torch-rb 0.1.2 → 0.1.7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +35 -0
- data/LICENSE.txt +46 -22
- data/README.md +18 -6
- data/ext/torch/ext.cpp +148 -369
- data/ext/torch/extconf.rb +6 -0
- data/ext/torch/nn_functions.cpp +615 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.cpp +55 -0
- data/ext/torch/templates.hpp +242 -0
- data/ext/torch/tensor_functions.cpp +1920 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +2975 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch.rb +240 -131
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +27 -22
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +109 -0
- data/lib/torch/native/generator.rb +168 -0
- data/lib/torch/native/native_functions.yaml +6837 -0
- data/lib/torch/native/parser.rb +134 -0
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/avg_pool1d.rb +18 -0
- data/lib/torch/nn/avg_pool2d.rb +19 -0
- data/lib/torch/nn/avg_pool3d.rb +19 -0
- data/lib/torch/nn/avg_poolnd.rb +9 -0
- data/lib/torch/nn/batch_norm.rb +75 -0
- data/lib/torch/nn/batch_norm1d.rb +11 -0
- data/lib/torch/nn/batch_norm2d.rb +11 -0
- data/lib/torch/nn/batch_norm3d.rb +11 -0
- data/lib/torch/nn/bce_loss.rb +13 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/bilinear.rb +38 -0
- data/lib/torch/nn/constant_pad1d.rb +10 -0
- data/lib/torch/nn/constant_pad2d.rb +10 -0
- data/lib/torch/nn/constant_pad3d.rb +10 -0
- data/lib/torch/nn/constant_padnd.rb +18 -0
- data/lib/torch/nn/conv1d.rb +22 -0
- data/lib/torch/nn/conv2d.rb +16 -38
- data/lib/torch/nn/conv3d.rb +22 -0
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/cosine_similarity.rb +15 -0
- data/lib/torch/nn/cross_entropy_loss.rb +14 -0
- data/lib/torch/nn/ctc_loss.rb +15 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/embedding_bag.rb +34 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/fold.rb +20 -0
- data/lib/torch/nn/functional.rb +411 -22
- data/lib/torch/nn/group_norm.rb +36 -0
- data/lib/torch/nn/gru.rb +49 -0
- data/lib/torch/nn/hardshrink.rb +18 -0
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +14 -0
- data/lib/torch/nn/init.rb +58 -1
- data/lib/torch/nn/instance_norm.rb +20 -0
- data/lib/torch/nn/instance_norm1d.rb +18 -0
- data/lib/torch/nn/instance_norm2d.rb +11 -0
- data/lib/torch/nn/instance_norm3d.rb +11 -0
- data/lib/torch/nn/kl_div_loss.rb +13 -0
- data/lib/torch/nn/l1_loss.rb +13 -0
- data/lib/torch/nn/layer_norm.rb +35 -0
- data/lib/torch/nn/leaky_relu.rb +20 -0
- data/lib/torch/nn/linear.rb +12 -11
- data/lib/torch/nn/local_response_norm.rb +21 -0
- data/lib/torch/nn/log_sigmoid.rb +9 -0
- data/lib/torch/nn/log_softmax.rb +14 -0
- data/lib/torch/nn/loss.rb +10 -0
- data/lib/torch/nn/lp_pool1d.rb +9 -0
- data/lib/torch/nn/lp_pool2d.rb +9 -0
- data/lib/torch/nn/lp_poolnd.rb +22 -0
- data/lib/torch/nn/lstm.rb +66 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/max_pool1d.rb +9 -0
- data/lib/torch/nn/max_pool2d.rb +9 -0
- data/lib/torch/nn/max_pool3d.rb +9 -0
- data/lib/torch/nn/max_poolnd.rb +19 -0
- data/lib/torch/nn/max_unpool1d.rb +16 -0
- data/lib/torch/nn/max_unpool2d.rb +16 -0
- data/lib/torch/nn/max_unpool3d.rb +16 -0
- data/lib/torch/nn/max_unpoolnd.rb +9 -0
- data/lib/torch/nn/module.rb +201 -20
- data/lib/torch/nn/mse_loss.rb +2 -2
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/nll_loss.rb +14 -0
- data/lib/torch/nn/pairwise_distance.rb +16 -0
- data/lib/torch/nn/parameter.rb +2 -2
- data/lib/torch/nn/poisson_nll_loss.rb +16 -0
- data/lib/torch/nn/prelu.rb +19 -0
- data/lib/torch/nn/reflection_pad1d.rb +10 -0
- data/lib/torch/nn/reflection_pad2d.rb +10 -0
- data/lib/torch/nn/reflection_padnd.rb +13 -0
- data/lib/torch/nn/relu.rb +8 -3
- data/lib/torch/nn/replication_pad1d.rb +10 -0
- data/lib/torch/nn/replication_pad2d.rb +10 -0
- data/lib/torch/nn/replication_pad3d.rb +10 -0
- data/lib/torch/nn/replication_padnd.rb +13 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +198 -0
- data/lib/torch/nn/sequential.rb +1 -10
- data/lib/torch/nn/sigmoid.rb +9 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/softmax.rb +18 -0
- data/lib/torch/nn/softmax2d.rb +10 -0
- data/lib/torch/nn/softmin.rb +14 -0
- data/lib/torch/nn/softplus.rb +19 -0
- data/lib/torch/nn/softshrink.rb +18 -0
- data/lib/torch/nn/softsign.rb +9 -0
- data/lib/torch/nn/tanh.rb +9 -0
- data/lib/torch/nn/tanhshrink.rb +9 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/nn/unfold.rb +19 -0
- data/lib/torch/nn/utils.rb +25 -0
- data/lib/torch/nn/weighted_loss.rb +10 -0
- data/lib/torch/nn/zero_pad2d.rb +9 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +56 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +48 -16
- data/lib/torch/random.rb +10 -0
- data/lib/torch/tensor.rb +71 -30
- data/lib/torch/utils/data/data_loader.rb +10 -4
- data/lib/torch/utils/data/tensor_dataset.rb +3 -0
- data/lib/torch/version.rb +1 -1
- metadata +123 -6
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 51bcc56112e13ba206402857b379aee0df4c7695f75af354e833760adec67756
|
4
|
+
data.tar.gz: b2ff24940e4c219d88c5a001d4e8b4e44d0e55a35fc266989f0196e696d15bc8
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 95506016db5598333f0cb99a435d29951342af91f75ae4b1f01ef11df81891738888b90c7d27317071ad00bd9b81714cf41c0ea635c2578fd756c388b5e1da7f
|
7
|
+
data.tar.gz: 053c9c75e66fe54902f07413687deb6996afc7ae88217bd5dcc852ca59d535c663bb9fb3aed28b20dba953a42e714410867dbd6ecd747f96fe8e8dfd81da8d6c
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,38 @@
|
|
1
|
+
## 0.1.7 (2019-01-10)
|
2
|
+
|
3
|
+
- Fixed installation error with Ruby 2.7
|
4
|
+
|
5
|
+
## 0.1.6 (2019-12-09)
|
6
|
+
|
7
|
+
- Added recurrent layers
|
8
|
+
- Added more pooling layers
|
9
|
+
- Added normalization layers
|
10
|
+
|
11
|
+
## 0.1.5 (2019-12-06)
|
12
|
+
|
13
|
+
- Added many more functions
|
14
|
+
- Added tensor classes - `FloatTensor`, `LongTensor`, etc
|
15
|
+
- Improved modules
|
16
|
+
|
17
|
+
## 0.1.4 (2019-12-01)
|
18
|
+
|
19
|
+
- Added distance functions
|
20
|
+
- Added more activations
|
21
|
+
- Added more linear layers
|
22
|
+
- Added more loss functions
|
23
|
+
- Added more init methods
|
24
|
+
- Added support for tensor assignment
|
25
|
+
|
26
|
+
## 0.1.3 (2019-11-30)
|
27
|
+
|
28
|
+
- Changed to BSD 3-Clause license to match PyTorch
|
29
|
+
- Added many optimizers
|
30
|
+
- Added `StepLR` learning rate scheduler
|
31
|
+
- Added dropout
|
32
|
+
- Added embedding
|
33
|
+
- Added support for `bool` type
|
34
|
+
- Improved performance of `from_numo`
|
35
|
+
|
1
36
|
## 0.1.2 (2019-11-27)
|
2
37
|
|
3
38
|
- Added SGD optimizer
|
data/LICENSE.txt
CHANGED
@@ -1,22 +1,46 @@
|
|
1
|
-
|
2
|
-
|
3
|
-
|
4
|
-
|
5
|
-
|
6
|
-
|
7
|
-
|
8
|
-
|
9
|
-
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
1
|
+
BSD 3-Clause License
|
2
|
+
|
3
|
+
From Torch-rb:
|
4
|
+
|
5
|
+
Copyright (c) 2019- Andrew Kane
|
6
|
+
|
7
|
+
From PyTorch (for ported code):
|
8
|
+
|
9
|
+
Copyright (c) 2016- Facebook, Inc (Adam Paszke)
|
10
|
+
Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
|
11
|
+
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
|
12
|
+
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
|
13
|
+
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
|
14
|
+
Copyright (c) 2011-2013 NYU (Clement Farabet)
|
15
|
+
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
|
16
|
+
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
|
17
|
+
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
|
18
|
+
|
19
|
+
All rights reserved.
|
20
|
+
|
21
|
+
Redistribution and use in source and binary forms, with or without
|
22
|
+
modification, are permitted provided that the following conditions are met:
|
23
|
+
|
24
|
+
1. Redistributions of source code must retain the above copyright
|
25
|
+
notice, this list of conditions and the following disclaimer.
|
26
|
+
|
27
|
+
2. Redistributions in binary form must reproduce the above copyright
|
28
|
+
notice, this list of conditions and the following disclaimer in the
|
29
|
+
documentation and/or other materials provided with the distribution.
|
30
|
+
|
31
|
+
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
|
32
|
+
and IDIAP Research Institute nor the names of its contributors may be
|
33
|
+
used to endorse or promote products derived from this software without
|
34
|
+
specific prior written permission.
|
35
|
+
|
36
|
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
37
|
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
38
|
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
39
|
+
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
40
|
+
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
41
|
+
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
42
|
+
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
43
|
+
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
44
|
+
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
45
|
+
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
46
|
+
POSSIBILITY OF SUCH DAMAGE.
|
data/README.md
CHANGED
@@ -20,6 +20,8 @@ Add this line to your application’s Gemfile:
|
|
20
20
|
gem 'torch-rb'
|
21
21
|
```
|
22
22
|
|
23
|
+
It can take a few minutes to compile the extension.
|
24
|
+
|
23
25
|
## Getting Started
|
24
26
|
|
25
27
|
This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.html). There are a few changes to make it more Ruby-like:
|
@@ -28,9 +30,11 @@ This library follows the [PyTorch API](https://pytorch.org/docs/stable/torch.htm
|
|
28
30
|
- Methods that return booleans use `?` instead of `is_` (`tensor?` instead of `is_tensor`)
|
29
31
|
- Numo is used instead of NumPy (`x.numo` instead of `x.numpy()`)
|
30
32
|
|
31
|
-
|
33
|
+
Some methods and options are missing at the moment. PRs welcome!
|
34
|
+
|
35
|
+
## Tutorial
|
32
36
|
|
33
|
-
Some examples below are from [Deep Learning with PyTorch: A 60 Minutes Blitz](https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html)
|
37
|
+
Some examples below are from [Deep Learning with PyTorch: A 60 Minutes Blitz](https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html)
|
34
38
|
|
35
39
|
### Tensors
|
36
40
|
|
@@ -145,7 +149,7 @@ Convert a Numo array to a tensor
|
|
145
149
|
|
146
150
|
```ruby
|
147
151
|
b = Numo::NArray.cast([1, 2, 3])
|
148
|
-
Torch.
|
152
|
+
Torch.from_numo(b)
|
149
153
|
```
|
150
154
|
|
151
155
|
### Autograd
|
@@ -180,10 +184,10 @@ Stop autograd from tracking history
|
|
180
184
|
|
181
185
|
```ruby
|
182
186
|
x.requires_grad # true
|
183
|
-
(x
|
187
|
+
(x**2).requires_grad # true
|
184
188
|
|
185
189
|
Torch.no_grad do
|
186
|
-
(x
|
190
|
+
(x**2).requires_grad # false
|
187
191
|
end
|
188
192
|
```
|
189
193
|
|
@@ -359,6 +363,14 @@ Here’s a list of functions to create tensors (descriptions from the [C++ docs]
|
|
359
363
|
Torch.zeros(3) # tensor([0, 0, 0])
|
360
364
|
```
|
361
365
|
|
366
|
+
## Examples
|
367
|
+
|
368
|
+
Here are a few full examples:
|
369
|
+
|
370
|
+
- [Image classification with MNIST](examples/mnist) ([日本語版](https://qiita.com/kojix2/items/c19c36dc1bf73ea93409))
|
371
|
+
- [Collaborative filtering with MovieLens](examples/movielens)
|
372
|
+
- [Sequence models and word embeddings](examples/nlp)
|
373
|
+
|
362
374
|
## LibTorch Installation
|
363
375
|
|
364
376
|
[Download LibTorch](https://pytorch.org/). For Linux, use the `cxx11 ABI` version. Then run:
|
@@ -405,7 +417,7 @@ To get started with development:
|
|
405
417
|
git clone https://github.com/ankane/torch-rb.git
|
406
418
|
cd torch-rb
|
407
419
|
bundle install
|
408
|
-
bundle exec rake compile
|
420
|
+
bundle exec rake compile -- --with-torch-dir=/path/to/libtorch
|
409
421
|
bundle exec rake test
|
410
422
|
```
|
411
423
|
|
data/ext/torch/ext.cpp
CHANGED
@@ -6,95 +6,29 @@
|
|
6
6
|
#include <rice/Class.hpp>
|
7
7
|
#include <rice/Constructor.hpp>
|
8
8
|
|
9
|
-
|
10
|
-
|
11
|
-
template<>
|
12
|
-
inline
|
13
|
-
long long from_ruby<long long>(Object x)
|
14
|
-
{
|
15
|
-
return NUM2LL(x);
|
16
|
-
}
|
9
|
+
#include "templates.hpp"
|
17
10
|
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
}
|
11
|
+
// generated with:
|
12
|
+
// rake generate:functions
|
13
|
+
#include "torch_functions.hpp"
|
14
|
+
#include "tensor_functions.hpp"
|
15
|
+
#include "nn_functions.hpp"
|
24
16
|
|
25
|
-
|
26
|
-
inline
|
27
|
-
unsigned long long from_ruby<unsigned long long>(Object x)
|
28
|
-
{
|
29
|
-
return NUM2ULL(x);
|
30
|
-
}
|
31
|
-
|
32
|
-
template<>
|
33
|
-
inline
|
34
|
-
Object to_ruby<unsigned long long>(unsigned long long const & x)
|
35
|
-
{
|
36
|
-
return ULL2NUM(x);
|
37
|
-
}
|
38
|
-
|
39
|
-
template<>
|
40
|
-
inline
|
41
|
-
short from_ruby<short>(Object x)
|
42
|
-
{
|
43
|
-
return NUM2SHORT(x);
|
44
|
-
}
|
45
|
-
|
46
|
-
template<>
|
47
|
-
inline
|
48
|
-
Object to_ruby<short>(short const & x)
|
49
|
-
{
|
50
|
-
return INT2NUM(x);
|
51
|
-
}
|
52
|
-
|
53
|
-
template<>
|
54
|
-
inline
|
55
|
-
unsigned short from_ruby<unsigned short>(Object x)
|
56
|
-
{
|
57
|
-
return NUM2USHORT(x);
|
58
|
-
}
|
17
|
+
using namespace Rice;
|
59
18
|
|
60
|
-
|
61
|
-
|
62
|
-
Object to_ruby<unsigned short>(unsigned short const & x)
|
19
|
+
extern "C"
|
20
|
+
void Init_ext()
|
63
21
|
{
|
64
|
-
|
65
|
-
|
22
|
+
Module rb_mTorch = define_module("Torch");
|
23
|
+
add_torch_functions(rb_mTorch);
|
66
24
|
|
67
|
-
|
68
|
-
|
69
|
-
class IntArrayRef {
|
70
|
-
std::vector<int64_t> vec;
|
71
|
-
public:
|
72
|
-
IntArrayRef(Object o) {
|
73
|
-
Array a = Array(o);
|
74
|
-
for (size_t i = 0; i < a.size(); i++) {
|
75
|
-
vec.push_back(from_ruby<int64_t>(a[i]));
|
76
|
-
}
|
77
|
-
}
|
78
|
-
operator torch::IntArrayRef() {
|
79
|
-
return torch::IntArrayRef(vec);
|
80
|
-
}
|
81
|
-
};
|
82
|
-
|
83
|
-
template<>
|
84
|
-
inline
|
85
|
-
IntArrayRef from_ruby<IntArrayRef>(Object x)
|
86
|
-
{
|
87
|
-
return IntArrayRef(x);
|
88
|
-
}
|
25
|
+
Class rb_cTensor = define_class_under<torch::Tensor>(rb_mTorch, "Tensor");
|
26
|
+
add_tensor_functions(rb_cTensor);
|
89
27
|
|
90
|
-
|
91
|
-
|
28
|
+
Module rb_mNN = define_module_under(rb_mTorch, "NN");
|
29
|
+
add_nn_functions(rb_mNN);
|
92
30
|
|
93
|
-
|
94
|
-
void Init_ext()
|
95
|
-
{
|
96
|
-
Module rb_mTorch = define_module("Torch")
|
97
|
-
.define_singleton_method(
|
31
|
+
rb_mTorch.define_singleton_method(
|
98
32
|
"grad_enabled?",
|
99
33
|
*[]() {
|
100
34
|
return torch::GradMode::is_enabled();
|
@@ -104,11 +38,6 @@ void Init_ext()
|
|
104
38
|
*[](bool enabled) {
|
105
39
|
torch::GradMode::set_enabled(enabled);
|
106
40
|
})
|
107
|
-
.define_singleton_method(
|
108
|
-
"floating_point?",
|
109
|
-
*[](torch::Tensor& input) {
|
110
|
-
return torch::is_floating_point(input);
|
111
|
-
})
|
112
41
|
.define_singleton_method(
|
113
42
|
"manual_seed",
|
114
43
|
*[](uint64_t seed) {
|
@@ -177,321 +106,100 @@ void Init_ext()
|
|
177
106
|
})
|
178
107
|
// begin operations
|
179
108
|
.define_singleton_method(
|
180
|
-
"
|
181
|
-
*[](
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
"_mean_dim",
|
186
|
-
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
187
|
-
return torch::mean(input, dim, keepdim);
|
188
|
-
})
|
189
|
-
.define_singleton_method(
|
190
|
-
"_sum",
|
191
|
-
*[](torch::Tensor& input) {
|
192
|
-
return torch::sum(input);
|
193
|
-
})
|
194
|
-
.define_singleton_method(
|
195
|
-
"_sum_dim",
|
196
|
-
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
197
|
-
return torch::sum(input, dim, keepdim);
|
198
|
-
})
|
199
|
-
.define_singleton_method(
|
200
|
-
"_argmax",
|
201
|
-
*[](torch::Tensor& input) {
|
202
|
-
return torch::argmax(input);
|
203
|
-
})
|
204
|
-
.define_singleton_method(
|
205
|
-
"_argmax_dim",
|
206
|
-
*[](torch::Tensor& input, int64_t dim, bool keepdim) {
|
207
|
-
return torch::argmax(input, dim, keepdim);
|
208
|
-
})
|
209
|
-
.define_singleton_method(
|
210
|
-
"_norm",
|
211
|
-
*[](torch::Tensor& input) {
|
212
|
-
return torch::norm(input);
|
213
|
-
})
|
214
|
-
.define_singleton_method(
|
215
|
-
"_min",
|
216
|
-
*[](torch::Tensor& input) {
|
217
|
-
return torch::min(input);
|
218
|
-
})
|
219
|
-
.define_singleton_method(
|
220
|
-
"_max",
|
221
|
-
*[](torch::Tensor& input) {
|
222
|
-
return torch::max(input);
|
223
|
-
})
|
224
|
-
.define_singleton_method(
|
225
|
-
"_exp",
|
226
|
-
*[](torch::Tensor& input) {
|
227
|
-
return torch::exp(input);
|
228
|
-
})
|
229
|
-
.define_singleton_method(
|
230
|
-
"_log",
|
231
|
-
*[](torch::Tensor& input) {
|
232
|
-
return torch::log(input);
|
233
|
-
})
|
234
|
-
.define_singleton_method(
|
235
|
-
"_unsqueeze",
|
236
|
-
*[](torch::Tensor& input, int64_t dim) {
|
237
|
-
return torch::unsqueeze(input, dim);
|
238
|
-
})
|
239
|
-
.define_singleton_method(
|
240
|
-
"_dot",
|
241
|
-
*[](torch::Tensor& input, torch::Tensor& tensor) {
|
242
|
-
return torch::dot(input, tensor);
|
243
|
-
})
|
244
|
-
.define_singleton_method(
|
245
|
-
"_matmul",
|
246
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
247
|
-
return torch::matmul(input, other);
|
248
|
-
})
|
249
|
-
.define_singleton_method(
|
250
|
-
"_eq",
|
251
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
252
|
-
return torch::eq(input, other);
|
253
|
-
})
|
254
|
-
.define_singleton_method(
|
255
|
-
"_add",
|
256
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
257
|
-
return torch::add(input, other);
|
258
|
-
})
|
259
|
-
.define_singleton_method(
|
260
|
-
"_add_scalar",
|
261
|
-
*[](torch::Tensor& input, float other) {
|
262
|
-
return torch::add(input, other);
|
263
|
-
})
|
264
|
-
.define_singleton_method(
|
265
|
-
"_add_out",
|
266
|
-
*[](torch::Tensor& out, torch::Tensor& input, torch::Tensor& other) {
|
267
|
-
return torch::add_out(out, input, other);
|
268
|
-
})
|
269
|
-
.define_singleton_method(
|
270
|
-
"_sub",
|
271
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
272
|
-
return torch::sub(input, other);
|
273
|
-
})
|
274
|
-
.define_singleton_method(
|
275
|
-
"_sub_scalar",
|
276
|
-
*[](torch::Tensor& input, float other) {
|
277
|
-
return torch::sub(input, other);
|
278
|
-
})
|
279
|
-
.define_singleton_method(
|
280
|
-
"_mul",
|
281
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
282
|
-
return torch::mul(input, other);
|
283
|
-
})
|
284
|
-
.define_singleton_method(
|
285
|
-
"_mul_scalar",
|
286
|
-
*[](torch::Tensor& input, float other) {
|
287
|
-
return torch::mul(input, other);
|
288
|
-
})
|
289
|
-
.define_singleton_method(
|
290
|
-
"_div",
|
291
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
292
|
-
return torch::div(input, other);
|
293
|
-
})
|
294
|
-
.define_singleton_method(
|
295
|
-
"_div_scalar",
|
296
|
-
*[](torch::Tensor& input, float other) {
|
297
|
-
return torch::div(input, other);
|
298
|
-
})
|
299
|
-
.define_singleton_method(
|
300
|
-
"_remainder",
|
301
|
-
*[](torch::Tensor& input, torch::Tensor& other) {
|
302
|
-
return torch::remainder(input, other);
|
109
|
+
"_save",
|
110
|
+
*[](const Tensor &value) {
|
111
|
+
auto v = torch::pickle_save(value);
|
112
|
+
std::string str(v.begin(), v.end());
|
113
|
+
return str;
|
303
114
|
})
|
304
115
|
.define_singleton_method(
|
305
|
-
"
|
306
|
-
*[](
|
307
|
-
return torch::
|
116
|
+
"_binary_cross_entropy_with_logits",
|
117
|
+
*[](const Tensor &input, const Tensor &target, OptionalTensor weight, OptionalTensor pos_weight, MyReduction reduction) {
|
118
|
+
return torch::binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction);
|
308
119
|
})
|
309
120
|
.define_singleton_method(
|
310
|
-
"
|
311
|
-
*[](
|
312
|
-
|
313
|
-
|
314
|
-
.define_singleton_method(
|
315
|
-
"_neg",
|
316
|
-
*[](torch::Tensor& input) {
|
317
|
-
return torch::neg(input);
|
318
|
-
})
|
319
|
-
.define_singleton_method(
|
320
|
-
"_reshape",
|
321
|
-
*[](torch::Tensor& input, IntArrayRef shape) {
|
322
|
-
return torch::reshape(input, shape);
|
323
|
-
})
|
324
|
-
.define_singleton_method(
|
325
|
-
"relu",
|
326
|
-
*[](torch::Tensor& input) {
|
327
|
-
return torch::relu(input);
|
328
|
-
})
|
329
|
-
.define_singleton_method(
|
330
|
-
"prelu",
|
331
|
-
*[](torch::Tensor& input, torch::Tensor& weight) {
|
332
|
-
return torch::prelu(input, weight);
|
333
|
-
})
|
334
|
-
.define_singleton_method(
|
335
|
-
"leaky_relu",
|
336
|
-
*[](torch::Tensor& input, Scalar negative_slope = 0.01) {
|
337
|
-
return torch::leaky_relu(input, negative_slope);
|
338
|
-
})
|
339
|
-
.define_singleton_method(
|
340
|
-
"conv2d",
|
341
|
-
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias, IntArrayRef stride, IntArrayRef padding) {
|
342
|
-
return torch::conv2d(input, weight, bias, stride, padding);
|
343
|
-
})
|
344
|
-
.define_singleton_method(
|
345
|
-
"linear",
|
346
|
-
*[](torch::Tensor& input, torch::Tensor& weight, torch::Tensor& bias) {
|
347
|
-
return torch::linear(input, weight, bias);
|
348
|
-
})
|
349
|
-
.define_singleton_method(
|
350
|
-
"max_pool2d",
|
351
|
-
*[](torch::Tensor& input, IntArrayRef kernel_size) {
|
352
|
-
return torch::max_pool2d(input, kernel_size);
|
353
|
-
})
|
354
|
-
.define_singleton_method(
|
355
|
-
"avg_pool2d",
|
356
|
-
*[](torch::Tensor& input, IntArrayRef kernel_size) {
|
357
|
-
return torch::avg_pool2d(input, kernel_size);
|
358
|
-
})
|
359
|
-
.define_singleton_method(
|
360
|
-
"mse_loss",
|
361
|
-
*[](torch::Tensor& input, torch::Tensor& target, std::string reduction) {
|
362
|
-
auto red = reduction == "mean" ? Reduction::Mean : Reduction::Sum;
|
363
|
-
return torch::mse_loss(input, target, red);
|
364
|
-
})
|
365
|
-
.define_singleton_method(
|
366
|
-
"nll_loss",
|
367
|
-
*[](torch::Tensor& input, torch::Tensor& target) {
|
368
|
-
return torch::nll_loss(input, target);
|
121
|
+
"_from_blob",
|
122
|
+
*[](String s, IntArrayRef size, const torch::TensorOptions &options) {
|
123
|
+
void *data = const_cast<char *>(s.c_str());
|
124
|
+
return torch::from_blob(data, size, options);
|
369
125
|
})
|
370
126
|
.define_singleton_method(
|
371
127
|
"_tensor",
|
372
128
|
*[](Object o, IntArrayRef size, const torch::TensorOptions &options) {
|
373
129
|
Array a = Array(o);
|
374
|
-
|
375
|
-
|
376
|
-
|
130
|
+
auto dtype = options.dtype();
|
131
|
+
torch::Tensor t;
|
132
|
+
if (dtype == torch::kBool) {
|
133
|
+
throw std::runtime_error("Cannot create bool from tensor method yet");
|
134
|
+
} else {
|
135
|
+
std::vector<float> vec;
|
136
|
+
for (size_t i = 0; i < a.size(); i++) {
|
137
|
+
vec.push_back(from_ruby<float>(a[i]));
|
138
|
+
}
|
139
|
+
t = torch::tensor(vec, options);
|
377
140
|
}
|
378
|
-
return
|
141
|
+
return t.reshape(size);
|
379
142
|
});
|
380
143
|
|
381
|
-
|
144
|
+
rb_cTensor
|
382
145
|
.define_method("cuda?", &torch::Tensor::is_cuda)
|
383
|
-
.define_method("distributed?", &torch::Tensor::is_distributed)
|
384
|
-
.define_method("complex?", &torch::Tensor::is_complex)
|
385
|
-
.define_method("floating_point?", &torch::Tensor::is_floating_point)
|
386
|
-
.define_method("signed?", &torch::Tensor::is_signed)
|
387
146
|
.define_method("sparse?", &torch::Tensor::is_sparse)
|
388
147
|
.define_method("quantized?", &torch::Tensor::is_quantized)
|
389
148
|
.define_method("dim", &torch::Tensor::dim)
|
390
|
-
.define_method("numel", &torch::Tensor::numel)
|
391
149
|
.define_method("element_size", &torch::Tensor::element_size)
|
392
150
|
.define_method("requires_grad", &torch::Tensor::requires_grad)
|
393
151
|
.define_method(
|
394
|
-
"
|
395
|
-
*[](
|
396
|
-
return self.
|
397
|
-
})
|
398
|
-
.define_method(
|
399
|
-
"detach!",
|
400
|
-
*[](torch::Tensor& self) {
|
401
|
-
return self.detach_();
|
152
|
+
"addcmul!",
|
153
|
+
*[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
|
154
|
+
return self.addcmul_(tensor1, tensor2, value);
|
402
155
|
})
|
403
156
|
.define_method(
|
404
|
-
"
|
405
|
-
*[](
|
406
|
-
return self.
|
407
|
-
})
|
408
|
-
.define_method(
|
409
|
-
"_slice",
|
410
|
-
*[](torch::Tensor& self, int64_t dim, int64_t start, int64_t end, int64_t step) {
|
411
|
-
return self.slice(dim, start, end, step);
|
157
|
+
"addcdiv!",
|
158
|
+
*[](Tensor& self, Scalar value, const Tensor & tensor1, const Tensor & tensor2) {
|
159
|
+
return self.addcdiv_(tensor1, tensor2, value);
|
412
160
|
})
|
413
161
|
.define_method(
|
414
162
|
"_requires_grad!",
|
415
|
-
*[](
|
163
|
+
*[](Tensor& self, bool requires_grad) {
|
416
164
|
return self.set_requires_grad(requires_grad);
|
417
165
|
})
|
418
166
|
.define_method(
|
419
167
|
"_backward",
|
420
|
-
*[](
|
421
|
-
return self.backward();
|
422
|
-
})
|
423
|
-
.define_method(
|
424
|
-
"_backward_gradient",
|
425
|
-
*[](torch::Tensor& self, const torch::Tensor& gradient) {
|
426
|
-
return self.backward(gradient);
|
168
|
+
*[](Tensor& self, Object gradient) {
|
169
|
+
return gradient.is_nil() ? self.backward() : self.backward(from_ruby<torch::Tensor>(gradient));
|
427
170
|
})
|
428
171
|
.define_method(
|
429
172
|
"grad",
|
430
|
-
*[](
|
173
|
+
*[](Tensor& self) {
|
431
174
|
return self.grad();
|
432
175
|
})
|
433
176
|
.define_method(
|
434
177
|
"_dtype",
|
435
|
-
*[](
|
178
|
+
*[](Tensor& self) {
|
436
179
|
return (int) at::typeMetaToScalarType(self.dtype());
|
437
180
|
})
|
438
181
|
.define_method(
|
439
182
|
"_type",
|
440
|
-
*[](
|
183
|
+
*[](Tensor& self, int dtype) {
|
441
184
|
return self.toType((torch::ScalarType) dtype);
|
442
185
|
})
|
443
186
|
.define_method(
|
444
187
|
"_layout",
|
445
|
-
*[](
|
188
|
+
*[](Tensor& self) {
|
446
189
|
std::stringstream s;
|
447
190
|
s << self.layout();
|
448
191
|
return s.str();
|
449
192
|
})
|
450
193
|
.define_method(
|
451
194
|
"device",
|
452
|
-
*[](
|
195
|
+
*[](Tensor& self) {
|
453
196
|
std::stringstream s;
|
454
197
|
s << self.device();
|
455
198
|
return s.str();
|
456
199
|
})
|
457
200
|
.define_method(
|
458
|
-
"
|
459
|
-
*[](
|
460
|
-
return self.view(size);
|
461
|
-
})
|
462
|
-
.define_method(
|
463
|
-
"add!",
|
464
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
465
|
-
self.add_(other);
|
466
|
-
})
|
467
|
-
.define_method(
|
468
|
-
"sub!",
|
469
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
470
|
-
self.sub_(other);
|
471
|
-
})
|
472
|
-
.define_method(
|
473
|
-
"mul!",
|
474
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
475
|
-
self.mul_(other);
|
476
|
-
})
|
477
|
-
.define_method(
|
478
|
-
"div!",
|
479
|
-
*[](torch::Tensor& self, torch::Tensor& other) {
|
480
|
-
self.div_(other);
|
481
|
-
})
|
482
|
-
.define_method(
|
483
|
-
"log_softmax",
|
484
|
-
*[](torch::Tensor& self, int64_t dim) {
|
485
|
-
return self.log_softmax(dim);
|
486
|
-
})
|
487
|
-
.define_method(
|
488
|
-
"data",
|
489
|
-
*[](torch::Tensor& self) {
|
490
|
-
return self.data();
|
491
|
-
})
|
492
|
-
.define_method(
|
493
|
-
"_data",
|
494
|
-
*[](torch::Tensor& self) {
|
201
|
+
"_flat_data",
|
202
|
+
*[](Tensor& self) {
|
495
203
|
Array a;
|
496
204
|
auto dtype = self.dtype();
|
497
205
|
|
@@ -532,21 +240,23 @@ void Init_ext()
|
|
532
240
|
a.push(data[i]);
|
533
241
|
}
|
534
242
|
} else if (dtype == torch::kBool) {
|
535
|
-
|
536
|
-
|
243
|
+
bool* data = self.data_ptr<bool>();
|
244
|
+
for (int i = 0; i < self.numel(); i++) {
|
245
|
+
a.push(data[i] ? True : False);
|
246
|
+
}
|
537
247
|
} else {
|
538
248
|
throw std::runtime_error("Unsupported type");
|
539
249
|
}
|
540
250
|
return a;
|
541
251
|
})
|
542
252
|
.define_method(
|
543
|
-
"
|
544
|
-
*[](
|
545
|
-
return self.
|
253
|
+
"_to",
|
254
|
+
*[](Tensor& self, torch::Device device, int dtype, bool non_blocking, bool copy) {
|
255
|
+
return self.to(device, (torch::ScalarType) dtype, non_blocking, copy);
|
546
256
|
})
|
547
257
|
.define_singleton_method(
|
548
258
|
"_make_subclass",
|
549
|
-
*[](
|
259
|
+
*[](Tensor& rd, bool requires_grad) {
|
550
260
|
auto data = torch::autograd::as_variable_ref(rd).detach();
|
551
261
|
data.unsafeGetTensorImpl()->set_allow_tensor_metadata_change(true);
|
552
262
|
auto var = data.set_requires_grad(requires_grad);
|
@@ -593,30 +303,99 @@ void Init_ext()
|
|
593
303
|
return self.requires_grad(requires_grad);
|
594
304
|
});
|
595
305
|
|
596
|
-
Module rb_mNN = define_module_under(rb_mTorch, "NN");
|
597
|
-
|
598
306
|
Module rb_mInit = define_module_under(rb_mNN, "Init")
|
599
307
|
.define_singleton_method(
|
600
|
-
"
|
601
|
-
*[](
|
602
|
-
return torch::nn::init::
|
308
|
+
"_calculate_gain",
|
309
|
+
*[](NonlinearityType nonlinearity, double param) {
|
310
|
+
return torch::nn::init::calculate_gain(nonlinearity, param);
|
311
|
+
})
|
312
|
+
.define_singleton_method(
|
313
|
+
"_uniform!",
|
314
|
+
*[](Tensor tensor, double low, double high) {
|
315
|
+
return torch::nn::init::uniform_(tensor, low, high);
|
316
|
+
})
|
317
|
+
.define_singleton_method(
|
318
|
+
"_normal!",
|
319
|
+
*[](Tensor tensor, double mean, double std) {
|
320
|
+
return torch::nn::init::normal_(tensor, mean, std);
|
321
|
+
})
|
322
|
+
.define_singleton_method(
|
323
|
+
"_constant!",
|
324
|
+
*[](Tensor tensor, Scalar value) {
|
325
|
+
return torch::nn::init::constant_(tensor, value);
|
326
|
+
})
|
327
|
+
.define_singleton_method(
|
328
|
+
"_ones!",
|
329
|
+
*[](Tensor tensor) {
|
330
|
+
return torch::nn::init::ones_(tensor);
|
331
|
+
})
|
332
|
+
.define_singleton_method(
|
333
|
+
"_zeros!",
|
334
|
+
*[](Tensor tensor) {
|
335
|
+
return torch::nn::init::zeros_(tensor);
|
336
|
+
})
|
337
|
+
.define_singleton_method(
|
338
|
+
"_eye!",
|
339
|
+
*[](Tensor tensor) {
|
340
|
+
return torch::nn::init::eye_(tensor);
|
341
|
+
})
|
342
|
+
.define_singleton_method(
|
343
|
+
"_dirac!",
|
344
|
+
*[](Tensor tensor) {
|
345
|
+
return torch::nn::init::dirac_(tensor);
|
346
|
+
})
|
347
|
+
.define_singleton_method(
|
348
|
+
"_xavier_uniform!",
|
349
|
+
*[](Tensor tensor, double gain) {
|
350
|
+
return torch::nn::init::xavier_uniform_(tensor, gain);
|
351
|
+
})
|
352
|
+
.define_singleton_method(
|
353
|
+
"_xavier_normal!",
|
354
|
+
*[](Tensor tensor, double gain) {
|
355
|
+
return torch::nn::init::xavier_normal_(tensor, gain);
|
356
|
+
})
|
357
|
+
.define_singleton_method(
|
358
|
+
"_kaiming_uniform!",
|
359
|
+
*[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
|
360
|
+
return torch::nn::init::kaiming_uniform_(tensor, a, mode, nonlinearity);
|
361
|
+
})
|
362
|
+
.define_singleton_method(
|
363
|
+
"_kaiming_normal!",
|
364
|
+
*[](Tensor tensor, double a, FanModeType mode, NonlinearityType nonlinearity) {
|
365
|
+
return torch::nn::init::kaiming_normal_(tensor, a, mode, nonlinearity);
|
366
|
+
})
|
367
|
+
.define_singleton_method(
|
368
|
+
"_orthogonal!",
|
369
|
+
*[](Tensor tensor, double gain) {
|
370
|
+
return torch::nn::init::orthogonal_(tensor, gain);
|
603
371
|
})
|
604
372
|
.define_singleton_method(
|
605
|
-
"
|
606
|
-
*[](
|
607
|
-
return torch::nn::init::
|
373
|
+
"_sparse!",
|
374
|
+
*[](Tensor tensor, double sparsity, double std) {
|
375
|
+
return torch::nn::init::sparse_(tensor, sparsity, std);
|
608
376
|
});
|
609
377
|
|
610
378
|
Class rb_cParameter = define_class_under<torch::autograd::Variable, torch::Tensor>(rb_mNN, "Parameter")
|
611
|
-
// TODO return grad or nil to remove need for 2nd function
|
612
379
|
.define_method(
|
613
|
-
"
|
380
|
+
"grad",
|
614
381
|
*[](torch::autograd::Variable& self) {
|
615
|
-
|
616
|
-
|
382
|
+
auto grad = self.grad();
|
383
|
+
return grad.defined() ? to_ruby<torch::Tensor>(grad) : Nil;
|
384
|
+
});
|
385
|
+
|
386
|
+
Class rb_cDevice = define_class_under<torch::Device>(rb_mTorch, "Device")
|
387
|
+
.define_constructor(Constructor<torch::Device, std::string>())
|
388
|
+
.define_method("index", &torch::Device::index)
|
389
|
+
.define_method("index?", &torch::Device::has_index)
|
617
390
|
.define_method(
|
618
|
-
"
|
619
|
-
*[](torch::
|
620
|
-
|
391
|
+
"type",
|
392
|
+
*[](torch::Device& self) {
|
393
|
+
std::stringstream s;
|
394
|
+
s << self.type();
|
395
|
+
return s.str();
|
621
396
|
});
|
397
|
+
|
398
|
+
Module rb_mCUDA = define_module_under(rb_mTorch, "CUDA")
|
399
|
+
.define_singleton_method("available?", &torch::cuda::is_available)
|
400
|
+
.define_singleton_method("device_count", &torch::cuda::device_count);
|
622
401
|
}
|