torch-rb 0.1.2 → 0.1.7

Sign up to get free protection for your applications and to get access to all the features.
Files changed (142) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +35 -0
  3. data/LICENSE.txt +46 -22
  4. data/README.md +18 -6
  5. data/ext/torch/ext.cpp +148 -369
  6. data/ext/torch/extconf.rb +6 -0
  7. data/ext/torch/nn_functions.cpp +615 -0
  8. data/ext/torch/nn_functions.hpp +6 -0
  9. data/ext/torch/templates.cpp +55 -0
  10. data/ext/torch/templates.hpp +242 -0
  11. data/ext/torch/tensor_functions.cpp +1920 -0
  12. data/ext/torch/tensor_functions.hpp +6 -0
  13. data/ext/torch/torch_functions.cpp +2975 -0
  14. data/ext/torch/torch_functions.hpp +6 -0
  15. data/lib/torch.rb +240 -131
  16. data/lib/torch/ext.bundle +0 -0
  17. data/lib/torch/inspector.rb +27 -22
  18. data/lib/torch/native/dispatcher.rb +48 -0
  19. data/lib/torch/native/function.rb +109 -0
  20. data/lib/torch/native/generator.rb +168 -0
  21. data/lib/torch/native/native_functions.yaml +6837 -0
  22. data/lib/torch/native/parser.rb +134 -0
  23. data/lib/torch/nn/alpha_dropout.rb +9 -0
  24. data/lib/torch/nn/avg_pool1d.rb +18 -0
  25. data/lib/torch/nn/avg_pool2d.rb +19 -0
  26. data/lib/torch/nn/avg_pool3d.rb +19 -0
  27. data/lib/torch/nn/avg_poolnd.rb +9 -0
  28. data/lib/torch/nn/batch_norm.rb +75 -0
  29. data/lib/torch/nn/batch_norm1d.rb +11 -0
  30. data/lib/torch/nn/batch_norm2d.rb +11 -0
  31. data/lib/torch/nn/batch_norm3d.rb +11 -0
  32. data/lib/torch/nn/bce_loss.rb +13 -0
  33. data/lib/torch/nn/bce_with_logits_loss.rb +15 -0
  34. data/lib/torch/nn/bilinear.rb +38 -0
  35. data/lib/torch/nn/constant_pad1d.rb +10 -0
  36. data/lib/torch/nn/constant_pad2d.rb +10 -0
  37. data/lib/torch/nn/constant_pad3d.rb +10 -0
  38. data/lib/torch/nn/constant_padnd.rb +18 -0
  39. data/lib/torch/nn/conv1d.rb +22 -0
  40. data/lib/torch/nn/conv2d.rb +16 -38
  41. data/lib/torch/nn/conv3d.rb +22 -0
  42. data/lib/torch/nn/convnd.rb +41 -0
  43. data/lib/torch/nn/cosine_embedding_loss.rb +14 -0
  44. data/lib/torch/nn/cosine_similarity.rb +15 -0
  45. data/lib/torch/nn/cross_entropy_loss.rb +14 -0
  46. data/lib/torch/nn/ctc_loss.rb +15 -0
  47. data/lib/torch/nn/dropout.rb +9 -0
  48. data/lib/torch/nn/dropout2d.rb +9 -0
  49. data/lib/torch/nn/dropout3d.rb +9 -0
  50. data/lib/torch/nn/dropoutnd.rb +15 -0
  51. data/lib/torch/nn/embedding.rb +52 -0
  52. data/lib/torch/nn/embedding_bag.rb +34 -0
  53. data/lib/torch/nn/feature_alpha_dropout.rb +9 -0
  54. data/lib/torch/nn/fold.rb +20 -0
  55. data/lib/torch/nn/functional.rb +411 -22
  56. data/lib/torch/nn/group_norm.rb +36 -0
  57. data/lib/torch/nn/gru.rb +49 -0
  58. data/lib/torch/nn/hardshrink.rb +18 -0
  59. data/lib/torch/nn/hinge_embedding_loss.rb +14 -0
  60. data/lib/torch/nn/identity.rb +14 -0
  61. data/lib/torch/nn/init.rb +58 -1
  62. data/lib/torch/nn/instance_norm.rb +20 -0
  63. data/lib/torch/nn/instance_norm1d.rb +18 -0
  64. data/lib/torch/nn/instance_norm2d.rb +11 -0
  65. data/lib/torch/nn/instance_norm3d.rb +11 -0
  66. data/lib/torch/nn/kl_div_loss.rb +13 -0
  67. data/lib/torch/nn/l1_loss.rb +13 -0
  68. data/lib/torch/nn/layer_norm.rb +35 -0
  69. data/lib/torch/nn/leaky_relu.rb +20 -0
  70. data/lib/torch/nn/linear.rb +12 -11
  71. data/lib/torch/nn/local_response_norm.rb +21 -0
  72. data/lib/torch/nn/log_sigmoid.rb +9 -0
  73. data/lib/torch/nn/log_softmax.rb +14 -0
  74. data/lib/torch/nn/loss.rb +10 -0
  75. data/lib/torch/nn/lp_pool1d.rb +9 -0
  76. data/lib/torch/nn/lp_pool2d.rb +9 -0
  77. data/lib/torch/nn/lp_poolnd.rb +22 -0
  78. data/lib/torch/nn/lstm.rb +66 -0
  79. data/lib/torch/nn/margin_ranking_loss.rb +14 -0
  80. data/lib/torch/nn/max_pool1d.rb +9 -0
  81. data/lib/torch/nn/max_pool2d.rb +9 -0
  82. data/lib/torch/nn/max_pool3d.rb +9 -0
  83. data/lib/torch/nn/max_poolnd.rb +19 -0
  84. data/lib/torch/nn/max_unpool1d.rb +16 -0
  85. data/lib/torch/nn/max_unpool2d.rb +16 -0
  86. data/lib/torch/nn/max_unpool3d.rb +16 -0
  87. data/lib/torch/nn/max_unpoolnd.rb +9 -0
  88. data/lib/torch/nn/module.rb +201 -20
  89. data/lib/torch/nn/mse_loss.rb +2 -2
  90. data/lib/torch/nn/multi_label_margin_loss.rb +13 -0
  91. data/lib/torch/nn/multi_label_soft_margin_loss.rb +13 -0
  92. data/lib/torch/nn/multi_margin_loss.rb +17 -0
  93. data/lib/torch/nn/nll_loss.rb +14 -0
  94. data/lib/torch/nn/pairwise_distance.rb +16 -0
  95. data/lib/torch/nn/parameter.rb +2 -2
  96. data/lib/torch/nn/poisson_nll_loss.rb +16 -0
  97. data/lib/torch/nn/prelu.rb +19 -0
  98. data/lib/torch/nn/reflection_pad1d.rb +10 -0
  99. data/lib/torch/nn/reflection_pad2d.rb +10 -0
  100. data/lib/torch/nn/reflection_padnd.rb +13 -0
  101. data/lib/torch/nn/relu.rb +8 -3
  102. data/lib/torch/nn/replication_pad1d.rb +10 -0
  103. data/lib/torch/nn/replication_pad2d.rb +10 -0
  104. data/lib/torch/nn/replication_pad3d.rb +10 -0
  105. data/lib/torch/nn/replication_padnd.rb +13 -0
  106. data/lib/torch/nn/rnn.rb +22 -0
  107. data/lib/torch/nn/rnn_base.rb +198 -0
  108. data/lib/torch/nn/sequential.rb +1 -10
  109. data/lib/torch/nn/sigmoid.rb +9 -0
  110. data/lib/torch/nn/smooth_l1_loss.rb +13 -0
  111. data/lib/torch/nn/soft_margin_loss.rb +13 -0
  112. data/lib/torch/nn/softmax.rb +18 -0
  113. data/lib/torch/nn/softmax2d.rb +10 -0
  114. data/lib/torch/nn/softmin.rb +14 -0
  115. data/lib/torch/nn/softplus.rb +19 -0
  116. data/lib/torch/nn/softshrink.rb +18 -0
  117. data/lib/torch/nn/softsign.rb +9 -0
  118. data/lib/torch/nn/tanh.rb +9 -0
  119. data/lib/torch/nn/tanhshrink.rb +9 -0
  120. data/lib/torch/nn/triplet_margin_loss.rb +18 -0
  121. data/lib/torch/nn/unfold.rb +19 -0
  122. data/lib/torch/nn/utils.rb +25 -0
  123. data/lib/torch/nn/weighted_loss.rb +10 -0
  124. data/lib/torch/nn/zero_pad2d.rb +9 -0
  125. data/lib/torch/optim/adadelta.rb +57 -0
  126. data/lib/torch/optim/adagrad.rb +71 -0
  127. data/lib/torch/optim/adam.rb +81 -0
  128. data/lib/torch/optim/adamax.rb +68 -0
  129. data/lib/torch/optim/adamw.rb +82 -0
  130. data/lib/torch/optim/asgd.rb +65 -0
  131. data/lib/torch/optim/lr_scheduler/lr_scheduler.rb +33 -0
  132. data/lib/torch/optim/lr_scheduler/step_lr.rb +17 -0
  133. data/lib/torch/optim/optimizer.rb +56 -0
  134. data/lib/torch/optim/rmsprop.rb +76 -0
  135. data/lib/torch/optim/rprop.rb +68 -0
  136. data/lib/torch/optim/sgd.rb +48 -16
  137. data/lib/torch/random.rb +10 -0
  138. data/lib/torch/tensor.rb +71 -30
  139. data/lib/torch/utils/data/data_loader.rb +10 -4
  140. data/lib/torch/utils/data/tensor_dataset.rb +3 -0
  141. data/lib/torch/version.rb +1 -1
  142. metadata +123 -6
@@ -2,28 +2,19 @@ module Torch
2
2
  module NN
3
3
  class Sequential < Module
4
4
  def initialize(*args)
5
- @modules = {}
5
+ super()
6
6
  # TODO support hash arg (named modules)
7
7
  args.each_with_index do |mod, idx|
8
8
  add_module(idx.to_s, mod)
9
9
  end
10
10
  end
11
11
 
12
- def add_module(name, mod)
13
- # TODO add checks
14
- @modules[name] = mod
15
- end
16
-
17
12
  def forward(input)
18
13
  @modules.values.each do |mod|
19
14
  input = mod.call(input)
20
15
  end
21
16
  input
22
17
  end
23
-
24
- def parameters
25
- @modules.flat_map { |_, mod| mod.parameters }
26
- end
27
18
  end
28
19
  end
29
20
  end
@@ -0,0 +1,9 @@
1
+ module Torch
2
+ module NN
3
+ class Sigmoid < Module
4
+ def forward(input)
5
+ Torch.sigmoid(input)
6
+ end
7
+ end
8
+ end
9
+ end
@@ -0,0 +1,13 @@
1
+ module Torch
2
+ module NN
3
+ class SmoothL1Loss < Loss
4
+ def initialize(reduction: "mean")
5
+ super(reduction)
6
+ end
7
+
8
+ def forward(input, target)
9
+ F.smooth_l1_loss(input, target, reduction: @reduction)
10
+ end
11
+ end
12
+ end
13
+ end
@@ -0,0 +1,13 @@
1
+ module Torch
2
+ module NN
3
+ class SoftMarginLoss < Loss
4
+ def initialize(reduction: "mean")
5
+ super(reduction)
6
+ end
7
+
8
+ def forward(input, target)
9
+ F.soft_margin_loss(input, target, reduction: @reduction)
10
+ end
11
+ end
12
+ end
13
+ end
@@ -0,0 +1,18 @@
1
+ module Torch
2
+ module NN
3
+ class Softmax < Module
4
+ def initialize(dim: nil)
5
+ super()
6
+ @dim = dim
7
+ end
8
+
9
+ def forward(input)
10
+ F.softmax(input, dim: @dim)
11
+ end
12
+
13
+ def extra_inspect
14
+ format("dim: %s", @dim)
15
+ end
16
+ end
17
+ end
18
+ end
@@ -0,0 +1,10 @@
1
+ module Torch
2
+ module NN
3
+ class Softmax2d < Module
4
+ def forward(input)
5
+ raise ArgumentError, "Softmax2d requires a 4D tensor as input" unless input.dim == 4
6
+ F.softmax(input, dim: 1)
7
+ end
8
+ end
9
+ end
10
+ end
@@ -0,0 +1,14 @@
1
+ module Torch
2
+ module NN
3
+ class Softmin < Module
4
+ def initialize(dim: nil)
5
+ super()
6
+ @dim = dim
7
+ end
8
+
9
+ def forward(input)
10
+ F.softmin(input, dim: @dim)
11
+ end
12
+ end
13
+ end
14
+ end
@@ -0,0 +1,19 @@
1
+ module Torch
2
+ module NN
3
+ class Softplus < Module
4
+ def initialize(beta: 1, threshold: 20)
5
+ super()
6
+ @beta = beta
7
+ @threshold = threshold
8
+ end
9
+
10
+ def forward(input)
11
+ F.softplus(input, beta: @beta, threshold: @threshold)
12
+ end
13
+
14
+ def extra_inspect
15
+ format("beta: %s, threshold: %s", @beta, @threshold)
16
+ end
17
+ end
18
+ end
19
+ end
@@ -0,0 +1,18 @@
1
+ module Torch
2
+ module NN
3
+ class Softshrink < Module
4
+ def initialize(lambd: 0.5)
5
+ super()
6
+ @lambd = lambd
7
+ end
8
+
9
+ def forward(input)
10
+ F.softshrink(input, @lambd)
11
+ end
12
+
13
+ def extra_inspect
14
+ @lambd.to_s
15
+ end
16
+ end
17
+ end
18
+ end
@@ -0,0 +1,9 @@
1
+ module Torch
2
+ module NN
3
+ class Softsign < Module
4
+ def forward(input)
5
+ F.softsign(input)
6
+ end
7
+ end
8
+ end
9
+ end
@@ -0,0 +1,9 @@
1
+ module Torch
2
+ module NN
3
+ class Tanh < Module
4
+ def forward(input)
5
+ Torch.tanh(input)
6
+ end
7
+ end
8
+ end
9
+ end
@@ -0,0 +1,9 @@
1
+ module Torch
2
+ module NN
3
+ class Tanhshrink < Module
4
+ def forward(input)
5
+ F.tanhshrink(input)
6
+ end
7
+ end
8
+ end
9
+ end
@@ -0,0 +1,18 @@
1
+ module Torch
2
+ module NN
3
+ class TripletMarginLoss < Loss
4
+ def initialize(margin: 1.0, p: 2.0, eps: 1e-6, swap: false, reduction: "mean")
5
+ super(reduction)
6
+ @margin = margin
7
+ @p = p
8
+ @eps = eps
9
+ @swap = swap
10
+ end
11
+
12
+ def forward(anchor, positive, negative)
13
+ F.triplet_margin_loss(anchor, positive, negative, margin: @margin, p: @p,
14
+ eps: @eps, swap: @swap, reduction: @reduction)
15
+ end
16
+ end
17
+ end
18
+ end
@@ -0,0 +1,19 @@
1
+ module Torch
2
+ module NN
3
+ class Unfold < Module
4
+ def initialize(kernel_size, dilation: 1, padding: 0, stride: 1)
5
+ super()
6
+ @kernel_size = kernel_size
7
+ @dilation = dilation
8
+ @padding = padding
9
+ @stride = stride
10
+ end
11
+
12
+ def forward(input)
13
+ F.unfold(input, @kernel_size, dilation: @dilation, padding: @padding, stride: @stride)
14
+ end
15
+
16
+ # TODO add extra_inspect
17
+ end
18
+ end
19
+ end
@@ -0,0 +1,25 @@
1
+ module Torch
2
+ module NN
3
+ module Utils
4
+ def _single(value)
5
+ _ntuple(1, value)
6
+ end
7
+
8
+ def _pair(value)
9
+ _ntuple(2, value)
10
+ end
11
+
12
+ def _triple(value)
13
+ _ntuple(3, value)
14
+ end
15
+
16
+ def _quadrupal(value)
17
+ _ntuple(4, value)
18
+ end
19
+
20
+ def _ntuple(n, value)
21
+ value.is_a?(Array) ? value : [value] * n
22
+ end
23
+ end
24
+ end
25
+ end
@@ -0,0 +1,10 @@
1
+ module Torch
2
+ module NN
3
+ class WeightedLoss < Loss
4
+ def initialize(weight, reduction)
5
+ super(reduction)
6
+ register_buffer("weight", weight)
7
+ end
8
+ end
9
+ end
10
+ end
@@ -0,0 +1,9 @@
1
+ module Torch
2
+ module NN
3
+ class ZeroPad2d < ConstantPad2d
4
+ def initialize(padding)
5
+ super(padding, 0.0)
6
+ end
7
+ end
8
+ end
9
+ end
@@ -0,0 +1,57 @@
1
+ # ported from https://github.com/pytorch/pytorch/blob/master/torch/optim/adadelta.py
2
+ module Torch
3
+ module Optim
4
+ class Adadelta < Optimizer
5
+ def initialize(params, lr: 1.0, rho: 0.9, eps: 1e-6, weight_decay: 0)
6
+ raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0
7
+ raise ArgumentError, "Invalid rho value: #{rho}" if rho < 0 || rho > 1
8
+ raise ArgumentError, "Invalid epsilon value: #{eps}" if eps < 0
9
+ raise ArgumentError, "Invalid weight_decay value: #{weight_decay}" if weight_decay < 0
10
+
11
+ defaults = {lr: lr, rho: rho, eps: eps, weight_decay: weight_decay}
12
+ super(params, defaults)
13
+ end
14
+
15
+ def step(closure = nil)
16
+ loss = nil
17
+ if closure
18
+ loss = closure.call
19
+ end
20
+
21
+ @param_groups.each do |group|
22
+ group[:params].each do |p|
23
+ next unless p.grad
24
+ grad = p.grad.data
25
+ if grad.sparse?
26
+ raise Error, "Adadelta does not support sparse gradients"
27
+ end
28
+ state = @state[p]
29
+
30
+ if state.size == 0
31
+ state[:step] = 0
32
+ state[:square_avg] = Torch.zeros_like(p.data)
33
+ state[:acc_delta] = Torch.zeros_like(p.data)
34
+ end
35
+
36
+ square_avg, acc_delta = state[:square_avg], state[:acc_delta]
37
+ rho, eps = group[:rho], group[:eps]
38
+
39
+ state[:step] += 1
40
+
41
+ if group[:weight_decay] != 0
42
+ grad = grad.add(group[:weight_decay], p.data)
43
+ end
44
+
45
+ square_avg.mul!(rho).addcmul!(1 - rho, grad, grad)
46
+ std = square_avg.add(eps).sqrt!
47
+ delta = acc_delta.add(eps).sqrt!.div!(std).mul!(grad)
48
+ p.data.add!(-group[:lr], delta)
49
+ acc_delta.mul!(rho).addcmul!(1 - rho, delta, delta)
50
+ end
51
+ end
52
+
53
+ loss
54
+ end
55
+ end
56
+ end
57
+ end
@@ -0,0 +1,71 @@
1
+ # ported from https://github.com/pytorch/pytorch/blob/master/torch/optim/adagrad.py
2
+ module Torch
3
+ module Optim
4
+ class Adagrad < Optimizer
5
+ def initialize(params, lr: 1e-2, lr_decay: 0, weight_decay: 0, initial_accumulator_value: 0, eps: 1e-10)
6
+ raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0
7
+ raise ArgumentError, "Invalid lr_decay value: #{lr_decay}" if lr_decay < 0
8
+ raise ArgumentError, "Invalid initial_accumulator_value value: #{initial_accumulator_value}" if initial_accumulator_value < 0
9
+ raise ArgumentError, "Invalid weight_decay value: #{weight_decay}" if weight_decay < 0
10
+ raise ArgumentError, "Invalid epsilon value: #{eps}" if eps < 0
11
+
12
+ defaults = {lr: lr, lr_decay: lr_decay, eps: eps, weight_decay: weight_decay, initial_accumulator_value: initial_accumulator_value}
13
+ super(params, defaults)
14
+
15
+ @param_groups.each do |group|
16
+ group[:params].each do |p|
17
+ state = @state[p]
18
+ state[:step] = 0
19
+ state[:sum] = Torch.full_like(p.data, initial_accumulator_value)
20
+ end
21
+ end
22
+ end
23
+
24
+ def share_memory
25
+ @param_groups.each do |group|
26
+ group[:params].each do |p|
27
+ state = @state[p]
28
+ state[:sum].share_memory!
29
+ end
30
+ end
31
+ end
32
+
33
+ def step(closure = nil)
34
+ loss = nil
35
+ if closure
36
+ loss = closure.call
37
+ end
38
+
39
+ @param_groups.each do |group|
40
+ group[:params].each do |p|
41
+ next unless p.grad
42
+
43
+ grad = p.grad.data
44
+ state = @state[p]
45
+
46
+ state[:step] += 1
47
+
48
+ if group[:weight_decay] != 0
49
+ if p.grad.data.sparse?
50
+ raise Error, "weight_decay option is not compatible with sparse gradients"
51
+ end
52
+ grad = grad.add(group[:weight_decay], p.data)
53
+ end
54
+
55
+ clr = group[:lr] / (1 + (state[:step] - 1) * group[:lr_decay])
56
+
57
+ if grad.sparse?
58
+ raise NotImplementedYet
59
+ else
60
+ state[:sum].addcmul!(1, grad, grad)
61
+ std = state[:sum].sqrt.add!(group[:eps])
62
+ p.data.addcdiv!(-clr, grad, std)
63
+ end
64
+ end
65
+ end
66
+
67
+ loss
68
+ end
69
+ end
70
+ end
71
+ end
@@ -0,0 +1,81 @@
1
+ # ported from https://github.com/pytorch/pytorch/blob/master/torch/optim/adam.py
2
+ module Torch
3
+ module Optim
4
+ class Adam < Optimizer
5
+ def initialize(params, lr: 1e-3, betas: [0.9, 0.999], eps: 1e-8, weight_decay: 0, amsgrad: false)
6
+ raise ArgumentError, "Invalid learning rate: #{lr}" if lr < 0
7
+ raise ArgumentError, "Invalid epsilon value: #{eps}" if eps < 0
8
+ raise ArgumentError, "Invalid beta parameter at index 0: #{betas[0]}" if betas[0] < 0 || betas[0] >= 1
9
+ raise ArgumentError, "Invalid beta parameter at index 1: #{betas[1]}" if betas[1] < 0 || betas[1] >= 1
10
+
11
+ defaults = {lr: lr, betas: betas, eps: eps, weight_decay: weight_decay, amsgrad: amsgrad}
12
+ super(params, defaults)
13
+ end
14
+
15
+ def step(closure = nil)
16
+ loss = nil
17
+ if closure
18
+ loss = closure.call
19
+ end
20
+
21
+ @param_groups.each do |group|
22
+ group[:params].each do |p|
23
+ next unless p.grad
24
+ grad = p.grad.data
25
+ if grad.sparse?
26
+ raise Error, "Adam does not support sparse gradients, please consider SparseAdam instead"
27
+ end
28
+ amsgrad = group[:amsgrad]
29
+
30
+ state = @state[p]
31
+
32
+ # State initialization
33
+ if state.size == 0
34
+ state[:step] = 0
35
+ # Exponential moving average of gradient values
36
+ state[:exp_avg] = Torch.zeros_like(p.data)
37
+ # Exponential moving average of squared gradient values
38
+ state[:exp_avg_sq] = Torch.zeros_like(p.data)
39
+ if amsgrad
40
+ # Maintains max of all exp. moving avg. of sq. grad. values
41
+ state[:max_exp_avg_sq] = Torch.zeros_like(p.data)
42
+ end
43
+ end
44
+
45
+ exp_avg, exp_avg_sq = state[:exp_avg], state[:exp_avg_sq]
46
+ if amsgrad
47
+ max_exp_avg_sq = state[:max_exp_avg_sq]
48
+ end
49
+ beta1, beta2 = group[:betas]
50
+
51
+ state[:step] += 1
52
+ bias_correction1 = 1 - beta1 ** state[:step]
53
+ bias_correction2 = 1 - beta2 ** state[:step]
54
+
55
+ if group[:weight_decay] != 0
56
+ grad.add!(group[:weight_decay], p.data)
57
+ end
58
+
59
+ # Decay the first and second moment running average coefficient
60
+ exp_avg.mul!(beta1).add!(1 - beta1, grad)
61
+ exp_avg_sq.mul!(beta2).addcmul!(1 - beta2, grad, grad)
62
+ if amsgrad
63
+ # Maintains the maximum of all 2nd moment running avg. till now
64
+ Torch.max(max_exp_avg_sq, exp_avg_sq, out: max_exp_avg_sq)
65
+ # Use the max. for normalizing running avg. of gradient
66
+ denom = (max_exp_avg_sq.sqrt / Math.sqrt(bias_correction2)).add!(group[:eps])
67
+ else
68
+ denom = (exp_avg_sq.sqrt / Math.sqrt(bias_correction2)).add!(group[:eps])
69
+ end
70
+
71
+ step_size = group[:lr] / bias_correction1
72
+
73
+ p.data.addcdiv!(-step_size, exp_avg, denom)
74
+ end
75
+ end
76
+
77
+ loss
78
+ end
79
+ end
80
+ end
81
+ end