tesseract_bin 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/.document +5 -0
- data/Gemfile +14 -0
- data/Gemfile.lock +23 -0
- data/LICENSE.txt +20 -0
- data/README.rdoc +19 -0
- data/Rakefile +46 -0
- data/VERSION +1 -0
- data/ext/tesseract_bin/extconf.rb +17 -0
- data/lib/tesseract_bin.rb +12 -0
- data/tesseract_bin.gemspec +660 -0
- data/test/helper.rb +18 -0
- data/test/test_tesseract_bin.rb +7 -0
- data/vendor/tesseract-2.04/AUTHORS +8 -0
- data/vendor/tesseract-2.04/COPYING +23 -0
- data/vendor/tesseract-2.04/ChangeLog +71 -0
- data/vendor/tesseract-2.04/INSTALL +229 -0
- data/vendor/tesseract-2.04/Makefile.am +20 -0
- data/vendor/tesseract-2.04/Makefile.in +641 -0
- data/vendor/tesseract-2.04/NEWS +1 -0
- data/vendor/tesseract-2.04/README +138 -0
- data/vendor/tesseract-2.04/ReleaseNotes +213 -0
- data/vendor/tesseract-2.04/StdAfx.cpp +8 -0
- data/vendor/tesseract-2.04/StdAfx.h +24 -0
- data/vendor/tesseract-2.04/ccmain/Makefile.am +63 -0
- data/vendor/tesseract-2.04/ccmain/Makefile.in +735 -0
- data/vendor/tesseract-2.04/ccmain/adaptions.cpp +1082 -0
- data/vendor/tesseract-2.04/ccmain/adaptions.h +109 -0
- data/vendor/tesseract-2.04/ccmain/applybox.cpp +891 -0
- data/vendor/tesseract-2.04/ccmain/applybox.h +73 -0
- data/vendor/tesseract-2.04/ccmain/baseapi.cpp +1105 -0
- data/vendor/tesseract-2.04/ccmain/baseapi.h +256 -0
- data/vendor/tesseract-2.04/ccmain/blobcmp.cpp +76 -0
- data/vendor/tesseract-2.04/ccmain/blobcmp.h +29 -0
- data/vendor/tesseract-2.04/ccmain/callnet.cpp +93 -0
- data/vendor/tesseract-2.04/ccmain/callnet.h +32 -0
- data/vendor/tesseract-2.04/ccmain/charcut.cpp +704 -0
- data/vendor/tesseract-2.04/ccmain/charcut.h +120 -0
- data/vendor/tesseract-2.04/ccmain/charsample.cpp +699 -0
- data/vendor/tesseract-2.04/ccmain/control.cpp +1842 -0
- data/vendor/tesseract-2.04/ccmain/control.h +198 -0
- data/vendor/tesseract-2.04/ccmain/docqual.cpp +1481 -0
- data/vendor/tesseract-2.04/ccmain/docqual.h +155 -0
- data/vendor/tesseract-2.04/ccmain/expandblob.cpp +82 -0
- data/vendor/tesseract-2.04/ccmain/expandblob.h +13 -0
- data/vendor/tesseract-2.04/ccmain/fixspace.cpp +989 -0
- data/vendor/tesseract-2.04/ccmain/fixspace.h +72 -0
- data/vendor/tesseract-2.04/ccmain/fixxht.cpp +825 -0
- data/vendor/tesseract-2.04/ccmain/fixxht.h +93 -0
- data/vendor/tesseract-2.04/ccmain/imgscale.cpp +154 -0
- data/vendor/tesseract-2.04/ccmain/imgscale.h +32 -0
- data/vendor/tesseract-2.04/ccmain/matmatch.cpp +391 -0
- data/vendor/tesseract-2.04/ccmain/matmatch.h +48 -0
- data/vendor/tesseract-2.04/ccmain/output.cpp +1273 -0
- data/vendor/tesseract-2.04/ccmain/output.h +116 -0
- data/vendor/tesseract-2.04/ccmain/pagewalk.cpp +666 -0
- data/vendor/tesseract-2.04/ccmain/pagewalk.h +155 -0
- data/vendor/tesseract-2.04/ccmain/paircmp.cpp +107 -0
- data/vendor/tesseract-2.04/ccmain/paircmp.h +43 -0
- data/vendor/tesseract-2.04/ccmain/pgedit.cpp +1867 -0
- data/vendor/tesseract-2.04/ccmain/pgedit.h +181 -0
- data/vendor/tesseract-2.04/ccmain/reject.cpp +1775 -0
- data/vendor/tesseract-2.04/ccmain/reject.h +181 -0
- data/vendor/tesseract-2.04/ccmain/scaleimg.cpp +366 -0
- data/vendor/tesseract-2.04/ccmain/scaleimg.h +35 -0
- data/vendor/tesseract-2.04/ccmain/tessbox.cpp +375 -0
- data/vendor/tesseract-2.04/ccmain/tessbox.h +110 -0
- data/vendor/tesseract-2.04/ccmain/tessedit.cpp +278 -0
- data/vendor/tesseract-2.04/ccmain/tessedit.h +49 -0
- data/vendor/tesseract-2.04/ccmain/tessembedded.cpp +110 -0
- data/vendor/tesseract-2.04/ccmain/tessembedded.h +38 -0
- data/vendor/tesseract-2.04/ccmain/tesseractfull.cc +37 -0
- data/vendor/tesseract-2.04/ccmain/tesseractmain.cpp +387 -0
- data/vendor/tesseract-2.04/ccmain/tesseractmain.h +58 -0
- data/vendor/tesseract-2.04/ccmain/tessio.h +110 -0
- data/vendor/tesseract-2.04/ccmain/tessvars.cpp +38 -0
- data/vendor/tesseract-2.04/ccmain/tessvars.h +48 -0
- data/vendor/tesseract-2.04/ccmain/tfacep.h +62 -0
- data/vendor/tesseract-2.04/ccmain/tfacepp.cpp +443 -0
- data/vendor/tesseract-2.04/ccmain/tfacepp.h +85 -0
- data/vendor/tesseract-2.04/ccmain/tstruct.cpp +549 -0
- data/vendor/tesseract-2.04/ccmain/tstruct.h +108 -0
- data/vendor/tesseract-2.04/ccmain/varabled.cpp +346 -0
- data/vendor/tesseract-2.04/ccmain/varabled.h +125 -0
- data/vendor/tesseract-2.04/ccmain/werdit.cpp +193 -0
- data/vendor/tesseract-2.04/ccmain/werdit.h +67 -0
- data/vendor/tesseract-2.04/ccstruct/Makefile.am +25 -0
- data/vendor/tesseract-2.04/ccstruct/Makefile.in +650 -0
- data/vendor/tesseract-2.04/ccstruct/blckerr.h +29 -0
- data/vendor/tesseract-2.04/ccstruct/blobbox.cpp +778 -0
- data/vendor/tesseract-2.04/ccstruct/blobbox.h +381 -0
- data/vendor/tesseract-2.04/ccstruct/blobs.cpp +247 -0
- data/vendor/tesseract-2.04/ccstruct/blobs.h +119 -0
- data/vendor/tesseract-2.04/ccstruct/blread.cpp +537 -0
- data/vendor/tesseract-2.04/ccstruct/blread.h +63 -0
- data/vendor/tesseract-2.04/ccstruct/callcpp.cpp +252 -0
- data/vendor/tesseract-2.04/ccstruct/coutln.cpp +650 -0
- data/vendor/tesseract-2.04/ccstruct/coutln.h +186 -0
- data/vendor/tesseract-2.04/ccstruct/crakedge.h +39 -0
- data/vendor/tesseract-2.04/ccstruct/genblob.cpp +133 -0
- data/vendor/tesseract-2.04/ccstruct/genblob.h +52 -0
- data/vendor/tesseract-2.04/ccstruct/hpddef.h +39 -0
- data/vendor/tesseract-2.04/ccstruct/hpdsizes.h +8 -0
- data/vendor/tesseract-2.04/ccstruct/ipoints.h +479 -0
- data/vendor/tesseract-2.04/ccstruct/labls.cpp +188 -0
- data/vendor/tesseract-2.04/ccstruct/labls.h +38 -0
- data/vendor/tesseract-2.04/ccstruct/linlsq.cpp +249 -0
- data/vendor/tesseract-2.04/ccstruct/linlsq.h +102 -0
- data/vendor/tesseract-2.04/ccstruct/lmedsq.cpp +453 -0
- data/vendor/tesseract-2.04/ccstruct/lmedsq.h +84 -0
- data/vendor/tesseract-2.04/ccstruct/mod128.cpp +100 -0
- data/vendor/tesseract-2.04/ccstruct/mod128.h +85 -0
- data/vendor/tesseract-2.04/ccstruct/normalis.cpp +176 -0
- data/vendor/tesseract-2.04/ccstruct/normalis.h +108 -0
- data/vendor/tesseract-2.04/ccstruct/ocrblock.cpp +369 -0
- data/vendor/tesseract-2.04/ccstruct/ocrblock.h +235 -0
- data/vendor/tesseract-2.04/ccstruct/ocrrow.cpp +216 -0
- data/vendor/tesseract-2.04/ccstruct/ocrrow.h +133 -0
- data/vendor/tesseract-2.04/ccstruct/pageblk.cpp +879 -0
- data/vendor/tesseract-2.04/ccstruct/pageblk.h +318 -0
- data/vendor/tesseract-2.04/ccstruct/pageres.cpp +330 -0
- data/vendor/tesseract-2.04/ccstruct/pageres.h +313 -0
- data/vendor/tesseract-2.04/ccstruct/pdblock.cpp +361 -0
- data/vendor/tesseract-2.04/ccstruct/pdblock.h +181 -0
- data/vendor/tesseract-2.04/ccstruct/pdclass.h +54 -0
- data/vendor/tesseract-2.04/ccstruct/points.cpp +102 -0
- data/vendor/tesseract-2.04/ccstruct/points.h +299 -0
- data/vendor/tesseract-2.04/ccstruct/polyaprx.cpp +588 -0
- data/vendor/tesseract-2.04/ccstruct/polyaprx.h +51 -0
- data/vendor/tesseract-2.04/ccstruct/polyblk.cpp +398 -0
- data/vendor/tesseract-2.04/ccstruct/polyblk.h +122 -0
- data/vendor/tesseract-2.04/ccstruct/polyblob.cpp +357 -0
- data/vendor/tesseract-2.04/ccstruct/polyblob.h +102 -0
- data/vendor/tesseract-2.04/ccstruct/polyvert.cpp +23 -0
- data/vendor/tesseract-2.04/ccstruct/polyvert.h +58 -0
- data/vendor/tesseract-2.04/ccstruct/poutline.cpp +441 -0
- data/vendor/tesseract-2.04/ccstruct/poutline.h +125 -0
- data/vendor/tesseract-2.04/ccstruct/quadlsq.cpp +147 -0
- data/vendor/tesseract-2.04/ccstruct/quadlsq.h +67 -0
- data/vendor/tesseract-2.04/ccstruct/quadratc.cpp +21 -0
- data/vendor/tesseract-2.04/ccstruct/quadratc.h +63 -0
- data/vendor/tesseract-2.04/ccstruct/quspline.cpp +382 -0
- data/vendor/tesseract-2.04/ccstruct/quspline.h +113 -0
- data/vendor/tesseract-2.04/ccstruct/ratngs.cpp +372 -0
- data/vendor/tesseract-2.04/ccstruct/ratngs.h +198 -0
- data/vendor/tesseract-2.04/ccstruct/rect.cpp +229 -0
- data/vendor/tesseract-2.04/ccstruct/rect.h +320 -0
- data/vendor/tesseract-2.04/ccstruct/rejctmap.cpp +545 -0
- data/vendor/tesseract-2.04/ccstruct/rejctmap.h +284 -0
- data/vendor/tesseract-2.04/ccstruct/rwpoly.cpp +89 -0
- data/vendor/tesseract-2.04/ccstruct/rwpoly.h +45 -0
- data/vendor/tesseract-2.04/ccstruct/statistc.cpp +905 -0
- data/vendor/tesseract-2.04/ccstruct/statistc.h +135 -0
- data/vendor/tesseract-2.04/ccstruct/stepblob.cpp +296 -0
- data/vendor/tesseract-2.04/ccstruct/stepblob.h +88 -0
- data/vendor/tesseract-2.04/ccstruct/txtregn.cpp +230 -0
- data/vendor/tesseract-2.04/ccstruct/txtregn.h +155 -0
- data/vendor/tesseract-2.04/ccstruct/vecfuncs.cpp +63 -0
- data/vendor/tesseract-2.04/ccstruct/vecfuncs.h +91 -0
- data/vendor/tesseract-2.04/ccstruct/werd.cpp +967 -0
- data/vendor/tesseract-2.04/ccstruct/werd.h +277 -0
- data/vendor/tesseract-2.04/ccutil/Makefile.am +19 -0
- data/vendor/tesseract-2.04/ccutil/Makefile.in +626 -0
- data/vendor/tesseract-2.04/ccutil/basedir.cpp +118 -0
- data/vendor/tesseract-2.04/ccutil/basedir.h +32 -0
- data/vendor/tesseract-2.04/ccutil/bits16.cpp +30 -0
- data/vendor/tesseract-2.04/ccutil/bits16.h +61 -0
- data/vendor/tesseract-2.04/ccutil/boxread.cpp +105 -0
- data/vendor/tesseract-2.04/ccutil/boxread.h +44 -0
- data/vendor/tesseract-2.04/ccutil/clst.cpp +626 -0
- data/vendor/tesseract-2.04/ccutil/clst.h +1085 -0
- data/vendor/tesseract-2.04/ccutil/debugwin.cpp +500 -0
- data/vendor/tesseract-2.04/ccutil/debugwin.h +103 -0
- data/vendor/tesseract-2.04/ccutil/elst.cpp +593 -0
- data/vendor/tesseract-2.04/ccutil/elst.h +1125 -0
- data/vendor/tesseract-2.04/ccutil/elst2.cpp +606 -0
- data/vendor/tesseract-2.04/ccutil/elst2.h +1121 -0
- data/vendor/tesseract-2.04/ccutil/errcode.cpp +104 -0
- data/vendor/tesseract-2.04/ccutil/errcode.h +104 -0
- data/vendor/tesseract-2.04/ccutil/fileerr.h +34 -0
- data/vendor/tesseract-2.04/ccutil/globaloc.cpp +115 -0
- data/vendor/tesseract-2.04/ccutil/globaloc.h +40 -0
- data/vendor/tesseract-2.04/ccutil/hashfn.cpp +57 -0
- data/vendor/tesseract-2.04/ccutil/hashfn.h +30 -0
- data/vendor/tesseract-2.04/ccutil/host.h +180 -0
- data/vendor/tesseract-2.04/ccutil/hosthplb.h +1 -0
- data/vendor/tesseract-2.04/ccutil/lsterr.h +43 -0
- data/vendor/tesseract-2.04/ccutil/mainblk.cpp +126 -0
- data/vendor/tesseract-2.04/ccutil/mainblk.h +39 -0
- data/vendor/tesseract-2.04/ccutil/memblk.cpp +1106 -0
- data/vendor/tesseract-2.04/ccutil/memblk.h +189 -0
- data/vendor/tesseract-2.04/ccutil/memry.cpp +532 -0
- data/vendor/tesseract-2.04/ccutil/memry.h +192 -0
- data/vendor/tesseract-2.04/ccutil/memryerr.h +38 -0
- data/vendor/tesseract-2.04/ccutil/mfcpch.cpp +5 -0
- data/vendor/tesseract-2.04/ccutil/mfcpch.h +37 -0
- data/vendor/tesseract-2.04/ccutil/ndminx.h +31 -0
- data/vendor/tesseract-2.04/ccutil/notdll.h +28 -0
- data/vendor/tesseract-2.04/ccutil/nwmain.h +176 -0
- data/vendor/tesseract-2.04/ccutil/ocrclass.h +345 -0
- data/vendor/tesseract-2.04/ccutil/ocrshell.cpp +772 -0
- data/vendor/tesseract-2.04/ccutil/ocrshell.h +191 -0
- data/vendor/tesseract-2.04/ccutil/platform.h +18 -0
- data/vendor/tesseract-2.04/ccutil/scanutils.cpp +543 -0
- data/vendor/tesseract-2.04/ccutil/scanutils.h +55 -0
- data/vendor/tesseract-2.04/ccutil/secname.h +9 -0
- data/vendor/tesseract-2.04/ccutil/serialis.cpp +117 -0
- data/vendor/tesseract-2.04/ccutil/serialis.h +93 -0
- data/vendor/tesseract-2.04/ccutil/stderr.h +26 -0
- data/vendor/tesseract-2.04/ccutil/strngs.cpp +495 -0
- data/vendor/tesseract-2.04/ccutil/strngs.h +138 -0
- data/vendor/tesseract-2.04/ccutil/tessclas.h +135 -0
- data/vendor/tesseract-2.04/ccutil/tessopt.cpp +61 -0
- data/vendor/tesseract-2.04/ccutil/tessopt.h +30 -0
- data/vendor/tesseract-2.04/ccutil/tprintf.cpp +122 -0
- data/vendor/tesseract-2.04/ccutil/tprintf.h +35 -0
- data/vendor/tesseract-2.04/ccutil/unichar.cpp +144 -0
- data/vendor/tesseract-2.04/ccutil/unichar.h +84 -0
- data/vendor/tesseract-2.04/ccutil/unicharmap.cpp +172 -0
- data/vendor/tesseract-2.04/ccutil/unicharmap.h +82 -0
- data/vendor/tesseract-2.04/ccutil/unicharset.cpp +307 -0
- data/vendor/tesseract-2.04/ccutil/unicharset.h +267 -0
- data/vendor/tesseract-2.04/ccutil/varable.cpp +672 -0
- data/vendor/tesseract-2.04/ccutil/varable.h +419 -0
- data/vendor/tesseract-2.04/classify/Makefile.am +24 -0
- data/vendor/tesseract-2.04/classify/Makefile.in +647 -0
- data/vendor/tesseract-2.04/classify/adaptive.cpp +535 -0
- data/vendor/tesseract-2.04/classify/adaptive.h +199 -0
- data/vendor/tesseract-2.04/classify/adaptmatch.cpp +2958 -0
- data/vendor/tesseract-2.04/classify/adaptmatch.h +86 -0
- data/vendor/tesseract-2.04/classify/baseline.cpp +58 -0
- data/vendor/tesseract-2.04/classify/baseline.h +91 -0
- data/vendor/tesseract-2.04/classify/blobclass.cpp +123 -0
- data/vendor/tesseract-2.04/classify/blobclass.h +49 -0
- data/vendor/tesseract-2.04/classify/chartoname.cpp +74 -0
- data/vendor/tesseract-2.04/classify/chartoname.h +21 -0
- data/vendor/tesseract-2.04/classify/cluster.cpp +2834 -0
- data/vendor/tesseract-2.04/classify/cluster.h +158 -0
- data/vendor/tesseract-2.04/classify/clusttool.cpp +507 -0
- data/vendor/tesseract-2.04/classify/clusttool.h +70 -0
- data/vendor/tesseract-2.04/classify/cutoffs.cpp +73 -0
- data/vendor/tesseract-2.04/classify/cutoffs.h +49 -0
- data/vendor/tesseract-2.04/classify/extern.h +32 -0
- data/vendor/tesseract-2.04/classify/extract.cpp +100 -0
- data/vendor/tesseract-2.04/classify/extract.h +36 -0
- data/vendor/tesseract-2.04/classify/featdefs.cpp +244 -0
- data/vendor/tesseract-2.04/classify/featdefs.h +71 -0
- data/vendor/tesseract-2.04/classify/flexfx.cpp +87 -0
- data/vendor/tesseract-2.04/classify/flexfx.h +34 -0
- data/vendor/tesseract-2.04/classify/float2int.cpp +126 -0
- data/vendor/tesseract-2.04/classify/float2int.h +65 -0
- data/vendor/tesseract-2.04/classify/fpoint.cpp +73 -0
- data/vendor/tesseract-2.04/classify/fpoint.h +63 -0
- data/vendor/tesseract-2.04/classify/fxdefs.cpp +74 -0
- data/vendor/tesseract-2.04/classify/fxdefs.h +93 -0
- data/vendor/tesseract-2.04/classify/fxid.h +69 -0
- data/vendor/tesseract-2.04/classify/hideedge.cpp +35 -0
- data/vendor/tesseract-2.04/classify/hideedge.h +76 -0
- data/vendor/tesseract-2.04/classify/intfx.cpp +608 -0
- data/vendor/tesseract-2.04/classify/intfx.h +63 -0
- data/vendor/tesseract-2.04/classify/intmatcher.cpp +1524 -0
- data/vendor/tesseract-2.04/classify/intmatcher.h +199 -0
- data/vendor/tesseract-2.04/classify/intproto.cpp +1823 -0
- data/vendor/tesseract-2.04/classify/intproto.h +320 -0
- data/vendor/tesseract-2.04/classify/kdtree.cpp +884 -0
- data/vendor/tesseract-2.04/classify/kdtree.h +118 -0
- data/vendor/tesseract-2.04/classify/mf.cpp +106 -0
- data/vendor/tesseract-2.04/classify/mf.h +43 -0
- data/vendor/tesseract-2.04/classify/mfdefs.cpp +58 -0
- data/vendor/tesseract-2.04/classify/mfdefs.h +60 -0
- data/vendor/tesseract-2.04/classify/mfoutline.cpp +1087 -0
- data/vendor/tesseract-2.04/classify/mfoutline.h +277 -0
- data/vendor/tesseract-2.04/classify/mfx.cpp +436 -0
- data/vendor/tesseract-2.04/classify/mfx.h +52 -0
- data/vendor/tesseract-2.04/classify/normfeat.cpp +132 -0
- data/vendor/tesseract-2.04/classify/normfeat.h +63 -0
- data/vendor/tesseract-2.04/classify/normmatch.cpp +305 -0
- data/vendor/tesseract-2.04/classify/normmatch.h +38 -0
- data/vendor/tesseract-2.04/classify/ocrfeatures.cpp +310 -0
- data/vendor/tesseract-2.04/classify/ocrfeatures.h +148 -0
- data/vendor/tesseract-2.04/classify/outfeat.cpp +262 -0
- data/vendor/tesseract-2.04/classify/outfeat.h +76 -0
- data/vendor/tesseract-2.04/classify/picofeat.cpp +297 -0
- data/vendor/tesseract-2.04/classify/picofeat.h +65 -0
- data/vendor/tesseract-2.04/classify/protos.cpp +472 -0
- data/vendor/tesseract-2.04/classify/protos.h +258 -0
- data/vendor/tesseract-2.04/classify/sigmenu.cpp +225 -0
- data/vendor/tesseract-2.04/classify/sigmenu.h +39 -0
- data/vendor/tesseract-2.04/classify/speckle.cpp +127 -0
- data/vendor/tesseract-2.04/classify/speckle.h +69 -0
- data/vendor/tesseract-2.04/classify/xform2d.cpp +120 -0
- data/vendor/tesseract-2.04/classify/xform2d.h +60 -0
- data/vendor/tesseract-2.04/config/config.guess +1466 -0
- data/vendor/tesseract-2.04/config/config.h.in +188 -0
- data/vendor/tesseract-2.04/config/config.sub +1579 -0
- data/vendor/tesseract-2.04/config/depcomp +530 -0
- data/vendor/tesseract-2.04/config/install-sh +269 -0
- data/vendor/tesseract-2.04/config/missing +198 -0
- data/vendor/tesseract-2.04/config/mkinstalldirs +40 -0
- data/vendor/tesseract-2.04/config/stamp-h.in +0 -0
- data/vendor/tesseract-2.04/configure +10424 -0
- data/vendor/tesseract-2.04/cutil/Makefile.am +14 -0
- data/vendor/tesseract-2.04/cutil/Makefile.in +612 -0
- data/vendor/tesseract-2.04/cutil/bitvec.cpp +115 -0
- data/vendor/tesseract-2.04/cutil/bitvec.h +100 -0
- data/vendor/tesseract-2.04/cutil/callcpp.h +190 -0
- data/vendor/tesseract-2.04/cutil/const.h +108 -0
- data/vendor/tesseract-2.04/cutil/cutil.cpp +92 -0
- data/vendor/tesseract-2.04/cutil/cutil.h +159 -0
- data/vendor/tesseract-2.04/cutil/danerror.cpp +144 -0
- data/vendor/tesseract-2.04/cutil/danerror.h +41 -0
- data/vendor/tesseract-2.04/cutil/debug.cpp +97 -0
- data/vendor/tesseract-2.04/cutil/debug.h +348 -0
- data/vendor/tesseract-2.04/cutil/efio.cpp +62 -0
- data/vendor/tesseract-2.04/cutil/efio.h +32 -0
- data/vendor/tesseract-2.04/cutil/emalloc.cpp +91 -0
- data/vendor/tesseract-2.04/cutil/emalloc.h +44 -0
- data/vendor/tesseract-2.04/cutil/freelist.cpp +75 -0
- data/vendor/tesseract-2.04/cutil/freelist.h +45 -0
- data/vendor/tesseract-2.04/cutil/funcdefs.h +35 -0
- data/vendor/tesseract-2.04/cutil/general.h +33 -0
- data/vendor/tesseract-2.04/cutil/globals.cpp +69 -0
- data/vendor/tesseract-2.04/cutil/globals.h +70 -0
- data/vendor/tesseract-2.04/cutil/listio.cpp +68 -0
- data/vendor/tesseract-2.04/cutil/listio.h +43 -0
- data/vendor/tesseract-2.04/cutil/minmax.h +40 -0
- data/vendor/tesseract-2.04/cutil/oldheap.cpp +337 -0
- data/vendor/tesseract-2.04/cutil/oldheap.h +126 -0
- data/vendor/tesseract-2.04/cutil/oldlist.cpp +393 -0
- data/vendor/tesseract-2.04/cutil/oldlist.h +350 -0
- data/vendor/tesseract-2.04/cutil/structures.cpp +66 -0
- data/vendor/tesseract-2.04/cutil/structures.h +112 -0
- data/vendor/tesseract-2.04/cutil/tessarray.cpp +115 -0
- data/vendor/tesseract-2.04/cutil/tessarray.h +166 -0
- data/vendor/tesseract-2.04/cutil/tordvars.cpp +95 -0
- data/vendor/tesseract-2.04/cutil/tordvars.h +61 -0
- data/vendor/tesseract-2.04/cutil/variables.cpp +317 -0
- data/vendor/tesseract-2.04/cutil/variables.h +170 -0
- data/vendor/tesseract-2.04/dict/Makefile.am +13 -0
- data/vendor/tesseract-2.04/dict/Makefile.in +609 -0
- data/vendor/tesseract-2.04/dict/choicearr.h +96 -0
- data/vendor/tesseract-2.04/dict/choices.cpp +210 -0
- data/vendor/tesseract-2.04/dict/choices.h +241 -0
- data/vendor/tesseract-2.04/dict/context.cpp +270 -0
- data/vendor/tesseract-2.04/dict/context.h +82 -0
- data/vendor/tesseract-2.04/dict/dawg.cpp +363 -0
- data/vendor/tesseract-2.04/dict/dawg.h +394 -0
- data/vendor/tesseract-2.04/dict/hyphen.cpp +84 -0
- data/vendor/tesseract-2.04/dict/hyphen.h +125 -0
- data/vendor/tesseract-2.04/dict/lookdawg.cpp +228 -0
- data/vendor/tesseract-2.04/dict/lookdawg.h +76 -0
- data/vendor/tesseract-2.04/dict/makedawg.cpp +449 -0
- data/vendor/tesseract-2.04/dict/makedawg.h +83 -0
- data/vendor/tesseract-2.04/dict/matchdefs.h +145 -0
- data/vendor/tesseract-2.04/dict/permdawg.cpp +415 -0
- data/vendor/tesseract-2.04/dict/permdawg.h +98 -0
- data/vendor/tesseract-2.04/dict/permngram.cpp +358 -0
- data/vendor/tesseract-2.04/dict/permngram.h +33 -0
- data/vendor/tesseract-2.04/dict/permnum.cpp +522 -0
- data/vendor/tesseract-2.04/dict/permnum.h +83 -0
- data/vendor/tesseract-2.04/dict/permute.cpp +1704 -0
- data/vendor/tesseract-2.04/dict/permute.h +93 -0
- data/vendor/tesseract-2.04/dict/reduce.cpp +424 -0
- data/vendor/tesseract-2.04/dict/reduce.h +112 -0
- data/vendor/tesseract-2.04/dict/states.cpp +382 -0
- data/vendor/tesseract-2.04/dict/states.h +111 -0
- data/vendor/tesseract-2.04/dict/stopper.cpp +1458 -0
- data/vendor/tesseract-2.04/dict/stopper.h +103 -0
- data/vendor/tesseract-2.04/dict/trie.cpp +683 -0
- data/vendor/tesseract-2.04/dict/trie.h +190 -0
- data/vendor/tesseract-2.04/dlltest/Makefile.am +2 -0
- data/vendor/tesseract-2.04/dlltest/Makefile.in +388 -0
- data/vendor/tesseract-2.04/dlltest/dlltest.cpp +163 -0
- data/vendor/tesseract-2.04/dlltest/dlltest.dsp +186 -0
- data/vendor/tesseract-2.04/dlltest/dlltest.vcproj +637 -0
- data/vendor/tesseract-2.04/eurotext.tif +0 -0
- data/vendor/tesseract-2.04/image/Makefile.am +10 -0
- data/vendor/tesseract-2.04/image/Makefile.in +596 -0
- data/vendor/tesseract-2.04/image/bitstrm.cpp +157 -0
- data/vendor/tesseract-2.04/image/bitstrm.h +73 -0
- data/vendor/tesseract-2.04/image/img.h +336 -0
- data/vendor/tesseract-2.04/image/imgbmp.cpp +223 -0
- data/vendor/tesseract-2.04/image/imgbmp.h +50 -0
- data/vendor/tesseract-2.04/image/imgerrs.h +35 -0
- data/vendor/tesseract-2.04/image/imgio.cpp +321 -0
- data/vendor/tesseract-2.04/image/imgio.h +22 -0
- data/vendor/tesseract-2.04/image/imgs.cpp +1764 -0
- data/vendor/tesseract-2.04/image/imgs.h +102 -0
- data/vendor/tesseract-2.04/image/imgtiff.cpp +723 -0
- data/vendor/tesseract-2.04/image/imgtiff.h +89 -0
- data/vendor/tesseract-2.04/image/imgunpk.h +1377 -0
- data/vendor/tesseract-2.04/image/svshowim.cpp +40 -0
- data/vendor/tesseract-2.04/image/svshowim.h +25 -0
- data/vendor/tesseract-2.04/java/Makefile.am +4 -0
- data/vendor/tesseract-2.04/java/Makefile.in +473 -0
- data/vendor/tesseract-2.04/java/com/Makefile.am +1 -0
- data/vendor/tesseract-2.04/java/com/Makefile.in +470 -0
- data/vendor/tesseract-2.04/java/com/google/Makefile.am +1 -0
- data/vendor/tesseract-2.04/java/com/google/Makefile.in +470 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/Makefile.am +4 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/Makefile.in +473 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ScrollView.java +421 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/events/Makefile.am +5 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/events/Makefile.in +474 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/events/SVEvent.java +87 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/events/SVEventHandler.java +296 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/events/SVEventType.java +31 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/Makefile.am +7 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/Makefile.in +476 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVAbstractMenuItem.java +58 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVCheckboxMenuItem.java +60 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVEmptyMenuItem.java +48 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVImageHandler.java +228 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVMenuBar.java +130 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVMenuItem.java +61 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVPopupMenu.java +142 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVSubMenuItem.java +41 -0
- data/vendor/tesseract-2.04/java/com/google/scrollview/ui/SVWindow.java +643 -0
- data/vendor/tesseract-2.04/java/makefile +55 -0
- data/vendor/tesseract-2.04/pageseg/Makefile.am +13 -0
- data/vendor/tesseract-2.04/pageseg/Makefile.in +596 -0
- data/vendor/tesseract-2.04/pageseg/leptonica_pageseg.cpp +363 -0
- data/vendor/tesseract-2.04/pageseg/leptonica_pageseg.h +90 -0
- data/vendor/tesseract-2.04/pageseg/leptonica_pageseg_interface.cpp +82 -0
- data/vendor/tesseract-2.04/pageseg/leptonica_pageseg_interface.h +30 -0
- data/vendor/tesseract-2.04/pageseg/pageseg.cpp +170 -0
- data/vendor/tesseract-2.04/pageseg/pageseg.h +29 -0
- data/vendor/tesseract-2.04/phototest.tif +0 -0
- data/vendor/tesseract-2.04/tessdata/Makefile.am +31 -0
- data/vendor/tesseract-2.04/tessdata/Makefile.in +529 -0
- data/vendor/tesseract-2.04/tessdata/configs/Makefile.am +3 -0
- data/vendor/tesseract-2.04/tessdata/configs/Makefile.in +344 -0
- data/vendor/tesseract-2.04/tessdata/configs/api_config +1 -0
- data/vendor/tesseract-2.04/tessdata/configs/box.train +19 -0
- data/vendor/tesseract-2.04/tessdata/configs/box.train.stderr +18 -0
- data/vendor/tesseract-2.04/tessdata/configs/inter +4 -0
- data/vendor/tesseract-2.04/tessdata/configs/kannada +4 -0
- data/vendor/tesseract-2.04/tessdata/configs/makebox +1 -0
- data/vendor/tesseract-2.04/tessdata/configs/unlv +3 -0
- data/vendor/tesseract-2.04/tessdata/confsets +3 -0
- data/vendor/tesseract-2.04/tessdata/eng.DangAmbigs +39 -0
- data/vendor/tesseract-2.04/tessdata/eng.freq-dawg +0 -0
- data/vendor/tesseract-2.04/tessdata/eng.inttemp +0 -0
- data/vendor/tesseract-2.04/tessdata/eng.normproto +1247 -0
- data/vendor/tesseract-2.04/tessdata/eng.pffmtable +111 -0
- data/vendor/tesseract-2.04/tessdata/eng.unicharset +113 -0
- data/vendor/tesseract-2.04/tessdata/eng.user-words +921 -0
- data/vendor/tesseract-2.04/tessdata/eng.word-dawg +0 -0
- data/vendor/tesseract-2.04/tessdata/makedummies +8 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/Makefile.am +3 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/Makefile.in +344 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/batch +2 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/batch.nochop +2 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/matdemo +7 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/msdemo +13 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/nobatch +2 -0
- data/vendor/tesseract-2.04/tessdata/tessconfigs/segdemo +9 -0
- data/vendor/tesseract-2.04/tessdll.cpp +351 -0
- data/vendor/tesseract-2.04/tessdll.dsp +2050 -0
- data/vendor/tesseract-2.04/tessdll.h +143 -0
- data/vendor/tesseract-2.04/tessdll.vcproj +5495 -0
- data/vendor/tesseract-2.04/tesseract.dsp +2124 -0
- data/vendor/tesseract-2.04/tesseract.dsw +116 -0
- data/vendor/tesseract-2.04/tesseract.sln +59 -0
- data/vendor/tesseract-2.04/tesseract.spec +188 -0
- data/vendor/tesseract-2.04/tesseract.vcproj +5859 -0
- data/vendor/tesseract-2.04/testing/Makefile.am +2 -0
- data/vendor/tesseract-2.04/testing/Makefile.in +312 -0
- data/vendor/tesseract-2.04/testing/README +43 -0
- data/vendor/tesseract-2.04/testing/counttestset.sh +61 -0
- data/vendor/tesseract-2.04/testing/reorgdata.sh +44 -0
- data/vendor/tesseract-2.04/testing/reports/1995.bus.3B.sum +1 -0
- data/vendor/tesseract-2.04/testing/reports/1995.doe3.3B.sum +1 -0
- data/vendor/tesseract-2.04/testing/reports/1995.mag.3B.sum +1 -0
- data/vendor/tesseract-2.04/testing/reports/1995.news.3B.sum +1 -0
- data/vendor/tesseract-2.04/testing/reports/2.03.summary +9 -0
- data/vendor/tesseract-2.04/testing/reports/2.04.summary +9 -0
- data/vendor/tesseract-2.04/testing/runalltests.sh +110 -0
- data/vendor/tesseract-2.04/testing/runtestset.sh +61 -0
- data/vendor/tesseract-2.04/textord/Makefile.am +20 -0
- data/vendor/tesseract-2.04/textord/Makefile.in +624 -0
- data/vendor/tesseract-2.04/textord/blkocc.cpp +809 -0
- data/vendor/tesseract-2.04/textord/blkocc.h +327 -0
- data/vendor/tesseract-2.04/textord/blobcmpl.h +31 -0
- data/vendor/tesseract-2.04/textord/drawedg.cpp +77 -0
- data/vendor/tesseract-2.04/textord/drawedg.h +34 -0
- data/vendor/tesseract-2.04/textord/drawtord.cpp +469 -0
- data/vendor/tesseract-2.04/textord/drawtord.h +107 -0
- data/vendor/tesseract-2.04/textord/edgblob.cpp +412 -0
- data/vendor/tesseract-2.04/textord/edgblob.h +100 -0
- data/vendor/tesseract-2.04/textord/edgloop.cpp +211 -0
- data/vendor/tesseract-2.04/textord/edgloop.h +66 -0
- data/vendor/tesseract-2.04/textord/fpchop.cpp +1641 -0
- data/vendor/tesseract-2.04/textord/fpchop.h +238 -0
- data/vendor/tesseract-2.04/textord/gap_map.cpp +166 -0
- data/vendor/tesseract-2.04/textord/gap_map.h +40 -0
- data/vendor/tesseract-2.04/textord/makerow.cpp +2628 -0
- data/vendor/tesseract-2.04/textord/makerow.h +295 -0
- data/vendor/tesseract-2.04/textord/oldbasel.cpp +1761 -0
- data/vendor/tesseract-2.04/textord/oldbasel.h +195 -0
- data/vendor/tesseract-2.04/textord/pithsync.cpp +696 -0
- data/vendor/tesseract-2.04/textord/pithsync.h +134 -0
- data/vendor/tesseract-2.04/textord/pitsync1.cpp +425 -0
- data/vendor/tesseract-2.04/textord/pitsync1.h +135 -0
- data/vendor/tesseract-2.04/textord/scanedg.cpp +452 -0
- data/vendor/tesseract-2.04/textord/scanedg.h +74 -0
- data/vendor/tesseract-2.04/textord/sortflts.cpp +80 -0
- data/vendor/tesseract-2.04/textord/sortflts.h +64 -0
- data/vendor/tesseract-2.04/textord/tessout.h +76 -0
- data/vendor/tesseract-2.04/textord/topitch.cpp +2019 -0
- data/vendor/tesseract-2.04/textord/topitch.h +195 -0
- data/vendor/tesseract-2.04/textord/tordmain.cpp +907 -0
- data/vendor/tesseract-2.04/textord/tordmain.h +132 -0
- data/vendor/tesseract-2.04/textord/tospace.cpp +1939 -0
- data/vendor/tesseract-2.04/textord/tospace.h +193 -0
- data/vendor/tesseract-2.04/textord/tovars.cpp +87 -0
- data/vendor/tesseract-2.04/textord/tovars.h +94 -0
- data/vendor/tesseract-2.04/textord/underlin.cpp +312 -0
- data/vendor/tesseract-2.04/textord/underlin.h +53 -0
- data/vendor/tesseract-2.04/textord/wordseg.cpp +620 -0
- data/vendor/tesseract-2.04/textord/wordseg.h +70 -0
- data/vendor/tesseract-2.04/training/Makefile.am +54 -0
- data/vendor/tesseract-2.04/training/Makefile.in +720 -0
- data/vendor/tesseract-2.04/training/cnTraining.cpp +855 -0
- data/vendor/tesseract-2.04/training/cntraining.dsp +243 -0
- data/vendor/tesseract-2.04/training/cntraining.vcproj +950 -0
- data/vendor/tesseract-2.04/training/mergenf.cpp +451 -0
- data/vendor/tesseract-2.04/training/mergenf.h +106 -0
- data/vendor/tesseract-2.04/training/mfTraining.cpp +1341 -0
- data/vendor/tesseract-2.04/training/mftraining.dsp +285 -0
- data/vendor/tesseract-2.04/training/mftraining.vcproj +1055 -0
- data/vendor/tesseract-2.04/training/name2char.cpp +166 -0
- data/vendor/tesseract-2.04/training/name2char.h +38 -0
- data/vendor/tesseract-2.04/training/training.cpp +190 -0
- data/vendor/tesseract-2.04/training/training.h +130 -0
- data/vendor/tesseract-2.04/training/unicharset_extractor.cpp +140 -0
- data/vendor/tesseract-2.04/training/unicharset_extractor.dsp +335 -0
- data/vendor/tesseract-2.04/training/unicharset_extractor.vcproj +769 -0
- data/vendor/tesseract-2.04/training/wordlist2dawg.cpp +69 -0
- data/vendor/tesseract-2.04/training/wordlist2dawg.dsp +319 -0
- data/vendor/tesseract-2.04/training/wordlist2dawg.vcproj +1113 -0
- data/vendor/tesseract-2.04/viewer/Makefile.am +9 -0
- data/vendor/tesseract-2.04/viewer/Makefile.in +591 -0
- data/vendor/tesseract-2.04/viewer/scrollview.cpp +825 -0
- data/vendor/tesseract-2.04/viewer/scrollview.h +414 -0
- data/vendor/tesseract-2.04/viewer/svmnode.cpp +140 -0
- data/vendor/tesseract-2.04/viewer/svmnode.h +94 -0
- data/vendor/tesseract-2.04/viewer/svpaint.cpp +220 -0
- data/vendor/tesseract-2.04/viewer/svutil.cpp +347 -0
- data/vendor/tesseract-2.04/viewer/svutil.h +138 -0
- data/vendor/tesseract-2.04/wordrec/Makefile.am +23 -0
- data/vendor/tesseract-2.04/wordrec/Makefile.in +641 -0
- data/vendor/tesseract-2.04/wordrec/associate.cpp +62 -0
- data/vendor/tesseract-2.04/wordrec/associate.h +93 -0
- data/vendor/tesseract-2.04/wordrec/badwords.cpp +106 -0
- data/vendor/tesseract-2.04/wordrec/badwords.h +51 -0
- data/vendor/tesseract-2.04/wordrec/bestfirst.cpp +526 -0
- data/vendor/tesseract-2.04/wordrec/bestfirst.h +203 -0
- data/vendor/tesseract-2.04/wordrec/charsample.h +208 -0
- data/vendor/tesseract-2.04/wordrec/chop.cpp +458 -0
- data/vendor/tesseract-2.04/wordrec/chop.h +153 -0
- data/vendor/tesseract-2.04/wordrec/chopper.cpp +750 -0
- data/vendor/tesseract-2.04/wordrec/chopper.h +104 -0
- data/vendor/tesseract-2.04/wordrec/closed.cpp +136 -0
- data/vendor/tesseract-2.04/wordrec/closed.h +65 -0
- data/vendor/tesseract-2.04/wordrec/djmenus.cpp +118 -0
- data/vendor/tesseract-2.04/wordrec/djmenus.h +33 -0
- data/vendor/tesseract-2.04/wordrec/drawfx.cpp +92 -0
- data/vendor/tesseract-2.04/wordrec/drawfx.h +33 -0
- data/vendor/tesseract-2.04/wordrec/findseam.cpp +566 -0
- data/vendor/tesseract-2.04/wordrec/findseam.h +69 -0
- data/vendor/tesseract-2.04/wordrec/gradechop.cpp +226 -0
- data/vendor/tesseract-2.04/wordrec/gradechop.h +91 -0
- data/vendor/tesseract-2.04/wordrec/heuristic.cpp +194 -0
- data/vendor/tesseract-2.04/wordrec/heuristic.h +120 -0
- data/vendor/tesseract-2.04/wordrec/makechop.cpp +281 -0
- data/vendor/tesseract-2.04/wordrec/makechop.h +69 -0
- data/vendor/tesseract-2.04/wordrec/matchtab.cpp +191 -0
- data/vendor/tesseract-2.04/wordrec/matchtab.h +45 -0
- data/vendor/tesseract-2.04/wordrec/matrix.cpp +118 -0
- data/vendor/tesseract-2.04/wordrec/matrix.h +104 -0
- data/vendor/tesseract-2.04/wordrec/measure.h +135 -0
- data/vendor/tesseract-2.04/wordrec/metrics.cpp +363 -0
- data/vendor/tesseract-2.04/wordrec/metrics.h +130 -0
- data/vendor/tesseract-2.04/wordrec/mfvars.cpp +51 -0
- data/vendor/tesseract-2.04/wordrec/mfvars.h +27 -0
- data/vendor/tesseract-2.04/wordrec/msmenus.cpp +110 -0
- data/vendor/tesseract-2.04/wordrec/msmenus.h +45 -0
- data/vendor/tesseract-2.04/wordrec/olutil.cpp +153 -0
- data/vendor/tesseract-2.04/wordrec/olutil.h +128 -0
- data/vendor/tesseract-2.04/wordrec/outlines.cpp +172 -0
- data/vendor/tesseract-2.04/wordrec/outlines.h +148 -0
- data/vendor/tesseract-2.04/wordrec/pieces.cpp +410 -0
- data/vendor/tesseract-2.04/wordrec/pieces.h +154 -0
- data/vendor/tesseract-2.04/wordrec/plotedges.cpp +134 -0
- data/vendor/tesseract-2.04/wordrec/plotedges.h +71 -0
- data/vendor/tesseract-2.04/wordrec/plotseg.cpp +116 -0
- data/vendor/tesseract-2.04/wordrec/plotseg.h +73 -0
- data/vendor/tesseract-2.04/wordrec/render.cpp +152 -0
- data/vendor/tesseract-2.04/wordrec/render.h +58 -0
- data/vendor/tesseract-2.04/wordrec/seam.cpp +482 -0
- data/vendor/tesseract-2.04/wordrec/seam.h +136 -0
- data/vendor/tesseract-2.04/wordrec/split.cpp +182 -0
- data/vendor/tesseract-2.04/wordrec/split.h +115 -0
- data/vendor/tesseract-2.04/wordrec/tally.cpp +68 -0
- data/vendor/tesseract-2.04/wordrec/tally.h +94 -0
- data/vendor/tesseract-2.04/wordrec/tessinit.cpp +108 -0
- data/vendor/tesseract-2.04/wordrec/tessinit.h +46 -0
- data/vendor/tesseract-2.04/wordrec/tface.cpp +272 -0
- data/vendor/tesseract-2.04/wordrec/tface.h +35 -0
- data/vendor/tesseract-2.04/wordrec/wordclass.cpp +284 -0
- data/vendor/tesseract-2.04/wordrec/wordclass.h +64 -0
- metadata +708 -0
@@ -0,0 +1,2834 @@
|
|
1
|
+
/******************************************************************************
|
2
|
+
** Filename: cluster.c
|
3
|
+
** Purpose: Routines for clustering points in N-D space
|
4
|
+
** Author: Dan Johnson
|
5
|
+
** History: 5/29/89, DSJ, Created.
|
6
|
+
**
|
7
|
+
** (c) Copyright Hewlett-Packard Company, 1988.
|
8
|
+
** Licensed under the Apache License, Version 2.0 (the "License");
|
9
|
+
** you may not use this file except in compliance with the License.
|
10
|
+
** You may obtain a copy of the License at
|
11
|
+
** http://www.apache.org/licenses/LICENSE-2.0
|
12
|
+
** Unless required by applicable law or agreed to in writing, software
|
13
|
+
** distributed under the License is distributed on an "AS IS" BASIS,
|
14
|
+
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15
|
+
** See the License for the specific language governing permissions and
|
16
|
+
** limitations under the License.
|
17
|
+
******************************************************************************/
|
18
|
+
#include "oldheap.h"
|
19
|
+
#include "const.h"
|
20
|
+
#include "cluster.h"
|
21
|
+
#include "emalloc.h"
|
22
|
+
#include "tprintf.h"
|
23
|
+
#include "danerror.h"
|
24
|
+
#include "freelist.h"
|
25
|
+
#include <math.h>
|
26
|
+
|
27
|
+
#define HOTELLING 1 // If true use Hotelling's test to decide where to split.
|
28
|
+
#define FTABLE_X 10 // Size of FTable.
|
29
|
+
#define FTABLE_Y 100 // Size of FTable.
|
30
|
+
|
31
|
+
// Table of values approximating the cumulative F-distribution for a confidence of 1%.
|
32
|
+
double FTable[FTABLE_Y][FTABLE_X] = {
|
33
|
+
{4052.19, 4999.52, 5403.34, 5624.62, 5763.65, 5858.97, 5928.33, 5981.10, 6022.50, 6055.85,},
|
34
|
+
{98.502, 99.000, 99.166, 99.249, 99.300, 99.333, 99.356, 99.374, 99.388, 99.399,},
|
35
|
+
{34.116, 30.816, 29.457, 28.710, 28.237, 27.911, 27.672, 27.489, 27.345, 27.229,},
|
36
|
+
{21.198, 18.000, 16.694, 15.977, 15.522, 15.207, 14.976, 14.799, 14.659, 14.546,},
|
37
|
+
{16.258, 13.274, 12.060, 11.392, 10.967, 10.672, 10.456, 10.289, 10.158, 10.051,},
|
38
|
+
{13.745, 10.925, 9.780, 9.148, 8.746, 8.466, 8.260, 8.102, 7.976, 7.874,},
|
39
|
+
{12.246, 9.547, 8.451, 7.847, 7.460, 7.191, 6.993, 6.840, 6.719, 6.620,},
|
40
|
+
{11.259, 8.649, 7.591, 7.006, 6.632, 6.371, 6.178, 6.029, 5.911, 5.814,},
|
41
|
+
{10.561, 8.022, 6.992, 6.422, 6.057, 5.802, 5.613, 5.467, 5.351, 5.257,},
|
42
|
+
{10.044, 7.559, 6.552, 5.994, 5.636, 5.386, 5.200, 5.057, 4.942, 4.849,},
|
43
|
+
{ 9.646, 7.206, 6.217, 5.668, 5.316, 5.069, 4.886, 4.744, 4.632, 4.539,},
|
44
|
+
{ 9.330, 6.927, 5.953, 5.412, 5.064, 4.821, 4.640, 4.499, 4.388, 4.296,},
|
45
|
+
{ 9.074, 6.701, 5.739, 5.205, 4.862, 4.620, 4.441, 4.302, 4.191, 4.100,},
|
46
|
+
{ 8.862, 6.515, 5.564, 5.035, 4.695, 4.456, 4.278, 4.140, 4.030, 3.939,},
|
47
|
+
{ 8.683, 6.359, 5.417, 4.893, 4.556, 4.318, 4.142, 4.004, 3.895, 3.805,},
|
48
|
+
{ 8.531, 6.226, 5.292, 4.773, 4.437, 4.202, 4.026, 3.890, 3.780, 3.691,},
|
49
|
+
{ 8.400, 6.112, 5.185, 4.669, 4.336, 4.102, 3.927, 3.791, 3.682, 3.593,},
|
50
|
+
{ 8.285, 6.013, 5.092, 4.579, 4.248, 4.015, 3.841, 3.705, 3.597, 3.508,},
|
51
|
+
{ 8.185, 5.926, 5.010, 4.500, 4.171, 3.939, 3.765, 3.631, 3.523, 3.434,},
|
52
|
+
{ 8.096, 5.849, 4.938, 4.431, 4.103, 3.871, 3.699, 3.564, 3.457, 3.368,},
|
53
|
+
{ 8.017, 5.780, 4.874, 4.369, 4.042, 3.812, 3.640, 3.506, 3.398, 3.310,},
|
54
|
+
{ 7.945, 5.719, 4.817, 4.313, 3.988, 3.758, 3.587, 3.453, 3.346, 3.258,},
|
55
|
+
{ 7.881, 5.664, 4.765, 4.264, 3.939, 3.710, 3.539, 3.406, 3.299, 3.211,},
|
56
|
+
{ 7.823, 5.614, 4.718, 4.218, 3.895, 3.667, 3.496, 3.363, 3.256, 3.168,},
|
57
|
+
{ 7.770, 5.568, 4.675, 4.177, 3.855, 3.627, 3.457, 3.324, 3.217, 3.129,},
|
58
|
+
{ 7.721, 5.526, 4.637, 4.140, 3.818, 3.591, 3.421, 3.288, 3.182, 3.094,},
|
59
|
+
{ 7.677, 5.488, 4.601, 4.106, 3.785, 3.558, 3.388, 3.256, 3.149, 3.062,},
|
60
|
+
{ 7.636, 5.453, 4.568, 4.074, 3.754, 3.528, 3.358, 3.226, 3.120, 3.032,},
|
61
|
+
{ 7.598, 5.420, 4.538, 4.045, 3.725, 3.499, 3.330, 3.198, 3.092, 3.005,},
|
62
|
+
{ 7.562, 5.390, 4.510, 4.018, 3.699, 3.473, 3.305, 3.173, 3.067, 2.979,},
|
63
|
+
{ 7.530, 5.362, 4.484, 3.993, 3.675, 3.449, 3.281, 3.149, 3.043, 2.955,},
|
64
|
+
{ 7.499, 5.336, 4.459, 3.969, 3.652, 3.427, 3.258, 3.127, 3.021, 2.934,},
|
65
|
+
{ 7.471, 5.312, 4.437, 3.948, 3.630, 3.406, 3.238, 3.106, 3.000, 2.913,},
|
66
|
+
{ 7.444, 5.289, 4.416, 3.927, 3.611, 3.386, 3.218, 3.087, 2.981, 2.894,},
|
67
|
+
{ 7.419, 5.268, 4.396, 3.908, 3.592, 3.368, 3.200, 3.069, 2.963, 2.876,},
|
68
|
+
{ 7.396, 5.248, 4.377, 3.890, 3.574, 3.351, 3.183, 3.052, 2.946, 2.859,},
|
69
|
+
{ 7.373, 5.229, 4.360, 3.873, 3.558, 3.334, 3.167, 3.036, 2.930, 2.843,},
|
70
|
+
{ 7.353, 5.211, 4.343, 3.858, 3.542, 3.319, 3.152, 3.021, 2.915, 2.828,},
|
71
|
+
{ 7.333, 5.194, 4.327, 3.843, 3.528, 3.305, 3.137, 3.006, 2.901, 2.814,},
|
72
|
+
{ 7.314, 5.179, 4.313, 3.828, 3.514, 3.291, 3.124, 2.993, 2.888, 2.801,},
|
73
|
+
{ 7.296, 5.163, 4.299, 3.815, 3.501, 3.278, 3.111, 2.980, 2.875, 2.788,},
|
74
|
+
{ 7.280, 5.149, 4.285, 3.802, 3.488, 3.266, 3.099, 2.968, 2.863, 2.776,},
|
75
|
+
{ 7.264, 5.136, 4.273, 3.790, 3.476, 3.254, 3.087, 2.957, 2.851, 2.764,},
|
76
|
+
{ 7.248, 5.123, 4.261, 3.778, 3.465, 3.243, 3.076, 2.946, 2.840, 2.754,},
|
77
|
+
{ 7.234, 5.110, 4.249, 3.767, 3.454, 3.232, 3.066, 2.935, 2.830, 2.743,},
|
78
|
+
{ 7.220, 5.099, 4.238, 3.757, 3.444, 3.222, 3.056, 2.925, 2.820, 2.733,},
|
79
|
+
{ 7.207, 5.087, 4.228, 3.747, 3.434, 3.213, 3.046, 2.916, 2.811, 2.724,},
|
80
|
+
{ 7.194, 5.077, 4.218, 3.737, 3.425, 3.204, 3.037, 2.907, 2.802, 2.715,},
|
81
|
+
{ 7.182, 5.066, 4.208, 3.728, 3.416, 3.195, 3.028, 2.898, 2.793, 2.706,},
|
82
|
+
{ 7.171, 5.057, 4.199, 3.720, 3.408, 3.186, 3.020, 2.890, 2.785, 2.698,},
|
83
|
+
{ 7.159, 5.047, 4.191, 3.711, 3.400, 3.178, 3.012, 2.882, 2.777, 2.690,},
|
84
|
+
{ 7.149, 5.038, 4.182, 3.703, 3.392, 3.171, 3.005, 2.874, 2.769, 2.683,},
|
85
|
+
{ 7.139, 5.030, 4.174, 3.695, 3.384, 3.163, 2.997, 2.867, 2.762, 2.675,},
|
86
|
+
{ 7.129, 5.021, 4.167, 3.688, 3.377, 3.156, 2.990, 2.860, 2.755, 2.668,},
|
87
|
+
{ 7.119, 5.013, 4.159, 3.681, 3.370, 3.149, 2.983, 2.853, 2.748, 2.662,},
|
88
|
+
{ 7.110, 5.006, 4.152, 3.674, 3.363, 3.143, 2.977, 2.847, 2.742, 2.655,},
|
89
|
+
{ 7.102, 4.998, 4.145, 3.667, 3.357, 3.136, 2.971, 2.841, 2.736, 2.649,},
|
90
|
+
{ 7.093, 4.991, 4.138, 3.661, 3.351, 3.130, 2.965, 2.835, 2.730, 2.643,},
|
91
|
+
{ 7.085, 4.984, 4.132, 3.655, 3.345, 3.124, 2.959, 2.829, 2.724, 2.637,},
|
92
|
+
{ 7.077, 4.977, 4.126, 3.649, 3.339, 3.119, 2.953, 2.823, 2.718, 2.632,},
|
93
|
+
{ 7.070, 4.971, 4.120, 3.643, 3.333, 3.113, 2.948, 2.818, 2.713, 2.626,},
|
94
|
+
{ 7.062, 4.965, 4.114, 3.638, 3.328, 3.108, 2.942, 2.813, 2.708, 2.621,},
|
95
|
+
{ 7.055, 4.959, 4.109, 3.632, 3.323, 3.103, 2.937, 2.808, 2.703, 2.616,},
|
96
|
+
{ 7.048, 4.953, 4.103, 3.627, 3.318, 3.098, 2.932, 2.803, 2.698, 2.611,},
|
97
|
+
{ 7.042, 4.947, 4.098, 3.622, 3.313, 3.093, 2.928, 2.798, 2.693, 2.607,},
|
98
|
+
{ 7.035, 4.942, 4.093, 3.618, 3.308, 3.088, 2.923, 2.793, 2.689, 2.602,},
|
99
|
+
{ 7.029, 4.937, 4.088, 3.613, 3.304, 3.084, 2.919, 2.789, 2.684, 2.598,},
|
100
|
+
{ 7.023, 4.932, 4.083, 3.608, 3.299, 3.080, 2.914, 2.785, 2.680, 2.593,},
|
101
|
+
{ 7.017, 4.927, 4.079, 3.604, 3.295, 3.075, 2.910, 2.781, 2.676, 2.589,},
|
102
|
+
{ 7.011, 4.922, 4.074, 3.600, 3.291, 3.071, 2.906, 2.777, 2.672, 2.585,},
|
103
|
+
{ 7.006, 4.917, 4.070, 3.596, 3.287, 3.067, 2.902, 2.773, 2.668, 2.581,},
|
104
|
+
{ 7.001, 4.913, 4.066, 3.591, 3.283, 3.063, 2.898, 2.769, 2.664, 2.578,},
|
105
|
+
{ 6.995, 4.908, 4.062, 3.588, 3.279, 3.060, 2.895, 2.765, 2.660, 2.574,},
|
106
|
+
{ 6.990, 4.904, 4.058, 3.584, 3.275, 3.056, 2.891, 2.762, 2.657, 2.570,},
|
107
|
+
{ 6.985, 4.900, 4.054, 3.580, 3.272, 3.052, 2.887, 2.758, 2.653, 2.567,},
|
108
|
+
{ 6.981, 4.896, 4.050, 3.577, 3.268, 3.049, 2.884, 2.755, 2.650, 2.563,},
|
109
|
+
{ 6.976, 4.892, 4.047, 3.573, 3.265, 3.046, 2.881, 2.751, 2.647, 2.560,},
|
110
|
+
{ 6.971, 4.888, 4.043, 3.570, 3.261, 3.042, 2.877, 2.748, 2.644, 2.557,},
|
111
|
+
{ 6.967, 4.884, 4.040, 3.566, 3.258, 3.039, 2.874, 2.745, 2.640, 2.554,},
|
112
|
+
{ 6.963, 4.881, 4.036, 3.563, 3.255, 3.036, 2.871, 2.742, 2.637, 2.551,},
|
113
|
+
{ 6.958, 4.877, 4.033, 3.560, 3.252, 3.033, 2.868, 2.739, 2.634, 2.548,},
|
114
|
+
{ 6.954, 4.874, 4.030, 3.557, 3.249, 3.030, 2.865, 2.736, 2.632, 2.545,},
|
115
|
+
{ 6.950, 4.870, 4.027, 3.554, 3.246, 3.027, 2.863, 2.733, 2.629, 2.542,},
|
116
|
+
{ 6.947, 4.867, 4.024, 3.551, 3.243, 3.025, 2.860, 2.731, 2.626, 2.539,},
|
117
|
+
{ 6.943, 4.864, 4.021, 3.548, 3.240, 3.022, 2.857, 2.728, 2.623, 2.537,},
|
118
|
+
{ 6.939, 4.861, 4.018, 3.545, 3.238, 3.019, 2.854, 2.725, 2.621, 2.534,},
|
119
|
+
{ 6.935, 4.858, 4.015, 3.543, 3.235, 3.017, 2.852, 2.723, 2.618, 2.532,},
|
120
|
+
{ 6.932, 4.855, 4.012, 3.540, 3.233, 3.014, 2.849, 2.720, 2.616, 2.529,},
|
121
|
+
{ 6.928, 4.852, 4.010, 3.538, 3.230, 3.012, 2.847, 2.718, 2.613, 2.527,},
|
122
|
+
{ 6.925, 4.849, 4.007, 3.535, 3.228, 3.009, 2.845, 2.715, 2.611, 2.524,},
|
123
|
+
{ 6.922, 4.846, 4.004, 3.533, 3.225, 3.007, 2.842, 2.713, 2.609, 2.522,},
|
124
|
+
{ 6.919, 4.844, 4.002, 3.530, 3.223, 3.004, 2.840, 2.711, 2.606, 2.520,},
|
125
|
+
{ 6.915, 4.841, 3.999, 3.528, 3.221, 3.002, 2.838, 2.709, 2.604, 2.518,},
|
126
|
+
{ 6.912, 4.838, 3.997, 3.525, 3.218, 3.000, 2.835, 2.706, 2.602, 2.515,},
|
127
|
+
{ 6.909, 4.836, 3.995, 3.523, 3.216, 2.998, 2.833, 2.704, 2.600, 2.513,},
|
128
|
+
{ 6.906, 4.833, 3.992, 3.521, 3.214, 2.996, 2.831, 2.702, 2.598, 2.511,},
|
129
|
+
{ 6.904, 4.831, 3.990, 3.519, 3.212, 2.994, 2.829, 2.700, 2.596, 2.509,},
|
130
|
+
{ 6.901, 4.829, 3.988, 3.517, 3.210, 2.992, 2.827, 2.698, 2.594, 2.507,},
|
131
|
+
{ 6.898, 4.826, 3.986, 3.515, 3.208, 2.990, 2.825, 2.696, 2.592, 2.505,},
|
132
|
+
{ 6.895, 4.824, 3.984, 3.513, 3.206, 2.988, 2.823, 2.694, 2.590, 2.503}
|
133
|
+
};
|
134
|
+
|
135
|
+
/* define the variance which will be used as a minimum variance for any
|
136
|
+
dimension of any feature. Since most features are calculated from numbers
|
137
|
+
with a precision no better than 1 in 128, the variance should never be
|
138
|
+
less than the square of this number for parameters whose range is 1. */
|
139
|
+
#define MINVARIANCE 0.0001
|
140
|
+
|
141
|
+
/* define the absolute minimum number of samples which must be present in
|
142
|
+
order to accurately test hypotheses about underlying probability
|
143
|
+
distributions. Define separately the minimum samples that are needed
|
144
|
+
before a statistical analysis is attempted; this number should be
|
145
|
+
equal to MINSAMPLES but can be set to a lower number for early testing
|
146
|
+
when very few samples are available. */
|
147
|
+
#define MINBUCKETS 5
|
148
|
+
#define MINSAMPLESPERBUCKET 5
|
149
|
+
#define MINSAMPLES (MINBUCKETS * MINSAMPLESPERBUCKET)
|
150
|
+
#define MINSAMPLESNEEDED 1
|
151
|
+
|
152
|
+
/* define the size of the table which maps normalized samples to
|
153
|
+
histogram buckets. Also define the number of standard deviations
|
154
|
+
in a normal distribution which are considered to be significant.
|
155
|
+
The mapping table will be defined in such a way that it covers
|
156
|
+
the specified number of standard deviations on either side of
|
157
|
+
the mean. BUCKETTABLESIZE should always be even. */
|
158
|
+
#define BUCKETTABLESIZE 1024
|
159
|
+
#define NORMALEXTENT 3.0
|
160
|
+
|
161
|
+
typedef struct
|
162
|
+
{
|
163
|
+
CLUSTER *Cluster;
|
164
|
+
CLUSTER *Neighbor;
|
165
|
+
}
|
166
|
+
|
167
|
+
|
168
|
+
TEMPCLUSTER;
|
169
|
+
|
170
|
+
typedef struct
|
171
|
+
{
|
172
|
+
FLOAT32 AvgVariance;
|
173
|
+
FLOAT32 *CoVariance;
|
174
|
+
FLOAT32 *Min; // largest negative distance from the mean
|
175
|
+
FLOAT32 *Max; // largest positive distance from the mean
|
176
|
+
}
|
177
|
+
|
178
|
+
|
179
|
+
STATISTICS;
|
180
|
+
|
181
|
+
typedef struct
|
182
|
+
{
|
183
|
+
DISTRIBUTION Distribution; // distribution being tested for
|
184
|
+
uinT32 SampleCount; // # of samples in histogram
|
185
|
+
FLOAT64 Confidence; // confidence level of test
|
186
|
+
FLOAT64 ChiSquared; // test threshold
|
187
|
+
uinT16 NumberOfBuckets; // number of cells in histogram
|
188
|
+
uinT16 Bucket[BUCKETTABLESIZE];// mapping to histogram buckets
|
189
|
+
uinT32 *Count; // frequency of occurence histogram
|
190
|
+
FLOAT32 *ExpectedCount; // expected histogram
|
191
|
+
}
|
192
|
+
|
193
|
+
|
194
|
+
BUCKETS;
|
195
|
+
|
196
|
+
typedef struct
|
197
|
+
{
|
198
|
+
uinT16 DegreesOfFreedom;
|
199
|
+
FLOAT64 Alpha;
|
200
|
+
FLOAT64 ChiSquared;
|
201
|
+
}
|
202
|
+
|
203
|
+
|
204
|
+
CHISTRUCT;
|
205
|
+
|
206
|
+
typedef FLOAT64 (*DENSITYFUNC) (inT32);
|
207
|
+
typedef FLOAT64 (*SOLVEFUNC) (CHISTRUCT *, double);
|
208
|
+
|
209
|
+
#define Odd(N) ((N)%2)
|
210
|
+
#define Mirror(N,R) ((R) - (N) - 1)
|
211
|
+
#define Abs(N) ( ( (N) < 0 ) ? ( -(N) ) : (N) )
|
212
|
+
|
213
|
+
//--------------Global Data Definitions and Declarations----------------------
|
214
|
+
/* the following variables are declared as global so that routines which
|
215
|
+
are called from the kd-tree walker can get to them. */
|
216
|
+
static HEAP *Heap;
|
217
|
+
static TEMPCLUSTER *TempCluster;
|
218
|
+
static KDTREE *Tree;
|
219
|
+
static inT32 CurrentTemp;
|
220
|
+
|
221
|
+
/* the following variables describe a discrete normal distribution
|
222
|
+
which is used by NormalDensity() and NormalBucket(). The
|
223
|
+
constant NORMALEXTENT determines how many standard
|
224
|
+
deviations of the distribution are mapped onto the fixed
|
225
|
+
discrete range of x. x=0 is mapped to -NORMALEXTENT standard
|
226
|
+
deviations and x=BUCKETTABLESIZE is mapped to
|
227
|
+
+NORMALEXTENT standard deviations. */
|
228
|
+
#define SqrtOf2Pi 2.506628275
|
229
|
+
static FLOAT64 NormalStdDev = BUCKETTABLESIZE / (2.0 * NORMALEXTENT);
|
230
|
+
static FLOAT64 NormalVariance =
|
231
|
+
(BUCKETTABLESIZE * BUCKETTABLESIZE) / (4.0 * NORMALEXTENT * NORMALEXTENT);
|
232
|
+
static FLOAT64 NormalMagnitude =
|
233
|
+
(2.0 * NORMALEXTENT) / (SqrtOf2Pi * BUCKETTABLESIZE);
|
234
|
+
static FLOAT64 NormalMean = BUCKETTABLESIZE / 2;
|
235
|
+
|
236
|
+
// keep a list of histogram buckets to minimize recomputing them
|
237
|
+
static LIST OldBuckets[] = { NIL, NIL, NIL };
|
238
|
+
|
239
|
+
/* define lookup tables used to compute the number of histogram buckets
|
240
|
+
that should be used for a given number of samples. */
|
241
|
+
#define LOOKUPTABLESIZE 8
|
242
|
+
#define MAXBUCKETS 39
|
243
|
+
#define MAXDEGREESOFFREEDOM MAXBUCKETS
|
244
|
+
|
245
|
+
static uinT32 CountTable[LOOKUPTABLESIZE] = {
|
246
|
+
MINSAMPLES, 200, 400, 600, 800, 1000, 1500, 2000
|
247
|
+
};
|
248
|
+
static uinT16 BucketsTable[LOOKUPTABLESIZE] = {
|
249
|
+
MINBUCKETS, 16, 20, 24, 27, 30, 35, MAXBUCKETS
|
250
|
+
};
|
251
|
+
|
252
|
+
/*-------------------------------------------------------------------------
|
253
|
+
Private Function Prototypes
|
254
|
+
--------------------------------------------------------------------------*/
|
255
|
+
void CreateClusterTree(CLUSTERER *Clusterer);
|
256
|
+
|
257
|
+
void MakePotentialClusters(CLUSTER *Cluster, VISIT Order, inT32 Level);
|
258
|
+
|
259
|
+
CLUSTER *FindNearestNeighbor(KDTREE *Tree,
|
260
|
+
CLUSTER *Cluster,
|
261
|
+
FLOAT32 *Distance);
|
262
|
+
|
263
|
+
CLUSTER *MakeNewCluster(CLUSTERER *Clusterer, TEMPCLUSTER *TempCluster);
|
264
|
+
|
265
|
+
inT32 MergeClusters (inT16 N,
|
266
|
+
register PARAM_DESC ParamDesc[],
|
267
|
+
register inT32 n1,
|
268
|
+
register inT32 n2,
|
269
|
+
register FLOAT32 m[],
|
270
|
+
register FLOAT32 m1[], register FLOAT32 m2[]);
|
271
|
+
|
272
|
+
void ComputePrototypes(CLUSTERER *Clusterer, CLUSTERCONFIG *Config);
|
273
|
+
|
274
|
+
PROTOTYPE *MakePrototype(CLUSTERER *Clusterer,
|
275
|
+
CLUSTERCONFIG *Config,
|
276
|
+
CLUSTER *Cluster);
|
277
|
+
|
278
|
+
PROTOTYPE *MakeDegenerateProto(uinT16 N,
|
279
|
+
CLUSTER *Cluster,
|
280
|
+
STATISTICS *Statistics,
|
281
|
+
PROTOSTYLE Style,
|
282
|
+
inT32 MinSamples);
|
283
|
+
|
284
|
+
PROTOTYPE *TestEllipticalProto(CLUSTERER *Clusterer,
|
285
|
+
CLUSTERCONFIG *Config,
|
286
|
+
CLUSTER *Cluster,
|
287
|
+
STATISTICS *Statistics);
|
288
|
+
|
289
|
+
PROTOTYPE *MakeSphericalProto(CLUSTERER *Clusterer,
|
290
|
+
CLUSTER *Cluster,
|
291
|
+
STATISTICS *Statistics,
|
292
|
+
BUCKETS *Buckets);
|
293
|
+
|
294
|
+
PROTOTYPE *MakeEllipticalProto(CLUSTERER *Clusterer,
|
295
|
+
CLUSTER *Cluster,
|
296
|
+
STATISTICS *Statistics,
|
297
|
+
BUCKETS *Buckets);
|
298
|
+
|
299
|
+
PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer,
|
300
|
+
CLUSTER *Cluster,
|
301
|
+
STATISTICS *Statistics,
|
302
|
+
BUCKETS *NormalBuckets,
|
303
|
+
FLOAT64 Confidence);
|
304
|
+
|
305
|
+
void MakeDimRandom(uinT16 i, PROTOTYPE *Proto, PARAM_DESC *ParamDesc);
|
306
|
+
|
307
|
+
void MakeDimUniform(uinT16 i, PROTOTYPE *Proto, STATISTICS *Statistics);
|
308
|
+
|
309
|
+
STATISTICS *ComputeStatistics (inT16 N,
|
310
|
+
PARAM_DESC ParamDesc[], CLUSTER * Cluster);
|
311
|
+
|
312
|
+
PROTOTYPE *NewSphericalProto(uinT16 N,
|
313
|
+
CLUSTER *Cluster,
|
314
|
+
STATISTICS *Statistics);
|
315
|
+
|
316
|
+
PROTOTYPE *NewEllipticalProto(inT16 N,
|
317
|
+
CLUSTER *Cluster,
|
318
|
+
STATISTICS *Statistics);
|
319
|
+
|
320
|
+
PROTOTYPE *NewMixedProto(inT16 N, CLUSTER *Cluster, STATISTICS *Statistics);
|
321
|
+
|
322
|
+
PROTOTYPE *NewSimpleProto(inT16 N, CLUSTER *Cluster);
|
323
|
+
|
324
|
+
BOOL8 Independent (PARAM_DESC ParamDesc[],
|
325
|
+
inT16 N, FLOAT32 * CoVariance, FLOAT32 Independence);
|
326
|
+
|
327
|
+
BUCKETS *GetBuckets(DISTRIBUTION Distribution,
|
328
|
+
uinT32 SampleCount,
|
329
|
+
FLOAT64 Confidence);
|
330
|
+
|
331
|
+
BUCKETS *MakeBuckets(DISTRIBUTION Distribution,
|
332
|
+
uinT32 SampleCount,
|
333
|
+
FLOAT64 Confidence);
|
334
|
+
|
335
|
+
uinT16 OptimumNumberOfBuckets(uinT32 SampleCount);
|
336
|
+
|
337
|
+
FLOAT64 ComputeChiSquared(uinT16 DegreesOfFreedom, FLOAT64 Alpha);
|
338
|
+
|
339
|
+
FLOAT64 NormalDensity(inT32 x);
|
340
|
+
|
341
|
+
FLOAT64 UniformDensity(inT32 x);
|
342
|
+
|
343
|
+
FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx);
|
344
|
+
|
345
|
+
void FillBuckets(BUCKETS *Buckets,
|
346
|
+
CLUSTER *Cluster,
|
347
|
+
uinT16 Dim,
|
348
|
+
PARAM_DESC *ParamDesc,
|
349
|
+
FLOAT32 Mean,
|
350
|
+
FLOAT32 StdDev);
|
351
|
+
|
352
|
+
uinT16 NormalBucket(PARAM_DESC *ParamDesc,
|
353
|
+
FLOAT32 x,
|
354
|
+
FLOAT32 Mean,
|
355
|
+
FLOAT32 StdDev);
|
356
|
+
|
357
|
+
uinT16 UniformBucket(PARAM_DESC *ParamDesc,
|
358
|
+
FLOAT32 x,
|
359
|
+
FLOAT32 Mean,
|
360
|
+
FLOAT32 StdDev);
|
361
|
+
|
362
|
+
BOOL8 DistributionOK(BUCKETS *Buckets);
|
363
|
+
|
364
|
+
void FreeStatistics(STATISTICS *Statistics);
|
365
|
+
|
366
|
+
void FreeBuckets(BUCKETS *Buckets);
|
367
|
+
|
368
|
+
void FreeCluster(CLUSTER *Cluster);
|
369
|
+
|
370
|
+
uinT16 DegreesOfFreedom(DISTRIBUTION Distribution, uinT16 HistogramBuckets);
|
371
|
+
|
372
|
+
int NumBucketsMatch(void *arg1, //BUCKETS *Histogram,
|
373
|
+
void *arg2); //uinT16 *DesiredNumberOfBuckets);
|
374
|
+
|
375
|
+
int ListEntryMatch(void *arg1, void *arg2);
|
376
|
+
|
377
|
+
void AdjustBuckets(BUCKETS *Buckets, uinT32 NewSampleCount);
|
378
|
+
|
379
|
+
void InitBuckets(BUCKETS *Buckets);
|
380
|
+
|
381
|
+
int AlphaMatch(void *arg1, //CHISTRUCT *ChiStruct,
|
382
|
+
void *arg2); //CHISTRUCT *SearchKey);
|
383
|
+
|
384
|
+
CHISTRUCT *NewChiStruct(uinT16 DegreesOfFreedom, FLOAT64 Alpha);
|
385
|
+
|
386
|
+
FLOAT64 Solve(SOLVEFUNC Function,
|
387
|
+
void *FunctionParams,
|
388
|
+
FLOAT64 InitialGuess,
|
389
|
+
FLOAT64 Accuracy);
|
390
|
+
|
391
|
+
FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x);
|
392
|
+
|
393
|
+
BOOL8 MultipleCharSamples(CLUSTERER *Clusterer,
|
394
|
+
CLUSTER *Cluster,
|
395
|
+
FLOAT32 MaxIllegal);
|
396
|
+
|
397
|
+
double InvertMatrix(const float* input, int size, float* inv);
|
398
|
+
|
399
|
+
//--------------------------Public Code--------------------------------------
|
400
|
+
/** MakeClusterer **********************************************************
|
401
|
+
Parameters: SampleSize number of dimensions in feature space
|
402
|
+
ParamDesc description of each dimension
|
403
|
+
Globals: None
|
404
|
+
Operation: This routine creates a new clusterer data structure,
|
405
|
+
initializes it, and returns a pointer to it.
|
406
|
+
Return: pointer to the new clusterer data structure
|
407
|
+
Exceptions: None
|
408
|
+
History: 5/29/89, DSJ, Created.
|
409
|
+
****************************************************************************/
|
410
|
+
CLUSTERER *
|
411
|
+
MakeClusterer (inT16 SampleSize, PARAM_DESC ParamDesc[]) {
|
412
|
+
CLUSTERER *Clusterer;
|
413
|
+
int i;
|
414
|
+
|
415
|
+
// allocate main clusterer data structure and init simple fields
|
416
|
+
Clusterer = (CLUSTERER *) Emalloc (sizeof (CLUSTERER));
|
417
|
+
Clusterer->SampleSize = SampleSize;
|
418
|
+
Clusterer->NumberOfSamples = 0;
|
419
|
+
Clusterer->NumChar = 0;
|
420
|
+
|
421
|
+
// init fields which will not be used initially
|
422
|
+
Clusterer->Root = NULL;
|
423
|
+
Clusterer->ProtoList = NIL;
|
424
|
+
|
425
|
+
// maintain a copy of param descriptors in the clusterer data structure
|
426
|
+
Clusterer->ParamDesc =
|
427
|
+
(PARAM_DESC *) Emalloc (SampleSize * sizeof (PARAM_DESC));
|
428
|
+
for (i = 0; i < SampleSize; i++) {
|
429
|
+
Clusterer->ParamDesc[i].Circular = ParamDesc[i].Circular;
|
430
|
+
Clusterer->ParamDesc[i].NonEssential = ParamDesc[i].NonEssential;
|
431
|
+
Clusterer->ParamDesc[i].Min = ParamDesc[i].Min;
|
432
|
+
Clusterer->ParamDesc[i].Max = ParamDesc[i].Max;
|
433
|
+
Clusterer->ParamDesc[i].Range = ParamDesc[i].Max - ParamDesc[i].Min;
|
434
|
+
Clusterer->ParamDesc[i].HalfRange = Clusterer->ParamDesc[i].Range / 2;
|
435
|
+
Clusterer->ParamDesc[i].MidRange =
|
436
|
+
(ParamDesc[i].Max + ParamDesc[i].Min) / 2;
|
437
|
+
}
|
438
|
+
|
439
|
+
// allocate a kd tree to hold the samples
|
440
|
+
Clusterer->KDTree = MakeKDTree (SampleSize, ParamDesc);
|
441
|
+
|
442
|
+
// execute hook for monitoring clustering operation
|
443
|
+
// (*ClustererCreationHook)( Clusterer );
|
444
|
+
|
445
|
+
return (Clusterer);
|
446
|
+
} // MakeClusterer
|
447
|
+
|
448
|
+
|
449
|
+
/** MakeSample ***********************************************************
|
450
|
+
Parameters: Clusterer clusterer data structure to add sample to
|
451
|
+
Feature feature to be added to clusterer
|
452
|
+
CharID unique ident. of char that sample came from
|
453
|
+
Globals: None
|
454
|
+
Operation: This routine creates a new sample data structure to hold
|
455
|
+
the specified feature. This sample is added to the clusterer
|
456
|
+
data structure (so that it knows which samples are to be
|
457
|
+
clustered later), and a pointer to the sample is returned to
|
458
|
+
the caller.
|
459
|
+
Return: Pointer to the new sample data structure
|
460
|
+
Exceptions: ALREADYCLUSTERED MakeSample can't be called after
|
461
|
+
ClusterSamples has been called
|
462
|
+
History: 5/29/89, DSJ, Created.
|
463
|
+
*****************************************************************************/
|
464
|
+
SAMPLE *
|
465
|
+
MakeSample (CLUSTERER * Clusterer, FLOAT32 Feature[], inT32 CharID) {
|
466
|
+
SAMPLE *Sample;
|
467
|
+
int i;
|
468
|
+
|
469
|
+
// see if the samples have already been clustered - if so trap an error
|
470
|
+
if (Clusterer->Root != NULL)
|
471
|
+
DoError (ALREADYCLUSTERED,
|
472
|
+
"Can't add samples after they have been clustered");
|
473
|
+
|
474
|
+
// allocate the new sample and initialize it
|
475
|
+
Sample = (SAMPLE *) Emalloc (sizeof (SAMPLE) +
|
476
|
+
(Clusterer->SampleSize -
|
477
|
+
1) * sizeof (FLOAT32));
|
478
|
+
Sample->Clustered = FALSE;
|
479
|
+
Sample->Prototype = FALSE;
|
480
|
+
Sample->SampleCount = 1;
|
481
|
+
Sample->Left = NULL;
|
482
|
+
Sample->Right = NULL;
|
483
|
+
Sample->CharID = CharID;
|
484
|
+
|
485
|
+
for (i = 0; i < Clusterer->SampleSize; i++)
|
486
|
+
Sample->Mean[i] = Feature[i];
|
487
|
+
|
488
|
+
// add the sample to the KD tree - keep track of the total # of samples
|
489
|
+
Clusterer->NumberOfSamples++;
|
490
|
+
KDStore (Clusterer->KDTree, Sample->Mean, (char *) Sample);
|
491
|
+
if (CharID >= Clusterer->NumChar)
|
492
|
+
Clusterer->NumChar = CharID + 1;
|
493
|
+
|
494
|
+
// execute hook for monitoring clustering operation
|
495
|
+
// (*SampleCreationHook)( Sample );
|
496
|
+
|
497
|
+
return (Sample);
|
498
|
+
} // MakeSample
|
499
|
+
|
500
|
+
|
501
|
+
/** ClusterSamples ***********************************************************
|
502
|
+
Parameters: Clusterer data struct containing samples to be clustered
|
503
|
+
Config parameters which control clustering process
|
504
|
+
Globals: None
|
505
|
+
Operation: This routine first checks to see if the samples in this
|
506
|
+
clusterer have already been clustered before; if so, it does
|
507
|
+
not bother to recreate the cluster tree. It simply recomputes
|
508
|
+
the prototypes based on the new Config info.
|
509
|
+
If the samples have not been clustered before, the
|
510
|
+
samples in the KD tree are formed into a cluster tree and then
|
511
|
+
the prototypes are computed from the cluster tree.
|
512
|
+
In either case this routine returns a pointer to a
|
513
|
+
list of prototypes that best represent the samples given
|
514
|
+
the constraints specified in Config.
|
515
|
+
Return: Pointer to a list of prototypes
|
516
|
+
Exceptions: None
|
517
|
+
History: 5/29/89, DSJ, Created.
|
518
|
+
*******************************************************************************/
|
519
|
+
LIST ClusterSamples(CLUSTERER *Clusterer, CLUSTERCONFIG *Config) {
|
520
|
+
//only create cluster tree if samples have never been clustered before
|
521
|
+
if (Clusterer->Root == NULL)
|
522
|
+
CreateClusterTree(Clusterer);
|
523
|
+
|
524
|
+
//deallocate the old prototype list if one exists
|
525
|
+
FreeProtoList (&Clusterer->ProtoList);
|
526
|
+
Clusterer->ProtoList = NIL;
|
527
|
+
|
528
|
+
//compute prototypes starting at the root node in the tree
|
529
|
+
ComputePrototypes(Clusterer, Config);
|
530
|
+
return (Clusterer->ProtoList);
|
531
|
+
} // ClusterSamples
|
532
|
+
|
533
|
+
|
534
|
+
/** FreeClusterer *************************************************************
|
535
|
+
Parameters: Clusterer pointer to data structure to be freed
|
536
|
+
Globals: None
|
537
|
+
Operation: This routine frees all of the memory allocated to the
|
538
|
+
specified data structure. It will not, however, free
|
539
|
+
the memory used by the prototype list. The pointers to
|
540
|
+
the clusters for each prototype in the list will be set
|
541
|
+
to NULL to indicate that the cluster data structures no
|
542
|
+
longer exist. Any sample lists that have been obtained
|
543
|
+
via calls to GetSamples are no longer valid.
|
544
|
+
Return: None
|
545
|
+
Exceptions: None
|
546
|
+
History: 6/6/89, DSJ, Created.
|
547
|
+
*******************************************************************************/
|
548
|
+
void FreeClusterer(CLUSTERER *Clusterer) {
|
549
|
+
if (Clusterer != NULL) {
|
550
|
+
memfree (Clusterer->ParamDesc);
|
551
|
+
if (Clusterer->KDTree != NULL)
|
552
|
+
FreeKDTree (Clusterer->KDTree);
|
553
|
+
if (Clusterer->Root != NULL)
|
554
|
+
FreeCluster (Clusterer->Root);
|
555
|
+
iterate (Clusterer->ProtoList) {
|
556
|
+
((PROTOTYPE *) (first_node (Clusterer->ProtoList)))->Cluster = NULL;
|
557
|
+
}
|
558
|
+
memfree(Clusterer);
|
559
|
+
}
|
560
|
+
} // FreeClusterer
|
561
|
+
|
562
|
+
|
563
|
+
/** FreeProtoList ************************************************************
|
564
|
+
Parameters: ProtoList pointer to list of prototypes to be freed
|
565
|
+
Globals: None
|
566
|
+
Operation: This routine frees all of the memory allocated to the
|
567
|
+
specified list of prototypes. The clusters which are
|
568
|
+
pointed to by the prototypes are not freed.
|
569
|
+
Return: None
|
570
|
+
Exceptions: None
|
571
|
+
History: 6/6/89, DSJ, Created.
|
572
|
+
*****************************************************************************/
|
573
|
+
void FreeProtoList(LIST *ProtoList) {
|
574
|
+
destroy_nodes(*ProtoList, FreePrototype);
|
575
|
+
} // FreeProtoList
|
576
|
+
|
577
|
+
|
578
|
+
/** FreePrototype ************************************************************
|
579
|
+
Parameters: Prototype prototype data structure to be deallocated
|
580
|
+
Globals: None
|
581
|
+
Operation: This routine deallocates the memory consumed by the specified
|
582
|
+
prototype and modifies the corresponding cluster so that it
|
583
|
+
is no longer marked as a prototype. The cluster is NOT
|
584
|
+
deallocated by this routine.
|
585
|
+
Return: None
|
586
|
+
Exceptions: None
|
587
|
+
History: 5/30/89, DSJ, Created.
|
588
|
+
*******************************************************************************/
|
589
|
+
void FreePrototype(void *arg) { //PROTOTYPE *Prototype)
|
590
|
+
PROTOTYPE *Prototype = (PROTOTYPE *) arg;
|
591
|
+
|
592
|
+
// unmark the corresponding cluster (if there is one
|
593
|
+
if (Prototype->Cluster != NULL)
|
594
|
+
Prototype->Cluster->Prototype = FALSE;
|
595
|
+
|
596
|
+
// deallocate the prototype statistics and then the prototype itself
|
597
|
+
if (Prototype->Distrib != NULL)
|
598
|
+
memfree (Prototype->Distrib);
|
599
|
+
if (Prototype->Mean != NULL)
|
600
|
+
memfree (Prototype->Mean);
|
601
|
+
if (Prototype->Style != spherical) {
|
602
|
+
if (Prototype->Variance.Elliptical != NULL)
|
603
|
+
memfree (Prototype->Variance.Elliptical);
|
604
|
+
if (Prototype->Magnitude.Elliptical != NULL)
|
605
|
+
memfree (Prototype->Magnitude.Elliptical);
|
606
|
+
if (Prototype->Weight.Elliptical != NULL)
|
607
|
+
memfree (Prototype->Weight.Elliptical);
|
608
|
+
}
|
609
|
+
memfree(Prototype);
|
610
|
+
} // FreePrototype
|
611
|
+
|
612
|
+
|
613
|
+
/** NextSample ************************************************************
|
614
|
+
Parameters: SearchState ptr to list containing clusters to be searched
|
615
|
+
Globals: None
|
616
|
+
Operation: This routine is used to find all of the samples which
|
617
|
+
belong to a cluster. It starts by removing the top
|
618
|
+
cluster on the cluster list (SearchState). If this cluster is
|
619
|
+
a leaf it is returned. Otherwise, the right subcluster
|
620
|
+
is pushed on the list and we continue the search in the
|
621
|
+
left subcluster. This continues until a leaf is found.
|
622
|
+
If all samples have been found, NULL is returned.
|
623
|
+
InitSampleSearch() must be called
|
624
|
+
before NextSample() to initialize the search.
|
625
|
+
Return: Pointer to the next leaf cluster (sample) or NULL.
|
626
|
+
Exceptions: None
|
627
|
+
History: 6/16/89, DSJ, Created.
|
628
|
+
****************************************************************************/
|
629
|
+
CLUSTER *NextSample(LIST *SearchState) {
|
630
|
+
CLUSTER *Cluster;
|
631
|
+
|
632
|
+
if (*SearchState == NIL)
|
633
|
+
return (NULL);
|
634
|
+
Cluster = (CLUSTER *) first_node (*SearchState);
|
635
|
+
*SearchState = pop (*SearchState);
|
636
|
+
while (TRUE) {
|
637
|
+
if (Cluster->Left == NULL)
|
638
|
+
return (Cluster);
|
639
|
+
*SearchState = push (*SearchState, Cluster->Right);
|
640
|
+
Cluster = Cluster->Left;
|
641
|
+
}
|
642
|
+
} // NextSample
|
643
|
+
|
644
|
+
|
645
|
+
/** Mean ***********************************************************
|
646
|
+
Parameters: Proto prototype to return mean of
|
647
|
+
Dimension dimension whose mean is to be returned
|
648
|
+
Globals: none
|
649
|
+
Operation: This routine returns the mean of the specified
|
650
|
+
prototype in the indicated dimension.
|
651
|
+
Return: Mean of Prototype in Dimension
|
652
|
+
Exceptions: none
|
653
|
+
History: 7/6/89, DSJ, Created.
|
654
|
+
*********************************************************************/
|
655
|
+
FLOAT32 Mean(PROTOTYPE *Proto, uinT16 Dimension) {
|
656
|
+
return (Proto->Mean[Dimension]);
|
657
|
+
} // Mean
|
658
|
+
|
659
|
+
|
660
|
+
/** StandardDeviation *************************************************
|
661
|
+
Parameters: Proto prototype to return standard deviation of
|
662
|
+
Dimension dimension whose stddev is to be returned
|
663
|
+
Globals: none
|
664
|
+
Operation: This routine returns the standard deviation of the
|
665
|
+
prototype in the indicated dimension.
|
666
|
+
Return: Standard deviation of Prototype in Dimension
|
667
|
+
Exceptions: none
|
668
|
+
History: 7/6/89, DSJ, Created.
|
669
|
+
**********************************************************************/
|
670
|
+
FLOAT32 StandardDeviation(PROTOTYPE *Proto, uinT16 Dimension) {
|
671
|
+
switch (Proto->Style) {
|
672
|
+
case spherical:
|
673
|
+
return ((FLOAT32) sqrt ((double) Proto->Variance.Spherical));
|
674
|
+
case elliptical:
|
675
|
+
return ((FLOAT32)
|
676
|
+
sqrt ((double) Proto->Variance.Elliptical[Dimension]));
|
677
|
+
case mixed:
|
678
|
+
switch (Proto->Distrib[Dimension]) {
|
679
|
+
case normal:
|
680
|
+
return ((FLOAT32)
|
681
|
+
sqrt ((double) Proto->Variance.Elliptical[Dimension]));
|
682
|
+
case uniform:
|
683
|
+
case D_random:
|
684
|
+
return (Proto->Variance.Elliptical[Dimension]);
|
685
|
+
}
|
686
|
+
}
|
687
|
+
return 0.0f;
|
688
|
+
} // StandardDeviation
|
689
|
+
|
690
|
+
|
691
|
+
/*---------------------------------------------------------------------------
|
692
|
+
Private Code
|
693
|
+
----------------------------------------------------------------------------*/
|
694
|
+
/** CreateClusterTree *******************************************************
|
695
|
+
Parameters: Clusterer data structure holdings samples to be clustered
|
696
|
+
Globals: Tree kd-tree holding samples
|
697
|
+
TempCluster array of temporary clusters
|
698
|
+
CurrentTemp index of next temp cluster to be used
|
699
|
+
Heap heap used to hold temp clusters - "best" on top
|
700
|
+
Operation: This routine performs a bottoms-up clustering on the samples
|
701
|
+
held in the kd-tree of the Clusterer data structure. The
|
702
|
+
result is a cluster tree. Each node in the tree represents
|
703
|
+
a cluster which conceptually contains a subset of the samples.
|
704
|
+
More precisely, the cluster contains all of the samples which
|
705
|
+
are contained in its two sub-clusters. The leaves of the
|
706
|
+
tree are the individual samples themselves; they have no
|
707
|
+
sub-clusters. The root node of the tree conceptually contains
|
708
|
+
all of the samples.
|
709
|
+
Return: None (the Clusterer data structure is changed)
|
710
|
+
Exceptions: None
|
711
|
+
History: 5/29/89, DSJ, Created.
|
712
|
+
******************************************************************************/
|
713
|
+
void CreateClusterTree(CLUSTERER *Clusterer) {
|
714
|
+
HEAPENTRY HeapEntry;
|
715
|
+
TEMPCLUSTER *PotentialCluster;
|
716
|
+
|
717
|
+
// save the kd-tree in a global variable so kd-tree walker can get at it
|
718
|
+
Tree = Clusterer->KDTree;
|
719
|
+
|
720
|
+
// allocate memory to to hold all of the "potential" clusters
|
721
|
+
TempCluster = (TEMPCLUSTER *)
|
722
|
+
Emalloc (Clusterer->NumberOfSamples * sizeof (TEMPCLUSTER));
|
723
|
+
CurrentTemp = 0;
|
724
|
+
|
725
|
+
// each sample and its nearest neighbor form a "potential" cluster
|
726
|
+
// save these in a heap with the "best" potential clusters on top
|
727
|
+
Heap = MakeHeap (Clusterer->NumberOfSamples);
|
728
|
+
KDWalk (Tree, (void_proc) MakePotentialClusters);
|
729
|
+
|
730
|
+
// form potential clusters into actual clusters - always do "best" first
|
731
|
+
while (GetTopOfHeap (Heap, &HeapEntry) != EMPTY) {
|
732
|
+
PotentialCluster = (TEMPCLUSTER *) (HeapEntry.Data);
|
733
|
+
|
734
|
+
// if main cluster of potential cluster is already in another cluster
|
735
|
+
// then we don't need to worry about it
|
736
|
+
if (PotentialCluster->Cluster->Clustered) {
|
737
|
+
continue;
|
738
|
+
}
|
739
|
+
|
740
|
+
// if main cluster is not yet clustered, but its nearest neighbor is
|
741
|
+
// then we must find a new nearest neighbor
|
742
|
+
else if (PotentialCluster->Neighbor->Clustered) {
|
743
|
+
PotentialCluster->Neighbor =
|
744
|
+
FindNearestNeighbor (Tree, PotentialCluster->Cluster,
|
745
|
+
&(HeapEntry.Key));
|
746
|
+
if (PotentialCluster->Neighbor != NULL) {
|
747
|
+
HeapStore(Heap, &HeapEntry);
|
748
|
+
}
|
749
|
+
}
|
750
|
+
|
751
|
+
// if neither cluster is already clustered, form permanent cluster
|
752
|
+
else {
|
753
|
+
PotentialCluster->Cluster =
|
754
|
+
MakeNewCluster(Clusterer, PotentialCluster);
|
755
|
+
PotentialCluster->Neighbor =
|
756
|
+
FindNearestNeighbor (Tree, PotentialCluster->Cluster,
|
757
|
+
&(HeapEntry.Key));
|
758
|
+
if (PotentialCluster->Neighbor != NULL) {
|
759
|
+
HeapStore(Heap, &HeapEntry);
|
760
|
+
}
|
761
|
+
}
|
762
|
+
}
|
763
|
+
|
764
|
+
// the root node in the cluster tree is now the only node in the kd-tree
|
765
|
+
Clusterer->Root = (CLUSTER *) RootOf (Clusterer->KDTree);
|
766
|
+
|
767
|
+
// free up the memory used by the K-D tree, heap, and temp clusters
|
768
|
+
FreeKDTree(Tree);
|
769
|
+
Clusterer->KDTree = NULL;
|
770
|
+
FreeHeap(Heap);
|
771
|
+
memfree(TempCluster);
|
772
|
+
} // CreateClusterTree
|
773
|
+
|
774
|
+
|
775
|
+
/** MakePotentialClusters **************************************************
|
776
|
+
Parameters: Cluster current cluster being visited in kd-tree walk
|
777
|
+
Order order in which cluster is being visited
|
778
|
+
Level level of this cluster in the kd-tree
|
779
|
+
Globals: Tree kd-tree to be searched for neighbors
|
780
|
+
TempCluster array of temporary clusters
|
781
|
+
CurrentTemp index of next temp cluster to be used
|
782
|
+
Heap heap used to hold temp clusters - "best" on top
|
783
|
+
Operation: This routine is designed to be used in concert with the
|
784
|
+
KDWalk routine. It will create a potential cluster for
|
785
|
+
each sample in the kd-tree that is being walked. This
|
786
|
+
potential cluster will then be pushed on the heap.
|
787
|
+
Return: none
|
788
|
+
Exceptions: none
|
789
|
+
History: 5/29/89, DSJ, Created.
|
790
|
+
7/13/89, DSJ, Removed visibility of kd-tree node data struct.
|
791
|
+
******************************************************************************/
|
792
|
+
void MakePotentialClusters(CLUSTER *Cluster, VISIT Order, inT32 Level) {
|
793
|
+
HEAPENTRY HeapEntry;
|
794
|
+
|
795
|
+
if ((Order == preorder) || (Order == leaf)) {
|
796
|
+
TempCluster[CurrentTemp].Cluster = Cluster;
|
797
|
+
HeapEntry.Data = (char *) &(TempCluster[CurrentTemp]);
|
798
|
+
TempCluster[CurrentTemp].Neighbor =
|
799
|
+
FindNearestNeighbor (Tree, TempCluster[CurrentTemp].Cluster,
|
800
|
+
&(HeapEntry.Key));
|
801
|
+
if (TempCluster[CurrentTemp].Neighbor != NULL) {
|
802
|
+
HeapStore(Heap, &HeapEntry);
|
803
|
+
CurrentTemp++;
|
804
|
+
}
|
805
|
+
}
|
806
|
+
} // MakePotentialClusters
|
807
|
+
|
808
|
+
|
809
|
+
/** FindNearestNeighbor *********************************************************
|
810
|
+
Parameters: Tree kd-tree to search in for nearest neighbor
|
811
|
+
Cluster cluster whose nearest neighbor is to be found
|
812
|
+
Distance ptr to variable to report distance found
|
813
|
+
Globals: none
|
814
|
+
Operation: This routine searches the specified kd-tree for the nearest
|
815
|
+
neighbor of the specified cluster. It actually uses the
|
816
|
+
kd routines to find the 2 nearest neighbors since one of them
|
817
|
+
will be the original cluster. A pointer to the nearest
|
818
|
+
neighbor is returned, if it can be found, otherwise NULL is
|
819
|
+
returned. The distance between the 2 nodes is placed
|
820
|
+
in the specified variable.
|
821
|
+
Return: Pointer to the nearest neighbor of Cluster, or NULL
|
822
|
+
Exceptions: none
|
823
|
+
History: 5/29/89, DSJ, Created.
|
824
|
+
7/13/89, DSJ, Removed visibility of kd-tree node data struct
|
825
|
+
********************************************************************************/
|
826
|
+
CLUSTER *
|
827
|
+
FindNearestNeighbor (KDTREE * Tree, CLUSTER * Cluster, FLOAT32 * Distance)
|
828
|
+
#define MAXNEIGHBORS 2
|
829
|
+
#define MAXDISTANCE MAX_FLOAT32
|
830
|
+
{
|
831
|
+
CLUSTER *Neighbor[MAXNEIGHBORS];
|
832
|
+
FLOAT32 Dist[MAXNEIGHBORS];
|
833
|
+
inT32 NumberOfNeighbors;
|
834
|
+
inT32 i;
|
835
|
+
CLUSTER *BestNeighbor;
|
836
|
+
|
837
|
+
// find the 2 nearest neighbors of the cluster
|
838
|
+
NumberOfNeighbors = KDNearestNeighborSearch
|
839
|
+
(Tree, Cluster->Mean, MAXNEIGHBORS, MAXDISTANCE, Neighbor, Dist);
|
840
|
+
|
841
|
+
// search for the nearest neighbor that is not the cluster itself
|
842
|
+
*Distance = MAXDISTANCE;
|
843
|
+
BestNeighbor = NULL;
|
844
|
+
for (i = 0; i < NumberOfNeighbors; i++) {
|
845
|
+
if ((Dist[i] < *Distance) && (Neighbor[i] != Cluster)) {
|
846
|
+
*Distance = Dist[i];
|
847
|
+
BestNeighbor = Neighbor[i];
|
848
|
+
}
|
849
|
+
}
|
850
|
+
return (BestNeighbor);
|
851
|
+
} // FindNearestNeighbor
|
852
|
+
|
853
|
+
|
854
|
+
/** MakeNewCluster *************************************************************
|
855
|
+
Parameters: Clusterer current clustering environment
|
856
|
+
TempCluster potential cluster to make permanent
|
857
|
+
Globals: none
|
858
|
+
Operation: This routine creates a new permanent cluster from the
|
859
|
+
clusters specified in TempCluster. The 2 clusters in
|
860
|
+
TempCluster are marked as "clustered" and deleted from
|
861
|
+
the kd-tree. The new cluster is then added to the kd-tree.
|
862
|
+
Return: Pointer to the new permanent cluster
|
863
|
+
Exceptions: none
|
864
|
+
History: 5/29/89, DSJ, Created.
|
865
|
+
7/13/89, DSJ, Removed visibility of kd-tree node data struct
|
866
|
+
********************************************************************************/
|
867
|
+
CLUSTER *MakeNewCluster(CLUSTERER *Clusterer, TEMPCLUSTER *TempCluster) {
|
868
|
+
CLUSTER *Cluster;
|
869
|
+
|
870
|
+
// allocate the new cluster and initialize it
|
871
|
+
Cluster = (CLUSTER *) Emalloc (sizeof (CLUSTER) +
|
872
|
+
(Clusterer->SampleSize -
|
873
|
+
1) * sizeof (FLOAT32));
|
874
|
+
Cluster->Clustered = FALSE;
|
875
|
+
Cluster->Prototype = FALSE;
|
876
|
+
Cluster->Left = TempCluster->Cluster;
|
877
|
+
Cluster->Right = TempCluster->Neighbor;
|
878
|
+
Cluster->CharID = -1;
|
879
|
+
|
880
|
+
// mark the old clusters as "clustered" and delete them from the kd-tree
|
881
|
+
Cluster->Left->Clustered = TRUE;
|
882
|
+
Cluster->Right->Clustered = TRUE;
|
883
|
+
KDDelete (Clusterer->KDTree, Cluster->Left->Mean, Cluster->Left);
|
884
|
+
KDDelete (Clusterer->KDTree, Cluster->Right->Mean, Cluster->Right);
|
885
|
+
|
886
|
+
// compute the mean and sample count for the new cluster
|
887
|
+
Cluster->SampleCount =
|
888
|
+
MergeClusters (Clusterer->SampleSize, Clusterer->ParamDesc,
|
889
|
+
Cluster->Left->SampleCount, Cluster->Right->SampleCount,
|
890
|
+
Cluster->Mean, Cluster->Left->Mean, Cluster->Right->Mean);
|
891
|
+
|
892
|
+
// add the new cluster to the KD tree
|
893
|
+
KDStore (Clusterer->KDTree, Cluster->Mean, Cluster);
|
894
|
+
return (Cluster);
|
895
|
+
} // MakeNewCluster
|
896
|
+
|
897
|
+
|
898
|
+
/** MergeClusters ************************************************************
|
899
|
+
Parameters: N # of dimensions (size of arrays)
|
900
|
+
ParamDesc array of dimension descriptions
|
901
|
+
n1, n2 number of samples in each old cluster
|
902
|
+
m array to hold mean of new cluster
|
903
|
+
m1, m2 arrays containing means of old clusters
|
904
|
+
Globals: None
|
905
|
+
Operation: This routine merges two clusters into one larger cluster.
|
906
|
+
To do this it computes the number of samples in the new
|
907
|
+
cluster and the mean of the new cluster. The ParamDesc
|
908
|
+
information is used to ensure that circular dimensions
|
909
|
+
are handled correctly.
|
910
|
+
Return: The number of samples in the new cluster.
|
911
|
+
Exceptions: None
|
912
|
+
History: 5/31/89, DSJ, Created.
|
913
|
+
*********************************************************************************/
|
914
|
+
inT32
|
915
|
+
MergeClusters (inT16 N,
|
916
|
+
register PARAM_DESC ParamDesc[],
|
917
|
+
register inT32 n1,
|
918
|
+
register inT32 n2,
|
919
|
+
register FLOAT32 m[],
|
920
|
+
register FLOAT32 m1[], register FLOAT32 m2[]) {
|
921
|
+
register inT32 i, n;
|
922
|
+
|
923
|
+
n = n1 + n2;
|
924
|
+
for (i = N; i > 0; i--, ParamDesc++, m++, m1++, m2++) {
|
925
|
+
if (ParamDesc->Circular) {
|
926
|
+
// if distance between means is greater than allowed
|
927
|
+
// reduce upper point by one "rotation" to compute mean
|
928
|
+
// then normalize the mean back into the accepted range
|
929
|
+
if ((*m2 - *m1) > ParamDesc->HalfRange) {
|
930
|
+
*m = (n1 * *m1 + n2 * (*m2 - ParamDesc->Range)) / n;
|
931
|
+
if (*m < ParamDesc->Min)
|
932
|
+
*m += ParamDesc->Range;
|
933
|
+
}
|
934
|
+
else if ((*m1 - *m2) > ParamDesc->HalfRange) {
|
935
|
+
*m = (n1 * (*m1 - ParamDesc->Range) + n2 * *m2) / n;
|
936
|
+
if (*m < ParamDesc->Min)
|
937
|
+
*m += ParamDesc->Range;
|
938
|
+
}
|
939
|
+
else
|
940
|
+
*m = (n1 * *m1 + n2 * *m2) / n;
|
941
|
+
}
|
942
|
+
else
|
943
|
+
*m = (n1 * *m1 + n2 * *m2) / n;
|
944
|
+
}
|
945
|
+
return (n);
|
946
|
+
} // MergeClusters
|
947
|
+
|
948
|
+
|
949
|
+
/** ComputePrototypes *******************************************************
|
950
|
+
Parameters: Clusterer data structure holding cluster tree
|
951
|
+
Config parameters used to control prototype generation
|
952
|
+
Globals: None
|
953
|
+
Operation: This routine decides which clusters in the cluster tree
|
954
|
+
should be represented by prototypes, forms a list of these
|
955
|
+
prototypes, and places the list in the Clusterer data
|
956
|
+
structure.
|
957
|
+
Return: None
|
958
|
+
Exceptions: None
|
959
|
+
History: 5/30/89, DSJ, Created.
|
960
|
+
*******************************************************************************/
|
961
|
+
void ComputePrototypes(CLUSTERER *Clusterer, CLUSTERCONFIG *Config) {
|
962
|
+
LIST ClusterStack = NIL;
|
963
|
+
CLUSTER *Cluster;
|
964
|
+
PROTOTYPE *Prototype;
|
965
|
+
|
966
|
+
// use a stack to keep track of clusters waiting to be processed
|
967
|
+
// initially the only cluster on the stack is the root cluster
|
968
|
+
if (Clusterer->Root != NULL)
|
969
|
+
ClusterStack = push (NIL, Clusterer->Root);
|
970
|
+
|
971
|
+
// loop until we have analyzed all clusters which are potential prototypes
|
972
|
+
while (ClusterStack != NIL) {
|
973
|
+
// remove the next cluster to be analyzed from the stack
|
974
|
+
// try to make a prototype from the cluster
|
975
|
+
// if successful, put it on the proto list, else split the cluster
|
976
|
+
Cluster = (CLUSTER *) first_node (ClusterStack);
|
977
|
+
ClusterStack = pop (ClusterStack);
|
978
|
+
Prototype = MakePrototype (Clusterer, Config, Cluster);
|
979
|
+
if (Prototype != NULL) {
|
980
|
+
Clusterer->ProtoList = push (Clusterer->ProtoList, Prototype);
|
981
|
+
}
|
982
|
+
else {
|
983
|
+
ClusterStack = push (ClusterStack, Cluster->Right);
|
984
|
+
ClusterStack = push (ClusterStack, Cluster->Left);
|
985
|
+
}
|
986
|
+
}
|
987
|
+
} // ComputePrototypes
|
988
|
+
|
989
|
+
|
990
|
+
/** MakePrototype ***********************************************************
|
991
|
+
Parameters: Clusterer data structure holding cluster tree
|
992
|
+
Config parameters used to control prototype generation
|
993
|
+
Cluster cluster to be made into a prototype
|
994
|
+
Globals: None
|
995
|
+
Operation: This routine attempts to create a prototype from the
|
996
|
+
specified cluster that conforms to the distribution
|
997
|
+
specified in Config. If there are too few samples in the
|
998
|
+
cluster to perform a statistical analysis, then a prototype
|
999
|
+
is generated but labelled as insignificant. If the
|
1000
|
+
dimensions of the cluster are not independent, no prototype
|
1001
|
+
is generated and NULL is returned. If a prototype can be
|
1002
|
+
found that matches the desired distribution then a pointer
|
1003
|
+
to it is returned, otherwise NULL is returned.
|
1004
|
+
Return: Pointer to new prototype or NULL
|
1005
|
+
Exceptions: None
|
1006
|
+
History: 6/19/89, DSJ, Created.
|
1007
|
+
*******************************************************************************/
|
1008
|
+
PROTOTYPE *MakePrototype(CLUSTERER *Clusterer,
|
1009
|
+
CLUSTERCONFIG *Config,
|
1010
|
+
CLUSTER *Cluster) {
|
1011
|
+
STATISTICS *Statistics;
|
1012
|
+
PROTOTYPE *Proto;
|
1013
|
+
BUCKETS *Buckets;
|
1014
|
+
|
1015
|
+
// filter out clusters which contain samples from the same character
|
1016
|
+
if (MultipleCharSamples (Clusterer, Cluster, Config->MaxIllegal))
|
1017
|
+
return (NULL);
|
1018
|
+
|
1019
|
+
// compute the covariance matrix and ranges for the cluster
|
1020
|
+
Statistics =
|
1021
|
+
ComputeStatistics (Clusterer->SampleSize, Clusterer->ParamDesc, Cluster);
|
1022
|
+
|
1023
|
+
// check for degenerate clusters which need not be analyzed further
|
1024
|
+
// note that the MinSamples test assumes that all clusters with multiple
|
1025
|
+
// character samples have been removed (as above)
|
1026
|
+
Proto = MakeDegenerateProto (Clusterer->SampleSize, Cluster, Statistics,
|
1027
|
+
Config->ProtoStyle,
|
1028
|
+
(inT32) (Config->MinSamples *
|
1029
|
+
Clusterer->NumChar));
|
1030
|
+
if (Proto != NULL) {
|
1031
|
+
FreeStatistics(Statistics);
|
1032
|
+
return (Proto);
|
1033
|
+
}
|
1034
|
+
// check to ensure that all dimensions are independent
|
1035
|
+
if (!Independent (Clusterer->ParamDesc, Clusterer->SampleSize,
|
1036
|
+
Statistics->CoVariance, Config->Independence)) {
|
1037
|
+
FreeStatistics(Statistics);
|
1038
|
+
return (NULL);
|
1039
|
+
}
|
1040
|
+
|
1041
|
+
if (HOTELLING && Config->ProtoStyle == elliptical) {
|
1042
|
+
Proto = TestEllipticalProto(Clusterer, Config, Cluster, Statistics);
|
1043
|
+
if (Proto != NULL) {
|
1044
|
+
FreeStatistics(Statistics);
|
1045
|
+
return Proto;
|
1046
|
+
}
|
1047
|
+
}
|
1048
|
+
|
1049
|
+
// create a histogram data structure used to evaluate distributions
|
1050
|
+
Buckets = GetBuckets (normal, Cluster->SampleCount, Config->Confidence);
|
1051
|
+
|
1052
|
+
// create a prototype based on the statistics and test it
|
1053
|
+
switch (Config->ProtoStyle) {
|
1054
|
+
case spherical:
|
1055
|
+
Proto = MakeSphericalProto (Clusterer, Cluster, Statistics, Buckets);
|
1056
|
+
break;
|
1057
|
+
case elliptical:
|
1058
|
+
Proto = MakeEllipticalProto (Clusterer, Cluster, Statistics, Buckets);
|
1059
|
+
break;
|
1060
|
+
case mixed:
|
1061
|
+
Proto = MakeMixedProto (Clusterer, Cluster, Statistics, Buckets,
|
1062
|
+
Config->Confidence);
|
1063
|
+
break;
|
1064
|
+
case automatic:
|
1065
|
+
Proto = MakeSphericalProto (Clusterer, Cluster, Statistics, Buckets);
|
1066
|
+
if (Proto != NULL)
|
1067
|
+
break;
|
1068
|
+
Proto = MakeEllipticalProto (Clusterer, Cluster, Statistics, Buckets);
|
1069
|
+
if (Proto != NULL)
|
1070
|
+
break;
|
1071
|
+
Proto = MakeMixedProto (Clusterer, Cluster, Statistics, Buckets,
|
1072
|
+
Config->Confidence);
|
1073
|
+
break;
|
1074
|
+
}
|
1075
|
+
FreeBuckets(Buckets);
|
1076
|
+
FreeStatistics(Statistics);
|
1077
|
+
return (Proto);
|
1078
|
+
} // MakePrototype
|
1079
|
+
|
1080
|
+
|
1081
|
+
/** MakeDegenerateProto ******************************************************
|
1082
|
+
Parameters: N number of dimensions
|
1083
|
+
Cluster cluster being analyzed
|
1084
|
+
Statistics statistical info about cluster
|
1085
|
+
Style type of prototype to be generated
|
1086
|
+
MinSamples minimum number of samples in a cluster
|
1087
|
+
Globals: None
|
1088
|
+
Operation: This routine checks for clusters which are degenerate and
|
1089
|
+
therefore cannot be analyzed in a statistically valid way.
|
1090
|
+
A cluster is defined as degenerate if it does not have at
|
1091
|
+
least MINSAMPLESNEEDED samples in it. If the cluster is
|
1092
|
+
found to be degenerate, a prototype of the specified style
|
1093
|
+
is generated and marked as insignificant. A cluster is
|
1094
|
+
also degenerate if it does not have at least MinSamples
|
1095
|
+
samples in it.
|
1096
|
+
If the cluster is not degenerate, NULL is returned.
|
1097
|
+
Return: Pointer to degenerate prototype or NULL.
|
1098
|
+
Exceptions: None
|
1099
|
+
History: 6/20/89, DSJ, Created.
|
1100
|
+
7/12/89, DSJ, Changed name and added check for 0 stddev.
|
1101
|
+
8/8/89, DSJ, Removed check for 0 stddev (handled elsewhere).
|
1102
|
+
********************************************************************************/
|
1103
|
+
PROTOTYPE *MakeDegenerateProto( //this was MinSample
|
1104
|
+
uinT16 N,
|
1105
|
+
CLUSTER *Cluster,
|
1106
|
+
STATISTICS *Statistics,
|
1107
|
+
PROTOSTYLE Style,
|
1108
|
+
inT32 MinSamples) {
|
1109
|
+
PROTOTYPE *Proto = NULL;
|
1110
|
+
|
1111
|
+
if (MinSamples < MINSAMPLESNEEDED)
|
1112
|
+
MinSamples = MINSAMPLESNEEDED;
|
1113
|
+
|
1114
|
+
if (Cluster->SampleCount < MinSamples) {
|
1115
|
+
switch (Style) {
|
1116
|
+
case spherical:
|
1117
|
+
Proto = NewSphericalProto (N, Cluster, Statistics);
|
1118
|
+
break;
|
1119
|
+
case elliptical:
|
1120
|
+
case automatic:
|
1121
|
+
Proto = NewEllipticalProto (N, Cluster, Statistics);
|
1122
|
+
break;
|
1123
|
+
case mixed:
|
1124
|
+
Proto = NewMixedProto (N, Cluster, Statistics);
|
1125
|
+
break;
|
1126
|
+
}
|
1127
|
+
Proto->Significant = FALSE;
|
1128
|
+
}
|
1129
|
+
return (Proto);
|
1130
|
+
} // MakeDegenerateProto
|
1131
|
+
|
1132
|
+
/** TestEllipticalProto ****************************************************
|
1133
|
+
Parameters: Clusterer data struct containing samples being clustered
|
1134
|
+
Config provides the magic number of samples that make a good cluster
|
1135
|
+
Cluster cluster to be made into an elliptical prototype
|
1136
|
+
Statistics statistical info about cluster
|
1137
|
+
Globals: None
|
1138
|
+
Operation: This routine tests the specified cluster to see if **
|
1139
|
+
* there is a statistically significant difference between
|
1140
|
+
* the sub-clusters that would be made if the cluster were to
|
1141
|
+
* be split. If not, then a new prototype is formed and
|
1142
|
+
* returned to the caller. If there is, then NULL is returned
|
1143
|
+
* to the caller.
|
1144
|
+
Return: Pointer to new elliptical prototype or NULL.
|
1145
|
+
****************************************************************************/
|
1146
|
+
PROTOTYPE *TestEllipticalProto(CLUSTERER *Clusterer,
|
1147
|
+
CLUSTERCONFIG *Config,
|
1148
|
+
CLUSTER *Cluster,
|
1149
|
+
STATISTICS *Statistics) {
|
1150
|
+
// Fraction of the number of samples used as a range around 1 within
|
1151
|
+
// which a cluster has the magic size that allows a boost to the
|
1152
|
+
// FTable by kFTableBoostMargin, thus allowing clusters near the
|
1153
|
+
// magic size (equal to the number of sample characters) to be more
|
1154
|
+
// likely to stay together.
|
1155
|
+
const double kMagicSampleMargin = 0.0625;
|
1156
|
+
const double kFTableBoostMargin = 2.0;
|
1157
|
+
|
1158
|
+
int N = Clusterer->SampleSize;
|
1159
|
+
CLUSTER* Left = Cluster->Left;
|
1160
|
+
CLUSTER* Right = Cluster->Right;
|
1161
|
+
if (Left == NULL || Right == NULL)
|
1162
|
+
return NULL;
|
1163
|
+
int TotalDims = Left->SampleCount + Right->SampleCount;
|
1164
|
+
if (TotalDims < N + 1 || TotalDims < 2)
|
1165
|
+
return NULL;
|
1166
|
+
const int kMatrixSize = N * N * sizeof(FLOAT32);
|
1167
|
+
FLOAT32* Covariance = reinterpret_cast<FLOAT32 *>(Emalloc(kMatrixSize));
|
1168
|
+
FLOAT32* Inverse = reinterpret_cast<FLOAT32 *>(Emalloc(kMatrixSize));
|
1169
|
+
FLOAT32* Delta = reinterpret_cast<FLOAT32*>(Emalloc(N * sizeof(FLOAT32)));
|
1170
|
+
// Compute a new covariance matrix that only uses essential features.
|
1171
|
+
for (int i = 0; i < N; ++i) {
|
1172
|
+
int row_offset = i * N;
|
1173
|
+
if (!Clusterer->ParamDesc[i].NonEssential) {
|
1174
|
+
for (int j = 0; j < N; ++j) {
|
1175
|
+
if (!Clusterer->ParamDesc[j].NonEssential)
|
1176
|
+
Covariance[j + row_offset] = Statistics->CoVariance[j + row_offset];
|
1177
|
+
else
|
1178
|
+
Covariance[j + row_offset] = 0.0f;
|
1179
|
+
}
|
1180
|
+
} else {
|
1181
|
+
for (int j = 0; j < N; ++j) {
|
1182
|
+
if (i == j)
|
1183
|
+
Covariance[j + row_offset] = 1.0f;
|
1184
|
+
else
|
1185
|
+
Covariance[j + row_offset] = 0.0f;
|
1186
|
+
}
|
1187
|
+
}
|
1188
|
+
}
|
1189
|
+
double err = InvertMatrix(Covariance, N, Inverse);
|
1190
|
+
if (err > 1) {
|
1191
|
+
tprintf("Clustering error: Matrix inverse failed with error %g\n", err);
|
1192
|
+
}
|
1193
|
+
int EssentialN = 0;
|
1194
|
+
for (int dim = 0; dim < N; ++dim) {
|
1195
|
+
if (!Clusterer->ParamDesc[dim].NonEssential) {
|
1196
|
+
Delta[dim] = Left->Mean[dim] - Right->Mean[dim];
|
1197
|
+
++EssentialN;
|
1198
|
+
} else {
|
1199
|
+
Delta[dim] = 0.0f;
|
1200
|
+
}
|
1201
|
+
}
|
1202
|
+
// Compute Hotelling's T-squared.
|
1203
|
+
double Tsq = 0.0;
|
1204
|
+
for (int x = 0; x < N; ++x) {
|
1205
|
+
double temp = 0.0;
|
1206
|
+
for (int y = 0; y < N; ++y) {
|
1207
|
+
temp += Inverse[y + N*x] * Delta[y];
|
1208
|
+
}
|
1209
|
+
Tsq += Delta[x] * temp;
|
1210
|
+
}
|
1211
|
+
memfree(Covariance);
|
1212
|
+
memfree(Inverse);
|
1213
|
+
memfree(Delta);
|
1214
|
+
// Changed this function to match the formula in
|
1215
|
+
// Statistical Methods in Medical Research p 473
|
1216
|
+
// By Peter Armitage, Geoffrey Berry, J. N. S. Matthews.
|
1217
|
+
// Tsq *= Left->SampleCount * Right->SampleCount / TotalDims;
|
1218
|
+
double F = Tsq * (TotalDims - EssentialN - 1) / ((TotalDims - 2)*EssentialN);
|
1219
|
+
int Fx = EssentialN;
|
1220
|
+
if (Fx > FTABLE_X)
|
1221
|
+
Fx = FTABLE_X;
|
1222
|
+
--Fx;
|
1223
|
+
int Fy = TotalDims - EssentialN - 1;
|
1224
|
+
if (Fy > FTABLE_Y)
|
1225
|
+
Fy = FTABLE_Y;
|
1226
|
+
--Fy;
|
1227
|
+
double FTarget = FTable[Fy][Fx];
|
1228
|
+
if (Config->MagicSamples > 0 &&
|
1229
|
+
TotalDims >= Config->MagicSamples * (1.0 - kMagicSampleMargin) &&
|
1230
|
+
TotalDims <= Config->MagicSamples * (1.0 + kMagicSampleMargin)) {
|
1231
|
+
// Give magic-sized clusters a magic FTable boost.
|
1232
|
+
FTarget += kFTableBoostMargin;
|
1233
|
+
}
|
1234
|
+
if (F < FTarget) {
|
1235
|
+
return NewEllipticalProto (Clusterer->SampleSize, Cluster, Statistics);
|
1236
|
+
}
|
1237
|
+
return NULL;
|
1238
|
+
}
|
1239
|
+
|
1240
|
+
/* MakeSphericalProto *******************************************************
|
1241
|
+
Parameters: Clusterer data struct containing samples being clustered
|
1242
|
+
Cluster cluster to be made into a spherical prototype
|
1243
|
+
Statistics statistical info about cluster
|
1244
|
+
Buckets histogram struct used to analyze distribution
|
1245
|
+
Globals: None
|
1246
|
+
Operation: This routine tests the specified cluster to see if it can
|
1247
|
+
be approximated by a spherical normal distribution. If it
|
1248
|
+
can be, then a new prototype is formed and returned to the
|
1249
|
+
caller. If it can't be, then NULL is returned to the caller.
|
1250
|
+
Return: Pointer to new spherical prototype or NULL.
|
1251
|
+
Exceptions: None
|
1252
|
+
History: 6/1/89, DSJ, Created.
|
1253
|
+
******************************************************************************/
|
1254
|
+
PROTOTYPE *MakeSphericalProto(CLUSTERER *Clusterer,
|
1255
|
+
CLUSTER *Cluster,
|
1256
|
+
STATISTICS *Statistics,
|
1257
|
+
BUCKETS *Buckets) {
|
1258
|
+
PROTOTYPE *Proto = NULL;
|
1259
|
+
int i;
|
1260
|
+
|
1261
|
+
// check that each dimension is a normal distribution
|
1262
|
+
for (i = 0; i < Clusterer->SampleSize; i++) {
|
1263
|
+
if (Clusterer->ParamDesc[i].NonEssential)
|
1264
|
+
continue;
|
1265
|
+
|
1266
|
+
FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]),
|
1267
|
+
Cluster->Mean[i],
|
1268
|
+
sqrt ((FLOAT64) (Statistics->AvgVariance)));
|
1269
|
+
if (!DistributionOK (Buckets))
|
1270
|
+
break;
|
1271
|
+
}
|
1272
|
+
// if all dimensions matched a normal distribution, make a proto
|
1273
|
+
if (i >= Clusterer->SampleSize)
|
1274
|
+
Proto = NewSphericalProto (Clusterer->SampleSize, Cluster, Statistics);
|
1275
|
+
return (Proto);
|
1276
|
+
} // MakeSphericalProto
|
1277
|
+
|
1278
|
+
|
1279
|
+
/** MakeEllipticalProto ****************************************************
|
1280
|
+
Parameters: Clusterer data struct containing samples being clustered
|
1281
|
+
Cluster cluster to be made into an elliptical prototype
|
1282
|
+
Statistics statistical info about cluster
|
1283
|
+
Buckets histogram struct used to analyze distribution
|
1284
|
+
Globals: None
|
1285
|
+
Operation: This routine tests the specified cluster to see if it can
|
1286
|
+
be approximated by an elliptical normal distribution. If it
|
1287
|
+
can be, then a new prototype is formed and returned to the
|
1288
|
+
caller. If it can't be, then NULL is returned to the caller.
|
1289
|
+
Return: Pointer to new elliptical prototype or NULL.
|
1290
|
+
Exceptions: None
|
1291
|
+
History: 6/12/89, DSJ, Created.
|
1292
|
+
****************************************************************************/
|
1293
|
+
PROTOTYPE *MakeEllipticalProto(CLUSTERER *Clusterer,
|
1294
|
+
CLUSTER *Cluster,
|
1295
|
+
STATISTICS *Statistics,
|
1296
|
+
BUCKETS *Buckets) {
|
1297
|
+
PROTOTYPE *Proto = NULL;
|
1298
|
+
int i;
|
1299
|
+
|
1300
|
+
// check that each dimension is a normal distribution
|
1301
|
+
for (i = 0; i < Clusterer->SampleSize; i++) {
|
1302
|
+
if (Clusterer->ParamDesc[i].NonEssential)
|
1303
|
+
continue;
|
1304
|
+
|
1305
|
+
FillBuckets (Buckets, Cluster, i, &(Clusterer->ParamDesc[i]),
|
1306
|
+
Cluster->Mean[i],
|
1307
|
+
sqrt ((FLOAT64) Statistics->
|
1308
|
+
CoVariance[i * (Clusterer->SampleSize + 1)]));
|
1309
|
+
if (!DistributionOK (Buckets))
|
1310
|
+
break;
|
1311
|
+
}
|
1312
|
+
// if all dimensions matched a normal distribution, make a proto
|
1313
|
+
if (i >= Clusterer->SampleSize)
|
1314
|
+
Proto = NewEllipticalProto (Clusterer->SampleSize, Cluster, Statistics);
|
1315
|
+
return (Proto);
|
1316
|
+
} // MakeEllipticalProto
|
1317
|
+
|
1318
|
+
|
1319
|
+
/** MakeMixedProto ***********************************************************
|
1320
|
+
Parameters: Clusterer data struct containing samples being clustered
|
1321
|
+
Cluster cluster to be made into a prototype
|
1322
|
+
Statistics statistical info about cluster
|
1323
|
+
NormalBuckets histogram struct used to analyze distribution
|
1324
|
+
Confidence confidence level for alternate distributions
|
1325
|
+
Globals: None
|
1326
|
+
Operation: This routine tests each dimension of the specified cluster to
|
1327
|
+
see what distribution would best approximate that dimension.
|
1328
|
+
Each dimension is compared to the following distributions
|
1329
|
+
in order: normal, random, uniform. If each dimension can
|
1330
|
+
be represented by one of these distributions,
|
1331
|
+
then a new prototype is formed and returned to the
|
1332
|
+
caller. If it can't be, then NULL is returned to the caller.
|
1333
|
+
Return: Pointer to new mixed prototype or NULL.
|
1334
|
+
Exceptions: None
|
1335
|
+
History: 6/12/89, DSJ, Created.
|
1336
|
+
********************************************************************************/
|
1337
|
+
PROTOTYPE *MakeMixedProto(CLUSTERER *Clusterer,
|
1338
|
+
CLUSTER *Cluster,
|
1339
|
+
STATISTICS *Statistics,
|
1340
|
+
BUCKETS *NormalBuckets,
|
1341
|
+
FLOAT64 Confidence) {
|
1342
|
+
PROTOTYPE *Proto;
|
1343
|
+
int i;
|
1344
|
+
BUCKETS *UniformBuckets = NULL;
|
1345
|
+
BUCKETS *RandomBuckets = NULL;
|
1346
|
+
|
1347
|
+
// create a mixed proto to work on - initially assume all dimensions normal*/
|
1348
|
+
Proto = NewMixedProto (Clusterer->SampleSize, Cluster, Statistics);
|
1349
|
+
|
1350
|
+
// find the proper distribution for each dimension
|
1351
|
+
for (i = 0; i < Clusterer->SampleSize; i++) {
|
1352
|
+
if (Clusterer->ParamDesc[i].NonEssential)
|
1353
|
+
continue;
|
1354
|
+
|
1355
|
+
FillBuckets (NormalBuckets, Cluster, i, &(Clusterer->ParamDesc[i]),
|
1356
|
+
Proto->Mean[i],
|
1357
|
+
sqrt ((FLOAT64) Proto->Variance.Elliptical[i]));
|
1358
|
+
if (DistributionOK (NormalBuckets))
|
1359
|
+
continue;
|
1360
|
+
|
1361
|
+
if (RandomBuckets == NULL)
|
1362
|
+
RandomBuckets =
|
1363
|
+
GetBuckets (D_random, Cluster->SampleCount, Confidence);
|
1364
|
+
MakeDimRandom (i, Proto, &(Clusterer->ParamDesc[i]));
|
1365
|
+
FillBuckets (RandomBuckets, Cluster, i, &(Clusterer->ParamDesc[i]),
|
1366
|
+
Proto->Mean[i], Proto->Variance.Elliptical[i]);
|
1367
|
+
if (DistributionOK (RandomBuckets))
|
1368
|
+
continue;
|
1369
|
+
|
1370
|
+
if (UniformBuckets == NULL)
|
1371
|
+
UniformBuckets =
|
1372
|
+
GetBuckets (uniform, Cluster->SampleCount, Confidence);
|
1373
|
+
MakeDimUniform(i, Proto, Statistics);
|
1374
|
+
FillBuckets (UniformBuckets, Cluster, i, &(Clusterer->ParamDesc[i]),
|
1375
|
+
Proto->Mean[i], Proto->Variance.Elliptical[i]);
|
1376
|
+
if (DistributionOK (UniformBuckets))
|
1377
|
+
continue;
|
1378
|
+
break;
|
1379
|
+
}
|
1380
|
+
// if any dimension failed to match a distribution, discard the proto
|
1381
|
+
if (i < Clusterer->SampleSize) {
|
1382
|
+
FreePrototype(Proto);
|
1383
|
+
Proto = NULL;
|
1384
|
+
}
|
1385
|
+
if (UniformBuckets != NULL)
|
1386
|
+
FreeBuckets(UniformBuckets);
|
1387
|
+
if (RandomBuckets != NULL)
|
1388
|
+
FreeBuckets(RandomBuckets);
|
1389
|
+
return (Proto);
|
1390
|
+
} // MakeMixedProto
|
1391
|
+
|
1392
|
+
|
1393
|
+
/* MakeDimRandom *************************************************************
|
1394
|
+
Parameters: i index of dimension to be changed
|
1395
|
+
Proto prototype whose dimension is to be altered
|
1396
|
+
ParamDesc description of specified dimension
|
1397
|
+
Globals: None
|
1398
|
+
Operation: This routine alters the ith dimension of the specified
|
1399
|
+
mixed prototype to be D_random.
|
1400
|
+
Return: None
|
1401
|
+
Exceptions: None
|
1402
|
+
History: 6/20/89, DSJ, Created.
|
1403
|
+
******************************************************************************/
|
1404
|
+
void MakeDimRandom(uinT16 i, PROTOTYPE *Proto, PARAM_DESC *ParamDesc) {
|
1405
|
+
Proto->Distrib[i] = D_random;
|
1406
|
+
Proto->Mean[i] = ParamDesc->MidRange;
|
1407
|
+
Proto->Variance.Elliptical[i] = ParamDesc->HalfRange;
|
1408
|
+
|
1409
|
+
// subtract out the previous magnitude of this dimension from the total
|
1410
|
+
Proto->TotalMagnitude /= Proto->Magnitude.Elliptical[i];
|
1411
|
+
Proto->Magnitude.Elliptical[i] = 1.0 / ParamDesc->Range;
|
1412
|
+
Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i];
|
1413
|
+
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
|
1414
|
+
|
1415
|
+
// note that the proto Weight is irrelevant for D_random protos
|
1416
|
+
} // MakeDimRandom
|
1417
|
+
|
1418
|
+
|
1419
|
+
/** MakeDimUniform ***********************************************************
|
1420
|
+
Parameters: i index of dimension to be changed
|
1421
|
+
Proto prototype whose dimension is to be altered
|
1422
|
+
Statistics statistical info about prototype
|
1423
|
+
Globals: None
|
1424
|
+
Operation: This routine alters the ith dimension of the specified
|
1425
|
+
mixed prototype to be uniform.
|
1426
|
+
Return: None
|
1427
|
+
Exceptions: None
|
1428
|
+
History: 6/20/89, DSJ, Created.
|
1429
|
+
******************************************************************************/
|
1430
|
+
void MakeDimUniform(uinT16 i, PROTOTYPE *Proto, STATISTICS *Statistics) {
|
1431
|
+
Proto->Distrib[i] = uniform;
|
1432
|
+
Proto->Mean[i] = Proto->Cluster->Mean[i] +
|
1433
|
+
(Statistics->Min[i] + Statistics->Max[i]) / 2;
|
1434
|
+
Proto->Variance.Elliptical[i] =
|
1435
|
+
(Statistics->Max[i] - Statistics->Min[i]) / 2;
|
1436
|
+
if (Proto->Variance.Elliptical[i] < MINVARIANCE)
|
1437
|
+
Proto->Variance.Elliptical[i] = MINVARIANCE;
|
1438
|
+
|
1439
|
+
// subtract out the previous magnitude of this dimension from the total
|
1440
|
+
Proto->TotalMagnitude /= Proto->Magnitude.Elliptical[i];
|
1441
|
+
Proto->Magnitude.Elliptical[i] =
|
1442
|
+
1.0 / (2.0 * Proto->Variance.Elliptical[i]);
|
1443
|
+
Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i];
|
1444
|
+
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
|
1445
|
+
|
1446
|
+
// note that the proto Weight is irrelevant for uniform protos
|
1447
|
+
} // MakeDimUniform
|
1448
|
+
|
1449
|
+
|
1450
|
+
/** ComputeStatistics *********************************************************
|
1451
|
+
Parameters: N number of dimensions
|
1452
|
+
ParamDesc array of dimension descriptions
|
1453
|
+
Cluster cluster whose stats are to be computed
|
1454
|
+
Globals: None
|
1455
|
+
Operation: This routine searches the cluster tree for all leaf nodes
|
1456
|
+
which are samples in the specified cluster. It computes
|
1457
|
+
a full covariance matrix for these samples as well as
|
1458
|
+
keeping track of the ranges (min and max) for each
|
1459
|
+
dimension. A special data structure is allocated to
|
1460
|
+
return this information to the caller. An incremental
|
1461
|
+
algorithm for computing statistics is not used because
|
1462
|
+
it will not work with circular dimensions.
|
1463
|
+
Return: Pointer to new data structure containing statistics
|
1464
|
+
Exceptions: None
|
1465
|
+
History: 6/2/89, DSJ, Created.
|
1466
|
+
*********************************************************************************/
|
1467
|
+
STATISTICS *
|
1468
|
+
ComputeStatistics (inT16 N, PARAM_DESC ParamDesc[], CLUSTER * Cluster) {
|
1469
|
+
STATISTICS *Statistics;
|
1470
|
+
int i, j;
|
1471
|
+
FLOAT32 *CoVariance;
|
1472
|
+
FLOAT32 *Distance;
|
1473
|
+
LIST SearchState;
|
1474
|
+
SAMPLE *Sample;
|
1475
|
+
uinT32 SampleCountAdjustedForBias;
|
1476
|
+
|
1477
|
+
// allocate memory to hold the statistics results
|
1478
|
+
Statistics = (STATISTICS *) Emalloc (sizeof (STATISTICS));
|
1479
|
+
Statistics->CoVariance = (FLOAT32 *) Emalloc (N * N * sizeof (FLOAT32));
|
1480
|
+
Statistics->Min = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
|
1481
|
+
Statistics->Max = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
|
1482
|
+
|
1483
|
+
// allocate temporary memory to hold the sample to mean distances
|
1484
|
+
Distance = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
|
1485
|
+
|
1486
|
+
// initialize the statistics
|
1487
|
+
Statistics->AvgVariance = 1.0;
|
1488
|
+
CoVariance = Statistics->CoVariance;
|
1489
|
+
for (i = 0; i < N; i++) {
|
1490
|
+
Statistics->Min[i] = 0.0;
|
1491
|
+
Statistics->Max[i] = 0.0;
|
1492
|
+
for (j = 0; j < N; j++, CoVariance++)
|
1493
|
+
*CoVariance = 0;
|
1494
|
+
}
|
1495
|
+
// find each sample in the cluster and merge it into the statistics
|
1496
|
+
InitSampleSearch(SearchState, Cluster);
|
1497
|
+
while ((Sample = NextSample (&SearchState)) != NULL) {
|
1498
|
+
for (i = 0; i < N; i++) {
|
1499
|
+
Distance[i] = Sample->Mean[i] - Cluster->Mean[i];
|
1500
|
+
if (ParamDesc[i].Circular) {
|
1501
|
+
if (Distance[i] > ParamDesc[i].HalfRange)
|
1502
|
+
Distance[i] -= ParamDesc[i].Range;
|
1503
|
+
if (Distance[i] < -ParamDesc[i].HalfRange)
|
1504
|
+
Distance[i] += ParamDesc[i].Range;
|
1505
|
+
}
|
1506
|
+
if (Distance[i] < Statistics->Min[i])
|
1507
|
+
Statistics->Min[i] = Distance[i];
|
1508
|
+
if (Distance[i] > Statistics->Max[i])
|
1509
|
+
Statistics->Max[i] = Distance[i];
|
1510
|
+
}
|
1511
|
+
CoVariance = Statistics->CoVariance;
|
1512
|
+
for (i = 0; i < N; i++)
|
1513
|
+
for (j = 0; j < N; j++, CoVariance++)
|
1514
|
+
*CoVariance += Distance[i] * Distance[j];
|
1515
|
+
}
|
1516
|
+
// normalize the variances by the total number of samples
|
1517
|
+
// use SampleCount-1 instead of SampleCount to get an unbiased estimate
|
1518
|
+
// also compute the geometic mean of the diagonal variances
|
1519
|
+
// ensure that clusters with only 1 sample are handled correctly
|
1520
|
+
if (Cluster->SampleCount > 1)
|
1521
|
+
SampleCountAdjustedForBias = Cluster->SampleCount - 1;
|
1522
|
+
else
|
1523
|
+
SampleCountAdjustedForBias = 1;
|
1524
|
+
CoVariance = Statistics->CoVariance;
|
1525
|
+
for (i = 0; i < N; i++)
|
1526
|
+
for (j = 0; j < N; j++, CoVariance++) {
|
1527
|
+
*CoVariance /= SampleCountAdjustedForBias;
|
1528
|
+
if (j == i) {
|
1529
|
+
if (*CoVariance < MINVARIANCE)
|
1530
|
+
*CoVariance = MINVARIANCE;
|
1531
|
+
Statistics->AvgVariance *= *CoVariance;
|
1532
|
+
}
|
1533
|
+
}
|
1534
|
+
Statistics->AvgVariance = (float)pow((double)Statistics->AvgVariance,
|
1535
|
+
1.0 / N);
|
1536
|
+
|
1537
|
+
// release temporary memory and return
|
1538
|
+
memfree(Distance);
|
1539
|
+
return (Statistics);
|
1540
|
+
} // ComputeStatistics
|
1541
|
+
|
1542
|
+
|
1543
|
+
/** NewSpericalProto *********************************************************
|
1544
|
+
Parameters: N number of dimensions
|
1545
|
+
Cluster cluster to be made into a spherical prototype
|
1546
|
+
Statistics statistical info about samples in cluster
|
1547
|
+
Globals: None
|
1548
|
+
Operation: This routine creates a spherical prototype data structure to
|
1549
|
+
approximate the samples in the specified cluster.
|
1550
|
+
Spherical prototypes have a single variance which is
|
1551
|
+
common across all dimensions. All dimensions are normally
|
1552
|
+
distributed and independent.
|
1553
|
+
Return: Pointer to a new spherical prototype data structure
|
1554
|
+
Exceptions: None
|
1555
|
+
History: 6/19/89, DSJ, Created.
|
1556
|
+
******************************************************************************/
|
1557
|
+
PROTOTYPE *NewSphericalProto(uinT16 N,
|
1558
|
+
CLUSTER *Cluster,
|
1559
|
+
STATISTICS *Statistics) {
|
1560
|
+
PROTOTYPE *Proto;
|
1561
|
+
|
1562
|
+
Proto = NewSimpleProto (N, Cluster);
|
1563
|
+
|
1564
|
+
Proto->Variance.Spherical = Statistics->AvgVariance;
|
1565
|
+
if (Proto->Variance.Spherical < MINVARIANCE)
|
1566
|
+
Proto->Variance.Spherical = MINVARIANCE;
|
1567
|
+
|
1568
|
+
Proto->Magnitude.Spherical =
|
1569
|
+
1.0 / sqrt ((double) (2.0 * PI * Proto->Variance.Spherical));
|
1570
|
+
Proto->TotalMagnitude = (float)pow((double)Proto->Magnitude.Spherical,
|
1571
|
+
(double) N);
|
1572
|
+
Proto->Weight.Spherical = 1.0 / Proto->Variance.Spherical;
|
1573
|
+
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
|
1574
|
+
|
1575
|
+
return (Proto);
|
1576
|
+
} // NewSphericalProto
|
1577
|
+
|
1578
|
+
|
1579
|
+
/** NewEllipticalProto *******************************************************
|
1580
|
+
Parameters: N number of dimensions
|
1581
|
+
Cluster cluster to be made into an elliptical prototype
|
1582
|
+
Statistics statistical info about samples in cluster
|
1583
|
+
Globals: None
|
1584
|
+
Operation: This routine creates an elliptical prototype data structure to
|
1585
|
+
approximate the samples in the specified cluster.
|
1586
|
+
Elliptical prototypes have a variance for each dimension.
|
1587
|
+
All dimensions are normally distributed and independent.
|
1588
|
+
Return: Pointer to a new elliptical prototype data structure
|
1589
|
+
Exceptions: None
|
1590
|
+
History: 6/19/89, DSJ, Created.
|
1591
|
+
*******************************************************************************/
|
1592
|
+
PROTOTYPE *NewEllipticalProto(inT16 N,
|
1593
|
+
CLUSTER *Cluster,
|
1594
|
+
STATISTICS *Statistics) {
|
1595
|
+
PROTOTYPE *Proto;
|
1596
|
+
FLOAT32 *CoVariance;
|
1597
|
+
int i;
|
1598
|
+
|
1599
|
+
Proto = NewSimpleProto (N, Cluster);
|
1600
|
+
Proto->Variance.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
|
1601
|
+
Proto->Magnitude.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
|
1602
|
+
Proto->Weight.Elliptical = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
|
1603
|
+
|
1604
|
+
CoVariance = Statistics->CoVariance;
|
1605
|
+
Proto->TotalMagnitude = 1.0;
|
1606
|
+
for (i = 0; i < N; i++, CoVariance += N + 1) {
|
1607
|
+
Proto->Variance.Elliptical[i] = *CoVariance;
|
1608
|
+
if (Proto->Variance.Elliptical[i] < MINVARIANCE)
|
1609
|
+
Proto->Variance.Elliptical[i] = MINVARIANCE;
|
1610
|
+
|
1611
|
+
Proto->Magnitude.Elliptical[i] =
|
1612
|
+
1.0 / sqrt ((double) (2.0 * PI * Proto->Variance.Elliptical[i]));
|
1613
|
+
Proto->Weight.Elliptical[i] = 1.0 / Proto->Variance.Elliptical[i];
|
1614
|
+
Proto->TotalMagnitude *= Proto->Magnitude.Elliptical[i];
|
1615
|
+
}
|
1616
|
+
Proto->LogMagnitude = log ((double) Proto->TotalMagnitude);
|
1617
|
+
Proto->Style = elliptical;
|
1618
|
+
return (Proto);
|
1619
|
+
} // NewEllipticalProto
|
1620
|
+
|
1621
|
+
|
1622
|
+
/** MewMixedProto ************************************************************
|
1623
|
+
Parameters: N number of dimensions
|
1624
|
+
Cluster cluster to be made into a mixed prototype
|
1625
|
+
Statistics statistical info about samples in cluster
|
1626
|
+
Globals: None
|
1627
|
+
Operation: This routine creates a mixed prototype data structure to
|
1628
|
+
approximate the samples in the specified cluster.
|
1629
|
+
Mixed prototypes can have different distributions for
|
1630
|
+
each dimension. All dimensions are independent. The
|
1631
|
+
structure is initially filled in as though it were an
|
1632
|
+
elliptical prototype. The actual distributions of the
|
1633
|
+
dimensions can be altered by other routines.
|
1634
|
+
Return: Pointer to a new mixed prototype data structure
|
1635
|
+
Exceptions: None
|
1636
|
+
History: 6/19/89, DSJ, Created.
|
1637
|
+
********************************************************************************/
|
1638
|
+
PROTOTYPE *NewMixedProto(inT16 N, CLUSTER *Cluster, STATISTICS *Statistics) {
|
1639
|
+
PROTOTYPE *Proto;
|
1640
|
+
int i;
|
1641
|
+
|
1642
|
+
Proto = NewEllipticalProto (N, Cluster, Statistics);
|
1643
|
+
Proto->Distrib = (DISTRIBUTION *) Emalloc (N * sizeof (DISTRIBUTION));
|
1644
|
+
|
1645
|
+
for (i = 0; i < N; i++) {
|
1646
|
+
Proto->Distrib[i] = normal;
|
1647
|
+
}
|
1648
|
+
Proto->Style = mixed;
|
1649
|
+
return (Proto);
|
1650
|
+
} // NewMixedProto
|
1651
|
+
|
1652
|
+
|
1653
|
+
/** NewSimpleProto ***********************************************************
|
1654
|
+
Parameters: N number of dimensions
|
1655
|
+
Cluster cluster to be made into a prototype
|
1656
|
+
Globals: None
|
1657
|
+
Operation: This routine allocates memory to hold a simple prototype
|
1658
|
+
data structure, i.e. one without independent distributions
|
1659
|
+
and variances for each dimension.
|
1660
|
+
Return: Pointer to new simple prototype
|
1661
|
+
Exceptions: None
|
1662
|
+
History: 6/19/89, DSJ, Created.
|
1663
|
+
*******************************************************************************/
|
1664
|
+
PROTOTYPE *NewSimpleProto(inT16 N, CLUSTER *Cluster) {
|
1665
|
+
PROTOTYPE *Proto;
|
1666
|
+
int i;
|
1667
|
+
|
1668
|
+
Proto = (PROTOTYPE *) Emalloc (sizeof (PROTOTYPE));
|
1669
|
+
Proto->Mean = (FLOAT32 *) Emalloc (N * sizeof (FLOAT32));
|
1670
|
+
|
1671
|
+
for (i = 0; i < N; i++)
|
1672
|
+
Proto->Mean[i] = Cluster->Mean[i];
|
1673
|
+
Proto->Distrib = NULL;
|
1674
|
+
|
1675
|
+
Proto->Significant = TRUE;
|
1676
|
+
Proto->Style = spherical;
|
1677
|
+
Proto->NumSamples = Cluster->SampleCount;
|
1678
|
+
Proto->Cluster = Cluster;
|
1679
|
+
Proto->Cluster->Prototype = TRUE;
|
1680
|
+
return (Proto);
|
1681
|
+
} // NewSimpleProto
|
1682
|
+
|
1683
|
+
|
1684
|
+
/** Independent ***************************************************************
|
1685
|
+
Parameters: ParamDesc descriptions of each feature space dimension
|
1686
|
+
N number of dimensions
|
1687
|
+
CoVariance ptr to a covariance matrix
|
1688
|
+
Independence max off-diagonal correlation coefficient
|
1689
|
+
Globals: None
|
1690
|
+
Operation: This routine returns TRUE if the specified covariance
|
1691
|
+
matrix indicates that all N dimensions are independent of
|
1692
|
+
one another. One dimension is judged to be independent of
|
1693
|
+
another when the magnitude of the corresponding correlation
|
1694
|
+
coefficient is
|
1695
|
+
less than the specified Independence factor. The
|
1696
|
+
correlation coefficient is calculated as: (see Duda and
|
1697
|
+
Hart, pg. 247)
|
1698
|
+
coeff[ij] = stddev[ij] / sqrt (stddev[ii] * stddev[jj])
|
1699
|
+
The covariance matrix is assumed to be symmetric (which
|
1700
|
+
should always be true).
|
1701
|
+
Return: TRUE if dimensions are independent, FALSE otherwise
|
1702
|
+
Exceptions: None
|
1703
|
+
History: 6/4/89, DSJ, Created.
|
1704
|
+
*******************************************************************************/
|
1705
|
+
BOOL8
|
1706
|
+
Independent (PARAM_DESC ParamDesc[],
|
1707
|
+
inT16 N, FLOAT32 * CoVariance, FLOAT32 Independence) {
|
1708
|
+
int i, j;
|
1709
|
+
FLOAT32 *VARii; // points to ith on-diagonal element
|
1710
|
+
FLOAT32 *VARjj; // points to jth on-diagonal element
|
1711
|
+
FLOAT32 CorrelationCoeff;
|
1712
|
+
|
1713
|
+
VARii = CoVariance;
|
1714
|
+
for (i = 0; i < N; i++, VARii += N + 1) {
|
1715
|
+
if (ParamDesc[i].NonEssential)
|
1716
|
+
continue;
|
1717
|
+
|
1718
|
+
VARjj = VARii + N + 1;
|
1719
|
+
CoVariance = VARii + 1;
|
1720
|
+
for (j = i + 1; j < N; j++, CoVariance++, VARjj += N + 1) {
|
1721
|
+
if (ParamDesc[j].NonEssential)
|
1722
|
+
continue;
|
1723
|
+
|
1724
|
+
if ((*VARii == 0.0) || (*VARjj == 0.0))
|
1725
|
+
CorrelationCoeff = 0.0;
|
1726
|
+
else
|
1727
|
+
CorrelationCoeff =
|
1728
|
+
sqrt (sqrt (*CoVariance * *CoVariance / (*VARii * *VARjj)));
|
1729
|
+
if (CorrelationCoeff > Independence)
|
1730
|
+
return (FALSE);
|
1731
|
+
}
|
1732
|
+
}
|
1733
|
+
return (TRUE);
|
1734
|
+
} // Independent
|
1735
|
+
|
1736
|
+
|
1737
|
+
/** GetBuckets **************************************************************
|
1738
|
+
Parameters: Distribution type of probability distribution to test for
|
1739
|
+
SampleCount number of samples that are available
|
1740
|
+
Confidence probability of a Type I error
|
1741
|
+
Globals: none
|
1742
|
+
Operation: This routine returns a histogram data structure which can
|
1743
|
+
be used by other routines to place samples into histogram
|
1744
|
+
buckets, and then apply a goodness of fit test to the
|
1745
|
+
histogram data to determine if the samples belong to the
|
1746
|
+
specified probability distribution. The routine keeps
|
1747
|
+
a list of bucket data structures which have already been
|
1748
|
+
created so that it minimizes the computation time needed
|
1749
|
+
to create a new bucket.
|
1750
|
+
Return: Bucket data structure
|
1751
|
+
Exceptions: none
|
1752
|
+
History: Thu Aug 3 12:58:10 1989, DSJ, Created.
|
1753
|
+
*****************************************************************************/
|
1754
|
+
BUCKETS *GetBuckets(DISTRIBUTION Distribution,
|
1755
|
+
uinT32 SampleCount,
|
1756
|
+
FLOAT64 Confidence) {
|
1757
|
+
uinT16 NumberOfBuckets;
|
1758
|
+
BUCKETS *Buckets;
|
1759
|
+
|
1760
|
+
// search for an old bucket structure with the same number of buckets
|
1761
|
+
NumberOfBuckets = OptimumNumberOfBuckets (SampleCount);
|
1762
|
+
Buckets = (BUCKETS *) first_node (search (OldBuckets[(int) Distribution],
|
1763
|
+
&NumberOfBuckets, NumBucketsMatch));
|
1764
|
+
|
1765
|
+
// if a matching bucket structure is found, delete it from the list
|
1766
|
+
if (Buckets != NULL) {
|
1767
|
+
OldBuckets[(int) Distribution] =
|
1768
|
+
delete_d (OldBuckets[(int) Distribution], Buckets, ListEntryMatch);
|
1769
|
+
if (SampleCount != Buckets->SampleCount)
|
1770
|
+
AdjustBuckets(Buckets, SampleCount);
|
1771
|
+
if (Confidence != Buckets->Confidence) {
|
1772
|
+
Buckets->Confidence = Confidence;
|
1773
|
+
Buckets->ChiSquared = ComputeChiSquared
|
1774
|
+
(DegreesOfFreedom (Distribution, Buckets->NumberOfBuckets),
|
1775
|
+
Confidence);
|
1776
|
+
}
|
1777
|
+
InitBuckets(Buckets);
|
1778
|
+
}
|
1779
|
+
else // otherwise create a new structure
|
1780
|
+
Buckets = MakeBuckets (Distribution, SampleCount, Confidence);
|
1781
|
+
return (Buckets);
|
1782
|
+
} // GetBuckets
|
1783
|
+
|
1784
|
+
|
1785
|
+
/** Makebuckets *************************************************************
|
1786
|
+
Parameters: Distribution type of probability distribution to test for
|
1787
|
+
SampleCount number of samples that are available
|
1788
|
+
Confidence probability of a Type I error
|
1789
|
+
Globals: None
|
1790
|
+
Operation: This routine creates a histogram data structure which can
|
1791
|
+
be used by other routines to place samples into histogram
|
1792
|
+
buckets, and then apply a goodness of fit test to the
|
1793
|
+
histogram data to determine if the samples belong to the
|
1794
|
+
specified probability distribution. The buckets are
|
1795
|
+
allocated in such a way that the expected frequency of
|
1796
|
+
samples in each bucket is approximately the same. In
|
1797
|
+
order to make this possible, a mapping table is
|
1798
|
+
computed which maps "normalized" samples into the
|
1799
|
+
appropriate bucket.
|
1800
|
+
Return: Pointer to new histogram data structure
|
1801
|
+
Exceptions: None
|
1802
|
+
History: 6/4/89, DSJ, Created.
|
1803
|
+
*****************************************************************************/
|
1804
|
+
BUCKETS *MakeBuckets(DISTRIBUTION Distribution,
|
1805
|
+
uinT32 SampleCount,
|
1806
|
+
FLOAT64 Confidence) {
|
1807
|
+
static DENSITYFUNC DensityFunction[] =
|
1808
|
+
{ NormalDensity, UniformDensity, UniformDensity };
|
1809
|
+
int i, j;
|
1810
|
+
BUCKETS *Buckets;
|
1811
|
+
FLOAT64 BucketProbability;
|
1812
|
+
FLOAT64 NextBucketBoundary;
|
1813
|
+
FLOAT64 Probability;
|
1814
|
+
FLOAT64 ProbabilityDelta;
|
1815
|
+
FLOAT64 LastProbDensity;
|
1816
|
+
FLOAT64 ProbDensity;
|
1817
|
+
uinT16 CurrentBucket;
|
1818
|
+
BOOL8 Symmetrical;
|
1819
|
+
|
1820
|
+
// allocate memory needed for data structure
|
1821
|
+
Buckets = (BUCKETS *) Emalloc (sizeof (BUCKETS));
|
1822
|
+
Buckets->NumberOfBuckets = OptimumNumberOfBuckets (SampleCount);
|
1823
|
+
Buckets->SampleCount = SampleCount;
|
1824
|
+
Buckets->Confidence = Confidence;
|
1825
|
+
Buckets->Count =
|
1826
|
+
(uinT32 *) Emalloc (Buckets->NumberOfBuckets * sizeof (uinT32));
|
1827
|
+
Buckets->ExpectedCount =
|
1828
|
+
(FLOAT32 *) Emalloc (Buckets->NumberOfBuckets * sizeof (FLOAT32));
|
1829
|
+
|
1830
|
+
// initialize simple fields
|
1831
|
+
Buckets->Distribution = Distribution;
|
1832
|
+
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
|
1833
|
+
Buckets->Count[i] = 0;
|
1834
|
+
Buckets->ExpectedCount[i] = 0.0;
|
1835
|
+
}
|
1836
|
+
|
1837
|
+
// all currently defined distributions are symmetrical
|
1838
|
+
Symmetrical = TRUE;
|
1839
|
+
Buckets->ChiSquared = ComputeChiSquared
|
1840
|
+
(DegreesOfFreedom (Distribution, Buckets->NumberOfBuckets), Confidence);
|
1841
|
+
|
1842
|
+
if (Symmetrical) {
|
1843
|
+
// allocate buckets so that all have approx. equal probability
|
1844
|
+
BucketProbability = 1.0 / (FLOAT64) (Buckets->NumberOfBuckets);
|
1845
|
+
|
1846
|
+
// distribution is symmetric so fill in upper half then copy
|
1847
|
+
CurrentBucket = Buckets->NumberOfBuckets / 2;
|
1848
|
+
if (Odd (Buckets->NumberOfBuckets))
|
1849
|
+
NextBucketBoundary = BucketProbability / 2;
|
1850
|
+
else
|
1851
|
+
NextBucketBoundary = BucketProbability;
|
1852
|
+
|
1853
|
+
Probability = 0.0;
|
1854
|
+
LastProbDensity =
|
1855
|
+
(*DensityFunction[(int) Distribution]) (BUCKETTABLESIZE / 2);
|
1856
|
+
for (i = BUCKETTABLESIZE / 2; i < BUCKETTABLESIZE; i++) {
|
1857
|
+
ProbDensity = (*DensityFunction[(int) Distribution]) (i + 1);
|
1858
|
+
ProbabilityDelta = Integral (LastProbDensity, ProbDensity, 1.0);
|
1859
|
+
Probability += ProbabilityDelta;
|
1860
|
+
if (Probability > NextBucketBoundary) {
|
1861
|
+
if (CurrentBucket < Buckets->NumberOfBuckets - 1)
|
1862
|
+
CurrentBucket++;
|
1863
|
+
NextBucketBoundary += BucketProbability;
|
1864
|
+
}
|
1865
|
+
Buckets->Bucket[i] = CurrentBucket;
|
1866
|
+
Buckets->ExpectedCount[CurrentBucket] +=
|
1867
|
+
(FLOAT32) (ProbabilityDelta * SampleCount);
|
1868
|
+
LastProbDensity = ProbDensity;
|
1869
|
+
}
|
1870
|
+
// place any leftover probability into the last bucket
|
1871
|
+
Buckets->ExpectedCount[CurrentBucket] +=
|
1872
|
+
(FLOAT32) ((0.5 - Probability) * SampleCount);
|
1873
|
+
|
1874
|
+
// copy upper half of distribution to lower half
|
1875
|
+
for (i = 0, j = BUCKETTABLESIZE - 1; i < j; i++, j--)
|
1876
|
+
Buckets->Bucket[i] =
|
1877
|
+
Mirror (Buckets->Bucket[j], Buckets->NumberOfBuckets);
|
1878
|
+
|
1879
|
+
// copy upper half of expected counts to lower half
|
1880
|
+
for (i = 0, j = Buckets->NumberOfBuckets - 1; i <= j; i++, j--)
|
1881
|
+
Buckets->ExpectedCount[i] += Buckets->ExpectedCount[j];
|
1882
|
+
}
|
1883
|
+
return (Buckets);
|
1884
|
+
} // MakeBuckets
|
1885
|
+
|
1886
|
+
|
1887
|
+
//---------------------------------------------------------------------------
|
1888
|
+
uinT16 OptimumNumberOfBuckets(uinT32 SampleCount) {
|
1889
|
+
/*
|
1890
|
+
** Parameters:
|
1891
|
+
** SampleCount number of samples to be tested
|
1892
|
+
** Globals:
|
1893
|
+
** CountTable lookup table for number of samples
|
1894
|
+
** BucketsTable lookup table for necessary number of buckets
|
1895
|
+
** Operation:
|
1896
|
+
** This routine computes the optimum number of histogram
|
1897
|
+
** buckets that should be used in a chi-squared goodness of
|
1898
|
+
** fit test for the specified number of samples. The optimum
|
1899
|
+
** number is computed based on Table 4.1 on pg. 147 of
|
1900
|
+
** "Measurement and Analysis of Random Data" by Bendat & Piersol.
|
1901
|
+
** Linear interpolation is used to interpolate between table
|
1902
|
+
** values. The table is intended for a 0.05 level of
|
1903
|
+
** significance (alpha). This routine assumes that it is
|
1904
|
+
** equally valid for other alpha's, which may not be true.
|
1905
|
+
** Return:
|
1906
|
+
** Optimum number of histogram buckets
|
1907
|
+
** Exceptions:
|
1908
|
+
** None
|
1909
|
+
** History:
|
1910
|
+
** 6/5/89, DSJ, Created.
|
1911
|
+
*/
|
1912
|
+
uinT8 Last, Next;
|
1913
|
+
FLOAT32 Slope;
|
1914
|
+
|
1915
|
+
if (SampleCount < CountTable[0])
|
1916
|
+
return (BucketsTable[0]);
|
1917
|
+
|
1918
|
+
for (Last = 0, Next = 1; Next < LOOKUPTABLESIZE; Last++, Next++) {
|
1919
|
+
if (SampleCount <= CountTable[Next]) {
|
1920
|
+
Slope = (FLOAT32) (BucketsTable[Next] - BucketsTable[Last]) /
|
1921
|
+
(FLOAT32) (CountTable[Next] - CountTable[Last]);
|
1922
|
+
return ((uinT16) (BucketsTable[Last] +
|
1923
|
+
Slope * (SampleCount - CountTable[Last])));
|
1924
|
+
}
|
1925
|
+
}
|
1926
|
+
return (BucketsTable[Last]);
|
1927
|
+
} // OptimumNumberOfBuckets
|
1928
|
+
|
1929
|
+
|
1930
|
+
//---------------------------------------------------------------------------
|
1931
|
+
FLOAT64
|
1932
|
+
ComputeChiSquared (uinT16 DegreesOfFreedom, FLOAT64 Alpha)
|
1933
|
+
/*
|
1934
|
+
** Parameters:
|
1935
|
+
** DegreesOfFreedom determines shape of distribution
|
1936
|
+
** Alpha probability of right tail
|
1937
|
+
** Globals: none
|
1938
|
+
** Operation:
|
1939
|
+
** This routine computes the chi-squared value which will
|
1940
|
+
** leave a cumulative probability of Alpha in the right tail
|
1941
|
+
** of a chi-squared distribution with the specified number of
|
1942
|
+
** degrees of freedom. Alpha must be between 0 and 1.
|
1943
|
+
** DegreesOfFreedom must be even. The routine maintains an
|
1944
|
+
** array of lists. Each list corresponds to a different
|
1945
|
+
** number of degrees of freedom. Each entry in the list
|
1946
|
+
** corresponds to a different alpha value and its corresponding
|
1947
|
+
** chi-squared value. Therefore, once a particular chi-squared
|
1948
|
+
** value is computed, it is stored in the list and never
|
1949
|
+
** needs to be computed again.
|
1950
|
+
** Return: Desired chi-squared value
|
1951
|
+
** Exceptions: none
|
1952
|
+
** History: 6/5/89, DSJ, Created.
|
1953
|
+
*/
|
1954
|
+
#define CHIACCURACY 0.01
|
1955
|
+
#define MINALPHA (1e-200)
|
1956
|
+
{
|
1957
|
+
static LIST ChiWith[MAXDEGREESOFFREEDOM + 1];
|
1958
|
+
|
1959
|
+
CHISTRUCT *OldChiSquared;
|
1960
|
+
CHISTRUCT SearchKey;
|
1961
|
+
|
1962
|
+
// limit the minimum alpha that can be used - if alpha is too small
|
1963
|
+
// it may not be possible to compute chi-squared.
|
1964
|
+
if (Alpha < MINALPHA)
|
1965
|
+
Alpha = MINALPHA;
|
1966
|
+
if (Alpha > 1.0)
|
1967
|
+
Alpha = 1.0;
|
1968
|
+
if (Odd (DegreesOfFreedom))
|
1969
|
+
DegreesOfFreedom++;
|
1970
|
+
|
1971
|
+
/* find the list of chi-squared values which have already been computed
|
1972
|
+
for the specified number of degrees of freedom. Search the list for
|
1973
|
+
the desired chi-squared. */
|
1974
|
+
SearchKey.Alpha = Alpha;
|
1975
|
+
OldChiSquared = (CHISTRUCT *) first_node (search (ChiWith[DegreesOfFreedom],
|
1976
|
+
&SearchKey, AlphaMatch));
|
1977
|
+
|
1978
|
+
if (OldChiSquared == NULL) {
|
1979
|
+
OldChiSquared = NewChiStruct (DegreesOfFreedom, Alpha);
|
1980
|
+
OldChiSquared->ChiSquared = Solve (ChiArea, OldChiSquared,
|
1981
|
+
(FLOAT64) DegreesOfFreedom,
|
1982
|
+
(FLOAT64) CHIACCURACY);
|
1983
|
+
ChiWith[DegreesOfFreedom] = push (ChiWith[DegreesOfFreedom],
|
1984
|
+
OldChiSquared);
|
1985
|
+
}
|
1986
|
+
else {
|
1987
|
+
// further optimization might move OldChiSquared to front of list
|
1988
|
+
}
|
1989
|
+
|
1990
|
+
return (OldChiSquared->ChiSquared);
|
1991
|
+
|
1992
|
+
} // ComputeChiSquared
|
1993
|
+
|
1994
|
+
|
1995
|
+
//---------------------------------------------------------------------------
|
1996
|
+
FLOAT64 NormalDensity(inT32 x) {
|
1997
|
+
/*
|
1998
|
+
** Parameters:
|
1999
|
+
** x number to compute the normal probability density for
|
2000
|
+
** Globals:
|
2001
|
+
** NormalMean mean of a discrete normal distribution
|
2002
|
+
** NormalVariance variance of a discrete normal distribution
|
2003
|
+
** NormalMagnitude magnitude of a discrete normal distribution
|
2004
|
+
** Operation:
|
2005
|
+
** This routine computes the probability density function
|
2006
|
+
** of a discrete normal distribution defined by the global
|
2007
|
+
** variables NormalMean, NormalVariance, and NormalMagnitude.
|
2008
|
+
** Normal magnitude could, of course, be computed in terms of
|
2009
|
+
** the normal variance but it is precomputed for efficiency.
|
2010
|
+
** Return:
|
2011
|
+
** The value of the normal distribution at x.
|
2012
|
+
** Exceptions:
|
2013
|
+
** None
|
2014
|
+
** History:
|
2015
|
+
** 6/4/89, DSJ, Created.
|
2016
|
+
*/
|
2017
|
+
FLOAT64 Distance;
|
2018
|
+
|
2019
|
+
Distance = x - NormalMean;
|
2020
|
+
return (NormalMagnitude *
|
2021
|
+
exp (-0.5 * Distance * Distance / NormalVariance));
|
2022
|
+
} // NormalDensity
|
2023
|
+
|
2024
|
+
|
2025
|
+
//---------------------------------------------------------------------------
|
2026
|
+
FLOAT64 UniformDensity(inT32 x) {
|
2027
|
+
/*
|
2028
|
+
** Parameters:
|
2029
|
+
** x number to compute the uniform probability density for
|
2030
|
+
** Globals:
|
2031
|
+
** BUCKETTABLESIZE determines range of distribution
|
2032
|
+
** Operation:
|
2033
|
+
** This routine computes the probability density function
|
2034
|
+
** of a uniform distribution at the specified point. The
|
2035
|
+
** range of the distribution is from 0 to BUCKETTABLESIZE.
|
2036
|
+
** Return:
|
2037
|
+
** The value of the uniform distribution at x.
|
2038
|
+
** Exceptions:
|
2039
|
+
** None
|
2040
|
+
** History:
|
2041
|
+
** 6/5/89, DSJ, Created.
|
2042
|
+
*/
|
2043
|
+
static FLOAT64 UniformDistributionDensity = (FLOAT64) 1.0 / BUCKETTABLESIZE;
|
2044
|
+
|
2045
|
+
if ((x >= 0.0) && (x <= BUCKETTABLESIZE))
|
2046
|
+
return (UniformDistributionDensity);
|
2047
|
+
else
|
2048
|
+
return ((FLOAT64) 0.0);
|
2049
|
+
} // UniformDensity
|
2050
|
+
|
2051
|
+
|
2052
|
+
//---------------------------------------------------------------------------
|
2053
|
+
FLOAT64 Integral(FLOAT64 f1, FLOAT64 f2, FLOAT64 Dx) {
|
2054
|
+
/*
|
2055
|
+
** Parameters:
|
2056
|
+
** f1 value of function at x1
|
2057
|
+
** f2 value of function at x2
|
2058
|
+
** Dx x2 - x1 (should always be positive)
|
2059
|
+
** Globals:
|
2060
|
+
** None
|
2061
|
+
** Operation:
|
2062
|
+
** This routine computes a trapezoidal approximation to the
|
2063
|
+
** integral of a function over a small delta in x.
|
2064
|
+
** Return:
|
2065
|
+
** Approximation of the integral of the function from x1 to x2.
|
2066
|
+
** Exceptions:
|
2067
|
+
** None
|
2068
|
+
** History:
|
2069
|
+
** 6/5/89, DSJ, Created.
|
2070
|
+
*/
|
2071
|
+
return ((f1 + f2) * Dx / 2.0);
|
2072
|
+
} // Integral
|
2073
|
+
|
2074
|
+
|
2075
|
+
//---------------------------------------------------------------------------
|
2076
|
+
void FillBuckets(BUCKETS *Buckets,
|
2077
|
+
CLUSTER *Cluster,
|
2078
|
+
uinT16 Dim,
|
2079
|
+
PARAM_DESC *ParamDesc,
|
2080
|
+
FLOAT32 Mean,
|
2081
|
+
FLOAT32 StdDev) {
|
2082
|
+
/*
|
2083
|
+
** Parameters:
|
2084
|
+
** Buckets histogram buckets to count samples
|
2085
|
+
** Cluster cluster whose samples are being analyzed
|
2086
|
+
** Dim dimension of samples which is being analyzed
|
2087
|
+
** ParamDesc description of the dimension
|
2088
|
+
** Mean "mean" of the distribution
|
2089
|
+
** StdDev "standard deviation" of the distribution
|
2090
|
+
** Globals:
|
2091
|
+
** None
|
2092
|
+
** Operation:
|
2093
|
+
** This routine counts the number of cluster samples which
|
2094
|
+
** fall within the various histogram buckets in Buckets. Only
|
2095
|
+
** one dimension of each sample is examined. The exact meaning
|
2096
|
+
** of the Mean and StdDev parameters depends on the
|
2097
|
+
** distribution which is being analyzed (this info is in the
|
2098
|
+
** Buckets data structure). For normal distributions, Mean
|
2099
|
+
** and StdDev have the expected meanings. For uniform and
|
2100
|
+
** random distributions the Mean is the center point of the
|
2101
|
+
** range and the StdDev is 1/2 the range. A dimension with
|
2102
|
+
** zero standard deviation cannot be statistically analyzed.
|
2103
|
+
** In this case, a pseudo-analysis is used.
|
2104
|
+
** Return:
|
2105
|
+
** None (the Buckets data structure is filled in)
|
2106
|
+
** Exceptions:
|
2107
|
+
** None
|
2108
|
+
** History:
|
2109
|
+
** 6/5/89, DSJ, Created.
|
2110
|
+
*/
|
2111
|
+
uinT16 BucketID;
|
2112
|
+
int i;
|
2113
|
+
LIST SearchState;
|
2114
|
+
SAMPLE *Sample;
|
2115
|
+
|
2116
|
+
// initialize the histogram bucket counts to 0
|
2117
|
+
for (i = 0; i < Buckets->NumberOfBuckets; i++)
|
2118
|
+
Buckets->Count[i] = 0;
|
2119
|
+
|
2120
|
+
if (StdDev == 0.0) {
|
2121
|
+
/* if the standard deviation is zero, then we can't statistically
|
2122
|
+
analyze the cluster. Use a pseudo-analysis: samples exactly on
|
2123
|
+
the mean are distributed evenly across all buckets. Samples greater
|
2124
|
+
than the mean are placed in the last bucket; samples less than the
|
2125
|
+
mean are placed in the first bucket. */
|
2126
|
+
|
2127
|
+
InitSampleSearch(SearchState, Cluster);
|
2128
|
+
i = 0;
|
2129
|
+
while ((Sample = NextSample (&SearchState)) != NULL) {
|
2130
|
+
if (Sample->Mean[Dim] > Mean)
|
2131
|
+
BucketID = Buckets->NumberOfBuckets - 1;
|
2132
|
+
else if (Sample->Mean[Dim] < Mean)
|
2133
|
+
BucketID = 0;
|
2134
|
+
else
|
2135
|
+
BucketID = i;
|
2136
|
+
Buckets->Count[BucketID] += 1;
|
2137
|
+
i++;
|
2138
|
+
if (i >= Buckets->NumberOfBuckets)
|
2139
|
+
i = 0;
|
2140
|
+
}
|
2141
|
+
}
|
2142
|
+
else {
|
2143
|
+
// search for all samples in the cluster and add to histogram buckets
|
2144
|
+
InitSampleSearch(SearchState, Cluster);
|
2145
|
+
while ((Sample = NextSample (&SearchState)) != NULL) {
|
2146
|
+
switch (Buckets->Distribution) {
|
2147
|
+
case normal:
|
2148
|
+
BucketID = NormalBucket (ParamDesc, Sample->Mean[Dim],
|
2149
|
+
Mean, StdDev);
|
2150
|
+
break;
|
2151
|
+
case D_random:
|
2152
|
+
case uniform:
|
2153
|
+
BucketID = UniformBucket (ParamDesc, Sample->Mean[Dim],
|
2154
|
+
Mean, StdDev);
|
2155
|
+
break;
|
2156
|
+
default:
|
2157
|
+
BucketID = 0;
|
2158
|
+
}
|
2159
|
+
Buckets->Count[Buckets->Bucket[BucketID]] += 1;
|
2160
|
+
}
|
2161
|
+
}
|
2162
|
+
} // FillBuckets
|
2163
|
+
|
2164
|
+
|
2165
|
+
//---------------------------------------------------------------------------*/
|
2166
|
+
uinT16 NormalBucket(PARAM_DESC *ParamDesc,
|
2167
|
+
FLOAT32 x,
|
2168
|
+
FLOAT32 Mean,
|
2169
|
+
FLOAT32 StdDev) {
|
2170
|
+
/*
|
2171
|
+
** Parameters:
|
2172
|
+
** ParamDesc used to identify circular dimensions
|
2173
|
+
** x value to be normalized
|
2174
|
+
** Mean mean of normal distribution
|
2175
|
+
** StdDev standard deviation of normal distribution
|
2176
|
+
** Globals:
|
2177
|
+
** NormalMean mean of discrete normal distribution
|
2178
|
+
** NormalStdDev standard deviation of discrete normal dist.
|
2179
|
+
** BUCKETTABLESIZE range of the discrete distribution
|
2180
|
+
** Operation:
|
2181
|
+
** This routine determines which bucket x falls into in the
|
2182
|
+
** discrete normal distribution defined by NormalMean
|
2183
|
+
** and NormalStdDev. x values which exceed the range of
|
2184
|
+
** the discrete distribution are clipped.
|
2185
|
+
** Return:
|
2186
|
+
** Bucket number into which x falls
|
2187
|
+
** Exceptions:
|
2188
|
+
** None
|
2189
|
+
** History:
|
2190
|
+
** 6/5/89, DSJ, Created.
|
2191
|
+
*/
|
2192
|
+
FLOAT32 X;
|
2193
|
+
|
2194
|
+
// wraparound circular parameters if necessary
|
2195
|
+
if (ParamDesc->Circular) {
|
2196
|
+
if (x - Mean > ParamDesc->HalfRange)
|
2197
|
+
x -= ParamDesc->Range;
|
2198
|
+
else if (x - Mean < -ParamDesc->HalfRange)
|
2199
|
+
x += ParamDesc->Range;
|
2200
|
+
}
|
2201
|
+
|
2202
|
+
X = ((x - Mean) / StdDev) * NormalStdDev + NormalMean;
|
2203
|
+
if (X < 0)
|
2204
|
+
return ((uinT16) 0);
|
2205
|
+
if (X > BUCKETTABLESIZE - 1)
|
2206
|
+
return ((uinT16) (BUCKETTABLESIZE - 1));
|
2207
|
+
return ((uinT16) floor ((FLOAT64) X));
|
2208
|
+
} // NormalBucket
|
2209
|
+
|
2210
|
+
|
2211
|
+
//---------------------------------------------------------------------------
|
2212
|
+
uinT16 UniformBucket(PARAM_DESC *ParamDesc,
|
2213
|
+
FLOAT32 x,
|
2214
|
+
FLOAT32 Mean,
|
2215
|
+
FLOAT32 StdDev) {
|
2216
|
+
/*
|
2217
|
+
** Parameters:
|
2218
|
+
** ParamDesc used to identify circular dimensions
|
2219
|
+
** x value to be normalized
|
2220
|
+
** Mean center of range of uniform distribution
|
2221
|
+
** StdDev 1/2 the range of the uniform distribution
|
2222
|
+
** Globals:
|
2223
|
+
** BUCKETTABLESIZE range of the discrete distribution
|
2224
|
+
** Operation:
|
2225
|
+
** This routine determines which bucket x falls into in the
|
2226
|
+
** discrete uniform distribution defined by
|
2227
|
+
** BUCKETTABLESIZE. x values which exceed the range of
|
2228
|
+
** the discrete distribution are clipped.
|
2229
|
+
** Return:
|
2230
|
+
** Bucket number into which x falls
|
2231
|
+
** Exceptions:
|
2232
|
+
** None
|
2233
|
+
** History:
|
2234
|
+
** 6/5/89, DSJ, Created.
|
2235
|
+
*/
|
2236
|
+
FLOAT32 X;
|
2237
|
+
|
2238
|
+
// wraparound circular parameters if necessary
|
2239
|
+
if (ParamDesc->Circular) {
|
2240
|
+
if (x - Mean > ParamDesc->HalfRange)
|
2241
|
+
x -= ParamDesc->Range;
|
2242
|
+
else if (x - Mean < -ParamDesc->HalfRange)
|
2243
|
+
x += ParamDesc->Range;
|
2244
|
+
}
|
2245
|
+
|
2246
|
+
X = ((x - Mean) / (2 * StdDev) * BUCKETTABLESIZE + BUCKETTABLESIZE / 2.0);
|
2247
|
+
if (X < 0)
|
2248
|
+
return ((uinT16) 0);
|
2249
|
+
if (X > BUCKETTABLESIZE - 1)
|
2250
|
+
return ((uinT16) (BUCKETTABLESIZE - 1));
|
2251
|
+
return ((uinT16) floor ((FLOAT64) X));
|
2252
|
+
} // UniformBucket
|
2253
|
+
|
2254
|
+
|
2255
|
+
//---------------------------------------------------------------------------
|
2256
|
+
BOOL8 DistributionOK(BUCKETS *Buckets) {
|
2257
|
+
/*
|
2258
|
+
** Parameters:
|
2259
|
+
** Buckets histogram data to perform chi-square test on
|
2260
|
+
** Globals:
|
2261
|
+
** None
|
2262
|
+
** Operation:
|
2263
|
+
** This routine performs a chi-square goodness of fit test
|
2264
|
+
** on the histogram data in the Buckets data structure. TRUE
|
2265
|
+
** is returned if the histogram matches the probability
|
2266
|
+
** distribution which was specified when the Buckets
|
2267
|
+
** structure was originally created. Otherwise FALSE is
|
2268
|
+
** returned.
|
2269
|
+
** Return:
|
2270
|
+
** TRUE if samples match distribution, FALSE otherwise
|
2271
|
+
** Exceptions:
|
2272
|
+
** None
|
2273
|
+
** History:
|
2274
|
+
** 6/5/89, DSJ, Created.
|
2275
|
+
*/
|
2276
|
+
FLOAT32 FrequencyDifference;
|
2277
|
+
FLOAT32 TotalDifference;
|
2278
|
+
int i;
|
2279
|
+
|
2280
|
+
// compute how well the histogram matches the expected histogram
|
2281
|
+
TotalDifference = 0.0;
|
2282
|
+
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
|
2283
|
+
FrequencyDifference = Buckets->Count[i] - Buckets->ExpectedCount[i];
|
2284
|
+
TotalDifference += (FrequencyDifference * FrequencyDifference) /
|
2285
|
+
Buckets->ExpectedCount[i];
|
2286
|
+
}
|
2287
|
+
|
2288
|
+
// test to see if the difference is more than expected
|
2289
|
+
if (TotalDifference > Buckets->ChiSquared)
|
2290
|
+
return (FALSE);
|
2291
|
+
else
|
2292
|
+
return (TRUE);
|
2293
|
+
} // DistributionOK
|
2294
|
+
|
2295
|
+
|
2296
|
+
//---------------------------------------------------------------------------
|
2297
|
+
void FreeStatistics(STATISTICS *Statistics) {
|
2298
|
+
/*
|
2299
|
+
** Parameters:
|
2300
|
+
** Statistics pointer to data structure to be freed
|
2301
|
+
** Globals:
|
2302
|
+
** None
|
2303
|
+
** Operation:
|
2304
|
+
** This routine frees the memory used by the statistics
|
2305
|
+
** data structure.
|
2306
|
+
** Return:
|
2307
|
+
** None
|
2308
|
+
** Exceptions:
|
2309
|
+
** None
|
2310
|
+
** History:
|
2311
|
+
** 6/5/89, DSJ, Created.
|
2312
|
+
*/
|
2313
|
+
memfree (Statistics->CoVariance);
|
2314
|
+
memfree (Statistics->Min);
|
2315
|
+
memfree (Statistics->Max);
|
2316
|
+
memfree(Statistics);
|
2317
|
+
} // FreeStatistics
|
2318
|
+
|
2319
|
+
|
2320
|
+
//---------------------------------------------------------------------------
|
2321
|
+
void FreeBuckets(BUCKETS *Buckets) {
|
2322
|
+
/*
|
2323
|
+
** Parameters:
|
2324
|
+
** Buckets pointer to data structure to be freed
|
2325
|
+
** Globals: none
|
2326
|
+
** Operation:
|
2327
|
+
** This routine places the specified histogram data structure
|
2328
|
+
** at the front of a list of histograms so that it can be
|
2329
|
+
** reused later if necessary. A separate list is maintained
|
2330
|
+
** for each different type of distribution.
|
2331
|
+
** Return: none
|
2332
|
+
** Exceptions: none
|
2333
|
+
** History: 6/5/89, DSJ, Created.
|
2334
|
+
*/
|
2335
|
+
int Dist;
|
2336
|
+
|
2337
|
+
if (Buckets != NULL) {
|
2338
|
+
Dist = (int) Buckets->Distribution;
|
2339
|
+
OldBuckets[Dist] = (LIST) push (OldBuckets[Dist], Buckets);
|
2340
|
+
}
|
2341
|
+
|
2342
|
+
} // FreeBuckets
|
2343
|
+
|
2344
|
+
|
2345
|
+
//---------------------------------------------------------------------------
|
2346
|
+
void FreeCluster(CLUSTER *Cluster) {
|
2347
|
+
/*
|
2348
|
+
** Parameters:
|
2349
|
+
** Cluster pointer to cluster to be freed
|
2350
|
+
** Globals:
|
2351
|
+
** None
|
2352
|
+
** Operation:
|
2353
|
+
** This routine frees the memory consumed by the specified
|
2354
|
+
** cluster and all of its subclusters. This is done by
|
2355
|
+
** recursive calls to FreeCluster().
|
2356
|
+
** Return:
|
2357
|
+
** None
|
2358
|
+
** Exceptions:
|
2359
|
+
** None
|
2360
|
+
** History:
|
2361
|
+
** 6/6/89, DSJ, Created.
|
2362
|
+
*/
|
2363
|
+
if (Cluster != NULL) {
|
2364
|
+
FreeCluster (Cluster->Left);
|
2365
|
+
FreeCluster (Cluster->Right);
|
2366
|
+
memfree(Cluster);
|
2367
|
+
}
|
2368
|
+
} // FreeCluster
|
2369
|
+
|
2370
|
+
|
2371
|
+
//---------------------------------------------------------------------------
|
2372
|
+
uinT16 DegreesOfFreedom(DISTRIBUTION Distribution, uinT16 HistogramBuckets) {
|
2373
|
+
/*
|
2374
|
+
** Parameters:
|
2375
|
+
** Distribution distribution being tested for
|
2376
|
+
** HistogramBuckets number of buckets in chi-square test
|
2377
|
+
** Globals: none
|
2378
|
+
** Operation:
|
2379
|
+
** This routine computes the degrees of freedom that should
|
2380
|
+
** be used in a chi-squared test with the specified number of
|
2381
|
+
** histogram buckets. The result is always rounded up to
|
2382
|
+
** the next even number so that the value of chi-squared can be
|
2383
|
+
** computed more easily. This will cause the value of
|
2384
|
+
** chi-squared to be higher than the optimum value, resulting
|
2385
|
+
** in the chi-square test being more lenient than optimum.
|
2386
|
+
** Return: The number of degrees of freedom for a chi-square test
|
2387
|
+
** Exceptions: none
|
2388
|
+
** History: Thu Aug 3 14:04:18 1989, DSJ, Created.
|
2389
|
+
*/
|
2390
|
+
static uinT8 DegreeOffsets[] = { 3, 3, 1 };
|
2391
|
+
|
2392
|
+
uinT16 AdjustedNumBuckets;
|
2393
|
+
|
2394
|
+
AdjustedNumBuckets = HistogramBuckets - DegreeOffsets[(int) Distribution];
|
2395
|
+
if (Odd (AdjustedNumBuckets))
|
2396
|
+
AdjustedNumBuckets++;
|
2397
|
+
return (AdjustedNumBuckets);
|
2398
|
+
|
2399
|
+
} // DegreesOfFreedom
|
2400
|
+
|
2401
|
+
|
2402
|
+
//---------------------------------------------------------------------------
|
2403
|
+
int NumBucketsMatch(void *arg1, //BUCKETS *Histogram,
|
2404
|
+
void *arg2) { //uinT16 *DesiredNumberOfBuckets)
|
2405
|
+
/*
|
2406
|
+
** Parameters:
|
2407
|
+
** Histogram current histogram being tested for a match
|
2408
|
+
** DesiredNumberOfBuckets match key
|
2409
|
+
** Globals: none
|
2410
|
+
** Operation:
|
2411
|
+
** This routine is used to search a list of histogram data
|
2412
|
+
** structures to find one with the specified number of
|
2413
|
+
** buckets. It is called by the list search routines.
|
2414
|
+
** Return: TRUE if Histogram matches DesiredNumberOfBuckets
|
2415
|
+
** Exceptions: none
|
2416
|
+
** History: Thu Aug 3 14:17:33 1989, DSJ, Created.
|
2417
|
+
*/
|
2418
|
+
BUCKETS *Histogram = (BUCKETS *) arg1;
|
2419
|
+
uinT16 *DesiredNumberOfBuckets = (uinT16 *) arg2;
|
2420
|
+
|
2421
|
+
return (*DesiredNumberOfBuckets == Histogram->NumberOfBuckets);
|
2422
|
+
|
2423
|
+
} // NumBucketsMatch
|
2424
|
+
|
2425
|
+
|
2426
|
+
//---------------------------------------------------------------------------
|
2427
|
+
int ListEntryMatch(void *arg1, //ListNode
|
2428
|
+
void *arg2) { //Key
|
2429
|
+
/*
|
2430
|
+
** Parameters: none
|
2431
|
+
** Globals: none
|
2432
|
+
** Operation:
|
2433
|
+
** This routine is used to search a list for a list node
|
2434
|
+
** whose contents match Key. It is called by the list
|
2435
|
+
** delete_d routine.
|
2436
|
+
** Return: TRUE if ListNode matches Key
|
2437
|
+
** Exceptions: none
|
2438
|
+
** History: Thu Aug 3 14:23:58 1989, DSJ, Created.
|
2439
|
+
*/
|
2440
|
+
return (arg1 == arg2);
|
2441
|
+
|
2442
|
+
} // ListEntryMatch
|
2443
|
+
|
2444
|
+
|
2445
|
+
//---------------------------------------------------------------------------
|
2446
|
+
void AdjustBuckets(BUCKETS *Buckets, uinT32 NewSampleCount) {
|
2447
|
+
/*
|
2448
|
+
** Parameters:
|
2449
|
+
** Buckets histogram data structure to adjust
|
2450
|
+
** NewSampleCount new sample count to adjust to
|
2451
|
+
** Globals: none
|
2452
|
+
** Operation:
|
2453
|
+
** This routine multiplies each ExpectedCount histogram entry
|
2454
|
+
** by NewSampleCount/OldSampleCount so that the histogram
|
2455
|
+
** is now adjusted to the new sample count.
|
2456
|
+
** Return: none
|
2457
|
+
** Exceptions: none
|
2458
|
+
** History: Thu Aug 3 14:31:14 1989, DSJ, Created.
|
2459
|
+
*/
|
2460
|
+
int i;
|
2461
|
+
FLOAT64 AdjustFactor;
|
2462
|
+
|
2463
|
+
AdjustFactor = (((FLOAT64) NewSampleCount) /
|
2464
|
+
((FLOAT64) Buckets->SampleCount));
|
2465
|
+
|
2466
|
+
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
|
2467
|
+
Buckets->ExpectedCount[i] *= AdjustFactor;
|
2468
|
+
}
|
2469
|
+
|
2470
|
+
Buckets->SampleCount = NewSampleCount;
|
2471
|
+
|
2472
|
+
} // AdjustBuckets
|
2473
|
+
|
2474
|
+
|
2475
|
+
//---------------------------------------------------------------------------
|
2476
|
+
void InitBuckets(BUCKETS *Buckets) {
|
2477
|
+
/*
|
2478
|
+
** Parameters:
|
2479
|
+
** Buckets histogram data structure to init
|
2480
|
+
** Globals: none
|
2481
|
+
** Operation:
|
2482
|
+
** This routine sets the bucket counts in the specified histogram
|
2483
|
+
** to zero.
|
2484
|
+
** Return: none
|
2485
|
+
** Exceptions: none
|
2486
|
+
** History: Thu Aug 3 14:31:14 1989, DSJ, Created.
|
2487
|
+
*/
|
2488
|
+
int i;
|
2489
|
+
|
2490
|
+
for (i = 0; i < Buckets->NumberOfBuckets; i++) {
|
2491
|
+
Buckets->Count[i] = 0;
|
2492
|
+
}
|
2493
|
+
|
2494
|
+
} // InitBuckets
|
2495
|
+
|
2496
|
+
|
2497
|
+
//---------------------------------------------------------------------------
|
2498
|
+
int AlphaMatch(void *arg1, //CHISTRUCT *ChiStruct,
|
2499
|
+
void *arg2) { //CHISTRUCT *SearchKey)
|
2500
|
+
/*
|
2501
|
+
** Parameters:
|
2502
|
+
** ChiStruct chi-squared struct being tested for a match
|
2503
|
+
** SearchKey chi-squared struct that is the search key
|
2504
|
+
** Globals: none
|
2505
|
+
** Operation:
|
2506
|
+
** This routine is used to search a list of structures which
|
2507
|
+
** hold pre-computed chi-squared values for a chi-squared
|
2508
|
+
** value whose corresponding alpha field matches the alpha
|
2509
|
+
** field of SearchKey.
|
2510
|
+
** It is called by the list search routines.
|
2511
|
+
** Return: TRUE if ChiStruct's Alpha matches SearchKey's Alpha
|
2512
|
+
** Exceptions: none
|
2513
|
+
** History: Thu Aug 3 14:17:33 1989, DSJ, Created.
|
2514
|
+
*/
|
2515
|
+
CHISTRUCT *ChiStruct = (CHISTRUCT *) arg1;
|
2516
|
+
CHISTRUCT *SearchKey = (CHISTRUCT *) arg2;
|
2517
|
+
|
2518
|
+
return (ChiStruct->Alpha == SearchKey->Alpha);
|
2519
|
+
|
2520
|
+
} // AlphaMatch
|
2521
|
+
|
2522
|
+
|
2523
|
+
//---------------------------------------------------------------------------
|
2524
|
+
CHISTRUCT *NewChiStruct(uinT16 DegreesOfFreedom, FLOAT64 Alpha) {
|
2525
|
+
/*
|
2526
|
+
** Parameters:
|
2527
|
+
** DegreesOfFreedom degrees of freedom for new chi value
|
2528
|
+
** Alpha confidence level for new chi value
|
2529
|
+
** Globals: none
|
2530
|
+
** Operation:
|
2531
|
+
** This routine allocates a new data structure which is used
|
2532
|
+
** to hold a chi-squared value along with its associated
|
2533
|
+
** number of degrees of freedom and alpha value.
|
2534
|
+
** Return: none
|
2535
|
+
** Exceptions: none
|
2536
|
+
** History: Fri Aug 4 11:04:59 1989, DSJ, Created.
|
2537
|
+
*/
|
2538
|
+
CHISTRUCT *NewChiStruct;
|
2539
|
+
|
2540
|
+
NewChiStruct = (CHISTRUCT *) Emalloc (sizeof (CHISTRUCT));
|
2541
|
+
NewChiStruct->DegreesOfFreedom = DegreesOfFreedom;
|
2542
|
+
NewChiStruct->Alpha = Alpha;
|
2543
|
+
return (NewChiStruct);
|
2544
|
+
|
2545
|
+
} // NewChiStruct
|
2546
|
+
|
2547
|
+
|
2548
|
+
//---------------------------------------------------------------------------
|
2549
|
+
FLOAT64
|
2550
|
+
Solve (SOLVEFUNC Function,
|
2551
|
+
void *FunctionParams, FLOAT64 InitialGuess, FLOAT64 Accuracy)
|
2552
|
+
/*
|
2553
|
+
** Parameters:
|
2554
|
+
** Function function whose zero is to be found
|
2555
|
+
** FunctionParams arbitrary data to pass to function
|
2556
|
+
** InitialGuess point to start solution search at
|
2557
|
+
** Accuracy maximum allowed error
|
2558
|
+
** Globals: none
|
2559
|
+
** Operation:
|
2560
|
+
** This routine attempts to find an x value at which Function
|
2561
|
+
** goes to zero (i.e. a root of the function ). It will only
|
2562
|
+
** work correctly if a solution actually exists and there
|
2563
|
+
** are no extrema between the solution and the InitialGuess.
|
2564
|
+
** The algorithms used are extremely primitive.
|
2565
|
+
** Return: Solution of function ( x for which f(x) = 0 ).
|
2566
|
+
** Exceptions: none
|
2567
|
+
** History: Fri Aug 4 11:08:59 1989, DSJ, Created.
|
2568
|
+
*/
|
2569
|
+
#define INITIALDELTA 0.1
|
2570
|
+
#define DELTARATIO 0.1
|
2571
|
+
{
|
2572
|
+
FLOAT64 x;
|
2573
|
+
FLOAT64 f;
|
2574
|
+
FLOAT64 Slope;
|
2575
|
+
FLOAT64 Delta;
|
2576
|
+
FLOAT64 NewDelta;
|
2577
|
+
FLOAT64 xDelta;
|
2578
|
+
FLOAT64 LastPosX, LastNegX;
|
2579
|
+
|
2580
|
+
x = InitialGuess;
|
2581
|
+
Delta = INITIALDELTA;
|
2582
|
+
LastPosX = MAX_FLOAT32;
|
2583
|
+
LastNegX = -MAX_FLOAT32;
|
2584
|
+
f = (*Function) ((CHISTRUCT *) FunctionParams, x);
|
2585
|
+
while (Abs (LastPosX - LastNegX) > Accuracy) {
|
2586
|
+
// keep track of outer bounds of current estimate
|
2587
|
+
if (f < 0)
|
2588
|
+
LastNegX = x;
|
2589
|
+
else
|
2590
|
+
LastPosX = x;
|
2591
|
+
|
2592
|
+
// compute the approx. slope of f(x) at the current point
|
2593
|
+
Slope =
|
2594
|
+
((*Function) ((CHISTRUCT *) FunctionParams, x + Delta) - f) / Delta;
|
2595
|
+
|
2596
|
+
// compute the next solution guess */
|
2597
|
+
xDelta = f / Slope;
|
2598
|
+
x -= xDelta;
|
2599
|
+
|
2600
|
+
// reduce the delta used for computing slope to be a fraction of
|
2601
|
+
//the amount moved to get to the new guess
|
2602
|
+
NewDelta = Abs (xDelta) * DELTARATIO;
|
2603
|
+
if (NewDelta < Delta)
|
2604
|
+
Delta = NewDelta;
|
2605
|
+
|
2606
|
+
// compute the value of the function at the new guess
|
2607
|
+
f = (*Function) ((CHISTRUCT *) FunctionParams, x);
|
2608
|
+
}
|
2609
|
+
return (x);
|
2610
|
+
|
2611
|
+
} // Solve
|
2612
|
+
|
2613
|
+
|
2614
|
+
//---------------------------------------------------------------------------
|
2615
|
+
FLOAT64 ChiArea(CHISTRUCT *ChiParams, FLOAT64 x) {
|
2616
|
+
/*
|
2617
|
+
** Parameters:
|
2618
|
+
** ChiParams contains degrees of freedom and alpha
|
2619
|
+
** x value of chi-squared to evaluate
|
2620
|
+
** Globals: none
|
2621
|
+
** Operation:
|
2622
|
+
** This routine computes the area under a chi density curve
|
2623
|
+
** from 0 to x, minus the desired area under the curve. The
|
2624
|
+
** number of degrees of freedom of the chi curve is specified
|
2625
|
+
** in the ChiParams structure. The desired area is also
|
2626
|
+
** specified in the ChiParams structure as Alpha ( or 1 minus
|
2627
|
+
** the desired area ). This routine is intended to be passed
|
2628
|
+
** to the Solve() function to find the value of chi-squared
|
2629
|
+
** which will yield a desired area under the right tail of
|
2630
|
+
** the chi density curve. The function will only work for
|
2631
|
+
** even degrees of freedom. The equations are based on
|
2632
|
+
** integrating the chi density curve in parts to obtain
|
2633
|
+
** a series that can be used to compute the area under the
|
2634
|
+
** curve.
|
2635
|
+
** Return: Error between actual and desired area under the chi curve.
|
2636
|
+
** Exceptions: none
|
2637
|
+
** History: Fri Aug 4 12:48:41 1989, DSJ, Created.
|
2638
|
+
*/
|
2639
|
+
int i, N;
|
2640
|
+
FLOAT64 SeriesTotal;
|
2641
|
+
FLOAT64 Denominator;
|
2642
|
+
FLOAT64 PowerOfx;
|
2643
|
+
|
2644
|
+
N = ChiParams->DegreesOfFreedom / 2 - 1;
|
2645
|
+
SeriesTotal = 1;
|
2646
|
+
Denominator = 1;
|
2647
|
+
PowerOfx = 1;
|
2648
|
+
for (i = 1; i <= N; i++) {
|
2649
|
+
Denominator *= 2 * i;
|
2650
|
+
PowerOfx *= x;
|
2651
|
+
SeriesTotal += PowerOfx / Denominator;
|
2652
|
+
}
|
2653
|
+
return ((SeriesTotal * exp (-0.5 * x)) - ChiParams->Alpha);
|
2654
|
+
|
2655
|
+
} // ChiArea
|
2656
|
+
|
2657
|
+
|
2658
|
+
//---------------------------------------------------------------------------
|
2659
|
+
BOOL8
|
2660
|
+
MultipleCharSamples (CLUSTERER * Clusterer,
|
2661
|
+
CLUSTER * Cluster, FLOAT32 MaxIllegal)
|
2662
|
+
/*
|
2663
|
+
** Parameters:
|
2664
|
+
** Clusterer data structure holding cluster tree
|
2665
|
+
** Cluster cluster containing samples to be tested
|
2666
|
+
** MaxIllegal max percentage of samples allowed to have
|
2667
|
+
** more than 1 feature in the cluster
|
2668
|
+
** Globals: none
|
2669
|
+
** Operation:
|
2670
|
+
** This routine looks at all samples in the specified cluster.
|
2671
|
+
** It computes a running estimate of the percentage of the
|
2672
|
+
** charaters which have more than 1 sample in the cluster.
|
2673
|
+
** When this percentage exceeds MaxIllegal, TRUE is returned.
|
2674
|
+
** Otherwise FALSE is returned. The CharID
|
2675
|
+
** fields must contain integers which identify the training
|
2676
|
+
** characters which were used to generate the sample. One
|
2677
|
+
** integer is used for each sample. The NumChar field in
|
2678
|
+
** the Clusterer must contain the number of characters in the
|
2679
|
+
** training set. All CharID fields must be between 0 and
|
2680
|
+
** NumChar-1. The main function of this routine is to help
|
2681
|
+
** identify clusters which need to be split further, i.e. if
|
2682
|
+
** numerous training characters have 2 or more features which are
|
2683
|
+
** contained in the same cluster, then the cluster should be
|
2684
|
+
** split.
|
2685
|
+
** Return: TRUE if the cluster should be split, FALSE otherwise.
|
2686
|
+
** Exceptions: none
|
2687
|
+
** History: Wed Aug 30 11:13:05 1989, DSJ, Created.
|
2688
|
+
** 2/22/90, DSJ, Added MaxIllegal control rather than always
|
2689
|
+
** splitting illegal clusters.
|
2690
|
+
*/
|
2691
|
+
#define ILLEGAL_CHAR 2
|
2692
|
+
{
|
2693
|
+
static BOOL8 *CharFlags = NULL;
|
2694
|
+
static inT32 NumFlags = 0;
|
2695
|
+
int i;
|
2696
|
+
LIST SearchState;
|
2697
|
+
SAMPLE *Sample;
|
2698
|
+
inT32 CharID;
|
2699
|
+
inT32 NumCharInCluster;
|
2700
|
+
inT32 NumIllegalInCluster;
|
2701
|
+
FLOAT32 PercentIllegal;
|
2702
|
+
|
2703
|
+
// initial estimate assumes that no illegal chars exist in the cluster
|
2704
|
+
NumCharInCluster = Cluster->SampleCount;
|
2705
|
+
NumIllegalInCluster = 0;
|
2706
|
+
|
2707
|
+
if (Clusterer->NumChar > NumFlags) {
|
2708
|
+
if (CharFlags != NULL)
|
2709
|
+
memfree(CharFlags);
|
2710
|
+
NumFlags = Clusterer->NumChar;
|
2711
|
+
CharFlags = (BOOL8 *) Emalloc (NumFlags * sizeof (BOOL8));
|
2712
|
+
}
|
2713
|
+
|
2714
|
+
for (i = 0; i < NumFlags; i++)
|
2715
|
+
CharFlags[i] = FALSE;
|
2716
|
+
|
2717
|
+
// find each sample in the cluster and check if we have seen it before
|
2718
|
+
InitSampleSearch(SearchState, Cluster);
|
2719
|
+
while ((Sample = NextSample (&SearchState)) != NULL) {
|
2720
|
+
CharID = Sample->CharID;
|
2721
|
+
if (CharFlags[CharID] == FALSE) {
|
2722
|
+
CharFlags[CharID] = TRUE;
|
2723
|
+
}
|
2724
|
+
else {
|
2725
|
+
if (CharFlags[CharID] == TRUE) {
|
2726
|
+
NumIllegalInCluster++;
|
2727
|
+
CharFlags[CharID] = ILLEGAL_CHAR;
|
2728
|
+
}
|
2729
|
+
NumCharInCluster--;
|
2730
|
+
PercentIllegal = (FLOAT32) NumIllegalInCluster / NumCharInCluster;
|
2731
|
+
if (PercentIllegal > MaxIllegal)
|
2732
|
+
return (TRUE);
|
2733
|
+
}
|
2734
|
+
}
|
2735
|
+
return (FALSE);
|
2736
|
+
|
2737
|
+
} // MultipleCharSamples
|
2738
|
+
|
2739
|
+
// Compute the inverse of a matrix using LU decomposition with partial pivoting.
|
2740
|
+
// The return value is the sum of norms of the off-diagonal terms of the
|
2741
|
+
// product of a and inv. (A measure of the error.)
|
2742
|
+
double InvertMatrix(const float* input, int size, float* inv) {
|
2743
|
+
double** U; // The upper triangular array.
|
2744
|
+
double* Umem;
|
2745
|
+
double** U_inv; // The inverse of U.
|
2746
|
+
double* U_invmem;
|
2747
|
+
double** L; // The lower triangular array.
|
2748
|
+
double* Lmem;
|
2749
|
+
|
2750
|
+
// Allocate memory for the 2D arrays.
|
2751
|
+
ALLOC_2D_ARRAY(size, size, Umem, U, double);
|
2752
|
+
ALLOC_2D_ARRAY(size, size, U_invmem, U_inv, double);
|
2753
|
+
ALLOC_2D_ARRAY(size, size, Lmem, L, double);
|
2754
|
+
|
2755
|
+
// Initialize the working matrices. U starts as input, L as I and U_inv as O.
|
2756
|
+
int row;
|
2757
|
+
int col;
|
2758
|
+
for (row = 0; row < size; row++) {
|
2759
|
+
for (col = 0; col < size; col++) {
|
2760
|
+
U[row][col] = input[row*size + col];
|
2761
|
+
L[row][col] = row == col ? 1.0 : 0.0;
|
2762
|
+
U_inv[row][col] = 0.0;
|
2763
|
+
}
|
2764
|
+
}
|
2765
|
+
|
2766
|
+
// Compute forward matrix by inversion by LU decomposition of input.
|
2767
|
+
for (col = 0; col < size; ++col) {
|
2768
|
+
// Find best pivot
|
2769
|
+
int best_row = 0;
|
2770
|
+
double best_pivot = -1.0;
|
2771
|
+
for (row = col; row < size; ++row) {
|
2772
|
+
if (Abs(U[row][col]) > best_pivot) {
|
2773
|
+
best_pivot = Abs(U[row][col]);
|
2774
|
+
best_row = row;
|
2775
|
+
}
|
2776
|
+
}
|
2777
|
+
// Exchange pivot rows.
|
2778
|
+
if (best_row != col) {
|
2779
|
+
for (int k = 0; k < size; ++k) {
|
2780
|
+
double tmp = U[best_row][k];
|
2781
|
+
U[best_row][k] = U[col][k];
|
2782
|
+
U[col][k] = tmp;
|
2783
|
+
tmp = L[best_row][k];
|
2784
|
+
L[best_row][k] = L[col][k];
|
2785
|
+
L[col][k] = tmp;
|
2786
|
+
}
|
2787
|
+
}
|
2788
|
+
// Now do the pivot itself.
|
2789
|
+
for (row = col + 1; row < size; ++row) {
|
2790
|
+
double ratio = -U[row][col] / U[col][col];
|
2791
|
+
for (int j = col; j < size; ++j) {
|
2792
|
+
U[row][j] += U[col][j] * ratio;
|
2793
|
+
}
|
2794
|
+
for (int k = 0; k < size; ++k) {
|
2795
|
+
L[row][k] += L[col][k] * ratio;
|
2796
|
+
}
|
2797
|
+
}
|
2798
|
+
}
|
2799
|
+
// Next invert U.
|
2800
|
+
for (col = 0; col < size; ++col) {
|
2801
|
+
U_inv[col][col] = 1.0 / U[col][col];
|
2802
|
+
for (row = col - 1; row >= 0; --row) {
|
2803
|
+
double total = 0.0;
|
2804
|
+
for (int k = col; k > row; --k) {
|
2805
|
+
total += U[row][k] * U_inv[k][col];
|
2806
|
+
}
|
2807
|
+
U_inv[row][col] = -total / U[row][row];
|
2808
|
+
}
|
2809
|
+
}
|
2810
|
+
// Now the answer is U_inv.L.
|
2811
|
+
for (row = 0; row < size; row++) {
|
2812
|
+
for (col = 0; col < size; col++) {
|
2813
|
+
double sum = 0.0;
|
2814
|
+
for (int k = row; k < size; ++k) {
|
2815
|
+
sum += U_inv[row][k] * L[k][col];
|
2816
|
+
}
|
2817
|
+
inv[row*size + col] = sum;
|
2818
|
+
}
|
2819
|
+
}
|
2820
|
+
// Check matrix product.
|
2821
|
+
double error_sum = 0.0;
|
2822
|
+
for (row = 0; row < size; row++) {
|
2823
|
+
for (col = 0; col < size; col++) {
|
2824
|
+
double sum = 0.0;
|
2825
|
+
for (int k = 0; k < size; ++k) {
|
2826
|
+
sum += input[row*size + k] * inv[k *size + col];
|
2827
|
+
}
|
2828
|
+
if (row != col) {
|
2829
|
+
error_sum += Abs(sum);
|
2830
|
+
}
|
2831
|
+
}
|
2832
|
+
}
|
2833
|
+
return error_sum;
|
2834
|
+
}
|