.isInteractiveSigmoidKernelSVM(df, predictColumn);
325
+ }
326
+
327
+ //input: dataframe df
328
+ //input: column targetColumn
329
+ //input: column predictColumn
330
+ //input: dynamic model
331
+ //output: dynamic result
332
+ //meta.mlname: sigmoid kernel LS-SVM
333
+ //meta.mlrole: visualize
334
+ export async function visualizeSigmoidKernelSVM(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
335
+ return await PackageFunctions.visualizeSigmoidKernelSVM(df, targetColumn, predictColumn, model);
336
+ }
337
+
338
+ //name: ANOVA
339
+ //description: One-way analysis of variances (ANOVA) determines whether the examined factor has a significant impact on the explored feature.
340
+ //top-menu: ML | Analyze | ANOVA...
341
+ export function anova() : void {
342
+ PackageFunctions.anova();
343
+ }
344
+
345
+ //name: KNN impute
346
+ //description: Missing values imputation using the k-nearest neighbors method (KNN)
347
+ //top-menu: ML | Impute Missing Values...
348
+ export function kNNImputation() : void {
349
+ PackageFunctions.kNNImputation();
350
+ }
351
+
352
+ //name: KNN imputation for a table
353
+ //description: Missing values imputation using the k-nearest neighbors method
354
+ //input: dataframe table
355
+ export async function kNNImputationForTable(table: DG.DataFrame) : Promise<void> {
356
+ await PackageFunctions.kNNImputationForTable(table);
357
+ }
358
+
359
+ //input: dataframe df
360
+ //input: column predictColumn
361
+ //output: dynamic model
362
+ //meta.mlname: Linear Regression
363
+ //meta.mlrole: train
364
+ export async function trainLinearRegression(df: DG.DataFrame, predictColumn: DG.Column) : Promise<Uint8Array> {
365
+ return await PackageFunctions.trainLinearRegression(df, predictColumn);
366
+ }
367
+
368
+ //input: dataframe df
369
+ //input: dynamic model
370
+ //output: dataframe result
371
+ //meta.mlname: Linear Regression
372
+ //meta.mlrole: apply
373
+ export function applyLinearRegression(df: DG.DataFrame, model: any) : any {
374
+ return PackageFunctions.applyLinearRegression(df, model);
375
+ }
376
+
377
+ //input: dataframe df
378
+ //input: column predictColumn
379
+ //output: bool result
380
+ //meta.mlname: Linear Regression
381
+ //meta.mlrole: isApplicable
382
+ export function isApplicableLinearRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
383
+ return PackageFunctions.isApplicableLinearRegression(df, predictColumn);
384
+ }
385
+
386
+ //input: dataframe df
387
+ //input: column predictColumn
388
+ //output: bool result
389
+ //meta.mlname: Linear Regression
390
+ //meta.mlrole: isInteractive
391
+ export function isInteractiveLinearRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
392
+ return PackageFunctions.isInteractiveLinearRegression(df, predictColumn);
393
+ }
394
+
395
+ //input: dataframe df
396
+ //input: column predictColumn
397
+ //input: double rate { category: Hyperparameters; default: 1.0; min: 0.001; max: 20; description: Learning rate. }
398
+ //input: double iterations { category: Hyperparameters; default: 100; min: 1; max: 10000; step: 10; description: Fitting iterations count }
399
+ //input: double penalty { category: Hyperparameters; default: 0.1; min: 0.0001; max: 1; description: Regularization rate. }
400
+ //input: double tolerance { category: Hyperparameters; default: 0.001; min: 0.00001; max: 0.1; description: Fitting tolerance. }
401
+ //output: dynamic model
402
+ //meta.mlname: Softmax
403
+ //meta.mlrole: train
404
+ export async function trainSoftmax(df: DG.DataFrame, predictColumn: DG.Column, rate: number, iterations: number, penalty: number, tolerance: number) : Promise<Uint8Array> {
405
+ return await PackageFunctions.trainSoftmax(df, predictColumn, rate, iterations, penalty, tolerance);
406
+ }
407
+
408
+ //input: dataframe df
409
+ //input: dynamic model
410
+ //output: dataframe result
411
+ //meta.mlname: Softmax
412
+ //meta.mlrole: apply
413
+ export function applySoftmax(df: DG.DataFrame, model: any) : any {
414
+ return PackageFunctions.applySoftmax(df, model);
415
+ }
416
+
417
+ //input: dataframe df
418
+ //input: column predictColumn
419
+ //output: bool result
420
+ //meta.mlname: Softmax
421
+ //meta.mlrole: isApplicable
422
+ export function isApplicableSoftmax(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
423
+ return PackageFunctions.isApplicableSoftmax(df, predictColumn);
424
+ }
425
+
426
+ //input: dataframe df
427
+ //input: column predictColumn
428
+ //output: bool result
429
+ //meta.mlname: Softmax
430
+ //meta.mlrole: isInteractive
431
+ export function isInteractiveSoftmax(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
432
+ return PackageFunctions.isInteractiveSoftmax(df, predictColumn);
433
+ }
434
+
435
+ //input: dataframe df
436
+ //input: column predictColumn
437
+ //input: int components { min: 1; max: 10; default: 3; description: Number of latent components. }
438
+ //output: dynamic model
439
+ //meta.mlname: PLS Regression
440
+ //meta.mlrole: train
441
+ export async function trainPLSRegression(df: DG.DataFrame, predictColumn: DG.Column, components: number) : Promise<Uint8Array> {
442
+ return await PackageFunctions.trainPLSRegression(df, predictColumn, components);
443
+ }
444
+
445
+ //input: dataframe df
446
+ //input: dynamic model
447
+ //output: dataframe result
448
+ //meta.mlname: PLS Regression
449
+ //meta.mlrole: apply
450
+ export function applyPLSRegression(df: DG.DataFrame, model: any) : any {
451
+ return PackageFunctions.applyPLSRegression(df, model);
452
+ }
453
+
454
+ //input: dataframe df
455
+ //input: column predictColumn
456
+ //output: bool result
457
+ //meta.mlname: PLS Regression
458
+ //meta.mlrole: isApplicable
459
+ export function isApplicablePLSRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
460
+ return PackageFunctions.isApplicablePLSRegression(df, predictColumn);
461
+ }
462
+
463
+ //input: dataframe df
464
+ //input: column targetColumn
465
+ //input: column predictColumn
466
+ //input: dynamic model
467
+ //output: dynamic result
468
+ //meta.mlname: PLS Regression
469
+ //meta.mlrole: visualize
470
+ export async function visualizePLSRegression(df: DG.DataFrame, targetColumn: DG.Column, predictColumn: DG.Column, model: any) : Promise<any> {
471
+ return await PackageFunctions.visualizePLSRegression(df, targetColumn, predictColumn, model);
472
+ }
473
+
474
+ //input: dataframe df
475
+ //input: column predictColumn
476
+ //output: bool result
477
+ //meta.mlname: PLS Regression
478
+ //meta.mlrole: isInteractive
479
+ export function isInteractivePLSRegression(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
480
+ return PackageFunctions.isInteractivePLSRegression(df, predictColumn);
481
+ }
482
+
483
+ //input: dataframe df
484
+ //input: column predictColumn
485
+ //input: int iterations { min: 1; max: 100; default: 20; description: Number of training iterations. }
486
+ //input: double eta { caption: Rate; min: 0; max: 1; default: 0.3; description: Learning rate. }
487
+ //input: int maxDepth { min: 0; max: 20; default: 6; description: Maximum depth of a tree. }
488
+ //input: double lambda { min: 0; max: 100; default: 1; description: L2 regularization term. }
489
+ //input: double alpha { min: 0; max: 100; default: 0; description: L1 regularization term. }
490
+ //output: dynamic model
491
+ //meta.mlname: XGBoost
492
+ //meta.mlrole: train
493
+ export async function trainXGBooster(df: DG.DataFrame, predictColumn: DG.Column, iterations: number, eta: number, maxDepth: number, lambda: number, alpha: number) : Promise<Uint8Array> {
494
+ return await PackageFunctions.trainXGBooster(df, predictColumn, iterations, eta, maxDepth, lambda, alpha);
495
+ }
496
+
497
+ //input: dataframe df
498
+ //input: dynamic model
499
+ //output: dataframe result
500
+ //meta.mlname: XGBoost
501
+ //meta.mlrole: apply
502
+ export function applyXGBooster(df: DG.DataFrame, model: any) : any {
503
+ return PackageFunctions.applyXGBooster(df, model);
504
+ }
505
+
506
+ //input: dataframe df
507
+ //input: column predictColumn
508
+ //output: bool result
509
+ //meta.mlname: XGBoost
510
+ //meta.mlrole: isInteractive
511
+ export function isInteractiveXGBooster(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
512
+ return PackageFunctions.isInteractiveXGBooster(df, predictColumn);
513
+ }
514
+
515
+ //input: dataframe df
516
+ //input: column predictColumn
517
+ //output: bool result
518
+ //meta.mlname: XGBoost
519
+ //meta.mlrole: isApplicable
520
+ export function isApplicableXGBooster(df: DG.DataFrame, predictColumn: DG.Column) : boolean {
521
+ return PackageFunctions.isApplicableXGBooster(df, predictColumn);
522
+ }