torch-rb 0.1.2 → 0.1.7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +35 -0
- data/LICENSE.txt +46 -22
- data/README.md +18 -6
- data/ext/torch/ext.cpp +148 -369
- data/ext/torch/extconf.rb +6 -0
- data/ext/torch/nn_functions.cpp +615 -0
- data/ext/torch/nn_functions.hpp +6 -0
- data/ext/torch/templates.cpp +55 -0
- data/ext/torch/templates.hpp +242 -0
- data/ext/torch/tensor_functions.cpp +1920 -0
- data/ext/torch/tensor_functions.hpp +6 -0
- data/ext/torch/torch_functions.cpp +2975 -0
- data/ext/torch/torch_functions.hpp +6 -0
- data/lib/torch.rb +240 -131
- data/lib/torch/ext.bundle +0 -0
- data/lib/torch/inspector.rb +27 -22
- data/lib/torch/native/dispatcher.rb +48 -0
- data/lib/torch/native/function.rb +109 -0
- data/lib/torch/native/generator.rb +168 -0
- data/lib/torch/native/native_functions.yaml +6837 -0
- data/lib/torch/native/parser.rb +134 -0
- data/lib/torch/nn/alpha_dropout.rb +9 -0
- data/lib/torch/nn/avg_pool1d.rb +18 -0
- data/lib/torch/nn/avg_pool2d.rb +19 -0
- data/lib/torch/nn/avg_pool3d.rb +19 -0
- data/lib/torch/nn/avg_poolnd.rb +9 -0
- data/lib/torch/nn/batch_norm.rb +75 -0
- data/lib/torch/nn/batch_norm1d.rb +11 -0
- data/lib/torch/nn/batch_norm2d.rb +11 -0
- data/lib/torch/nn/batch_norm3d.rb +11 -0
- data/lib/torch/nn/bce_loss.rb +13 -0
- data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
- data/lib/torch/nn/bilinear.rb +38 -0
- data/lib/torch/nn/constant_pad1d.rb +10 -0
- data/lib/torch/nn/constant_pad2d.rb +10 -0
- data/lib/torch/nn/constant_pad3d.rb +10 -0
- data/lib/torch/nn/constant_padnd.rb +18 -0
- data/lib/torch/nn/conv1d.rb +22 -0
- data/lib/torch/nn/conv2d.rb +16 -38
- data/lib/torch/nn/conv3d.rb +22 -0
- data/lib/torch/nn/convnd.rb +41 -0
- data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
- data/lib/torch/nn/cosine_similarity.rb +15 -0
- data/lib/torch/nn/cross_entropy_loss.rb +14 -0
- data/lib/torch/nn/ctc_loss.rb +15 -0
- data/lib/torch/nn/dropout.rb +9 -0
- data/lib/torch/nn/dropout2d.rb +9 -0
- data/lib/torch/nn/dropout3d.rb +9 -0
- data/lib/torch/nn/dropoutnd.rb +15 -0
- data/lib/torch/nn/embedding.rb +52 -0
- data/lib/torch/nn/embedding_bag.rb +34 -0
- data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
- data/lib/torch/nn/fold.rb +20 -0
- data/lib/torch/nn/functional.rb +411 -22
- data/lib/torch/nn/group_norm.rb +36 -0
- data/lib/torch/nn/gru.rb +49 -0
- data/lib/torch/nn/hardshrink.rb +18 -0
- data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
- data/lib/torch/nn/identity.rb +14 -0
- data/lib/torch/nn/init.rb +58 -1
- data/lib/torch/nn/instance_norm.rb +20 -0
- data/lib/torch/nn/instance_norm1d.rb +18 -0
- data/lib/torch/nn/instance_norm2d.rb +11 -0
- data/lib/torch/nn/instance_norm3d.rb +11 -0
- data/lib/torch/nn/kl_div_loss.rb +13 -0
- data/lib/torch/nn/l1_loss.rb +13 -0
- data/lib/torch/nn/layer_norm.rb +35 -0
- data/lib/torch/nn/leaky_relu.rb +20 -0
- data/lib/torch/nn/linear.rb +12 -11
- data/lib/torch/nn/local_response_norm.rb +21 -0
- data/lib/torch/nn/log_sigmoid.rb +9 -0
- data/lib/torch/nn/log_softmax.rb +14 -0
- data/lib/torch/nn/loss.rb +10 -0
- data/lib/torch/nn/lp_pool1d.rb +9 -0
- data/lib/torch/nn/lp_pool2d.rb +9 -0
- data/lib/torch/nn/lp_poolnd.rb +22 -0
- data/lib/torch/nn/lstm.rb +66 -0
- data/lib/torch/nn/margin_ranking_loss.rb +14 -0
- data/lib/torch/nn/max_pool1d.rb +9 -0
- data/lib/torch/nn/max_pool2d.rb +9 -0
- data/lib/torch/nn/max_pool3d.rb +9 -0
- data/lib/torch/nn/max_poolnd.rb +19 -0
- data/lib/torch/nn/max_unpool1d.rb +16 -0
- data/lib/torch/nn/max_unpool2d.rb +16 -0
- data/lib/torch/nn/max_unpool3d.rb +16 -0
- data/lib/torch/nn/max_unpoolnd.rb +9 -0
- data/lib/torch/nn/module.rb +201 -20
- data/lib/torch/nn/mse_loss.rb +2 -2
- data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
- data/lib/torch/nn/multi_margin_loss.rb +17 -0
- data/lib/torch/nn/nll_loss.rb +14 -0
- data/lib/torch/nn/pairwise_distance.rb +16 -0
- data/lib/torch/nn/parameter.rb +2 -2
- data/lib/torch/nn/poisson_nll_loss.rb +16 -0
- data/lib/torch/nn/prelu.rb +19 -0
- data/lib/torch/nn/reflection_pad1d.rb +10 -0
- data/lib/torch/nn/reflection_pad2d.rb +10 -0
- data/lib/torch/nn/reflection_padnd.rb +13 -0
- data/lib/torch/nn/relu.rb +8 -3
- data/lib/torch/nn/replication_pad1d.rb +10 -0
- data/lib/torch/nn/replication_pad2d.rb +10 -0
- data/lib/torch/nn/replication_pad3d.rb +10 -0
- data/lib/torch/nn/replication_padnd.rb +13 -0
- data/lib/torch/nn/rnn.rb +22 -0
- data/lib/torch/nn/rnn_base.rb +198 -0
- data/lib/torch/nn/sequential.rb +1 -10
- data/lib/torch/nn/sigmoid.rb +9 -0
- data/lib/torch/nn/smooth_l1_loss.rb +13 -0
- data/lib/torch/nn/soft_margin_loss.rb +13 -0
- data/lib/torch/nn/softmax.rb +18 -0
- data/lib/torch/nn/softmax2d.rb +10 -0
- data/lib/torch/nn/softmin.rb +14 -0
- data/lib/torch/nn/softplus.rb +19 -0
- data/lib/torch/nn/softshrink.rb +18 -0
- data/lib/torch/nn/softsign.rb +9 -0
- data/lib/torch/nn/tanh.rb +9 -0
- data/lib/torch/nn/tanhshrink.rb +9 -0
- data/lib/torch/nn/triplet_margin_loss.rb +18 -0
- data/lib/torch/nn/unfold.rb +19 -0
- data/lib/torch/nn/utils.rb +25 -0
- data/lib/torch/nn/weighted_loss.rb +10 -0
- data/lib/torch/nn/zero_pad2d.rb +9 -0
- data/lib/torch/optim/adadelta.rb +57 -0
- data/lib/torch/optim/adagrad.rb +71 -0
- data/lib/torch/optim/adam.rb +81 -0
- data/lib/torch/optim/adamax.rb +68 -0
- data/lib/torch/optim/adamw.rb +82 -0
- data/lib/torch/optim/asgd.rb +65 -0
- data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
- data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
- data/lib/torch/optim/optimizer.rb +56 -0
- data/lib/torch/optim/rmsprop.rb +76 -0
- data/lib/torch/optim/rprop.rb +68 -0
- data/lib/torch/optim/sgd.rb +48 -16
- data/lib/torch/random.rb +10 -0
- data/lib/torch/tensor.rb +71 -30
- data/lib/torch/utils/data/data_loader.rb +10 -4
- data/lib/torch/utils/data/tensor_dataset.rb +3 -0
- data/lib/torch/version.rb +1 -1
- metadata +123 -6
data/lib/torch/nn/mse_loss.rb
CHANGED
@@ -0,0 +1,13 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class MultiLabelSoftMarginLoss < WeightedLoss
|
4
|
+
def initialize(weight: nil, reduction: "mean")
|
5
|
+
super(weight, reduction)
|
6
|
+
end
|
7
|
+
|
8
|
+
def forward(input, target)
|
9
|
+
F.multilabel_soft_margin_loss(input, target, weight: @weight, reduction: @reduction)
|
10
|
+
end
|
11
|
+
end
|
12
|
+
end
|
13
|
+
end
|
@@ -0,0 +1,17 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class MultiMarginLoss < WeightedLoss
|
4
|
+
def initialize(p: 1, margin: 1.0, weight: nil, reduction: "mean")
|
5
|
+
super(weight, reduction)
|
6
|
+
raise ArgumentError, "only p == 1 and p == 2 supported" if p != 1 && p != 2
|
7
|
+
raise ArgumentError, "weight must be nil or have one dimension" unless weight.nil? || weight.dim == 1
|
8
|
+
@p = p
|
9
|
+
@margin = margin
|
10
|
+
end
|
11
|
+
|
12
|
+
def forward(input, target)
|
13
|
+
F.multi_margin_loss(input, target, p: @p, margin: @margin, weight: @weight, reduction: @reduction)
|
14
|
+
end
|
15
|
+
end
|
16
|
+
end
|
17
|
+
end
|
@@ -0,0 +1,14 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class NLLLoss < WeightedLoss
|
4
|
+
def initialize(weight: nil, ignore_index: -100, reduction: "mean")
|
5
|
+
super(weight, reduction)
|
6
|
+
@ignore_index = ignore_index
|
7
|
+
end
|
8
|
+
|
9
|
+
def forward(input, target)
|
10
|
+
F.nll_loss(input, target, weight: @weight, ignore_index: @ignore_index, reduction: @reduction)
|
11
|
+
end
|
12
|
+
end
|
13
|
+
end
|
14
|
+
end
|
@@ -0,0 +1,16 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class PairwiseDistance < Module
|
4
|
+
def initialize(p: 2.0, eps: 1e-6, keepdim: false)
|
5
|
+
super()
|
6
|
+
@norm = p
|
7
|
+
@eps = eps
|
8
|
+
@keepdim = keepdim
|
9
|
+
end
|
10
|
+
|
11
|
+
def forward(x1, x2)
|
12
|
+
F.pairwise_distance(x1, x2, p: @norm, eps: @eps, keepdim: @keepdim)
|
13
|
+
end
|
14
|
+
end
|
15
|
+
end
|
16
|
+
end
|
data/lib/torch/nn/parameter.rb
CHANGED
@@ -0,0 +1,16 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class PoissonNLLLoss < Loss
|
4
|
+
def initialize(log_input: true, full: false, eps: 1e-8, reduction: "mean")
|
5
|
+
super(reduction)
|
6
|
+
@log_input = log_input
|
7
|
+
@full = full
|
8
|
+
@eps = eps
|
9
|
+
end
|
10
|
+
|
11
|
+
def forward(log_input, target)
|
12
|
+
F.poisson_nll_loss(log_input, target, log_input: @log_input, full: @full, eps: @eps, reduction: @reduction)
|
13
|
+
end
|
14
|
+
end
|
15
|
+
end
|
16
|
+
end
|
@@ -0,0 +1,19 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class PReLU < Module
|
4
|
+
def initialize(num_parameters: 1, init: 0.25)
|
5
|
+
@num_parameters = num_parameters
|
6
|
+
super()
|
7
|
+
@weight = Parameter.new(Tensor.new(num_parameters).fill!(init))
|
8
|
+
end
|
9
|
+
|
10
|
+
def forward(input)
|
11
|
+
F.prelu(input, @weight)
|
12
|
+
end
|
13
|
+
|
14
|
+
def extra_inspect
|
15
|
+
format("num_parameters: %s", @num_parameters)
|
16
|
+
end
|
17
|
+
end
|
18
|
+
end
|
19
|
+
end
|
data/lib/torch/nn/relu.rb
CHANGED
@@ -1,12 +1,17 @@
|
|
1
1
|
module Torch
|
2
2
|
module NN
|
3
3
|
class ReLU < Module
|
4
|
-
def initialize
|
5
|
-
|
4
|
+
def initialize(inplace: false)
|
5
|
+
super()
|
6
|
+
@inplace = inplace
|
6
7
|
end
|
7
8
|
|
8
9
|
def forward(input)
|
9
|
-
F.relu(input
|
10
|
+
F.relu(input, inplace: @inplace)
|
11
|
+
end
|
12
|
+
|
13
|
+
def extra_inspect
|
14
|
+
@inplace ? "inplace: true" : ""
|
10
15
|
end
|
11
16
|
end
|
12
17
|
end
|
data/lib/torch/nn/rnn.rb
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class RNN < RNNBase
|
4
|
+
def initialize(*args, **options)
|
5
|
+
if options.key?(:nonlinearity)
|
6
|
+
if options[:nonlinearity] == "tanh"
|
7
|
+
mode = "RNN_TANH"
|
8
|
+
elsif options[:nonlinearity] == "relu"
|
9
|
+
mode = "RNN_RELU"
|
10
|
+
else
|
11
|
+
raise ArgumentError, "Unknown nonlinearity: #{options[:nonlinearity]}"
|
12
|
+
end
|
13
|
+
options.delete(:nonlinearity)
|
14
|
+
else
|
15
|
+
mode = "RNN_TANH"
|
16
|
+
end
|
17
|
+
|
18
|
+
super(mode, *args, **options)
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
@@ -0,0 +1,198 @@
|
|
1
|
+
module Torch
|
2
|
+
module NN
|
3
|
+
class RNNBase < Module
|
4
|
+
def initialize(mode, input_size, hidden_size, num_layers: 1, bias: true,
|
5
|
+
batch_first: false, dropout: 0.0, bidirectional: false)
|
6
|
+
|
7
|
+
super()
|
8
|
+
@mode = mode
|
9
|
+
@input_size = input_size
|
10
|
+
@hidden_size = hidden_size
|
11
|
+
@num_layers = num_layers
|
12
|
+
@bias = bias
|
13
|
+
@batch_first = batch_first
|
14
|
+
@dropout = dropout.to_f
|
15
|
+
@bidirectional = bidirectional
|
16
|
+
num_directions = bidirectional ? 2 : 1
|
17
|
+
|
18
|
+
if !dropout.is_a?(Numeric) || !(dropout >= 0 && dropout <= 1)
|
19
|
+
raise ArgumentError, "dropout should be a number in range [0, 1] " +
|
20
|
+
"representing the probability of an element being " +
|
21
|
+
"zeroed"
|
22
|
+
end
|
23
|
+
if dropout > 0 && num_layers == 1
|
24
|
+
warn "dropout option adds dropout after all but last " +
|
25
|
+
"recurrent layer, so non-zero dropout expects " +
|
26
|
+
"num_layers greater than 1, but got dropout=#{dropout} and " +
|
27
|
+
"num_layers=#{num_layers}"
|
28
|
+
end
|
29
|
+
|
30
|
+
gate_size =
|
31
|
+
case mode
|
32
|
+
when "LSTM"
|
33
|
+
4 * hidden_size
|
34
|
+
when "GRU"
|
35
|
+
3 * hidden_size
|
36
|
+
when "RNN_TANH"
|
37
|
+
hidden_size
|
38
|
+
when "RNN_RELU"
|
39
|
+
hidden_size
|
40
|
+
else
|
41
|
+
raise ArgumentError, "Unrecognized RNN mode: #{mode}"
|
42
|
+
end
|
43
|
+
|
44
|
+
@all_weights = []
|
45
|
+
num_layers.times do |layer|
|
46
|
+
num_directions.times do |direction|
|
47
|
+
layer_input_size = layer == 0 ? input_size : hidden_size * num_directions
|
48
|
+
|
49
|
+
w_ih = Parameter.new(Torch::Tensor.new(gate_size, layer_input_size))
|
50
|
+
w_hh = Parameter.new(Torch::Tensor.new(gate_size, hidden_size))
|
51
|
+
b_ih = Parameter.new(Torch::Tensor.new(gate_size))
|
52
|
+
# Second bias vector included for CuDNN compatibility. Only one
|
53
|
+
# bias vector is needed in standard definition.
|
54
|
+
b_hh = Parameter.new(Torch::Tensor.new(gate_size))
|
55
|
+
layer_params = [w_ih, w_hh, b_ih, b_hh]
|
56
|
+
|
57
|
+
suffix = direction == 1 ? "_reverse" : ""
|
58
|
+
param_names = ["weight_ih_l%s%s", "weight_hh_l%s%s"]
|
59
|
+
if bias
|
60
|
+
param_names += ["bias_ih_l%s%s", "bias_hh_l%s%s"]
|
61
|
+
end
|
62
|
+
param_names.map! { |x| x % [layer, suffix] }
|
63
|
+
|
64
|
+
param_names.zip(layer_params) do |name, param|
|
65
|
+
instance_variable_set("@#{name}", param)
|
66
|
+
end
|
67
|
+
@all_weights << param_names
|
68
|
+
end
|
69
|
+
end
|
70
|
+
|
71
|
+
flatten_parameters
|
72
|
+
reset_parameters
|
73
|
+
end
|
74
|
+
|
75
|
+
def flatten_parameters
|
76
|
+
# no-op unless module is on the GPU and cuDNN is enabled
|
77
|
+
end
|
78
|
+
|
79
|
+
def _apply(fn)
|
80
|
+
ret = super
|
81
|
+
flatten_parameters
|
82
|
+
ret
|
83
|
+
end
|
84
|
+
|
85
|
+
def reset_parameters
|
86
|
+
stdv = 1.0 / Math.sqrt(@hidden_size)
|
87
|
+
parameters.each do |weight|
|
88
|
+
Init.uniform!(weight, a: -stdv, b: stdv)
|
89
|
+
end
|
90
|
+
end
|
91
|
+
|
92
|
+
def permute_hidden(hx, permutation)
|
93
|
+
if permutation.nil?
|
94
|
+
return hx
|
95
|
+
end
|
96
|
+
raise NotImplementedYet
|
97
|
+
end
|
98
|
+
|
99
|
+
def forward(input, hx: nil)
|
100
|
+
is_packed = false # TODO isinstance(input, PackedSequence)
|
101
|
+
if is_packed
|
102
|
+
input, batch_sizes, sorted_indices, unsorted_indices = input
|
103
|
+
max_batch_size = batch_sizes[0]
|
104
|
+
max_batch_size = max_batch_size.to_i
|
105
|
+
else
|
106
|
+
batch_sizes = nil
|
107
|
+
max_batch_size = @batch_first ? input.size(0) : input.size(1)
|
108
|
+
sorted_indices = nil
|
109
|
+
unsorted_indices = nil
|
110
|
+
end
|
111
|
+
|
112
|
+
if hx.nil?
|
113
|
+
num_directions = @bidirectional ? 2 : 1
|
114
|
+
hx = Torch.zeros(@num_layers * num_directions, max_batch_size,
|
115
|
+
@hidden_size, dtype: input.dtype, device: input.device)
|
116
|
+
else
|
117
|
+
# Each batch of the hidden state should match the input sequence that
|
118
|
+
# the user believes he/she is passing in.
|
119
|
+
hx = permute_hidden(hx, sorted_indices)
|
120
|
+
end
|
121
|
+
|
122
|
+
check_forward_args(input, hx, batch_sizes)
|
123
|
+
_rnn_impls = {
|
124
|
+
"RNN_TANH" => Torch.method(:rnn_tanh),
|
125
|
+
"RNN_RELU" => Torch.method(:rnn_relu)
|
126
|
+
}
|
127
|
+
_impl = _rnn_impls[@mode]
|
128
|
+
if batch_sizes.nil?
|
129
|
+
result = _impl.call(input, hx, _get_flat_weights, @bias, @num_layers,
|
130
|
+
@dropout, @training, @bidirectional, @batch_first)
|
131
|
+
else
|
132
|
+
result = _impl.call(input, batch_sizes, hx, _get_flat_weights, @bias,
|
133
|
+
@num_layers, @dropout, @training, @bidirectional)
|
134
|
+
end
|
135
|
+
output = result[0]
|
136
|
+
hidden = result[1]
|
137
|
+
|
138
|
+
if is_packed
|
139
|
+
raise NotImplementedYet
|
140
|
+
# output = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
|
141
|
+
end
|
142
|
+
[output, permute_hidden(hidden, unsorted_indices)]
|
143
|
+
end
|
144
|
+
|
145
|
+
# TODO add more parameters
|
146
|
+
def extra_inspect
|
147
|
+
s = String.new("%{input_size}, %{hidden_size}")
|
148
|
+
if @num_layers != 1
|
149
|
+
s += ", num_layers: %{num_layers}"
|
150
|
+
end
|
151
|
+
format(s, input_size: @input_size, hidden_size: @hidden_size, num_layers: @num_layers)
|
152
|
+
end
|
153
|
+
|
154
|
+
private
|
155
|
+
|
156
|
+
def _flat_weights
|
157
|
+
@all_weights.flatten.map { |v| instance_variable_get("@#{v}") }.compact
|
158
|
+
end
|
159
|
+
|
160
|
+
def _get_flat_weights
|
161
|
+
_flat_weights
|
162
|
+
end
|
163
|
+
|
164
|
+
def check_input(input, batch_sizes)
|
165
|
+
expected_input_dim = !batch_sizes.nil? ? 2 : 3
|
166
|
+
if input.dim != expected_input_dim
|
167
|
+
raise ArgumentError, "input must have #{expected_input_dim} dimensions, got #{input.dim}"
|
168
|
+
end
|
169
|
+
if @input_size != input.size(-1)
|
170
|
+
raise ArgumentError, "input.size(-1) must be equal to input_size. Expected #{@input_size}, got #{input.size(-1)}"
|
171
|
+
end
|
172
|
+
end
|
173
|
+
|
174
|
+
def get_expected_hidden_size(input, batch_sizes)
|
175
|
+
if !batch_sizes.nil?
|
176
|
+
mini_batch = batch_sizes[0]
|
177
|
+
mini_batch = mini_batch.to_i
|
178
|
+
else
|
179
|
+
mini_batch = @batch_first ? input.size(0) : input.size(1)
|
180
|
+
end
|
181
|
+
num_directions = @bidirectional ? 2 : 1
|
182
|
+
[@num_layers * num_directions, mini_batch, @hidden_size]
|
183
|
+
end
|
184
|
+
|
185
|
+
def check_hidden_size(hx, expected_hidden_size)
|
186
|
+
if hx.size != expected_hidden_size
|
187
|
+
raise ArgumentError, "Expected hidden size #{expected_hidden_size.inspect}, got #{hx.size.inspect}"
|
188
|
+
end
|
189
|
+
end
|
190
|
+
|
191
|
+
def check_forward_args(input, hidden, batch_sizes)
|
192
|
+
check_input(input, batch_sizes)
|
193
|
+
expected_hidden_size = get_expected_hidden_size(input, batch_sizes)
|
194
|
+
check_hidden_size(hidden, expected_hidden_size)
|
195
|
+
end
|
196
|
+
end
|
197
|
+
end
|
198
|
+
end
|