torch-rb 0.1.2 → 0.1.7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +35 -0
- data/LICENSE.txt +46 -22
- data/README.md +18 -6
- data/ext/torch/ext.cpp +148 -369
- data/ext/torch/extconf.rb +6 -0
- data/ext/torch/nn_functions.cpp +615 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.cpp +55 -0
- data/ext/torch/templates.hpp +242 -0
- data/ext/torch/tensor_functions.cpp +1920 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +2975 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch.rb +240 -131
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +27 -22
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +109 -0
- data/lib/torch/native/generator.rb +168 -0
- data/lib/torch/native/native_functions.yaml +6837 -0
- data/lib/torch/native/parser.rb +134 -0
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/avg_pool1d.rb +18 -0
- data/lib/torch/nn/avg_pool2d.rb +19 -0
- data/lib/torch/nn/avg_pool3d.rb +19 -0
- data/lib/torch/nn/avg_poolnd.rb +9 -0
- data/lib/torch/nn/batch_norm.rb +75 -0
- data/lib/torch/nn/batch_norm1d.rb +11 -0
- data/lib/torch/nn/batch_norm2d.rb +11 -0
- data/lib/torch/nn/batch_norm3d.rb +11 -0
- data/lib/torch/nn/bce_loss.rb +13 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/bilinear.rb +38 -0
- data/lib/torch/nn/constant_pad1d.rb +10 -0
- data/lib/torch/nn/constant_pad2d.rb +10 -0
- data/lib/torch/nn/constant_pad3d.rb +10 -0
- data/lib/torch/nn/constant_padnd.rb +18 -0
- data/lib/torch/nn/conv1d.rb +22 -0
- data/lib/torch/nn/conv2d.rb +16 -38
- data/lib/torch/nn/conv3d.rb +22 -0
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/cosine_similarity.rb +15 -0
- data/lib/torch/nn/cross_entropy_loss.rb +14 -0
- data/lib/torch/nn/ctc_loss.rb +15 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/embedding_bag.rb +34 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/fold.rb +20 -0
- data/lib/torch/nn/functional.rb +411 -22
- data/lib/torch/nn/group_norm.rb +36 -0
- data/lib/torch/nn/gru.rb +49 -0
- data/lib/torch/nn/hardshrink.rb +18 -0
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +14 -0
- data/lib/torch/nn/init.rb +58 -1
- data/lib/torch/nn/instance_norm.rb +20 -0
- data/lib/torch/nn/instance_norm1d.rb +18 -0
- data/lib/torch/nn/instance_norm2d.rb +11 -0
- data/lib/torch/nn/instance_norm3d.rb +11 -0
- data/lib/torch/nn/kl_div_loss.rb +13 -0
- data/lib/torch/nn/l1_loss.rb +13 -0
- data/lib/torch/nn/layer_norm.rb +35 -0
- data/lib/torch/nn/leaky_relu.rb +20 -0
- data/lib/torch/nn/linear.rb +12 -11
- data/lib/torch/nn/local_response_norm.rb +21 -0
- data/lib/torch/nn/log_sigmoid.rb +9 -0
- data/lib/torch/nn/log_softmax.rb +14 -0
- data/lib/torch/nn/loss.rb +10 -0
- data/lib/torch/nn/lp_pool1d.rb +9 -0
- data/lib/torch/nn/lp_pool2d.rb +9 -0
- data/lib/torch/nn/lp_poolnd.rb +22 -0
- data/lib/torch/nn/lstm.rb +66 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/max_pool1d.rb +9 -0
- data/lib/torch/nn/max_pool2d.rb +9 -0
- data/lib/torch/nn/max_pool3d.rb +9 -0
- data/lib/torch/nn/max_poolnd.rb +19 -0
- data/lib/torch/nn/max_unpool1d.rb +16 -0
- data/lib/torch/nn/max_unpool2d.rb +16 -0
- data/lib/torch/nn/max_unpool3d.rb +16 -0
- data/lib/torch/nn/max_unpoolnd.rb +9 -0
- data/lib/torch/nn/module.rb +201 -20
- data/lib/torch/nn/mse_loss.rb +2 -2
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/nll_loss.rb +14 -0
- data/lib/torch/nn/pairwise_distance.rb +16 -0
- data/lib/torch/nn/parameter.rb +2 -2
- data/lib/torch/nn/poisson_nll_loss.rb +16 -0
- data/lib/torch/nn/prelu.rb +19 -0
- data/lib/torch/nn/reflection_pad1d.rb +10 -0
- data/lib/torch/nn/reflection_pad2d.rb +10 -0
- data/lib/torch/nn/reflection_padnd.rb +13 -0
- data/lib/torch/nn/relu.rb +8 -3
- data/lib/torch/nn/replication_pad1d.rb +10 -0
- data/lib/torch/nn/replication_pad2d.rb +10 -0
- data/lib/torch/nn/replication_pad3d.rb +10 -0
- data/lib/torch/nn/replication_padnd.rb +13 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +198 -0
- data/lib/torch/nn/sequential.rb +1 -10
- data/lib/torch/nn/sigmoid.rb +9 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/softmax.rb +18 -0
- data/lib/torch/nn/softmax2d.rb +10 -0
- data/lib/torch/nn/softmin.rb +14 -0
- data/lib/torch/nn/softplus.rb +19 -0
- data/lib/torch/nn/softshrink.rb +18 -0
- data/lib/torch/nn/softsign.rb +9 -0
- data/lib/torch/nn/tanh.rb +9 -0
- data/lib/torch/nn/tanhshrink.rb +9 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/nn/unfold.rb +19 -0
- data/lib/torch/nn/utils.rb +25 -0
- data/lib/torch/nn/weighted_loss.rb +10 -0
- data/lib/torch/nn/zero_pad2d.rb +9 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +56 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +48 -16
- data/lib/torch/random.rb +10 -0
- data/lib/torch/tensor.rb +71 -30
- data/lib/torch/utils/data/data_loader.rb +10 -4
- data/lib/torch/utils/data/tensor_dataset.rb +3 -0
- data/lib/torch/version.rb +1 -1
- metadata +123 -6
@@ -0,0 +1,55 @@
|
|
1
|
+
#include <torch/torch.h>
|
2
|
+
#include <rice/Object.hpp>
|
3
|
+
#include "templates.hpp"
|
4
|
+
|
5
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor> x) {
|
6
|
+
Array a;
|
7
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
8
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
9
|
+
return Object(a);
|
10
|
+
}
|
11
|
+
|
12
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> x) {
|
13
|
+
Array a;
|
14
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
15
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
16
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
17
|
+
return Object(a);
|
18
|
+
}
|
19
|
+
|
20
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x) {
|
21
|
+
Array a;
|
22
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
23
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
24
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
25
|
+
a.push(to_ruby<torch::Tensor>(std::get<3>(x)));
|
26
|
+
return Object(a);
|
27
|
+
}
|
28
|
+
|
29
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x) {
|
30
|
+
Array a;
|
31
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
32
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
33
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
34
|
+
a.push(to_ruby<torch::Tensor>(std::get<3>(x)));
|
35
|
+
a.push(to_ruby<torch::Tensor>(std::get<4>(x)));
|
36
|
+
return Object(a);
|
37
|
+
}
|
38
|
+
|
39
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, int64_t> x) {
|
40
|
+
Array a;
|
41
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
42
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
43
|
+
a.push(to_ruby<torch::Tensor>(std::get<2>(x)));
|
44
|
+
a.push(to_ruby<int64_t>(std::get<3>(x)));
|
45
|
+
return Object(a);
|
46
|
+
}
|
47
|
+
|
48
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, double, int64_t> x) {
|
49
|
+
Array a;
|
50
|
+
a.push(to_ruby<torch::Tensor>(std::get<0>(x)));
|
51
|
+
a.push(to_ruby<torch::Tensor>(std::get<1>(x)));
|
52
|
+
a.push(to_ruby<double>(std::get<2>(x)));
|
53
|
+
a.push(to_ruby<int64_t>(std::get<3>(x)));
|
54
|
+
return Object(a);
|
55
|
+
}
|
@@ -0,0 +1,242 @@
|
|
1
|
+
#pragma once
|
2
|
+
|
3
|
+
#include <rice/Array.hpp>
|
4
|
+
#include <rice/Object.hpp>
|
5
|
+
|
6
|
+
using namespace Rice;
|
7
|
+
|
8
|
+
// need to wrap torch::IntArrayRef() since
|
9
|
+
// it doesn't own underlying data
|
10
|
+
class IntArrayRef {
|
11
|
+
std::vector<int64_t> vec;
|
12
|
+
public:
|
13
|
+
IntArrayRef(Object o) {
|
14
|
+
Array a = Array(o);
|
15
|
+
for (size_t i = 0; i < a.size(); i++) {
|
16
|
+
vec.push_back(from_ruby<int64_t>(a[i]));
|
17
|
+
}
|
18
|
+
}
|
19
|
+
operator torch::IntArrayRef() {
|
20
|
+
return torch::IntArrayRef(vec);
|
21
|
+
}
|
22
|
+
};
|
23
|
+
|
24
|
+
template<>
|
25
|
+
inline
|
26
|
+
IntArrayRef from_ruby<IntArrayRef>(Object x)
|
27
|
+
{
|
28
|
+
return IntArrayRef(x);
|
29
|
+
}
|
30
|
+
|
31
|
+
// for now
|
32
|
+
class Scalar {
|
33
|
+
torch::Scalar value;
|
34
|
+
public:
|
35
|
+
Scalar(Object o) {
|
36
|
+
// TODO cast based on Ruby type
|
37
|
+
if (o.rb_type() == T_FIXNUM) {
|
38
|
+
value = torch::Scalar(from_ruby<int64_t>(o));
|
39
|
+
} else {
|
40
|
+
value = torch::Scalar(from_ruby<float>(o));
|
41
|
+
}
|
42
|
+
}
|
43
|
+
operator torch::Scalar() {
|
44
|
+
return value;
|
45
|
+
}
|
46
|
+
};
|
47
|
+
|
48
|
+
template<>
|
49
|
+
inline
|
50
|
+
Scalar from_ruby<Scalar>(Object x)
|
51
|
+
{
|
52
|
+
return Scalar(x);
|
53
|
+
}
|
54
|
+
|
55
|
+
class TensorList {
|
56
|
+
std::vector<torch::Tensor> vec;
|
57
|
+
public:
|
58
|
+
TensorList(Object o) {
|
59
|
+
Array a = Array(o);
|
60
|
+
for (size_t i = 0; i < a.size(); i++) {
|
61
|
+
vec.push_back(from_ruby<torch::Tensor>(a[i]));
|
62
|
+
}
|
63
|
+
}
|
64
|
+
operator torch::TensorList() {
|
65
|
+
return torch::TensorList(vec);
|
66
|
+
}
|
67
|
+
};
|
68
|
+
|
69
|
+
template<>
|
70
|
+
inline
|
71
|
+
TensorList from_ruby<TensorList>(Object x)
|
72
|
+
{
|
73
|
+
return TensorList(x);
|
74
|
+
}
|
75
|
+
|
76
|
+
class FanModeType {
|
77
|
+
std::string s;
|
78
|
+
public:
|
79
|
+
FanModeType(Object o) {
|
80
|
+
s = String(o).str();
|
81
|
+
}
|
82
|
+
// TODO switch NonlinearityType after LibTorch 1.4 release
|
83
|
+
operator torch::nn::init::FanMode() {
|
84
|
+
if (s == "fan_in") {
|
85
|
+
return torch::nn::init::FanMode::FanIn;
|
86
|
+
} else if (s == "fan_out") {
|
87
|
+
return torch::nn::init::FanMode::FanOut;
|
88
|
+
} else {
|
89
|
+
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
90
|
+
}
|
91
|
+
}
|
92
|
+
};
|
93
|
+
|
94
|
+
template<>
|
95
|
+
inline
|
96
|
+
FanModeType from_ruby<FanModeType>(Object x)
|
97
|
+
{
|
98
|
+
return FanModeType(x);
|
99
|
+
}
|
100
|
+
|
101
|
+
class NonlinearityType {
|
102
|
+
std::string s;
|
103
|
+
public:
|
104
|
+
NonlinearityType(Object o) {
|
105
|
+
s = String(o).str();
|
106
|
+
}
|
107
|
+
// TODO switch NonlinearityType after LibTorch 1.4 release
|
108
|
+
operator torch::nn::init::Nonlinearity() {
|
109
|
+
if (s == "linear") {
|
110
|
+
return torch::nn::init::Nonlinearity::Linear;
|
111
|
+
} else if (s == "conv1d") {
|
112
|
+
return torch::nn::init::Nonlinearity::Conv1D;
|
113
|
+
} else if (s == "conv2d") {
|
114
|
+
return torch::nn::init::Nonlinearity::Conv2D;
|
115
|
+
} else if (s == "conv3d") {
|
116
|
+
return torch::nn::init::Nonlinearity::Conv3D;
|
117
|
+
} else if (s == "conv_transpose1d") {
|
118
|
+
return torch::nn::init::Nonlinearity::ConvTranspose1D;
|
119
|
+
} else if (s == "conv_transpose2d") {
|
120
|
+
return torch::nn::init::Nonlinearity::ConvTranspose2D;
|
121
|
+
} else if (s == "conv_transpose3d") {
|
122
|
+
return torch::nn::init::Nonlinearity::ConvTranspose3D;
|
123
|
+
} else if (s == "sigmoid") {
|
124
|
+
return torch::nn::init::Nonlinearity::Sigmoid;
|
125
|
+
} else if (s == "tanh") {
|
126
|
+
return torch::nn::init::Nonlinearity::Tanh;
|
127
|
+
} else if (s == "relu") {
|
128
|
+
return torch::nn::init::Nonlinearity::ReLU;
|
129
|
+
} else if (s == "leaky_relu") {
|
130
|
+
return torch::nn::init::Nonlinearity::LeakyReLU;
|
131
|
+
} else {
|
132
|
+
throw std::runtime_error("Unsupported nonlinearity type: " + s);
|
133
|
+
}
|
134
|
+
}
|
135
|
+
};
|
136
|
+
|
137
|
+
template<>
|
138
|
+
inline
|
139
|
+
NonlinearityType from_ruby<NonlinearityType>(Object x)
|
140
|
+
{
|
141
|
+
return NonlinearityType(x);
|
142
|
+
}
|
143
|
+
|
144
|
+
class MyReduction {
|
145
|
+
Object value;
|
146
|
+
public:
|
147
|
+
MyReduction(Object o) {
|
148
|
+
value = o;
|
149
|
+
}
|
150
|
+
operator int64_t() {
|
151
|
+
if (value.is_nil()) {
|
152
|
+
return Reduction::None;
|
153
|
+
}
|
154
|
+
|
155
|
+
std::string s = String(value).str();
|
156
|
+
if (s == "mean") {
|
157
|
+
return Reduction::Mean;
|
158
|
+
} else if (s == "sum") {
|
159
|
+
return Reduction::Sum;
|
160
|
+
} else {
|
161
|
+
throw std::runtime_error("Unsupported reduction: " + s);
|
162
|
+
}
|
163
|
+
}
|
164
|
+
};
|
165
|
+
|
166
|
+
template<>
|
167
|
+
inline
|
168
|
+
MyReduction from_ruby<MyReduction>(Object x)
|
169
|
+
{
|
170
|
+
return MyReduction(x);
|
171
|
+
}
|
172
|
+
|
173
|
+
typedef torch::Tensor Tensor;
|
174
|
+
|
175
|
+
class OptionalTensor {
|
176
|
+
Object value;
|
177
|
+
public:
|
178
|
+
OptionalTensor(Object o) {
|
179
|
+
value = o;
|
180
|
+
}
|
181
|
+
operator torch::Tensor() {
|
182
|
+
if (value.is_nil()) {
|
183
|
+
return {};
|
184
|
+
}
|
185
|
+
return from_ruby<torch::Tensor>(value);
|
186
|
+
}
|
187
|
+
};
|
188
|
+
|
189
|
+
template<>
|
190
|
+
inline
|
191
|
+
OptionalTensor from_ruby<OptionalTensor>(Object x)
|
192
|
+
{
|
193
|
+
return OptionalTensor(x);
|
194
|
+
}
|
195
|
+
|
196
|
+
class ScalarType {
|
197
|
+
Object value;
|
198
|
+
public:
|
199
|
+
ScalarType(Object o) {
|
200
|
+
value = o;
|
201
|
+
}
|
202
|
+
operator at::ScalarType() {
|
203
|
+
throw std::runtime_error("ScalarType arguments not implemented yet");
|
204
|
+
}
|
205
|
+
};
|
206
|
+
|
207
|
+
template<>
|
208
|
+
inline
|
209
|
+
ScalarType from_ruby<ScalarType>(Object x)
|
210
|
+
{
|
211
|
+
return ScalarType(x);
|
212
|
+
}
|
213
|
+
|
214
|
+
class OptionalScalarType {
|
215
|
+
Object value;
|
216
|
+
public:
|
217
|
+
OptionalScalarType(Object o) {
|
218
|
+
value = o;
|
219
|
+
}
|
220
|
+
operator c10::optional<at::ScalarType>() {
|
221
|
+
if (value.is_nil()) {
|
222
|
+
return c10::nullopt;
|
223
|
+
}
|
224
|
+
return ScalarType(value);
|
225
|
+
}
|
226
|
+
};
|
227
|
+
|
228
|
+
template<>
|
229
|
+
inline
|
230
|
+
OptionalScalarType from_ruby<OptionalScalarType>(Object x)
|
231
|
+
{
|
232
|
+
return OptionalScalarType(x);
|
233
|
+
}
|
234
|
+
|
235
|
+
typedef torch::Device Device;
|
236
|
+
|
237
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor> x);
|
238
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor> x);
|
239
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x);
|
240
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor> x);
|
241
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, int64_t> x);
|
242
|
+
Object wrap(std::tuple<torch::Tensor, torch::Tensor, double, int64_t> x);
|
@@ -0,0 +1,1920 @@
|
|
1
|
+
// generated by rake generate:functions
|
2
|
+
// do not edit by hand
|
3
|
+
|
4
|
+
#include <torch/torch.h>
|
5
|
+
#include <rice/Module.hpp>
|
6
|
+
#include "templates.hpp"
|
7
|
+
|
8
|
+
void add_tensor_functions(Module m) {
|
9
|
+
m
|
10
|
+
.define_method(
|
11
|
+
"_abs",
|
12
|
+
*[](const Tensor &self) {
|
13
|
+
return self.abs();
|
14
|
+
})
|
15
|
+
.define_method(
|
16
|
+
"_abs_",
|
17
|
+
*[](Tensor &self) {
|
18
|
+
return self.abs_();
|
19
|
+
})
|
20
|
+
.define_method(
|
21
|
+
"_acos",
|
22
|
+
*[](const Tensor &self) {
|
23
|
+
return self.acos();
|
24
|
+
})
|
25
|
+
.define_method(
|
26
|
+
"_acos_",
|
27
|
+
*[](Tensor &self) {
|
28
|
+
return self.acos_();
|
29
|
+
})
|
30
|
+
.define_method(
|
31
|
+
"_add__scalar",
|
32
|
+
*[](Tensor &self, Scalar other, Scalar alpha) {
|
33
|
+
return self.add_(other, alpha);
|
34
|
+
})
|
35
|
+
.define_method(
|
36
|
+
"_add__tensor",
|
37
|
+
*[](Tensor &self, const Tensor &other, Scalar alpha) {
|
38
|
+
return self.add_(other, alpha);
|
39
|
+
})
|
40
|
+
.define_method(
|
41
|
+
"_add_scalar",
|
42
|
+
*[](const Tensor &self, Scalar other, Scalar alpha) {
|
43
|
+
return self.add(other, alpha);
|
44
|
+
})
|
45
|
+
.define_method(
|
46
|
+
"_add_tensor",
|
47
|
+
*[](const Tensor &self, const Tensor &other, Scalar alpha) {
|
48
|
+
return self.add(other, alpha);
|
49
|
+
})
|
50
|
+
.define_method(
|
51
|
+
"_addbmm",
|
52
|
+
*[](const Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha) {
|
53
|
+
return self.addbmm(batch1, batch2, beta, alpha);
|
54
|
+
})
|
55
|
+
.define_method(
|
56
|
+
"_addbmm_",
|
57
|
+
*[](Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha) {
|
58
|
+
return self.addbmm_(batch1, batch2, beta, alpha);
|
59
|
+
})
|
60
|
+
.define_method(
|
61
|
+
"_addcdiv",
|
62
|
+
*[](const Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value) {
|
63
|
+
return self.addcdiv(tensor1, tensor2, value);
|
64
|
+
})
|
65
|
+
.define_method(
|
66
|
+
"_addcdiv_",
|
67
|
+
*[](Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value) {
|
68
|
+
return self.addcdiv_(tensor1, tensor2, value);
|
69
|
+
})
|
70
|
+
.define_method(
|
71
|
+
"_addcmul",
|
72
|
+
*[](const Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value) {
|
73
|
+
return self.addcmul(tensor1, tensor2, value);
|
74
|
+
})
|
75
|
+
.define_method(
|
76
|
+
"_addcmul_",
|
77
|
+
*[](Tensor &self, const Tensor &tensor1, const Tensor &tensor2, Scalar value) {
|
78
|
+
return self.addcmul_(tensor1, tensor2, value);
|
79
|
+
})
|
80
|
+
.define_method(
|
81
|
+
"_addmm",
|
82
|
+
*[](const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha) {
|
83
|
+
return self.addmm(mat1, mat2, beta, alpha);
|
84
|
+
})
|
85
|
+
.define_method(
|
86
|
+
"_addmm_",
|
87
|
+
*[](Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha) {
|
88
|
+
return self.addmm_(mat1, mat2, beta, alpha);
|
89
|
+
})
|
90
|
+
.define_method(
|
91
|
+
"_addmv",
|
92
|
+
*[](const Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha) {
|
93
|
+
return self.addmv(mat, vec, beta, alpha);
|
94
|
+
})
|
95
|
+
.define_method(
|
96
|
+
"_addmv_",
|
97
|
+
*[](Tensor &self, const Tensor &mat, const Tensor &vec, Scalar beta, Scalar alpha) {
|
98
|
+
return self.addmv_(mat, vec, beta, alpha);
|
99
|
+
})
|
100
|
+
.define_method(
|
101
|
+
"_addr",
|
102
|
+
*[](const Tensor &self, const Tensor &vec1, const Tensor &vec2, Scalar beta, Scalar alpha) {
|
103
|
+
return self.addr(vec1, vec2, beta, alpha);
|
104
|
+
})
|
105
|
+
.define_method(
|
106
|
+
"_addr_",
|
107
|
+
*[](Tensor &self, const Tensor &vec1, const Tensor &vec2, Scalar beta, Scalar alpha) {
|
108
|
+
return self.addr_(vec1, vec2, beta, alpha);
|
109
|
+
})
|
110
|
+
.define_method(
|
111
|
+
"_alias",
|
112
|
+
*[](Tensor &self) {
|
113
|
+
return self.alias();
|
114
|
+
})
|
115
|
+
.define_method(
|
116
|
+
"_align_as",
|
117
|
+
*[](const Tensor &self, const Tensor &other) {
|
118
|
+
return self.align_as(other);
|
119
|
+
})
|
120
|
+
.define_method(
|
121
|
+
"_all",
|
122
|
+
*[](const Tensor &self) {
|
123
|
+
return self.all();
|
124
|
+
})
|
125
|
+
.define_method(
|
126
|
+
"_all_dim",
|
127
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
128
|
+
return self.all(dim, keepdim);
|
129
|
+
})
|
130
|
+
.define_method(
|
131
|
+
"_allclose",
|
132
|
+
*[](const Tensor &self, const Tensor &other, double rtol, double atol, bool equal_nan) {
|
133
|
+
return self.allclose(other, rtol, atol, equal_nan);
|
134
|
+
})
|
135
|
+
.define_method(
|
136
|
+
"_any",
|
137
|
+
*[](const Tensor &self) {
|
138
|
+
return self.any();
|
139
|
+
})
|
140
|
+
.define_method(
|
141
|
+
"_any_dim",
|
142
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
143
|
+
return self.any(dim, keepdim);
|
144
|
+
})
|
145
|
+
.define_method(
|
146
|
+
"_argmax",
|
147
|
+
*[](const Tensor &self) {
|
148
|
+
return self.argmax();
|
149
|
+
})
|
150
|
+
.define_method(
|
151
|
+
"_argmax_dim",
|
152
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
153
|
+
return self.argmax(dim, keepdim);
|
154
|
+
})
|
155
|
+
.define_method(
|
156
|
+
"_argmin",
|
157
|
+
*[](const Tensor &self) {
|
158
|
+
return self.argmin();
|
159
|
+
})
|
160
|
+
.define_method(
|
161
|
+
"_argmin_dim",
|
162
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
163
|
+
return self.argmin(dim, keepdim);
|
164
|
+
})
|
165
|
+
.define_method(
|
166
|
+
"_argsort",
|
167
|
+
*[](const Tensor &self, int64_t dim, bool descending) {
|
168
|
+
return self.argsort(dim, descending);
|
169
|
+
})
|
170
|
+
.define_method(
|
171
|
+
"_as_strided",
|
172
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride) {
|
173
|
+
return self.as_strided(size, stride);
|
174
|
+
})
|
175
|
+
.define_method(
|
176
|
+
"_as_strided_",
|
177
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride) {
|
178
|
+
return self.as_strided_(size, stride);
|
179
|
+
})
|
180
|
+
.define_method(
|
181
|
+
"_as_strided__storage_offset",
|
182
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride, int64_t storage_offset) {
|
183
|
+
return self.as_strided_(size, stride, storage_offset);
|
184
|
+
})
|
185
|
+
.define_method(
|
186
|
+
"_as_strided_storage_offset",
|
187
|
+
*[](Tensor &self, IntArrayRef size, IntArrayRef stride, int64_t storage_offset) {
|
188
|
+
return self.as_strided(size, stride, storage_offset);
|
189
|
+
})
|
190
|
+
.define_method(
|
191
|
+
"_asin",
|
192
|
+
*[](const Tensor &self) {
|
193
|
+
return self.asin();
|
194
|
+
})
|
195
|
+
.define_method(
|
196
|
+
"_asin_",
|
197
|
+
*[](Tensor &self) {
|
198
|
+
return self.asin_();
|
199
|
+
})
|
200
|
+
.define_method(
|
201
|
+
"_atan",
|
202
|
+
*[](const Tensor &self) {
|
203
|
+
return self.atan();
|
204
|
+
})
|
205
|
+
.define_method(
|
206
|
+
"_atan2",
|
207
|
+
*[](const Tensor &self, const Tensor &other) {
|
208
|
+
return self.atan2(other);
|
209
|
+
})
|
210
|
+
.define_method(
|
211
|
+
"_atan2_",
|
212
|
+
*[](Tensor &self, const Tensor &other) {
|
213
|
+
return self.atan2_(other);
|
214
|
+
})
|
215
|
+
.define_method(
|
216
|
+
"_atan_",
|
217
|
+
*[](Tensor &self) {
|
218
|
+
return self.atan_();
|
219
|
+
})
|
220
|
+
.define_method(
|
221
|
+
"_backward",
|
222
|
+
*[](const Tensor &self, OptionalTensor gradient, bool keep_graph, bool create_graph) {
|
223
|
+
return self.backward(gradient, keep_graph, create_graph);
|
224
|
+
})
|
225
|
+
.define_method(
|
226
|
+
"_baddbmm",
|
227
|
+
*[](const Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha) {
|
228
|
+
return self.baddbmm(batch1, batch2, beta, alpha);
|
229
|
+
})
|
230
|
+
.define_method(
|
231
|
+
"_baddbmm_",
|
232
|
+
*[](Tensor &self, const Tensor &batch1, const Tensor &batch2, Scalar beta, Scalar alpha) {
|
233
|
+
return self.baddbmm_(batch1, batch2, beta, alpha);
|
234
|
+
})
|
235
|
+
.define_method(
|
236
|
+
"_bernoulli",
|
237
|
+
*[](const Tensor &self) {
|
238
|
+
return self.bernoulli();
|
239
|
+
})
|
240
|
+
.define_method(
|
241
|
+
"_bernoulli__float",
|
242
|
+
*[](Tensor &self, double p) {
|
243
|
+
return self.bernoulli_(p);
|
244
|
+
})
|
245
|
+
.define_method(
|
246
|
+
"_bernoulli__tensor",
|
247
|
+
*[](Tensor &self, const Tensor &p) {
|
248
|
+
return self.bernoulli_(p);
|
249
|
+
})
|
250
|
+
.define_method(
|
251
|
+
"_bernoulli_p",
|
252
|
+
*[](const Tensor &self, double p) {
|
253
|
+
return self.bernoulli(p);
|
254
|
+
})
|
255
|
+
.define_method(
|
256
|
+
"_bincount",
|
257
|
+
*[](const Tensor &self, OptionalTensor weights, int64_t minlength) {
|
258
|
+
return self.bincount(weights, minlength);
|
259
|
+
})
|
260
|
+
.define_method(
|
261
|
+
"_bitwise_not",
|
262
|
+
*[](const Tensor &self) {
|
263
|
+
return self.bitwise_not();
|
264
|
+
})
|
265
|
+
.define_method(
|
266
|
+
"_bitwise_not_",
|
267
|
+
*[](Tensor &self) {
|
268
|
+
return self.bitwise_not_();
|
269
|
+
})
|
270
|
+
.define_method(
|
271
|
+
"_bmm",
|
272
|
+
*[](const Tensor &self, const Tensor &mat2) {
|
273
|
+
return self.bmm(mat2);
|
274
|
+
})
|
275
|
+
.define_method(
|
276
|
+
"_cauchy_",
|
277
|
+
*[](Tensor &self, double median, double sigma) {
|
278
|
+
return self.cauchy_(median, sigma);
|
279
|
+
})
|
280
|
+
.define_method(
|
281
|
+
"_ceil",
|
282
|
+
*[](const Tensor &self) {
|
283
|
+
return self.ceil();
|
284
|
+
})
|
285
|
+
.define_method(
|
286
|
+
"_ceil_",
|
287
|
+
*[](Tensor &self) {
|
288
|
+
return self.ceil_();
|
289
|
+
})
|
290
|
+
.define_method(
|
291
|
+
"_cholesky",
|
292
|
+
*[](const Tensor &self, bool upper) {
|
293
|
+
return self.cholesky(upper);
|
294
|
+
})
|
295
|
+
.define_method(
|
296
|
+
"_cholesky_inverse",
|
297
|
+
*[](const Tensor &self, bool upper) {
|
298
|
+
return self.cholesky_inverse(upper);
|
299
|
+
})
|
300
|
+
.define_method(
|
301
|
+
"_cholesky_solve",
|
302
|
+
*[](const Tensor &self, const Tensor &input2, bool upper) {
|
303
|
+
return self.cholesky_solve(input2, upper);
|
304
|
+
})
|
305
|
+
.define_method(
|
306
|
+
"_chunk",
|
307
|
+
*[](Tensor &self, int64_t chunks, int64_t dim) {
|
308
|
+
return self.chunk(chunks, dim);
|
309
|
+
})
|
310
|
+
.define_method(
|
311
|
+
"_clamp_max",
|
312
|
+
*[](const Tensor &self, Scalar max) {
|
313
|
+
return self.clamp_max(max);
|
314
|
+
})
|
315
|
+
.define_method(
|
316
|
+
"_clamp_max_",
|
317
|
+
*[](Tensor &self, Scalar max) {
|
318
|
+
return self.clamp_max_(max);
|
319
|
+
})
|
320
|
+
.define_method(
|
321
|
+
"_clamp_min",
|
322
|
+
*[](const Tensor &self, Scalar min) {
|
323
|
+
return self.clamp_min(min);
|
324
|
+
})
|
325
|
+
.define_method(
|
326
|
+
"_clamp_min_",
|
327
|
+
*[](Tensor &self, Scalar min) {
|
328
|
+
return self.clamp_min_(min);
|
329
|
+
})
|
330
|
+
.define_method(
|
331
|
+
"_clone",
|
332
|
+
*[](const Tensor &self) {
|
333
|
+
return self.clone();
|
334
|
+
})
|
335
|
+
.define_method(
|
336
|
+
"_coalesce",
|
337
|
+
*[](const Tensor &self) {
|
338
|
+
return self.coalesce();
|
339
|
+
})
|
340
|
+
.define_method(
|
341
|
+
"_copy_",
|
342
|
+
*[](Tensor &self, const Tensor &src, bool non_blocking) {
|
343
|
+
return self.copy_(src, non_blocking);
|
344
|
+
})
|
345
|
+
.define_method(
|
346
|
+
"_cos",
|
347
|
+
*[](const Tensor &self) {
|
348
|
+
return self.cos();
|
349
|
+
})
|
350
|
+
.define_method(
|
351
|
+
"_cos_",
|
352
|
+
*[](Tensor &self) {
|
353
|
+
return self.cos_();
|
354
|
+
})
|
355
|
+
.define_method(
|
356
|
+
"_cosh",
|
357
|
+
*[](const Tensor &self) {
|
358
|
+
return self.cosh();
|
359
|
+
})
|
360
|
+
.define_method(
|
361
|
+
"_cosh_",
|
362
|
+
*[](Tensor &self) {
|
363
|
+
return self.cosh_();
|
364
|
+
})
|
365
|
+
.define_method(
|
366
|
+
"_cumprod",
|
367
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
368
|
+
return self.cumprod(dim, dtype);
|
369
|
+
})
|
370
|
+
.define_method(
|
371
|
+
"_cumsum",
|
372
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
373
|
+
return self.cumsum(dim, dtype);
|
374
|
+
})
|
375
|
+
.define_method(
|
376
|
+
"_data",
|
377
|
+
*[](const Tensor &self) {
|
378
|
+
return self.data();
|
379
|
+
})
|
380
|
+
.define_method(
|
381
|
+
"_dense_dim",
|
382
|
+
*[](const Tensor &self) {
|
383
|
+
return self.dense_dim();
|
384
|
+
})
|
385
|
+
.define_method(
|
386
|
+
"_dequantize",
|
387
|
+
*[](const Tensor &self) {
|
388
|
+
return self.dequantize();
|
389
|
+
})
|
390
|
+
.define_method(
|
391
|
+
"_det",
|
392
|
+
*[](const Tensor &self) {
|
393
|
+
return self.det();
|
394
|
+
})
|
395
|
+
.define_method(
|
396
|
+
"_detach",
|
397
|
+
*[](const Tensor &self) {
|
398
|
+
return self.detach();
|
399
|
+
})
|
400
|
+
.define_method(
|
401
|
+
"_detach_",
|
402
|
+
*[](Tensor &self) {
|
403
|
+
return self.detach_();
|
404
|
+
})
|
405
|
+
.define_method(
|
406
|
+
"_diag",
|
407
|
+
*[](const Tensor &self, int64_t diagonal) {
|
408
|
+
return self.diag(diagonal);
|
409
|
+
})
|
410
|
+
.define_method(
|
411
|
+
"_diag_embed",
|
412
|
+
*[](const Tensor &self, int64_t offset, int64_t dim1, int64_t dim2) {
|
413
|
+
return self.diag_embed(offset, dim1, dim2);
|
414
|
+
})
|
415
|
+
.define_method(
|
416
|
+
"_diagflat",
|
417
|
+
*[](const Tensor &self, int64_t offset) {
|
418
|
+
return self.diagflat(offset);
|
419
|
+
})
|
420
|
+
.define_method(
|
421
|
+
"_diagonal",
|
422
|
+
*[](Tensor &self, int64_t offset, int64_t dim1, int64_t dim2) {
|
423
|
+
return self.diagonal(offset, dim1, dim2);
|
424
|
+
})
|
425
|
+
.define_method(
|
426
|
+
"_digamma",
|
427
|
+
*[](const Tensor &self) {
|
428
|
+
return self.digamma();
|
429
|
+
})
|
430
|
+
.define_method(
|
431
|
+
"_digamma_",
|
432
|
+
*[](Tensor &self) {
|
433
|
+
return self.digamma_();
|
434
|
+
})
|
435
|
+
.define_method(
|
436
|
+
"_dist",
|
437
|
+
*[](const Tensor &self, const Tensor &other, Scalar p) {
|
438
|
+
return self.dist(other, p);
|
439
|
+
})
|
440
|
+
.define_method(
|
441
|
+
"_div__scalar",
|
442
|
+
*[](Tensor &self, Scalar other) {
|
443
|
+
return self.div_(other);
|
444
|
+
})
|
445
|
+
.define_method(
|
446
|
+
"_div__tensor",
|
447
|
+
*[](Tensor &self, const Tensor &other) {
|
448
|
+
return self.div_(other);
|
449
|
+
})
|
450
|
+
.define_method(
|
451
|
+
"_div_scalar",
|
452
|
+
*[](const Tensor &self, Scalar other) {
|
453
|
+
return self.div(other);
|
454
|
+
})
|
455
|
+
.define_method(
|
456
|
+
"_div_tensor",
|
457
|
+
*[](const Tensor &self, const Tensor &other) {
|
458
|
+
return self.div(other);
|
459
|
+
})
|
460
|
+
.define_method(
|
461
|
+
"_dot",
|
462
|
+
*[](const Tensor &self, const Tensor &tensor) {
|
463
|
+
return self.dot(tensor);
|
464
|
+
})
|
465
|
+
.define_method(
|
466
|
+
"_eig",
|
467
|
+
*[](const Tensor &self, bool eigenvectors) {
|
468
|
+
return wrap(self.eig(eigenvectors));
|
469
|
+
})
|
470
|
+
.define_method(
|
471
|
+
"_eq__scalar",
|
472
|
+
*[](Tensor &self, Scalar other) {
|
473
|
+
return self.eq_(other);
|
474
|
+
})
|
475
|
+
.define_method(
|
476
|
+
"_eq__tensor",
|
477
|
+
*[](Tensor &self, const Tensor &other) {
|
478
|
+
return self.eq_(other);
|
479
|
+
})
|
480
|
+
.define_method(
|
481
|
+
"_eq_scalar",
|
482
|
+
*[](const Tensor &self, Scalar other) {
|
483
|
+
return self.eq(other);
|
484
|
+
})
|
485
|
+
.define_method(
|
486
|
+
"_eq_tensor",
|
487
|
+
*[](const Tensor &self, const Tensor &other) {
|
488
|
+
return self.eq(other);
|
489
|
+
})
|
490
|
+
.define_method(
|
491
|
+
"_equal",
|
492
|
+
*[](const Tensor &self, const Tensor &other) {
|
493
|
+
return self.equal(other);
|
494
|
+
})
|
495
|
+
.define_method(
|
496
|
+
"_erf",
|
497
|
+
*[](const Tensor &self) {
|
498
|
+
return self.erf();
|
499
|
+
})
|
500
|
+
.define_method(
|
501
|
+
"_erf_",
|
502
|
+
*[](Tensor &self) {
|
503
|
+
return self.erf_();
|
504
|
+
})
|
505
|
+
.define_method(
|
506
|
+
"_erfc",
|
507
|
+
*[](const Tensor &self) {
|
508
|
+
return self.erfc();
|
509
|
+
})
|
510
|
+
.define_method(
|
511
|
+
"_erfc_",
|
512
|
+
*[](Tensor &self) {
|
513
|
+
return self.erfc_();
|
514
|
+
})
|
515
|
+
.define_method(
|
516
|
+
"_erfinv",
|
517
|
+
*[](const Tensor &self) {
|
518
|
+
return self.erfinv();
|
519
|
+
})
|
520
|
+
.define_method(
|
521
|
+
"_erfinv_",
|
522
|
+
*[](Tensor &self) {
|
523
|
+
return self.erfinv_();
|
524
|
+
})
|
525
|
+
.define_method(
|
526
|
+
"_exp",
|
527
|
+
*[](const Tensor &self) {
|
528
|
+
return self.exp();
|
529
|
+
})
|
530
|
+
.define_method(
|
531
|
+
"_exp_",
|
532
|
+
*[](Tensor &self) {
|
533
|
+
return self.exp_();
|
534
|
+
})
|
535
|
+
.define_method(
|
536
|
+
"_expand",
|
537
|
+
*[](Tensor &self, IntArrayRef size, bool implicit) {
|
538
|
+
return self.expand(size, implicit);
|
539
|
+
})
|
540
|
+
.define_method(
|
541
|
+
"_expand_as",
|
542
|
+
*[](const Tensor &self, const Tensor &other) {
|
543
|
+
return self.expand_as(other);
|
544
|
+
})
|
545
|
+
.define_method(
|
546
|
+
"_expm1",
|
547
|
+
*[](const Tensor &self) {
|
548
|
+
return self.expm1();
|
549
|
+
})
|
550
|
+
.define_method(
|
551
|
+
"_expm1_",
|
552
|
+
*[](Tensor &self) {
|
553
|
+
return self.expm1_();
|
554
|
+
})
|
555
|
+
.define_method(
|
556
|
+
"_exponential_",
|
557
|
+
*[](Tensor &self, double lambd) {
|
558
|
+
return self.exponential_(lambd);
|
559
|
+
})
|
560
|
+
.define_method(
|
561
|
+
"_fft",
|
562
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized) {
|
563
|
+
return self.fft(signal_ndim, normalized);
|
564
|
+
})
|
565
|
+
.define_method(
|
566
|
+
"_fill__scalar",
|
567
|
+
*[](Tensor &self, Scalar value) {
|
568
|
+
return self.fill_(value);
|
569
|
+
})
|
570
|
+
.define_method(
|
571
|
+
"_fill__tensor",
|
572
|
+
*[](Tensor &self, const Tensor &value) {
|
573
|
+
return self.fill_(value);
|
574
|
+
})
|
575
|
+
.define_method(
|
576
|
+
"_fill_diagonal_",
|
577
|
+
*[](Tensor &self, Scalar fill_value, bool wrap) {
|
578
|
+
return self.fill_diagonal_(fill_value, wrap);
|
579
|
+
})
|
580
|
+
.define_method(
|
581
|
+
"_flatten_using_ints",
|
582
|
+
*[](const Tensor &self, int64_t start_dim, int64_t end_dim) {
|
583
|
+
return self.flatten(start_dim, end_dim);
|
584
|
+
})
|
585
|
+
.define_method(
|
586
|
+
"_flip",
|
587
|
+
*[](const Tensor &self, IntArrayRef dims) {
|
588
|
+
return self.flip(dims);
|
589
|
+
})
|
590
|
+
.define_method(
|
591
|
+
"_floor",
|
592
|
+
*[](const Tensor &self) {
|
593
|
+
return self.floor();
|
594
|
+
})
|
595
|
+
.define_method(
|
596
|
+
"_floor_",
|
597
|
+
*[](Tensor &self) {
|
598
|
+
return self.floor_();
|
599
|
+
})
|
600
|
+
.define_method(
|
601
|
+
"_fmod__scalar",
|
602
|
+
*[](Tensor &self, Scalar other) {
|
603
|
+
return self.fmod_(other);
|
604
|
+
})
|
605
|
+
.define_method(
|
606
|
+
"_fmod__tensor",
|
607
|
+
*[](Tensor &self, const Tensor &other) {
|
608
|
+
return self.fmod_(other);
|
609
|
+
})
|
610
|
+
.define_method(
|
611
|
+
"_fmod_scalar",
|
612
|
+
*[](const Tensor &self, Scalar other) {
|
613
|
+
return self.fmod(other);
|
614
|
+
})
|
615
|
+
.define_method(
|
616
|
+
"_fmod_tensor",
|
617
|
+
*[](const Tensor &self, const Tensor &other) {
|
618
|
+
return self.fmod(other);
|
619
|
+
})
|
620
|
+
.define_method(
|
621
|
+
"_frac",
|
622
|
+
*[](const Tensor &self) {
|
623
|
+
return self.frac();
|
624
|
+
})
|
625
|
+
.define_method(
|
626
|
+
"_frac_",
|
627
|
+
*[](Tensor &self) {
|
628
|
+
return self.frac_();
|
629
|
+
})
|
630
|
+
.define_method(
|
631
|
+
"_gather",
|
632
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, bool sparse_grad) {
|
633
|
+
return self.gather(dim, index, sparse_grad);
|
634
|
+
})
|
635
|
+
.define_method(
|
636
|
+
"_ge__scalar",
|
637
|
+
*[](Tensor &self, Scalar other) {
|
638
|
+
return self.ge_(other);
|
639
|
+
})
|
640
|
+
.define_method(
|
641
|
+
"_ge__tensor",
|
642
|
+
*[](Tensor &self, const Tensor &other) {
|
643
|
+
return self.ge_(other);
|
644
|
+
})
|
645
|
+
.define_method(
|
646
|
+
"_ge_scalar",
|
647
|
+
*[](const Tensor &self, Scalar other) {
|
648
|
+
return self.ge(other);
|
649
|
+
})
|
650
|
+
.define_method(
|
651
|
+
"_ge_tensor",
|
652
|
+
*[](const Tensor &self, const Tensor &other) {
|
653
|
+
return self.ge(other);
|
654
|
+
})
|
655
|
+
.define_method(
|
656
|
+
"_geometric_",
|
657
|
+
*[](Tensor &self, double p) {
|
658
|
+
return self.geometric_(p);
|
659
|
+
})
|
660
|
+
.define_method(
|
661
|
+
"_geqrf",
|
662
|
+
*[](const Tensor &self) {
|
663
|
+
return wrap(self.geqrf());
|
664
|
+
})
|
665
|
+
.define_method(
|
666
|
+
"_ger",
|
667
|
+
*[](const Tensor &self, const Tensor &vec2) {
|
668
|
+
return self.ger(vec2);
|
669
|
+
})
|
670
|
+
.define_method(
|
671
|
+
"_gt__scalar",
|
672
|
+
*[](Tensor &self, Scalar other) {
|
673
|
+
return self.gt_(other);
|
674
|
+
})
|
675
|
+
.define_method(
|
676
|
+
"_gt__tensor",
|
677
|
+
*[](Tensor &self, const Tensor &other) {
|
678
|
+
return self.gt_(other);
|
679
|
+
})
|
680
|
+
.define_method(
|
681
|
+
"_gt_scalar",
|
682
|
+
*[](const Tensor &self, Scalar other) {
|
683
|
+
return self.gt(other);
|
684
|
+
})
|
685
|
+
.define_method(
|
686
|
+
"_gt_tensor",
|
687
|
+
*[](const Tensor &self, const Tensor &other) {
|
688
|
+
return self.gt(other);
|
689
|
+
})
|
690
|
+
.define_method(
|
691
|
+
"_hardshrink",
|
692
|
+
*[](const Tensor &self, Scalar lambd) {
|
693
|
+
return self.hardshrink(lambd);
|
694
|
+
})
|
695
|
+
.define_method(
|
696
|
+
"_histc",
|
697
|
+
*[](const Tensor &self, int64_t bins, Scalar min, Scalar max) {
|
698
|
+
return self.histc(bins, min, max);
|
699
|
+
})
|
700
|
+
.define_method(
|
701
|
+
"_ifft",
|
702
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized) {
|
703
|
+
return self.ifft(signal_ndim, normalized);
|
704
|
+
})
|
705
|
+
.define_method(
|
706
|
+
"_index_add",
|
707
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &source) {
|
708
|
+
return self.index_add(dim, index, source);
|
709
|
+
})
|
710
|
+
.define_method(
|
711
|
+
"_index_add_",
|
712
|
+
*[](Tensor &self, int64_t dim, const Tensor &index, const Tensor &source) {
|
713
|
+
return self.index_add_(dim, index, source);
|
714
|
+
})
|
715
|
+
.define_method(
|
716
|
+
"_index_copy",
|
717
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &source) {
|
718
|
+
return self.index_copy(dim, index, source);
|
719
|
+
})
|
720
|
+
.define_method(
|
721
|
+
"_index_copy_",
|
722
|
+
*[](Tensor &self, int64_t dim, const Tensor &index, const Tensor &source) {
|
723
|
+
return self.index_copy_(dim, index, source);
|
724
|
+
})
|
725
|
+
.define_method(
|
726
|
+
"_index_fill__scalar",
|
727
|
+
*[](Tensor &self, int64_t dim, const Tensor &index, Scalar value) {
|
728
|
+
return self.index_fill_(dim, index, value);
|
729
|
+
})
|
730
|
+
.define_method(
|
731
|
+
"_index_fill__tensor",
|
732
|
+
*[](Tensor &self, int64_t dim, const Tensor &index, const Tensor &value) {
|
733
|
+
return self.index_fill_(dim, index, value);
|
734
|
+
})
|
735
|
+
.define_method(
|
736
|
+
"_index_fill_scalar",
|
737
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, Scalar value) {
|
738
|
+
return self.index_fill(dim, index, value);
|
739
|
+
})
|
740
|
+
.define_method(
|
741
|
+
"_index_fill_tensor",
|
742
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &value) {
|
743
|
+
return self.index_fill(dim, index, value);
|
744
|
+
})
|
745
|
+
.define_method(
|
746
|
+
"_index_select",
|
747
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index) {
|
748
|
+
return self.index_select(dim, index);
|
749
|
+
})
|
750
|
+
.define_method(
|
751
|
+
"_indices",
|
752
|
+
*[](Tensor &self) {
|
753
|
+
return self.indices();
|
754
|
+
})
|
755
|
+
.define_method(
|
756
|
+
"_int_repr",
|
757
|
+
*[](const Tensor &self) {
|
758
|
+
return self.int_repr();
|
759
|
+
})
|
760
|
+
.define_method(
|
761
|
+
"_inverse",
|
762
|
+
*[](const Tensor &self) {
|
763
|
+
return self.inverse();
|
764
|
+
})
|
765
|
+
.define_method(
|
766
|
+
"_irfft",
|
767
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized, bool onesided, IntArrayRef signal_sizes) {
|
768
|
+
return self.irfft(signal_ndim, normalized, onesided, signal_sizes);
|
769
|
+
})
|
770
|
+
.define_method(
|
771
|
+
"_is_coalesced",
|
772
|
+
*[](const Tensor &self) {
|
773
|
+
return self.is_coalesced();
|
774
|
+
})
|
775
|
+
.define_method(
|
776
|
+
"_is_complex",
|
777
|
+
*[](const Tensor &self) {
|
778
|
+
return self.is_complex();
|
779
|
+
})
|
780
|
+
.define_method(
|
781
|
+
"_is_distributed",
|
782
|
+
*[](const Tensor &self) {
|
783
|
+
return self.is_distributed();
|
784
|
+
})
|
785
|
+
.define_method(
|
786
|
+
"_is_floating_point",
|
787
|
+
*[](const Tensor &self) {
|
788
|
+
return self.is_floating_point();
|
789
|
+
})
|
790
|
+
.define_method(
|
791
|
+
"_is_leaf",
|
792
|
+
*[](const Tensor &self) {
|
793
|
+
return self.is_leaf();
|
794
|
+
})
|
795
|
+
.define_method(
|
796
|
+
"_is_nonzero",
|
797
|
+
*[](const Tensor &self) {
|
798
|
+
return self.is_nonzero();
|
799
|
+
})
|
800
|
+
.define_method(
|
801
|
+
"_is_pinned",
|
802
|
+
*[](const Tensor &self) {
|
803
|
+
return self.is_pinned();
|
804
|
+
})
|
805
|
+
.define_method(
|
806
|
+
"_is_same_size",
|
807
|
+
*[](const Tensor &self, const Tensor &other) {
|
808
|
+
return self.is_same_size(other);
|
809
|
+
})
|
810
|
+
.define_method(
|
811
|
+
"_is_set_to",
|
812
|
+
*[](const Tensor &self, const Tensor &tensor) {
|
813
|
+
return self.is_set_to(tensor);
|
814
|
+
})
|
815
|
+
.define_method(
|
816
|
+
"_is_signed",
|
817
|
+
*[](const Tensor &self) {
|
818
|
+
return self.is_signed();
|
819
|
+
})
|
820
|
+
.define_method(
|
821
|
+
"_isclose",
|
822
|
+
*[](const Tensor &self, const Tensor &other, double rtol, double atol, bool equal_nan) {
|
823
|
+
return self.isclose(other, rtol, atol, equal_nan);
|
824
|
+
})
|
825
|
+
.define_method(
|
826
|
+
"_item",
|
827
|
+
*[](const Tensor &self) {
|
828
|
+
return self.item();
|
829
|
+
})
|
830
|
+
.define_method(
|
831
|
+
"_kthvalue",
|
832
|
+
*[](const Tensor &self, int64_t k, int64_t dim, bool keepdim) {
|
833
|
+
return wrap(self.kthvalue(k, dim, keepdim));
|
834
|
+
})
|
835
|
+
.define_method(
|
836
|
+
"_le__scalar",
|
837
|
+
*[](Tensor &self, Scalar other) {
|
838
|
+
return self.le_(other);
|
839
|
+
})
|
840
|
+
.define_method(
|
841
|
+
"_le__tensor",
|
842
|
+
*[](Tensor &self, const Tensor &other) {
|
843
|
+
return self.le_(other);
|
844
|
+
})
|
845
|
+
.define_method(
|
846
|
+
"_le_scalar",
|
847
|
+
*[](const Tensor &self, Scalar other) {
|
848
|
+
return self.le(other);
|
849
|
+
})
|
850
|
+
.define_method(
|
851
|
+
"_le_tensor",
|
852
|
+
*[](const Tensor &self, const Tensor &other) {
|
853
|
+
return self.le(other);
|
854
|
+
})
|
855
|
+
.define_method(
|
856
|
+
"_lerp__scalar",
|
857
|
+
*[](Tensor &self, const Tensor &end, Scalar weight) {
|
858
|
+
return self.lerp_(end, weight);
|
859
|
+
})
|
860
|
+
.define_method(
|
861
|
+
"_lerp__tensor",
|
862
|
+
*[](Tensor &self, const Tensor &end, const Tensor &weight) {
|
863
|
+
return self.lerp_(end, weight);
|
864
|
+
})
|
865
|
+
.define_method(
|
866
|
+
"_lerp_scalar",
|
867
|
+
*[](const Tensor &self, const Tensor &end, Scalar weight) {
|
868
|
+
return self.lerp(end, weight);
|
869
|
+
})
|
870
|
+
.define_method(
|
871
|
+
"_lerp_tensor",
|
872
|
+
*[](const Tensor &self, const Tensor &end, const Tensor &weight) {
|
873
|
+
return self.lerp(end, weight);
|
874
|
+
})
|
875
|
+
.define_method(
|
876
|
+
"_lgamma",
|
877
|
+
*[](const Tensor &self) {
|
878
|
+
return self.lgamma();
|
879
|
+
})
|
880
|
+
.define_method(
|
881
|
+
"_lgamma_",
|
882
|
+
*[](Tensor &self) {
|
883
|
+
return self.lgamma_();
|
884
|
+
})
|
885
|
+
.define_method(
|
886
|
+
"_log",
|
887
|
+
*[](const Tensor &self) {
|
888
|
+
return self.log();
|
889
|
+
})
|
890
|
+
.define_method(
|
891
|
+
"_log10",
|
892
|
+
*[](const Tensor &self) {
|
893
|
+
return self.log10();
|
894
|
+
})
|
895
|
+
.define_method(
|
896
|
+
"_log10_",
|
897
|
+
*[](Tensor &self) {
|
898
|
+
return self.log10_();
|
899
|
+
})
|
900
|
+
.define_method(
|
901
|
+
"_log1p",
|
902
|
+
*[](const Tensor &self) {
|
903
|
+
return self.log1p();
|
904
|
+
})
|
905
|
+
.define_method(
|
906
|
+
"_log1p_",
|
907
|
+
*[](Tensor &self) {
|
908
|
+
return self.log1p_();
|
909
|
+
})
|
910
|
+
.define_method(
|
911
|
+
"_log2",
|
912
|
+
*[](const Tensor &self) {
|
913
|
+
return self.log2();
|
914
|
+
})
|
915
|
+
.define_method(
|
916
|
+
"_log2_",
|
917
|
+
*[](Tensor &self) {
|
918
|
+
return self.log2_();
|
919
|
+
})
|
920
|
+
.define_method(
|
921
|
+
"_log_",
|
922
|
+
*[](Tensor &self) {
|
923
|
+
return self.log_();
|
924
|
+
})
|
925
|
+
.define_method(
|
926
|
+
"_log_normal_",
|
927
|
+
*[](Tensor &self, double mean, double std) {
|
928
|
+
return self.log_normal_(mean, std);
|
929
|
+
})
|
930
|
+
.define_method(
|
931
|
+
"_log_softmax",
|
932
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
933
|
+
return self.log_softmax(dim, dtype);
|
934
|
+
})
|
935
|
+
.define_method(
|
936
|
+
"_logdet",
|
937
|
+
*[](const Tensor &self) {
|
938
|
+
return self.logdet();
|
939
|
+
})
|
940
|
+
.define_method(
|
941
|
+
"_logical_not",
|
942
|
+
*[](const Tensor &self) {
|
943
|
+
return self.logical_not();
|
944
|
+
})
|
945
|
+
.define_method(
|
946
|
+
"_logical_not_",
|
947
|
+
*[](Tensor &self) {
|
948
|
+
return self.logical_not_();
|
949
|
+
})
|
950
|
+
.define_method(
|
951
|
+
"_logical_xor",
|
952
|
+
*[](const Tensor &self, const Tensor &other) {
|
953
|
+
return self.logical_xor(other);
|
954
|
+
})
|
955
|
+
.define_method(
|
956
|
+
"_logical_xor_",
|
957
|
+
*[](Tensor &self, const Tensor &other) {
|
958
|
+
return self.logical_xor_(other);
|
959
|
+
})
|
960
|
+
.define_method(
|
961
|
+
"_logsumexp",
|
962
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
963
|
+
return self.logsumexp(dim, keepdim);
|
964
|
+
})
|
965
|
+
.define_method(
|
966
|
+
"_lstsq",
|
967
|
+
*[](const Tensor &self, const Tensor &A) {
|
968
|
+
return wrap(self.lstsq(A));
|
969
|
+
})
|
970
|
+
.define_method(
|
971
|
+
"_lt__scalar",
|
972
|
+
*[](Tensor &self, Scalar other) {
|
973
|
+
return self.lt_(other);
|
974
|
+
})
|
975
|
+
.define_method(
|
976
|
+
"_lt__tensor",
|
977
|
+
*[](Tensor &self, const Tensor &other) {
|
978
|
+
return self.lt_(other);
|
979
|
+
})
|
980
|
+
.define_method(
|
981
|
+
"_lt_scalar",
|
982
|
+
*[](const Tensor &self, Scalar other) {
|
983
|
+
return self.lt(other);
|
984
|
+
})
|
985
|
+
.define_method(
|
986
|
+
"_lt_tensor",
|
987
|
+
*[](const Tensor &self, const Tensor &other) {
|
988
|
+
return self.lt(other);
|
989
|
+
})
|
990
|
+
.define_method(
|
991
|
+
"_lu_solve",
|
992
|
+
*[](const Tensor &self, const Tensor &LU_data, const Tensor &LU_pivots) {
|
993
|
+
return self.lu_solve(LU_data, LU_pivots);
|
994
|
+
})
|
995
|
+
.define_method(
|
996
|
+
"_masked_fill__scalar",
|
997
|
+
*[](Tensor &self, const Tensor &mask, Scalar value) {
|
998
|
+
return self.masked_fill_(mask, value);
|
999
|
+
})
|
1000
|
+
.define_method(
|
1001
|
+
"_masked_fill__tensor",
|
1002
|
+
*[](Tensor &self, const Tensor &mask, const Tensor &value) {
|
1003
|
+
return self.masked_fill_(mask, value);
|
1004
|
+
})
|
1005
|
+
.define_method(
|
1006
|
+
"_masked_fill_scalar",
|
1007
|
+
*[](const Tensor &self, const Tensor &mask, Scalar value) {
|
1008
|
+
return self.masked_fill(mask, value);
|
1009
|
+
})
|
1010
|
+
.define_method(
|
1011
|
+
"_masked_fill_tensor",
|
1012
|
+
*[](const Tensor &self, const Tensor &mask, const Tensor &value) {
|
1013
|
+
return self.masked_fill(mask, value);
|
1014
|
+
})
|
1015
|
+
.define_method(
|
1016
|
+
"_masked_scatter",
|
1017
|
+
*[](const Tensor &self, const Tensor &mask, const Tensor &source) {
|
1018
|
+
return self.masked_scatter(mask, source);
|
1019
|
+
})
|
1020
|
+
.define_method(
|
1021
|
+
"_masked_scatter_",
|
1022
|
+
*[](Tensor &self, const Tensor &mask, const Tensor &source) {
|
1023
|
+
return self.masked_scatter_(mask, source);
|
1024
|
+
})
|
1025
|
+
.define_method(
|
1026
|
+
"_masked_select",
|
1027
|
+
*[](const Tensor &self, const Tensor &mask) {
|
1028
|
+
return self.masked_select(mask);
|
1029
|
+
})
|
1030
|
+
.define_method(
|
1031
|
+
"_matmul",
|
1032
|
+
*[](const Tensor &self, const Tensor &other) {
|
1033
|
+
return self.matmul(other);
|
1034
|
+
})
|
1035
|
+
.define_method(
|
1036
|
+
"_matrix_power",
|
1037
|
+
*[](const Tensor &self, int64_t n) {
|
1038
|
+
return self.matrix_power(n);
|
1039
|
+
})
|
1040
|
+
.define_method(
|
1041
|
+
"_max",
|
1042
|
+
*[](const Tensor &self) {
|
1043
|
+
return self.max();
|
1044
|
+
})
|
1045
|
+
.define_method(
|
1046
|
+
"_max_dim",
|
1047
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1048
|
+
return wrap(self.max(dim, keepdim));
|
1049
|
+
})
|
1050
|
+
.define_method(
|
1051
|
+
"_max_other",
|
1052
|
+
*[](const Tensor &self, const Tensor &other) {
|
1053
|
+
return self.max(other);
|
1054
|
+
})
|
1055
|
+
.define_method(
|
1056
|
+
"_max_values",
|
1057
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1058
|
+
return self.max_values(dim, keepdim);
|
1059
|
+
})
|
1060
|
+
.define_method(
|
1061
|
+
"_mean",
|
1062
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1063
|
+
return self.mean(dtype);
|
1064
|
+
})
|
1065
|
+
.define_method(
|
1066
|
+
"_mean_dim",
|
1067
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
1068
|
+
return self.mean(dim, keepdim, dtype);
|
1069
|
+
})
|
1070
|
+
.define_method(
|
1071
|
+
"_median",
|
1072
|
+
*[](const Tensor &self) {
|
1073
|
+
return self.median();
|
1074
|
+
})
|
1075
|
+
.define_method(
|
1076
|
+
"_median_dim",
|
1077
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1078
|
+
return wrap(self.median(dim, keepdim));
|
1079
|
+
})
|
1080
|
+
.define_method(
|
1081
|
+
"_min",
|
1082
|
+
*[](const Tensor &self) {
|
1083
|
+
return self.min();
|
1084
|
+
})
|
1085
|
+
.define_method(
|
1086
|
+
"_min_dim",
|
1087
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1088
|
+
return wrap(self.min(dim, keepdim));
|
1089
|
+
})
|
1090
|
+
.define_method(
|
1091
|
+
"_min_other",
|
1092
|
+
*[](const Tensor &self, const Tensor &other) {
|
1093
|
+
return self.min(other);
|
1094
|
+
})
|
1095
|
+
.define_method(
|
1096
|
+
"_min_values",
|
1097
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim) {
|
1098
|
+
return self.min_values(dim, keepdim);
|
1099
|
+
})
|
1100
|
+
.define_method(
|
1101
|
+
"_mm",
|
1102
|
+
*[](const Tensor &self, const Tensor &mat2) {
|
1103
|
+
return self.mm(mat2);
|
1104
|
+
})
|
1105
|
+
.define_method(
|
1106
|
+
"_mode",
|
1107
|
+
*[](const Tensor &self, int64_t dim, bool keepdim) {
|
1108
|
+
return wrap(self.mode(dim, keepdim));
|
1109
|
+
})
|
1110
|
+
.define_method(
|
1111
|
+
"_mul__scalar",
|
1112
|
+
*[](Tensor &self, Scalar other) {
|
1113
|
+
return self.mul_(other);
|
1114
|
+
})
|
1115
|
+
.define_method(
|
1116
|
+
"_mul__tensor",
|
1117
|
+
*[](Tensor &self, const Tensor &other) {
|
1118
|
+
return self.mul_(other);
|
1119
|
+
})
|
1120
|
+
.define_method(
|
1121
|
+
"_mul_scalar",
|
1122
|
+
*[](const Tensor &self, Scalar other) {
|
1123
|
+
return self.mul(other);
|
1124
|
+
})
|
1125
|
+
.define_method(
|
1126
|
+
"_mul_tensor",
|
1127
|
+
*[](const Tensor &self, const Tensor &other) {
|
1128
|
+
return self.mul(other);
|
1129
|
+
})
|
1130
|
+
.define_method(
|
1131
|
+
"_multinomial",
|
1132
|
+
*[](const Tensor &self, int64_t num_samples, bool replacement) {
|
1133
|
+
return self.multinomial(num_samples, replacement);
|
1134
|
+
})
|
1135
|
+
.define_method(
|
1136
|
+
"_mv",
|
1137
|
+
*[](const Tensor &self, const Tensor &vec) {
|
1138
|
+
return self.mv(vec);
|
1139
|
+
})
|
1140
|
+
.define_method(
|
1141
|
+
"_mvlgamma",
|
1142
|
+
*[](const Tensor &self, int64_t p) {
|
1143
|
+
return self.mvlgamma(p);
|
1144
|
+
})
|
1145
|
+
.define_method(
|
1146
|
+
"_mvlgamma_",
|
1147
|
+
*[](Tensor &self, int64_t p) {
|
1148
|
+
return self.mvlgamma_(p);
|
1149
|
+
})
|
1150
|
+
.define_method(
|
1151
|
+
"_narrow",
|
1152
|
+
*[](Tensor &self, int64_t dim, int64_t start, int64_t length) {
|
1153
|
+
return self.narrow(dim, start, length);
|
1154
|
+
})
|
1155
|
+
.define_method(
|
1156
|
+
"_narrow_copy",
|
1157
|
+
*[](const Tensor &self, int64_t dim, int64_t start, int64_t length) {
|
1158
|
+
return self.narrow_copy(dim, start, length);
|
1159
|
+
})
|
1160
|
+
.define_method(
|
1161
|
+
"_ne__scalar",
|
1162
|
+
*[](Tensor &self, Scalar other) {
|
1163
|
+
return self.ne_(other);
|
1164
|
+
})
|
1165
|
+
.define_method(
|
1166
|
+
"_ne__tensor",
|
1167
|
+
*[](Tensor &self, const Tensor &other) {
|
1168
|
+
return self.ne_(other);
|
1169
|
+
})
|
1170
|
+
.define_method(
|
1171
|
+
"_ne_scalar",
|
1172
|
+
*[](const Tensor &self, Scalar other) {
|
1173
|
+
return self.ne(other);
|
1174
|
+
})
|
1175
|
+
.define_method(
|
1176
|
+
"_ne_tensor",
|
1177
|
+
*[](const Tensor &self, const Tensor &other) {
|
1178
|
+
return self.ne(other);
|
1179
|
+
})
|
1180
|
+
.define_method(
|
1181
|
+
"_neg",
|
1182
|
+
*[](const Tensor &self) {
|
1183
|
+
return self.neg();
|
1184
|
+
})
|
1185
|
+
.define_method(
|
1186
|
+
"_neg_",
|
1187
|
+
*[](Tensor &self) {
|
1188
|
+
return self.neg_();
|
1189
|
+
})
|
1190
|
+
.define_method(
|
1191
|
+
"_nonzero",
|
1192
|
+
*[](const Tensor &self) {
|
1193
|
+
return self.nonzero();
|
1194
|
+
})
|
1195
|
+
.define_method(
|
1196
|
+
"_nonzero_numpy",
|
1197
|
+
*[](const Tensor &self) {
|
1198
|
+
return self.nonzero_numpy();
|
1199
|
+
})
|
1200
|
+
.define_method(
|
1201
|
+
"_norm_scalar",
|
1202
|
+
*[](const Tensor &self, Scalar p) {
|
1203
|
+
return self.norm(p);
|
1204
|
+
})
|
1205
|
+
.define_method(
|
1206
|
+
"_normal_",
|
1207
|
+
*[](Tensor &self, double mean, double std) {
|
1208
|
+
return self.normal_(mean, std);
|
1209
|
+
})
|
1210
|
+
.define_method(
|
1211
|
+
"_numel",
|
1212
|
+
*[](const Tensor &self) {
|
1213
|
+
return self.numel();
|
1214
|
+
})
|
1215
|
+
.define_method(
|
1216
|
+
"_numpy_t",
|
1217
|
+
*[](Tensor &self) {
|
1218
|
+
return self.numpy_T();
|
1219
|
+
})
|
1220
|
+
.define_method(
|
1221
|
+
"_orgqr",
|
1222
|
+
*[](const Tensor &self, const Tensor &input2) {
|
1223
|
+
return self.orgqr(input2);
|
1224
|
+
})
|
1225
|
+
.define_method(
|
1226
|
+
"_ormqr",
|
1227
|
+
*[](const Tensor &self, const Tensor &input2, const Tensor &input3, bool left, bool transpose) {
|
1228
|
+
return self.ormqr(input2, input3, left, transpose);
|
1229
|
+
})
|
1230
|
+
.define_method(
|
1231
|
+
"_output_nr",
|
1232
|
+
*[](const Tensor &self) {
|
1233
|
+
return self.output_nr();
|
1234
|
+
})
|
1235
|
+
.define_method(
|
1236
|
+
"_permute",
|
1237
|
+
*[](Tensor &self, IntArrayRef dims) {
|
1238
|
+
return self.permute(dims);
|
1239
|
+
})
|
1240
|
+
.define_method(
|
1241
|
+
"_pin_memory",
|
1242
|
+
*[](const Tensor &self) {
|
1243
|
+
return self.pin_memory();
|
1244
|
+
})
|
1245
|
+
.define_method(
|
1246
|
+
"_pinverse",
|
1247
|
+
*[](const Tensor &self, double rcond) {
|
1248
|
+
return self.pinverse(rcond);
|
1249
|
+
})
|
1250
|
+
.define_method(
|
1251
|
+
"_polygamma",
|
1252
|
+
*[](int64_t n, const Tensor &self) {
|
1253
|
+
return self.polygamma(n);
|
1254
|
+
})
|
1255
|
+
.define_method(
|
1256
|
+
"_polygamma_",
|
1257
|
+
*[](Tensor &self, int64_t n) {
|
1258
|
+
return self.polygamma_(n);
|
1259
|
+
})
|
1260
|
+
.define_method(
|
1261
|
+
"_pow__scalar",
|
1262
|
+
*[](Tensor &self, Scalar exponent) {
|
1263
|
+
return self.pow_(exponent);
|
1264
|
+
})
|
1265
|
+
.define_method(
|
1266
|
+
"_pow__tensor",
|
1267
|
+
*[](Tensor &self, const Tensor &exponent) {
|
1268
|
+
return self.pow_(exponent);
|
1269
|
+
})
|
1270
|
+
.define_method(
|
1271
|
+
"_pow_tensor_scalar",
|
1272
|
+
*[](const Tensor &self, Scalar exponent) {
|
1273
|
+
return self.pow(exponent);
|
1274
|
+
})
|
1275
|
+
.define_method(
|
1276
|
+
"_pow_tensor_tensor",
|
1277
|
+
*[](const Tensor &self, const Tensor &exponent) {
|
1278
|
+
return self.pow(exponent);
|
1279
|
+
})
|
1280
|
+
.define_method(
|
1281
|
+
"_prelu",
|
1282
|
+
*[](const Tensor &self, const Tensor &weight) {
|
1283
|
+
return self.prelu(weight);
|
1284
|
+
})
|
1285
|
+
.define_method(
|
1286
|
+
"_prod",
|
1287
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1288
|
+
return self.prod(dtype);
|
1289
|
+
})
|
1290
|
+
.define_method(
|
1291
|
+
"_prod_dim_int",
|
1292
|
+
*[](const Tensor &self, int64_t dim, bool keepdim, OptionalScalarType dtype) {
|
1293
|
+
return self.prod(dim, keepdim, dtype);
|
1294
|
+
})
|
1295
|
+
.define_method(
|
1296
|
+
"_put_",
|
1297
|
+
*[](Tensor &self, const Tensor &index, const Tensor &source, bool accumulate) {
|
1298
|
+
return self.put_(index, source, accumulate);
|
1299
|
+
})
|
1300
|
+
.define_method(
|
1301
|
+
"_q_per_channel_axis",
|
1302
|
+
*[](const Tensor &self) {
|
1303
|
+
return self.q_per_channel_axis();
|
1304
|
+
})
|
1305
|
+
.define_method(
|
1306
|
+
"_q_per_channel_scales",
|
1307
|
+
*[](const Tensor &self) {
|
1308
|
+
return self.q_per_channel_scales();
|
1309
|
+
})
|
1310
|
+
.define_method(
|
1311
|
+
"_q_per_channel_zero_points",
|
1312
|
+
*[](const Tensor &self) {
|
1313
|
+
return self.q_per_channel_zero_points();
|
1314
|
+
})
|
1315
|
+
.define_method(
|
1316
|
+
"_q_scale",
|
1317
|
+
*[](const Tensor &self) {
|
1318
|
+
return self.q_scale();
|
1319
|
+
})
|
1320
|
+
.define_method(
|
1321
|
+
"_q_zero_point",
|
1322
|
+
*[](const Tensor &self) {
|
1323
|
+
return self.q_zero_point();
|
1324
|
+
})
|
1325
|
+
.define_method(
|
1326
|
+
"_qr",
|
1327
|
+
*[](const Tensor &self, bool some) {
|
1328
|
+
return wrap(self.qr(some));
|
1329
|
+
})
|
1330
|
+
.define_method(
|
1331
|
+
"_qscheme",
|
1332
|
+
*[](const Tensor &self) {
|
1333
|
+
return self.qscheme();
|
1334
|
+
})
|
1335
|
+
.define_method(
|
1336
|
+
"_random_",
|
1337
|
+
*[](Tensor &self) {
|
1338
|
+
return self.random_();
|
1339
|
+
})
|
1340
|
+
.define_method(
|
1341
|
+
"_random__from",
|
1342
|
+
*[](Tensor &self, int64_t from, int64_t to) {
|
1343
|
+
return self.random_(from, to);
|
1344
|
+
})
|
1345
|
+
.define_method(
|
1346
|
+
"_random__to",
|
1347
|
+
*[](Tensor &self, int64_t to) {
|
1348
|
+
return self.random_(to);
|
1349
|
+
})
|
1350
|
+
.define_method(
|
1351
|
+
"_reciprocal",
|
1352
|
+
*[](const Tensor &self) {
|
1353
|
+
return self.reciprocal();
|
1354
|
+
})
|
1355
|
+
.define_method(
|
1356
|
+
"_reciprocal_",
|
1357
|
+
*[](Tensor &self) {
|
1358
|
+
return self.reciprocal_();
|
1359
|
+
})
|
1360
|
+
.define_method(
|
1361
|
+
"_relu",
|
1362
|
+
*[](const Tensor &self) {
|
1363
|
+
return self.relu();
|
1364
|
+
})
|
1365
|
+
.define_method(
|
1366
|
+
"_relu_",
|
1367
|
+
*[](Tensor &self) {
|
1368
|
+
return self.relu_();
|
1369
|
+
})
|
1370
|
+
.define_method(
|
1371
|
+
"_remainder__scalar",
|
1372
|
+
*[](Tensor &self, Scalar other) {
|
1373
|
+
return self.remainder_(other);
|
1374
|
+
})
|
1375
|
+
.define_method(
|
1376
|
+
"_remainder__tensor",
|
1377
|
+
*[](Tensor &self, const Tensor &other) {
|
1378
|
+
return self.remainder_(other);
|
1379
|
+
})
|
1380
|
+
.define_method(
|
1381
|
+
"_remainder_scalar",
|
1382
|
+
*[](const Tensor &self, Scalar other) {
|
1383
|
+
return self.remainder(other);
|
1384
|
+
})
|
1385
|
+
.define_method(
|
1386
|
+
"_remainder_tensor",
|
1387
|
+
*[](const Tensor &self, const Tensor &other) {
|
1388
|
+
return self.remainder(other);
|
1389
|
+
})
|
1390
|
+
.define_method(
|
1391
|
+
"_renorm",
|
1392
|
+
*[](const Tensor &self, Scalar p, int64_t dim, Scalar maxnorm) {
|
1393
|
+
return self.renorm(p, dim, maxnorm);
|
1394
|
+
})
|
1395
|
+
.define_method(
|
1396
|
+
"_renorm_",
|
1397
|
+
*[](Tensor &self, Scalar p, int64_t dim, Scalar maxnorm) {
|
1398
|
+
return self.renorm_(p, dim, maxnorm);
|
1399
|
+
})
|
1400
|
+
.define_method(
|
1401
|
+
"_repeat",
|
1402
|
+
*[](const Tensor &self, IntArrayRef repeats) {
|
1403
|
+
return self.repeat(repeats);
|
1404
|
+
})
|
1405
|
+
.define_method(
|
1406
|
+
"_repeat_interleave_self_int",
|
1407
|
+
*[](const Tensor &self, int64_t repeats) {
|
1408
|
+
return self.repeat_interleave(repeats);
|
1409
|
+
})
|
1410
|
+
.define_method(
|
1411
|
+
"_repeat_interleave_self_int_dim",
|
1412
|
+
*[](const Tensor &self, int64_t repeats, int64_t dim) {
|
1413
|
+
return self.repeat_interleave(repeats, dim);
|
1414
|
+
})
|
1415
|
+
.define_method(
|
1416
|
+
"_repeat_interleave_self_tensor",
|
1417
|
+
*[](const Tensor &self, const Tensor &repeats) {
|
1418
|
+
return self.repeat_interleave(repeats);
|
1419
|
+
})
|
1420
|
+
.define_method(
|
1421
|
+
"_repeat_interleave_self_tensor_dim",
|
1422
|
+
*[](const Tensor &self, const Tensor &repeats, int64_t dim) {
|
1423
|
+
return self.repeat_interleave(repeats, dim);
|
1424
|
+
})
|
1425
|
+
.define_method(
|
1426
|
+
"_reshape",
|
1427
|
+
*[](const Tensor &self, IntArrayRef shape) {
|
1428
|
+
return self.reshape(shape);
|
1429
|
+
})
|
1430
|
+
.define_method(
|
1431
|
+
"_reshape_as",
|
1432
|
+
*[](const Tensor &self, const Tensor &other) {
|
1433
|
+
return self.reshape_as(other);
|
1434
|
+
})
|
1435
|
+
.define_method(
|
1436
|
+
"_resize_",
|
1437
|
+
*[](Tensor &self, IntArrayRef size) {
|
1438
|
+
return self.resize_(size);
|
1439
|
+
})
|
1440
|
+
.define_method(
|
1441
|
+
"_resize_as_",
|
1442
|
+
*[](Tensor &self, const Tensor &the_template) {
|
1443
|
+
return self.resize_as_(the_template);
|
1444
|
+
})
|
1445
|
+
.define_method(
|
1446
|
+
"_rfft",
|
1447
|
+
*[](const Tensor &self, int64_t signal_ndim, bool normalized, bool onesided) {
|
1448
|
+
return self.rfft(signal_ndim, normalized, onesided);
|
1449
|
+
})
|
1450
|
+
.define_method(
|
1451
|
+
"_roll",
|
1452
|
+
*[](const Tensor &self, IntArrayRef shifts, IntArrayRef dims) {
|
1453
|
+
return self.roll(shifts, dims);
|
1454
|
+
})
|
1455
|
+
.define_method(
|
1456
|
+
"_rot90",
|
1457
|
+
*[](const Tensor &self, int64_t k, IntArrayRef dims) {
|
1458
|
+
return self.rot90(k, dims);
|
1459
|
+
})
|
1460
|
+
.define_method(
|
1461
|
+
"_round",
|
1462
|
+
*[](const Tensor &self) {
|
1463
|
+
return self.round();
|
1464
|
+
})
|
1465
|
+
.define_method(
|
1466
|
+
"_round_",
|
1467
|
+
*[](Tensor &self) {
|
1468
|
+
return self.round_();
|
1469
|
+
})
|
1470
|
+
.define_method(
|
1471
|
+
"_rsqrt",
|
1472
|
+
*[](const Tensor &self) {
|
1473
|
+
return self.rsqrt();
|
1474
|
+
})
|
1475
|
+
.define_method(
|
1476
|
+
"_rsqrt_",
|
1477
|
+
*[](Tensor &self) {
|
1478
|
+
return self.rsqrt_();
|
1479
|
+
})
|
1480
|
+
.define_method(
|
1481
|
+
"_scatter__src",
|
1482
|
+
*[](Tensor &self, int64_t dim, const Tensor &index, const Tensor &src) {
|
1483
|
+
return self.scatter_(dim, index, src);
|
1484
|
+
})
|
1485
|
+
.define_method(
|
1486
|
+
"_scatter__value",
|
1487
|
+
*[](Tensor &self, int64_t dim, const Tensor &index, Scalar value) {
|
1488
|
+
return self.scatter_(dim, index, value);
|
1489
|
+
})
|
1490
|
+
.define_method(
|
1491
|
+
"_scatter_add",
|
1492
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &src) {
|
1493
|
+
return self.scatter_add(dim, index, src);
|
1494
|
+
})
|
1495
|
+
.define_method(
|
1496
|
+
"_scatter_add_",
|
1497
|
+
*[](Tensor &self, int64_t dim, const Tensor &index, const Tensor &src) {
|
1498
|
+
return self.scatter_add_(dim, index, src);
|
1499
|
+
})
|
1500
|
+
.define_method(
|
1501
|
+
"_scatter_src",
|
1502
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, const Tensor &src) {
|
1503
|
+
return self.scatter(dim, index, src);
|
1504
|
+
})
|
1505
|
+
.define_method(
|
1506
|
+
"_scatter_value",
|
1507
|
+
*[](const Tensor &self, int64_t dim, const Tensor &index, Scalar value) {
|
1508
|
+
return self.scatter(dim, index, value);
|
1509
|
+
})
|
1510
|
+
.define_method(
|
1511
|
+
"_select_int",
|
1512
|
+
*[](Tensor &self, int64_t dim, int64_t index) {
|
1513
|
+
return self.select(dim, index);
|
1514
|
+
})
|
1515
|
+
.define_method(
|
1516
|
+
"_set_",
|
1517
|
+
*[](Tensor &self) {
|
1518
|
+
return self.set_();
|
1519
|
+
})
|
1520
|
+
.define_method(
|
1521
|
+
"_set__source_tensor",
|
1522
|
+
*[](Tensor &self, const Tensor &source) {
|
1523
|
+
return self.set_(source);
|
1524
|
+
})
|
1525
|
+
.define_method(
|
1526
|
+
"_set_data",
|
1527
|
+
*[](Tensor &self, const Tensor &new_data) {
|
1528
|
+
return self.set_data(new_data);
|
1529
|
+
})
|
1530
|
+
.define_method(
|
1531
|
+
"_sigmoid",
|
1532
|
+
*[](const Tensor &self) {
|
1533
|
+
return self.sigmoid();
|
1534
|
+
})
|
1535
|
+
.define_method(
|
1536
|
+
"_sigmoid_",
|
1537
|
+
*[](Tensor &self) {
|
1538
|
+
return self.sigmoid_();
|
1539
|
+
})
|
1540
|
+
.define_method(
|
1541
|
+
"_sign",
|
1542
|
+
*[](const Tensor &self) {
|
1543
|
+
return self.sign();
|
1544
|
+
})
|
1545
|
+
.define_method(
|
1546
|
+
"_sign_",
|
1547
|
+
*[](Tensor &self) {
|
1548
|
+
return self.sign_();
|
1549
|
+
})
|
1550
|
+
.define_method(
|
1551
|
+
"_sin",
|
1552
|
+
*[](const Tensor &self) {
|
1553
|
+
return self.sin();
|
1554
|
+
})
|
1555
|
+
.define_method(
|
1556
|
+
"_sin_",
|
1557
|
+
*[](Tensor &self) {
|
1558
|
+
return self.sin_();
|
1559
|
+
})
|
1560
|
+
.define_method(
|
1561
|
+
"_sinh",
|
1562
|
+
*[](const Tensor &self) {
|
1563
|
+
return self.sinh();
|
1564
|
+
})
|
1565
|
+
.define_method(
|
1566
|
+
"_sinh_",
|
1567
|
+
*[](Tensor &self) {
|
1568
|
+
return self.sinh_();
|
1569
|
+
})
|
1570
|
+
.define_method(
|
1571
|
+
"_size_int",
|
1572
|
+
*[](const Tensor &self, int64_t dim) {
|
1573
|
+
return self.size(dim);
|
1574
|
+
})
|
1575
|
+
.define_method(
|
1576
|
+
"_slice_tensor",
|
1577
|
+
*[](Tensor &self, int64_t dim, int64_t start, int64_t end, int64_t step) {
|
1578
|
+
return self.slice(dim, start, end, step);
|
1579
|
+
})
|
1580
|
+
.define_method(
|
1581
|
+
"_slogdet",
|
1582
|
+
*[](const Tensor &self) {
|
1583
|
+
return wrap(self.slogdet());
|
1584
|
+
})
|
1585
|
+
.define_method(
|
1586
|
+
"_smm",
|
1587
|
+
*[](const Tensor &self, const Tensor &mat2) {
|
1588
|
+
return self.smm(mat2);
|
1589
|
+
})
|
1590
|
+
.define_method(
|
1591
|
+
"_softmax",
|
1592
|
+
*[](const Tensor &self, int64_t dim, OptionalScalarType dtype) {
|
1593
|
+
return self.softmax(dim, dtype);
|
1594
|
+
})
|
1595
|
+
.define_method(
|
1596
|
+
"_solve",
|
1597
|
+
*[](const Tensor &self, const Tensor &A) {
|
1598
|
+
return wrap(self.solve(A));
|
1599
|
+
})
|
1600
|
+
.define_method(
|
1601
|
+
"_sort",
|
1602
|
+
*[](const Tensor &self, int64_t dim, bool descending) {
|
1603
|
+
return wrap(self.sort(dim, descending));
|
1604
|
+
})
|
1605
|
+
.define_method(
|
1606
|
+
"_sparse_dim",
|
1607
|
+
*[](const Tensor &self) {
|
1608
|
+
return self.sparse_dim();
|
1609
|
+
})
|
1610
|
+
.define_method(
|
1611
|
+
"_sparse_mask",
|
1612
|
+
*[](const Tensor &self, const Tensor &mask) {
|
1613
|
+
return self.sparse_mask(mask);
|
1614
|
+
})
|
1615
|
+
.define_method(
|
1616
|
+
"_sparse_resize_",
|
1617
|
+
*[](Tensor &self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim) {
|
1618
|
+
return self.sparse_resize_(size, sparse_dim, dense_dim);
|
1619
|
+
})
|
1620
|
+
.define_method(
|
1621
|
+
"_sparse_resize_and_clear_",
|
1622
|
+
*[](Tensor &self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim) {
|
1623
|
+
return self.sparse_resize_and_clear_(size, sparse_dim, dense_dim);
|
1624
|
+
})
|
1625
|
+
.define_method(
|
1626
|
+
"_split_tensor",
|
1627
|
+
*[](Tensor &self, int64_t split_size, int64_t dim) {
|
1628
|
+
return self.split(split_size, dim);
|
1629
|
+
})
|
1630
|
+
.define_method(
|
1631
|
+
"_split_with_sizes",
|
1632
|
+
*[](const Tensor &self, IntArrayRef split_sizes, int64_t dim) {
|
1633
|
+
return self.split_with_sizes(split_sizes, dim);
|
1634
|
+
})
|
1635
|
+
.define_method(
|
1636
|
+
"_sqrt",
|
1637
|
+
*[](const Tensor &self) {
|
1638
|
+
return self.sqrt();
|
1639
|
+
})
|
1640
|
+
.define_method(
|
1641
|
+
"_sqrt_",
|
1642
|
+
*[](Tensor &self) {
|
1643
|
+
return self.sqrt_();
|
1644
|
+
})
|
1645
|
+
.define_method(
|
1646
|
+
"_squeeze",
|
1647
|
+
*[](Tensor &self) {
|
1648
|
+
return self.squeeze();
|
1649
|
+
})
|
1650
|
+
.define_method(
|
1651
|
+
"_squeeze_",
|
1652
|
+
*[](Tensor &self) {
|
1653
|
+
return self.squeeze_();
|
1654
|
+
})
|
1655
|
+
.define_method(
|
1656
|
+
"_squeeze__dim",
|
1657
|
+
*[](Tensor &self, int64_t dim) {
|
1658
|
+
return self.squeeze_(dim);
|
1659
|
+
})
|
1660
|
+
.define_method(
|
1661
|
+
"_squeeze_dim",
|
1662
|
+
*[](Tensor &self, int64_t dim) {
|
1663
|
+
return self.squeeze(dim);
|
1664
|
+
})
|
1665
|
+
.define_method(
|
1666
|
+
"_sspaddmm",
|
1667
|
+
*[](const Tensor &self, const Tensor &mat1, const Tensor &mat2, Scalar beta, Scalar alpha) {
|
1668
|
+
return self.sspaddmm(mat1, mat2, beta, alpha);
|
1669
|
+
})
|
1670
|
+
.define_method(
|
1671
|
+
"_std",
|
1672
|
+
*[](const Tensor &self, bool unbiased) {
|
1673
|
+
return self.std(unbiased);
|
1674
|
+
})
|
1675
|
+
.define_method(
|
1676
|
+
"_std_dim",
|
1677
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
1678
|
+
return self.std(dim, unbiased, keepdim);
|
1679
|
+
})
|
1680
|
+
.define_method(
|
1681
|
+
"_stride_int",
|
1682
|
+
*[](const Tensor &self, int64_t dim) {
|
1683
|
+
return self.stride(dim);
|
1684
|
+
})
|
1685
|
+
.define_method(
|
1686
|
+
"_sub__scalar",
|
1687
|
+
*[](Tensor &self, Scalar other, Scalar alpha) {
|
1688
|
+
return self.sub_(other, alpha);
|
1689
|
+
})
|
1690
|
+
.define_method(
|
1691
|
+
"_sub__tensor",
|
1692
|
+
*[](Tensor &self, const Tensor &other, Scalar alpha) {
|
1693
|
+
return self.sub_(other, alpha);
|
1694
|
+
})
|
1695
|
+
.define_method(
|
1696
|
+
"_sub_scalar",
|
1697
|
+
*[](const Tensor &self, Scalar other, Scalar alpha) {
|
1698
|
+
return self.sub(other, alpha);
|
1699
|
+
})
|
1700
|
+
.define_method(
|
1701
|
+
"_sub_tensor",
|
1702
|
+
*[](const Tensor &self, const Tensor &other, Scalar alpha) {
|
1703
|
+
return self.sub(other, alpha);
|
1704
|
+
})
|
1705
|
+
.define_method(
|
1706
|
+
"_sum",
|
1707
|
+
*[](const Tensor &self, OptionalScalarType dtype) {
|
1708
|
+
return self.sum(dtype);
|
1709
|
+
})
|
1710
|
+
.define_method(
|
1711
|
+
"_sum_dim_intlist",
|
1712
|
+
*[](const Tensor &self, IntArrayRef dim, bool keepdim, OptionalScalarType dtype) {
|
1713
|
+
return self.sum(dim, keepdim, dtype);
|
1714
|
+
})
|
1715
|
+
.define_method(
|
1716
|
+
"_sum_to_size",
|
1717
|
+
*[](const Tensor &self, IntArrayRef size) {
|
1718
|
+
return self.sum_to_size(size);
|
1719
|
+
})
|
1720
|
+
.define_method(
|
1721
|
+
"_svd",
|
1722
|
+
*[](const Tensor &self, bool some, bool compute_uv) {
|
1723
|
+
return wrap(self.svd(some, compute_uv));
|
1724
|
+
})
|
1725
|
+
.define_method(
|
1726
|
+
"_symeig",
|
1727
|
+
*[](const Tensor &self, bool eigenvectors, bool upper) {
|
1728
|
+
return wrap(self.symeig(eigenvectors, upper));
|
1729
|
+
})
|
1730
|
+
.define_method(
|
1731
|
+
"_t",
|
1732
|
+
*[](Tensor &self) {
|
1733
|
+
return self.t();
|
1734
|
+
})
|
1735
|
+
.define_method(
|
1736
|
+
"_t_",
|
1737
|
+
*[](Tensor &self) {
|
1738
|
+
return self.t_();
|
1739
|
+
})
|
1740
|
+
.define_method(
|
1741
|
+
"_take",
|
1742
|
+
*[](const Tensor &self, const Tensor &index) {
|
1743
|
+
return self.take(index);
|
1744
|
+
})
|
1745
|
+
.define_method(
|
1746
|
+
"_tan",
|
1747
|
+
*[](const Tensor &self) {
|
1748
|
+
return self.tan();
|
1749
|
+
})
|
1750
|
+
.define_method(
|
1751
|
+
"_tan_",
|
1752
|
+
*[](Tensor &self) {
|
1753
|
+
return self.tan_();
|
1754
|
+
})
|
1755
|
+
.define_method(
|
1756
|
+
"_tanh",
|
1757
|
+
*[](const Tensor &self) {
|
1758
|
+
return self.tanh();
|
1759
|
+
})
|
1760
|
+
.define_method(
|
1761
|
+
"_tanh_",
|
1762
|
+
*[](Tensor &self) {
|
1763
|
+
return self.tanh_();
|
1764
|
+
})
|
1765
|
+
.define_method(
|
1766
|
+
"_to_dense",
|
1767
|
+
*[](const Tensor &self) {
|
1768
|
+
return self.to_dense();
|
1769
|
+
})
|
1770
|
+
.define_method(
|
1771
|
+
"_to_device",
|
1772
|
+
*[](const Tensor &self, Device device, ScalarType dtype, bool non_blocking, bool copy) {
|
1773
|
+
return self.to(device, dtype, non_blocking, copy);
|
1774
|
+
})
|
1775
|
+
.define_method(
|
1776
|
+
"_to_dtype",
|
1777
|
+
*[](const Tensor &self, ScalarType dtype, bool non_blocking, bool copy) {
|
1778
|
+
return self.to(dtype, non_blocking, copy);
|
1779
|
+
})
|
1780
|
+
.define_method(
|
1781
|
+
"_to_mkldnn",
|
1782
|
+
*[](const Tensor &self) {
|
1783
|
+
return self.to_mkldnn();
|
1784
|
+
})
|
1785
|
+
.define_method(
|
1786
|
+
"_to_other",
|
1787
|
+
*[](const Tensor &self, const Tensor &other, bool non_blocking, bool copy) {
|
1788
|
+
return self.to(other, non_blocking, copy);
|
1789
|
+
})
|
1790
|
+
.define_method(
|
1791
|
+
"_to_sparse",
|
1792
|
+
*[](const Tensor &self) {
|
1793
|
+
return self.to_sparse();
|
1794
|
+
})
|
1795
|
+
.define_method(
|
1796
|
+
"_to_sparse_sparse_dim",
|
1797
|
+
*[](const Tensor &self, int64_t sparse_dim) {
|
1798
|
+
return self.to_sparse(sparse_dim);
|
1799
|
+
})
|
1800
|
+
.define_method(
|
1801
|
+
"_topk",
|
1802
|
+
*[](const Tensor &self, int64_t k, int64_t dim, bool largest, bool sorted) {
|
1803
|
+
return wrap(self.topk(k, dim, largest, sorted));
|
1804
|
+
})
|
1805
|
+
.define_method(
|
1806
|
+
"_trace",
|
1807
|
+
*[](const Tensor &self) {
|
1808
|
+
return self.trace();
|
1809
|
+
})
|
1810
|
+
.define_method(
|
1811
|
+
"_transpose_",
|
1812
|
+
*[](Tensor &self, int64_t dim0, int64_t dim1) {
|
1813
|
+
return self.transpose_(dim0, dim1);
|
1814
|
+
})
|
1815
|
+
.define_method(
|
1816
|
+
"_transpose_int",
|
1817
|
+
*[](Tensor &self, int64_t dim0, int64_t dim1) {
|
1818
|
+
return self.transpose(dim0, dim1);
|
1819
|
+
})
|
1820
|
+
.define_method(
|
1821
|
+
"_triangular_solve",
|
1822
|
+
*[](const Tensor &self, const Tensor &A, bool upper, bool transpose, bool unitriangular) {
|
1823
|
+
return wrap(self.triangular_solve(A, upper, transpose, unitriangular));
|
1824
|
+
})
|
1825
|
+
.define_method(
|
1826
|
+
"_tril",
|
1827
|
+
*[](const Tensor &self, int64_t diagonal) {
|
1828
|
+
return self.tril(diagonal);
|
1829
|
+
})
|
1830
|
+
.define_method(
|
1831
|
+
"_tril_",
|
1832
|
+
*[](Tensor &self, int64_t diagonal) {
|
1833
|
+
return self.tril_(diagonal);
|
1834
|
+
})
|
1835
|
+
.define_method(
|
1836
|
+
"_triu",
|
1837
|
+
*[](const Tensor &self, int64_t diagonal) {
|
1838
|
+
return self.triu(diagonal);
|
1839
|
+
})
|
1840
|
+
.define_method(
|
1841
|
+
"_triu_",
|
1842
|
+
*[](Tensor &self, int64_t diagonal) {
|
1843
|
+
return self.triu_(diagonal);
|
1844
|
+
})
|
1845
|
+
.define_method(
|
1846
|
+
"_trunc",
|
1847
|
+
*[](const Tensor &self) {
|
1848
|
+
return self.trunc();
|
1849
|
+
})
|
1850
|
+
.define_method(
|
1851
|
+
"_trunc_",
|
1852
|
+
*[](Tensor &self) {
|
1853
|
+
return self.trunc_();
|
1854
|
+
})
|
1855
|
+
.define_method(
|
1856
|
+
"_type_as",
|
1857
|
+
*[](const Tensor &self, const Tensor &other) {
|
1858
|
+
return self.type_as(other);
|
1859
|
+
})
|
1860
|
+
.define_method(
|
1861
|
+
"_unbind_int",
|
1862
|
+
*[](Tensor &self, int64_t dim) {
|
1863
|
+
return self.unbind(dim);
|
1864
|
+
})
|
1865
|
+
.define_method(
|
1866
|
+
"_unfold",
|
1867
|
+
*[](Tensor &self, int64_t dimension, int64_t size, int64_t step) {
|
1868
|
+
return self.unfold(dimension, size, step);
|
1869
|
+
})
|
1870
|
+
.define_method(
|
1871
|
+
"_uniform_",
|
1872
|
+
*[](Tensor &self, double from, double to) {
|
1873
|
+
return self.uniform_(from, to);
|
1874
|
+
})
|
1875
|
+
.define_method(
|
1876
|
+
"_unsqueeze",
|
1877
|
+
*[](Tensor &self, int64_t dim) {
|
1878
|
+
return self.unsqueeze(dim);
|
1879
|
+
})
|
1880
|
+
.define_method(
|
1881
|
+
"_unsqueeze_",
|
1882
|
+
*[](Tensor &self, int64_t dim) {
|
1883
|
+
return self.unsqueeze_(dim);
|
1884
|
+
})
|
1885
|
+
.define_method(
|
1886
|
+
"_values",
|
1887
|
+
*[](Tensor &self) {
|
1888
|
+
return self.values();
|
1889
|
+
})
|
1890
|
+
.define_method(
|
1891
|
+
"_var",
|
1892
|
+
*[](const Tensor &self, bool unbiased) {
|
1893
|
+
return self.var(unbiased);
|
1894
|
+
})
|
1895
|
+
.define_method(
|
1896
|
+
"_var_dim",
|
1897
|
+
*[](const Tensor &self, IntArrayRef dim, bool unbiased, bool keepdim) {
|
1898
|
+
return self.var(dim, unbiased, keepdim);
|
1899
|
+
})
|
1900
|
+
.define_method(
|
1901
|
+
"_view",
|
1902
|
+
*[](Tensor &self, IntArrayRef size) {
|
1903
|
+
return self.view(size);
|
1904
|
+
})
|
1905
|
+
.define_method(
|
1906
|
+
"_view_as",
|
1907
|
+
*[](const Tensor &self, const Tensor &other) {
|
1908
|
+
return self.view_as(other);
|
1909
|
+
})
|
1910
|
+
.define_method(
|
1911
|
+
"_where_self",
|
1912
|
+
*[](const Tensor &condition, const Tensor &self, const Tensor &other) {
|
1913
|
+
return self.where(condition, other);
|
1914
|
+
})
|
1915
|
+
.define_method(
|
1916
|
+
"_zero_",
|
1917
|
+
*[](Tensor &self) {
|
1918
|
+
return self.zero_();
|
1919
|
+
});
|
1920
|
+
}
|