statsample 0.12.0 → 0.13.0
Sign up to get free protection for your applications and to get access to all the features.
- data.tar.gz.sig +2 -1
- data/History.txt +11 -0
- data/Manifest.txt +2 -3
- data/README.txt +0 -17
- data/Rakefile +10 -9
- data/data/locale/es/LC_MESSAGES/statsample.mo +0 -0
- data/examples/principal_axis.rb +2 -0
- data/examples/u_test.rb +8 -0
- data/lib/distribution.rb +1 -1
- data/lib/statsample.rb +12 -12
- data/lib/statsample/anova/oneway.rb +4 -4
- data/lib/statsample/bivariate.rb +10 -3
- data/lib/statsample/bivariate/pearson.rb +55 -0
- data/lib/statsample/dataset.rb +57 -49
- data/lib/statsample/dominanceanalysis.rb +1 -2
- data/lib/statsample/dominanceanalysis/bootstrap.rb +46 -54
- data/lib/statsample/factor.rb +0 -1
- data/lib/statsample/factor/parallelanalysis.rb +9 -13
- data/lib/statsample/factor/pca.rb +5 -10
- data/lib/statsample/factor/principalaxis.rb +27 -33
- data/lib/statsample/matrix.rb +11 -11
- data/lib/statsample/mle.rb +0 -1
- data/lib/statsample/regression.rb +0 -1
- data/lib/statsample/reliability.rb +2 -2
- data/lib/statsample/reliability/multiscaleanalysis.rb +62 -15
- data/lib/statsample/reliability/scaleanalysis.rb +5 -6
- data/lib/statsample/test/f.rb +2 -5
- data/lib/statsample/test/levene.rb +2 -5
- data/lib/statsample/test/t.rb +4 -13
- data/lib/statsample/test/umannwhitney.rb +19 -19
- data/po/es/statsample.mo +0 -0
- data/po/es/statsample.po +304 -111
- data/po/statsample.pot +224 -90
- data/test/test_bivariate.rb +8 -69
- data/test/test_reliability.rb +3 -4
- metadata +30 -18
- metadata.gz.sig +0 -0
- data/lib/statsample/bivariate/polychoric.rb +0 -893
- data/lib/statsample/bivariate/tetrachoric.rb +0 -457
- data/test/test_bivariate_polychoric.rb +0 -70
data/test/test_bivariate.rb
CHANGED
@@ -39,76 +39,15 @@ class StatsampleBivariateTestCase < MiniTest::Unit::TestCase
|
|
39
39
|
# Test ruby method
|
40
40
|
v3a,v4a=Statsample.only_valid v3, v4
|
41
41
|
assert_in_delta(0.525, Statsample::Bivariate.pearson_slow(v3a,v4a),0.001)
|
42
|
-
|
43
|
-
end
|
44
|
-
def test_tetrachoric_matrix
|
45
|
-
ds=Statsample::PlainText.read(File.dirname(__FILE__)+"/../data/tetmat_test.txt", %w{a b c d e})
|
46
|
-
tcm_obs=Statsample::Bivariate.tetrachoric_correlation_matrix(ds)
|
47
|
-
tcm_exp=Statsample::PlainText.read(File.dirname(__FILE__)+"/../data/tetmat_matrix.txt", %w{a b c d e}).to_matrix
|
48
|
-
tcm_obs.row_size.times do |i|
|
49
|
-
tcm_obs.column_size do |j|
|
50
|
-
assert_in_delta(tcm_obs[i,j], tcm_exp[i,k], 0.00001)
|
51
|
-
end
|
52
|
-
end
|
53
42
|
end
|
54
|
-
def
|
55
|
-
2.
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
if Statsample.has_gsl?
|
63
|
-
poly.compute_two_step_mle_drasgow_gsl
|
64
|
-
assert_in_delta(tetra.r,poly.r,0.0001)
|
65
|
-
else
|
66
|
-
skip "compute_two_step_mle_drasgow_gsl not tested (requires GSL)"
|
67
|
-
end
|
68
|
-
}
|
69
|
-
end
|
70
|
-
|
71
|
-
def test_tetrachoric
|
72
|
-
a,b,c,d=0,0,0,0
|
73
|
-
assert_raises RuntimeError do
|
74
|
-
tc = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
75
|
-
end
|
76
|
-
a,b,c,d=10,10,0,0
|
77
|
-
assert_raises RuntimeError do
|
78
|
-
tc = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
79
|
-
end
|
80
|
-
a,b,c,d=10,0,10,0
|
81
|
-
assert_raises RuntimeError do
|
82
|
-
tc = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
83
|
-
end
|
84
|
-
a,b,c,d=10,0,0,10
|
85
|
-
tc = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
86
|
-
assert_equal(1,tc.r)
|
87
|
-
assert_equal(0,tc.se)
|
88
|
-
a,b,c,d=0,10,10,0
|
89
|
-
tc = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
90
|
-
assert_equal(-1,tc.r)
|
91
|
-
assert_equal(0,tc.se)
|
92
|
-
|
93
|
-
a,b,c,d = 30,40,70,20
|
94
|
-
tc = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
95
|
-
assert_in_delta(-0.53980,tc.r,0.0001)
|
96
|
-
assert_in_delta(0.09940,tc.se,0.0001)
|
97
|
-
assert_in_delta(-0.15731,tc.threshold_x, 0.0001)
|
98
|
-
assert_in_delta(0.31864,tc.threshold_y, 0.0001)
|
99
|
-
|
100
|
-
x=%w{a a a a b b b a b b a a b b}.to_vector
|
101
|
-
y=%w{0 0 1 1 0 0 1 1 1 1 0 0 1 1}.to_vector
|
102
|
-
# crosstab
|
103
|
-
# 0 1
|
104
|
-
# a 4 3
|
105
|
-
# b 2 5
|
106
|
-
a,b,c,d=4,3,2,5
|
107
|
-
tc1 = Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
|
108
|
-
tc2 = Statsample::Bivariate::Tetrachoric.new_with_vectors(x,y)
|
109
|
-
assert_equal(tc1.r,tc2.r)
|
110
|
-
assert_equal(tc1.se,tc2.se)
|
111
|
-
assert(tc.summary)
|
43
|
+
def test_bivariate_pearson
|
44
|
+
v1=[6,5,4,7,8,4,3,2].to_vector(:scale)
|
45
|
+
v2=[2,3,7,8,6,4,3,2].to_vector(:scale)
|
46
|
+
r=Statsample::Bivariate::Pearson.new(v1,v2)
|
47
|
+
assert_in_delta(0.525,r.r, 0.001)
|
48
|
+
assert_in_delta(Statsample::Bivariate.t_pearson(v1,v2), r.t, 0.001)
|
49
|
+
assert_in_delta(Statsample::Bivariate.prop_pearson(r.t,8,:both), r.probability, 0.001)
|
50
|
+
assert(r.summary.size>0)
|
112
51
|
end
|
113
52
|
def test_matrix_correlation
|
114
53
|
v1=[6,5,4,7,8,4,3,2].to_vector(:scale)
|
data/test/test_reliability.rb
CHANGED
@@ -31,8 +31,7 @@ class StatsampleReliabilityTestCase < MiniTest::Unit::TestCase
|
|
31
31
|
should "method cronbach_alpha_from_n_s2_cov return correct values" do
|
32
32
|
sa=Statsample::Reliability::ScaleAnalysis.new(@ds)
|
33
33
|
vm, cm = sa.variances_mean, sa.covariances_mean
|
34
|
-
assert_in_delta(sa.alpha, Statsample::Reliability.cronbach_alpha_from_n_s2_cov(@n_variables, vm,cm), 1e-10
|
35
|
-
|
34
|
+
assert_in_delta(sa.alpha, Statsample::Reliability.cronbach_alpha_from_n_s2_cov(@n_variables, vm,cm), 1e-10)
|
36
35
|
end
|
37
36
|
should "return correct n for desired alpha, covariance and variance" do
|
38
37
|
sa=Statsample::Reliability::ScaleAnalysis.new(@ds)
|
@@ -102,7 +101,6 @@ class StatsampleReliabilityTestCase < MiniTest::Unit::TestCase
|
|
102
101
|
context Statsample::Reliability::MultiScaleAnalysis do
|
103
102
|
|
104
103
|
setup do
|
105
|
-
|
106
104
|
size=100
|
107
105
|
@scales=4
|
108
106
|
@items_per_scale=10
|
@@ -132,7 +130,6 @@ class StatsampleReliabilityTestCase < MiniTest::Unit::TestCase
|
|
132
130
|
end
|
133
131
|
should "retrieve correct correlation matrix for each scale" do
|
134
132
|
vectors={'complete'=>@ds.vector_sum}
|
135
|
-
|
136
133
|
@scales.times {|s|
|
137
134
|
vectors["scale_#{s}"]=@ds.dup(@items_per_scale.times.map {|i| "#{s}_#{i}"}).vector_sum
|
138
135
|
}
|
@@ -163,6 +160,8 @@ class StatsampleReliabilityTestCase < MiniTest::Unit::TestCase
|
|
163
160
|
|
164
161
|
#@msa.summary_correlation_matrix=true
|
165
162
|
#@msa.summary_pca=true
|
163
|
+
|
164
|
+
|
166
165
|
assert(@msa.summary.size>0)
|
167
166
|
end
|
168
167
|
end
|
metadata
CHANGED
@@ -4,9 +4,9 @@ version: !ruby/object:Gem::Version
|
|
4
4
|
prerelease: false
|
5
5
|
segments:
|
6
6
|
- 0
|
7
|
-
-
|
7
|
+
- 13
|
8
8
|
- 0
|
9
|
-
version: 0.
|
9
|
+
version: 0.13.0
|
10
10
|
platform: ruby
|
11
11
|
authors:
|
12
12
|
- Claudio Bustos
|
@@ -35,7 +35,7 @@ cert_chain:
|
|
35
35
|
rpP0jjs0
|
36
36
|
-----END CERTIFICATE-----
|
37
37
|
|
38
|
-
date: 2010-06-
|
38
|
+
date: 2010-06-21 00:00:00 -04:00
|
39
39
|
default_executable:
|
40
40
|
dependencies:
|
41
41
|
- !ruby/object:Gem::Dependency
|
@@ -132,9 +132,23 @@ dependencies:
|
|
132
132
|
type: :runtime
|
133
133
|
version_requirements: *id007
|
134
134
|
- !ruby/object:Gem::Dependency
|
135
|
-
name:
|
135
|
+
name: statsample-bivariate-extension
|
136
136
|
prerelease: false
|
137
137
|
requirement: &id008 !ruby/object:Gem::Requirement
|
138
|
+
requirements:
|
139
|
+
- - ~>
|
140
|
+
- !ruby/object:Gem::Version
|
141
|
+
segments:
|
142
|
+
- 0
|
143
|
+
- 13
|
144
|
+
- 0
|
145
|
+
version: 0.13.0
|
146
|
+
type: :runtime
|
147
|
+
version_requirements: *id008
|
148
|
+
- !ruby/object:Gem::Dependency
|
149
|
+
name: rubyforge
|
150
|
+
prerelease: false
|
151
|
+
requirement: &id009 !ruby/object:Gem::Requirement
|
138
152
|
requirements:
|
139
153
|
- - ">="
|
140
154
|
- !ruby/object:Gem::Version
|
@@ -144,11 +158,11 @@ dependencies:
|
|
144
158
|
- 4
|
145
159
|
version: 2.0.4
|
146
160
|
type: :development
|
147
|
-
version_requirements: *
|
161
|
+
version_requirements: *id009
|
148
162
|
- !ruby/object:Gem::Dependency
|
149
163
|
name: shoulda
|
150
164
|
prerelease: false
|
151
|
-
requirement: &
|
165
|
+
requirement: &id010 !ruby/object:Gem::Requirement
|
152
166
|
requirements:
|
153
167
|
- - ">="
|
154
168
|
- !ruby/object:Gem::Version
|
@@ -156,11 +170,11 @@ dependencies:
|
|
156
170
|
- 0
|
157
171
|
version: "0"
|
158
172
|
type: :development
|
159
|
-
version_requirements: *
|
173
|
+
version_requirements: *id010
|
160
174
|
- !ruby/object:Gem::Dependency
|
161
175
|
name: hoe
|
162
176
|
prerelease: false
|
163
|
-
requirement: &
|
177
|
+
requirement: &id011 !ruby/object:Gem::Requirement
|
164
178
|
requirements:
|
165
179
|
- - ">="
|
166
180
|
- !ruby/object:Gem::Version
|
@@ -170,7 +184,7 @@ dependencies:
|
|
170
184
|
- 1
|
171
185
|
version: 2.6.1
|
172
186
|
type: :development
|
173
|
-
version_requirements: *
|
187
|
+
version_requirements: *id011
|
174
188
|
description: |-
|
175
189
|
A suite for basic and advanced statistics on Ruby. Tested on Ruby 1.8.7, 1.9.1, 1.9.2 (April, 2010) and JRuby 1.4 (Ruby 1.8.7 compatible).
|
176
190
|
|
@@ -225,6 +239,7 @@ files:
|
|
225
239
|
- examples/reliability.rb
|
226
240
|
- examples/t_test.rb
|
227
241
|
- examples/tetrachoric.rb
|
242
|
+
- examples/u_test.rb
|
228
243
|
- examples/vector.rb
|
229
244
|
- lib/distribution.rb
|
230
245
|
- lib/distribution/chisquare.rb
|
@@ -239,8 +254,7 @@ files:
|
|
239
254
|
- lib/statsample/anova/oneway.rb
|
240
255
|
- lib/statsample/anova/twoway.rb
|
241
256
|
- lib/statsample/bivariate.rb
|
242
|
-
- lib/statsample/bivariate/
|
243
|
-
- lib/statsample/bivariate/tetrachoric.rb
|
257
|
+
- lib/statsample/bivariate/pearson.rb
|
244
258
|
- lib/statsample/codification.rb
|
245
259
|
- lib/statsample/combination.rb
|
246
260
|
- lib/statsample/converter/csv.rb
|
@@ -301,7 +315,6 @@ files:
|
|
301
315
|
- test/test_anovatwowaywithdataset.rb
|
302
316
|
- test/test_anovawithvectors.rb
|
303
317
|
- test/test_bivariate.rb
|
304
|
-
- test/test_bivariate_polychoric.rb
|
305
318
|
- test/test_codification.rb
|
306
319
|
- test/test_combination.rb
|
307
320
|
- test/test_crosstab.rb
|
@@ -345,13 +358,13 @@ post_install_message: |
|
|
345
358
|
to retrieve gems gsl, statistics2 and a C extension
|
346
359
|
to speed some methods.
|
347
360
|
|
348
|
-
$sudo gem install statsample-optimization
|
361
|
+
$ sudo gem install statsample-optimization
|
349
362
|
|
350
|
-
|
351
|
-
|
352
|
-
|
363
|
+
On Ubuntu, install build-essential and libgsl0-dev
|
364
|
+
using apt-get and compile ruby 1.8 or 1.9 from
|
365
|
+
source code first.
|
353
366
|
|
354
|
-
$sudo apt-get install build-essential libgsl0-dev
|
367
|
+
$ sudo apt-get install build-essential libgsl0-dev
|
355
368
|
|
356
369
|
|
357
370
|
*****************************************************
|
@@ -400,7 +413,6 @@ test_files:
|
|
400
413
|
- test/test_combination.rb
|
401
414
|
- test/test_mle.rb
|
402
415
|
- test/test_resample.rb
|
403
|
-
- test/test_bivariate_polychoric.rb
|
404
416
|
- test/test_stratified.rb
|
405
417
|
- test/test_vector.rb
|
406
418
|
- test/test_srs.rb
|
metadata.gz.sig
CHANGED
Binary file
|
@@ -1,893 +0,0 @@
|
|
1
|
-
require 'minimization'
|
2
|
-
module Statsample
|
3
|
-
module Bivariate
|
4
|
-
# Calculate Polychoric correlation for two vectors.
|
5
|
-
def self.polychoric(v1,v2)
|
6
|
-
pc=Polychoric.new_with_vectors(v1,v2)
|
7
|
-
pc.r
|
8
|
-
end
|
9
|
-
|
10
|
-
# Polychoric correlation matrix.
|
11
|
-
# Order of rows and columns depends on Dataset#fields order
|
12
|
-
def self.polychoric_correlation_matrix(ds)
|
13
|
-
cache={}
|
14
|
-
matrix=ds.collect_matrix do |row,col|
|
15
|
-
if row==col
|
16
|
-
1.0
|
17
|
-
else
|
18
|
-
begin
|
19
|
-
if cache[[col,row]].nil?
|
20
|
-
poly=polychoric(ds[row],ds[col])
|
21
|
-
cache[[row,col]]=poly
|
22
|
-
poly
|
23
|
-
else
|
24
|
-
cache[[col,row]]
|
25
|
-
end
|
26
|
-
rescue RuntimeError
|
27
|
-
nil
|
28
|
-
end
|
29
|
-
end
|
30
|
-
end
|
31
|
-
matrix.extend CovariateMatrix
|
32
|
-
matrix.fields=ds.fields
|
33
|
-
matrix
|
34
|
-
end
|
35
|
-
|
36
|
-
# = Polychoric correlation.
|
37
|
-
#
|
38
|
-
# The <em>polychoric</em> correlation is a measure of
|
39
|
-
# bivariate association arising when both observed variates
|
40
|
-
# are ordered, categorical variables that result from polychotomizing
|
41
|
-
# the two undelying continuous variables (Drasgow, 2006)
|
42
|
-
#
|
43
|
-
# According to Drasgow(2006), there are tree methods to estimate
|
44
|
-
# the polychoric correlation:
|
45
|
-
#
|
46
|
-
# 1. Maximum Likehood Estimator
|
47
|
-
# 2. Two-step estimator and
|
48
|
-
# 3. Polychoric series estimate.
|
49
|
-
#
|
50
|
-
# By default, two-step estimation are used. You can select
|
51
|
-
# the estimation method with method attribute. Joint estimate and polychoric series requires gsl library and rb-gsl.
|
52
|
-
#
|
53
|
-
# == Use
|
54
|
-
#
|
55
|
-
# You should enter a Matrix with ordered data. For example:
|
56
|
-
# -------------------
|
57
|
-
# | y=0 | y=1 | y=2 |
|
58
|
-
# -------------------
|
59
|
-
# x = 0 | 1 | 10 | 20 |
|
60
|
-
# -------------------
|
61
|
-
# x = 1 | 20 | 20 | 50 |
|
62
|
-
# -------------------
|
63
|
-
#
|
64
|
-
# The code will be
|
65
|
-
#
|
66
|
-
# matrix=Matrix[[1,10,20],[20,20,50]]
|
67
|
-
# poly=Statsample::Bivariate::Polychoric.new(matrix, :method=>:joint)
|
68
|
-
# puts poly.r
|
69
|
-
#
|
70
|
-
# See extensive documentation on Uebersax(2002) and Drasgow(2006)
|
71
|
-
#
|
72
|
-
# == References
|
73
|
-
#
|
74
|
-
# * Uebersax, J.S. (2006). The tetrachoric and polychoric correlation coefficients. Statistical Methods for Rater Agreement web site. 2006. Available at: http://john-uebersax.com/stat/tetra.htm . Accessed February, 11, 2010
|
75
|
-
# * Drasgow F. (2006). Polychoric and polyserial correlations. In Kotz L, Johnson NL (Eds.), Encyclopedia of statistical sciences. Vol. 7 (pp. 69-74). New York: Wiley.
|
76
|
-
|
77
|
-
class Polychoric
|
78
|
-
|
79
|
-
class Processor
|
80
|
-
attr_reader :alpha, :beta, :rho
|
81
|
-
def initialize(alpha,beta,rho)
|
82
|
-
@alpha=alpha
|
83
|
-
@beta=beta
|
84
|
-
@nr=@alpha.size+1
|
85
|
-
@nc=@beta.size+1
|
86
|
-
@rho=rho
|
87
|
-
@pd=nil
|
88
|
-
end
|
89
|
-
def bipdf(i,j)
|
90
|
-
Distribution::NormalBivariate.pdf(a(i), b(j), rho)
|
91
|
-
end
|
92
|
-
def a(i)
|
93
|
-
i < 0 ? -100 : (i==@nr-1 ? 100 : alpha[i])
|
94
|
-
end
|
95
|
-
def b(j)
|
96
|
-
j < 0 ? -100 : (j==@nc-1 ? 100 : beta[j])
|
97
|
-
end
|
98
|
-
# Equation(10) from Olsson(1979)
|
99
|
-
def fd_loglike_cell_a(i,j,k)
|
100
|
-
if k==i
|
101
|
-
Distribution::NormalBivariate.pd_cdf_x(a(k),b(j), rho) - Distribution::NormalBivariate.pd_cdf_x(a(k),b(j-1),rho)
|
102
|
-
elsif k==(i-1)
|
103
|
-
-Distribution::NormalBivariate.pd_cdf_x(a(k),b(j),rho) + Distribution::NormalBivariate.pd_cdf_x(a(k),b(j-1),rho)
|
104
|
-
else
|
105
|
-
0
|
106
|
-
end
|
107
|
-
|
108
|
-
end
|
109
|
-
# phi_ij for each i and j
|
110
|
-
# Uses equation(4) from Olsson(1979)
|
111
|
-
def pd
|
112
|
-
if @pd.nil?
|
113
|
-
@pd=@nr.times.collect{ [0] * @nc}
|
114
|
-
pc=@nr.times.collect{ [0] * @nc}
|
115
|
-
@nr.times do |i|
|
116
|
-
@nc.times do |j|
|
117
|
-
|
118
|
-
if i==@nr-1 and j==@nc-1
|
119
|
-
@pd[i][j]=1.0
|
120
|
-
else
|
121
|
-
a=(i==@nr-1) ? 100: alpha[i]
|
122
|
-
b=(j==@nc-1) ? 100: beta[j]
|
123
|
-
#puts "a:#{a} b:#{b}"
|
124
|
-
@pd[i][j]=Distribution::NormalBivariate.cdf(a, b, rho)
|
125
|
-
end
|
126
|
-
pc[i][j] = @pd[i][j]
|
127
|
-
@pd[i][j] = @pd[i][j] - pc[i-1][j] if i>0
|
128
|
-
@pd[i][j] = @pd[i][j] - pc[i][j-1] if j>0
|
129
|
-
@pd[i][j] = @pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
130
|
-
end
|
131
|
-
end
|
132
|
-
end
|
133
|
-
@pd
|
134
|
-
end
|
135
|
-
end
|
136
|
-
|
137
|
-
include GetText
|
138
|
-
include DirtyMemoize
|
139
|
-
bindtextdomain("statsample")
|
140
|
-
# Name of the analysis
|
141
|
-
attr_accessor :name
|
142
|
-
# Max number of iterations used on iterative methods. Default to MAX_ITERATIONS
|
143
|
-
attr_accessor :max_iterations
|
144
|
-
# Debug algorithm (See iterations, for example)
|
145
|
-
attr_accessor :debug
|
146
|
-
# Minimizer type for two step. Default "brent"
|
147
|
-
# See http://rb-gsl.rubyforge.org/min.html for reference.
|
148
|
-
attr_accessor :minimizer_type_two_step
|
149
|
-
|
150
|
-
# Minimizer type for joint estimate. Default "nmsimplex"
|
151
|
-
# See http://rb-gsl.rubyforge.org/min.html for reference.
|
152
|
-
attr_accessor :minimizer_type_joint
|
153
|
-
|
154
|
-
|
155
|
-
# Method of calculation of polychoric series.
|
156
|
-
# <tt>:two_step</tt> used by default.
|
157
|
-
#
|
158
|
-
# :two_step:: two-step ML, based on code by Gegenfurtner(1992).
|
159
|
-
# :polychoric_series:: polychoric series estimate, using
|
160
|
-
# algorithm AS87 by Martinson and Hamdan (1975).
|
161
|
-
# :joint:: one-step ML, based on R package 'polycor'
|
162
|
-
# by J.Fox.
|
163
|
-
attr_accessor :method
|
164
|
-
# Absolute error for iteration.
|
165
|
-
attr_accessor :epsilon
|
166
|
-
|
167
|
-
# Number of iterations
|
168
|
-
attr_reader :iteration
|
169
|
-
|
170
|
-
# Log of algorithm
|
171
|
-
attr_reader :log
|
172
|
-
|
173
|
-
|
174
|
-
attr_reader :loglike_model
|
175
|
-
|
176
|
-
METHOD=:two_step
|
177
|
-
MAX_ITERATIONS=300
|
178
|
-
EPSILON=1e-6
|
179
|
-
MINIMIZER_TYPE_TWO_STEP="brent"
|
180
|
-
MINIMIZER_TYPE_JOINT="nmsimplex"
|
181
|
-
def self.new_with_vectors(v1,v2)
|
182
|
-
Polychoric.new(Crosstab.new(v1,v2).to_matrix)
|
183
|
-
end
|
184
|
-
# Params:
|
185
|
-
# * matrix: Contingence table
|
186
|
-
# * opts: Any attribute
|
187
|
-
|
188
|
-
def initialize(matrix, opts=Hash.new)
|
189
|
-
@matrix=matrix
|
190
|
-
@n=matrix.column_size
|
191
|
-
@m=matrix.row_size
|
192
|
-
raise "row size <1" if @m<=1
|
193
|
-
raise "column size <1" if @n<=1
|
194
|
-
|
195
|
-
@method=METHOD
|
196
|
-
@name="Polychoric correlation"
|
197
|
-
@max_iterations=MAX_ITERATIONS
|
198
|
-
@epsilon=EPSILON
|
199
|
-
@minimizer_type_two_step=MINIMIZER_TYPE_TWO_STEP
|
200
|
-
@minimizer_type_joint=MINIMIZER_TYPE_JOINT
|
201
|
-
@debug=false
|
202
|
-
@iteration=nil
|
203
|
-
opts.each{|k,v|
|
204
|
-
self.send("#{k}=",v) if self.respond_to? k
|
205
|
-
}
|
206
|
-
@r=nil
|
207
|
-
@pd=nil
|
208
|
-
compute_basic_parameters
|
209
|
-
end
|
210
|
-
# Returns the polychoric correlation
|
211
|
-
attr_reader :r
|
212
|
-
# Returns the rows thresholds
|
213
|
-
attr_reader :alpha
|
214
|
-
# Returns the columns thresholds
|
215
|
-
attr_reader :beta
|
216
|
-
|
217
|
-
dirty_writer :max_iterations, :epsilon, :minimizer_type_two_step, :minimizer_type_joint, :method
|
218
|
-
dirty_memoize :r, :alpha, :beta
|
219
|
-
|
220
|
-
alias :threshold_x :alpha
|
221
|
-
alias :threshold_y :beta
|
222
|
-
|
223
|
-
|
224
|
-
# Start the computation of polychoric correlation
|
225
|
-
# based on attribute method
|
226
|
-
def compute
|
227
|
-
if @method==:two_step
|
228
|
-
compute_two_step_mle_drasgow
|
229
|
-
elsif @method==:joint
|
230
|
-
compute_one_step_mle
|
231
|
-
elsif @method==:polychoric_series
|
232
|
-
compute_polychoric_series
|
233
|
-
else
|
234
|
-
raise "Not implemented"
|
235
|
-
end
|
236
|
-
end
|
237
|
-
# Retrieve log likehood for actual data.
|
238
|
-
def loglike_data
|
239
|
-
loglike=0
|
240
|
-
@nr.times do |i|
|
241
|
-
@nc.times do |j|
|
242
|
-
res=@matrix[i,j].quo(@total)
|
243
|
-
if (res==0)
|
244
|
-
res=1e-16
|
245
|
-
end
|
246
|
-
loglike+= @matrix[i,j] * Math::log(res )
|
247
|
-
end
|
248
|
-
end
|
249
|
-
loglike
|
250
|
-
end
|
251
|
-
|
252
|
-
# Chi Square of model
|
253
|
-
def chi_square
|
254
|
-
if @loglike_model.nil?
|
255
|
-
compute
|
256
|
-
end
|
257
|
-
-2*(@loglike_model-loglike_data)
|
258
|
-
end
|
259
|
-
|
260
|
-
def chi_square_df
|
261
|
-
(@nr*@nc)-@nc-@nr
|
262
|
-
end
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
# Retrieve all cell probabilities for givens alpha, beta and rho
|
268
|
-
def cell_probabilities(alpha,beta,rho)
|
269
|
-
pd=@nr.times.collect{ [0] * @nc}
|
270
|
-
pc=@nr.times.collect{ [0] * @nc}
|
271
|
-
@nr.times do |i|
|
272
|
-
@nc.times do |j|
|
273
|
-
|
274
|
-
if i==@nr-1 and j==@nc-1
|
275
|
-
pd[i][j]=1.0
|
276
|
-
else
|
277
|
-
a=(i==@nr-1) ? 100: alpha[i]
|
278
|
-
b=(j==@nc-1) ? 100: beta[j]
|
279
|
-
#puts "a:#{a} b:#{b}"
|
280
|
-
pd[i][j]=Distribution::NormalBivariate.cdf(a, b, rho)
|
281
|
-
end
|
282
|
-
pc[i][j] = pd[i][j]
|
283
|
-
pd[i][j] = pd[i][j] - pc[i-1][j] if i>0
|
284
|
-
pd[i][j] = pd[i][j] - pc[i][j-1] if j>0
|
285
|
-
pd[i][j] = pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
286
|
-
end
|
287
|
-
end
|
288
|
-
@pd=pd
|
289
|
-
pd
|
290
|
-
end
|
291
|
-
def loglike(alpha,beta,rho)
|
292
|
-
if rho.abs>0.9999
|
293
|
-
rho= (rho>0) ? 0.9999 : -0.9999
|
294
|
-
end
|
295
|
-
pr=Processor.new(alpha,beta,rho)
|
296
|
-
loglike=0
|
297
|
-
|
298
|
-
|
299
|
-
@nr.times do |i|
|
300
|
-
@nc.times do |j|
|
301
|
-
res=pr.pd[i][j]+EPSILON
|
302
|
-
loglike+= @matrix[i,j] * Math::log( res )
|
303
|
-
end
|
304
|
-
end
|
305
|
-
-loglike
|
306
|
-
end
|
307
|
-
# First derivate for rho
|
308
|
-
# Uses equation (9) from Olsson(1979)
|
309
|
-
def fd_loglike_rho(alpha,beta,rho)
|
310
|
-
if rho.abs>0.9999
|
311
|
-
rho= (rho>0) ? 0.9999 : -0.9999
|
312
|
-
end
|
313
|
-
total=0
|
314
|
-
pr=Processor.new(alpha,beta,rho)
|
315
|
-
@nr.times do |i|
|
316
|
-
@nc.times do |j|
|
317
|
-
pi=pr.pd[i][j] + EPSILON
|
318
|
-
total+= (@matrix[i,j] / pi) * (pr.bipdf(i,j)-pr.bipdf(i-1,j)-pr.bipdf(i,j-1)+pr.bipdf(i-1,j-1))
|
319
|
-
end
|
320
|
-
end
|
321
|
-
total
|
322
|
-
end
|
323
|
-
|
324
|
-
# First derivative for alpha_k
|
325
|
-
def fd_loglike_a(alpha,beta,rho,k)
|
326
|
-
fd_loglike_a_eq6(alpha,beta,rho,k)
|
327
|
-
end
|
328
|
-
# Uses equation (6) from Olsson(1979)
|
329
|
-
def fd_loglike_a_eq6(alpha,beta,rho,k)
|
330
|
-
if rho.abs>0.9999
|
331
|
-
rho= (rho>0) ? 0.9999 : -0.9999
|
332
|
-
end
|
333
|
-
pr=Processor.new(alpha,beta,rho)
|
334
|
-
total=0
|
335
|
-
pd=pr.pd
|
336
|
-
@nr.times do |i|
|
337
|
-
@nc.times do |j|
|
338
|
-
total+=@matrix[i,j].quo(pd[i][j]+EPSILON) * pr.fd_loglike_cell_a(i,j,k)
|
339
|
-
end
|
340
|
-
end
|
341
|
-
total
|
342
|
-
end
|
343
|
-
# Uses equation(13) from Olsson(1979)
|
344
|
-
def fd_loglike_a_eq13(alpha,beta,rho,k)
|
345
|
-
if rho.abs>0.9999
|
346
|
-
rho= (rho>0) ? 0.9999 : -0.9999
|
347
|
-
end
|
348
|
-
pr=Processor.new(alpha,beta,rho)
|
349
|
-
total=0
|
350
|
-
a_k=pr.a(k)
|
351
|
-
pd=pr.pd
|
352
|
-
@nc.times do |j|
|
353
|
-
#puts "j: #{j}"
|
354
|
-
#puts "b #{j} : #{b.call(j)}"
|
355
|
-
#puts "b #{j-1} : #{b.call(j-1)}"
|
356
|
-
|
357
|
-
e_1=@matrix[k,j].quo(pd[k][j]+EPSILON) - @matrix[k+1,j].quo(pd[k+1][j]+EPSILON)
|
358
|
-
e_2=Distribution::Normal.pdf(a_k)
|
359
|
-
e_3=Distribution::Normal.cdf((pr.b(j)-rho*a_k).quo(Math::sqrt(1-rho**2))) - Distribution::Normal.cdf((pr.b(j-1)-rho*a_k).quo(Math::sqrt(1-rho**2)))
|
360
|
-
#puts "val #{j}: #{e_1} | #{e_2} | #{e_3}"
|
361
|
-
|
362
|
-
total+= e_1*e_2*e_3
|
363
|
-
end
|
364
|
-
total
|
365
|
-
end
|
366
|
-
# First derivative for beta_m
|
367
|
-
# Uses equation(14) from Olsson(1979)
|
368
|
-
def fd_loglike_b(alpha,beta,rho,m)
|
369
|
-
if rho.abs>0.9999
|
370
|
-
rho= (rho>0) ? 0.9999 : -0.9999
|
371
|
-
end
|
372
|
-
pr=Processor.new(alpha,beta,rho)
|
373
|
-
total=0
|
374
|
-
b_m=pr.b m
|
375
|
-
pd=pr.pd
|
376
|
-
@nr.times do |i|
|
377
|
-
#puts "j: #{j}"
|
378
|
-
#puts "b #{j} : #{b.call(j)}"
|
379
|
-
#puts "b #{j-1} : #{b.call(j-1)}"
|
380
|
-
|
381
|
-
e_1=@matrix[i,m].quo(pd[i][m]+EPSILON) - @matrix[i,m+1].quo(pd[i][m+1]+EPSILON)
|
382
|
-
e_2=Distribution::Normal.pdf(b_m)
|
383
|
-
e_3=Distribution::Normal.cdf((pr.a(i)-rho*b_m).quo(Math::sqrt(1-rho**2))) - Distribution::Normal.cdf((pr.a(i-1)-rho*b_m).quo(Math::sqrt(1-rho**2)))
|
384
|
-
#puts "val #{j}: #{e_1} | #{e_2} | #{e_3}"
|
385
|
-
|
386
|
-
total+= e_1*e_2*e_3
|
387
|
-
end
|
388
|
-
total
|
389
|
-
end
|
390
|
-
|
391
|
-
|
392
|
-
def compute_basic_parameters
|
393
|
-
@nr=@matrix.row_size
|
394
|
-
@nc=@matrix.column_size
|
395
|
-
@sumr=[0]*@matrix.row_size
|
396
|
-
@sumrac=[0]*@matrix.row_size
|
397
|
-
@sumc=[0]*@matrix.column_size
|
398
|
-
@sumcac=[0]*@matrix.column_size
|
399
|
-
@alpha=[0]*(@nr-1)
|
400
|
-
@beta=[0]*(@nc-1)
|
401
|
-
@total=0
|
402
|
-
@nr.times do |i|
|
403
|
-
@nc.times do |j|
|
404
|
-
@sumr[i]+=@matrix[i,j]
|
405
|
-
@sumc[j]+=@matrix[i,j]
|
406
|
-
@total+=@matrix[i,j]
|
407
|
-
end
|
408
|
-
end
|
409
|
-
ac=0
|
410
|
-
(@nr-1).times do |i|
|
411
|
-
@sumrac[i]=@sumr[i]+ac
|
412
|
-
@alpha[i]=Distribution::Normal.p_value(@sumrac[i] / @total.to_f)
|
413
|
-
ac=@sumrac[i]
|
414
|
-
end
|
415
|
-
ac=0
|
416
|
-
(@nc-1).times do |i|
|
417
|
-
@sumcac[i]=@sumc[i]+ac
|
418
|
-
@beta[i]=Distribution::Normal.p_value(@sumcac[i] / @total.to_f)
|
419
|
-
ac=@sumcac[i]
|
420
|
-
end
|
421
|
-
end
|
422
|
-
|
423
|
-
|
424
|
-
# Computation of polychoric correlation usign two-step ML estimation.
|
425
|
-
#
|
426
|
-
# Two-step ML estimation "first estimates the thresholds from the one-way marginal frequencies, then estimates rho, conditional on these thresholds, via maximum likelihood" (Uebersax, 2006).
|
427
|
-
#
|
428
|
-
# The algorithm is based on code by Gegenfurtner(1992).
|
429
|
-
#
|
430
|
-
# <b>References</b>:
|
431
|
-
# * Gegenfurtner, K. (1992). PRAXIS: Brent's algorithm for function minimization. Behavior Research Methods, Instruments & Computers, 24(4), 560-564. Available on http://www.allpsych.uni-giessen.de/karl/pdf/03.praxis.pdf
|
432
|
-
# * Uebersax, J.S. (2006). The tetrachoric and polychoric correlation coefficients. Statistical Methods for Rater Agreement web site. 2006. Available at: http://john-uebersax.com/stat/tetra.htm . Accessed February, 11, 2010
|
433
|
-
#
|
434
|
-
def compute_two_step_mle_drasgow
|
435
|
-
if Statsample.has_gsl?
|
436
|
-
compute_two_step_mle_drasgow_gsl
|
437
|
-
else
|
438
|
-
compute_two_step_mle_drasgow_ruby
|
439
|
-
end
|
440
|
-
end
|
441
|
-
|
442
|
-
# Depends on minimization algorithm.
|
443
|
-
|
444
|
-
def compute_two_step_mle_drasgow_ruby #:nodoc:
|
445
|
-
|
446
|
-
f=proc {|rho|
|
447
|
-
loglike(@alpha,@beta, rho)
|
448
|
-
}
|
449
|
-
@log="Minimizing using GSL Brent method\n"
|
450
|
-
min=Minimization::Brent.new(-0.9999,0.9999,f)
|
451
|
-
min.epsilon=@epsilon
|
452
|
-
min.expected=0
|
453
|
-
min.iterate
|
454
|
-
@log+=min.log.to_table.to_s
|
455
|
-
@r=min.x_minimum
|
456
|
-
@loglike_model=-min.f_minimum
|
457
|
-
puts @log if @debug
|
458
|
-
|
459
|
-
end
|
460
|
-
|
461
|
-
|
462
|
-
def compute_two_step_mle_drasgow_gsl #:nodoc:
|
463
|
-
|
464
|
-
fn1=GSL::Function.alloc {|rho|
|
465
|
-
loglike(@alpha,@beta, rho)
|
466
|
-
}
|
467
|
-
@iteration = 0
|
468
|
-
max_iter = @max_iterations
|
469
|
-
m = 0 # initial guess
|
470
|
-
m_expected = 0
|
471
|
-
a=-0.9999
|
472
|
-
b=+0.9999
|
473
|
-
gmf = GSL::Min::FMinimizer.alloc(@minimizer_type_two_step)
|
474
|
-
gmf.set(fn1, m, a, b)
|
475
|
-
header=sprintf("Two step minimization using %s method\n", gmf.name)
|
476
|
-
header+=sprintf("%5s [%9s, %9s] %9s %10s %9s\n", "iter", "lower", "upper", "min",
|
477
|
-
"err", "err(est)")
|
478
|
-
|
479
|
-
header+=sprintf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n", @iteration, a, b, m, m - m_expected, b - a)
|
480
|
-
@log=header
|
481
|
-
puts header if @debug
|
482
|
-
begin
|
483
|
-
@iteration += 1
|
484
|
-
status = gmf.iterate
|
485
|
-
status = gmf.test_interval(@epsilon, 0.0)
|
486
|
-
|
487
|
-
if status == GSL::SUCCESS
|
488
|
-
@log+="converged:"
|
489
|
-
puts "converged:" if @debug
|
490
|
-
end
|
491
|
-
a = gmf.x_lower
|
492
|
-
b = gmf.x_upper
|
493
|
-
m = gmf.x_minimum
|
494
|
-
message=sprintf("%5d [%.7f, %.7f] %.7f %+.7f %.7f\n",
|
495
|
-
@iteration, a, b, m, m - m_expected, b - a);
|
496
|
-
@log+=message
|
497
|
-
puts message if @debug
|
498
|
-
end while status == GSL::CONTINUE and @iteration < @max_iterations
|
499
|
-
@r=gmf.x_minimum
|
500
|
-
@loglike_model=-gmf.f_minimum
|
501
|
-
end
|
502
|
-
|
503
|
-
# Compute Polychoric correlation with joint estimate.
|
504
|
-
# Rho and thresholds are estimated at same time.
|
505
|
-
# Code based on R package "polycor", by J.Fox.
|
506
|
-
#
|
507
|
-
|
508
|
-
def compute_one_step_mle
|
509
|
-
# Get initial values with two-step aproach
|
510
|
-
compute_two_step_mle_drasgow
|
511
|
-
# Start iteration with past values
|
512
|
-
rho=@r
|
513
|
-
cut_alpha=@alpha
|
514
|
-
cut_beta=@beta
|
515
|
-
parameters=[rho]+cut_alpha+cut_beta
|
516
|
-
minimization = Proc.new { |v, params|
|
517
|
-
rho=v[0]
|
518
|
-
alpha=v[1, @nr-1]
|
519
|
-
beta=v[@nr, @nc-1]
|
520
|
-
|
521
|
-
#puts "f'rho=#{fd_loglike_rho(alpha,beta,rho)}"
|
522
|
-
#(@nr-1).times {|k|
|
523
|
-
# puts "f'a(#{k}) = #{fd_loglike_a(alpha,beta,rho,k)}"
|
524
|
-
# puts "f'a(#{k}) v2 = #{fd_loglike_a2(alpha,beta,rho,k)}"
|
525
|
-
#
|
526
|
-
#}
|
527
|
-
#(@nc-1).times {|k|
|
528
|
-
# puts "f'b(#{k}) = #{fd_loglike_b(alpha,beta,rho,k)}"
|
529
|
-
#}
|
530
|
-
|
531
|
-
loglike(alpha,beta,rho)
|
532
|
-
}
|
533
|
-
np=@nc-1+@nr
|
534
|
-
my_func = GSL::MultiMin::Function.alloc(minimization, np)
|
535
|
-
my_func.set_params(parameters) # parameters
|
536
|
-
|
537
|
-
x = GSL::Vector.alloc(parameters.dup)
|
538
|
-
|
539
|
-
ss = GSL::Vector.alloc(np)
|
540
|
-
ss.set_all(1.0)
|
541
|
-
|
542
|
-
minimizer = GSL::MultiMin::FMinimizer.alloc(minimizer_type_joint,np)
|
543
|
-
minimizer.set(my_func, x, ss)
|
544
|
-
|
545
|
-
iter = 0
|
546
|
-
message=""
|
547
|
-
begin
|
548
|
-
iter += 1
|
549
|
-
status = minimizer.iterate()
|
550
|
-
status = minimizer.test_size(@epsilon)
|
551
|
-
if status == GSL::SUCCESS
|
552
|
-
message="Joint MLE converged to minimum at\n"
|
553
|
-
end
|
554
|
-
x = minimizer.x
|
555
|
-
message+= sprintf("%5d iterations", iter)+"\n";
|
556
|
-
for i in 0...np do
|
557
|
-
message+=sprintf("%10.3e ", x[i])
|
558
|
-
end
|
559
|
-
message+=sprintf("f() = %7.3f size = %.3f\n", minimizer.fval, minimizer.size)+"\n";
|
560
|
-
end while status == GSL::CONTINUE and iter < @max_iterations
|
561
|
-
@iteration=iter
|
562
|
-
@log+=message
|
563
|
-
@r=minimizer.x[0]
|
564
|
-
@alpha=minimizer.x[1,@nr-1].to_a
|
565
|
-
@beta=minimizer.x[@nr,@nc-1].to_a
|
566
|
-
@loglike_model= -minimizer.minimum
|
567
|
-
end
|
568
|
-
|
569
|
-
def matrix_for_rho(rho) # :nodoc:
|
570
|
-
pd=@nr.times.collect{ [0]*@nc}
|
571
|
-
pc=@nr.times.collect{ [0]*@nc}
|
572
|
-
@nr.times { |i|
|
573
|
-
@nc.times { |j|
|
574
|
-
pd[i][j]=Distribution::NormalBivariate.cdf(@alpha[i], @beta[j], rho)
|
575
|
-
pc[i][j] = pd[i][j]
|
576
|
-
pd[i][j] = pd[i][j] - pc[i-1][j] if i>0
|
577
|
-
pd[i][j] = pd[i][j] - pc[i][j-1] if j>0
|
578
|
-
pd[i][j] = pd[i][j] + pc[i-1][j-1] if (i>0 and j>0)
|
579
|
-
res= pd[i][j]
|
580
|
-
}
|
581
|
-
}
|
582
|
-
Matrix.rows(pc)
|
583
|
-
end
|
584
|
-
|
585
|
-
def expected # :nodoc:
|
586
|
-
rt=[]
|
587
|
-
ct=[]
|
588
|
-
t=0
|
589
|
-
@matrix.row_size.times {|i|
|
590
|
-
@matrix.column_size.times {|j|
|
591
|
-
rt[i]=0 if rt[i].nil?
|
592
|
-
ct[j]=0 if ct[j].nil?
|
593
|
-
rt[i]+=@matrix[i,j]
|
594
|
-
ct[j]+=@matrix[i,j]
|
595
|
-
t+=@matrix[i,j]
|
596
|
-
}
|
597
|
-
}
|
598
|
-
m=[]
|
599
|
-
@matrix.row_size.times {|i|
|
600
|
-
row=[]
|
601
|
-
@matrix.column_size.times {|j|
|
602
|
-
row[j]=(rt[i]*ct[j]).quo(t)
|
603
|
-
}
|
604
|
-
m.push(row)
|
605
|
-
}
|
606
|
-
|
607
|
-
Matrix.rows(m)
|
608
|
-
end
|
609
|
-
|
610
|
-
# Compute polychoric correlation using polychoric series.
|
611
|
-
# Algorithm: AS87, by Martinson and Hamdam(1975).
|
612
|
-
#
|
613
|
-
# <b>Warning</b>: According to Drasgow(2006), this
|
614
|
-
# computation diverges greatly of joint and two-step methods.
|
615
|
-
#
|
616
|
-
def compute_polychoric_series
|
617
|
-
@nn=@n-1
|
618
|
-
@mm=@m-1
|
619
|
-
@nn7=7*@nn
|
620
|
-
@mm7=7*@mm
|
621
|
-
@mn=@n*@m
|
622
|
-
@cont=[nil]
|
623
|
-
@n.times {|j|
|
624
|
-
@m.times {|i|
|
625
|
-
@cont.push(@matrix[i,j])
|
626
|
-
}
|
627
|
-
}
|
628
|
-
|
629
|
-
pcorl=0
|
630
|
-
cont=@cont
|
631
|
-
xmean=0.0
|
632
|
-
sum=0.0
|
633
|
-
row=[]
|
634
|
-
colmn=[]
|
635
|
-
(1..@m).each do |i|
|
636
|
-
row[i]=0.0
|
637
|
-
l=i
|
638
|
-
(1..@n).each do |j|
|
639
|
-
row[i]=row[i]+cont[l]
|
640
|
-
l+=@m
|
641
|
-
end
|
642
|
-
raise "Should not be empty rows" if(row[i]==0.0)
|
643
|
-
xmean=xmean+row[i]*i.to_f
|
644
|
-
sum+=row[i]
|
645
|
-
end
|
646
|
-
xmean=xmean/sum.to_f
|
647
|
-
ymean=0.0
|
648
|
-
(1..@n).each do |j|
|
649
|
-
colmn[j]=0.0
|
650
|
-
l=(j-1)*@m
|
651
|
-
(1..@m).each do |i|
|
652
|
-
l=l+1
|
653
|
-
colmn[j]=colmn[j]+cont[l] #12
|
654
|
-
end
|
655
|
-
raise "Should not be empty cols" if colmn[j]==0
|
656
|
-
ymean=ymean+colmn[j]*j.to_f
|
657
|
-
end
|
658
|
-
ymean=ymean/sum.to_f
|
659
|
-
covxy=0.0
|
660
|
-
(1..@m).each do |i|
|
661
|
-
l=i
|
662
|
-
(1..@n).each do |j|
|
663
|
-
conxy=covxy+cont[l]*(i.to_f-xmean)*(j.to_f-ymean)
|
664
|
-
l=l+@m
|
665
|
-
end
|
666
|
-
end
|
667
|
-
|
668
|
-
chisq=0.0
|
669
|
-
(1..@m).each do |i|
|
670
|
-
l=i
|
671
|
-
(1..@n).each do |j|
|
672
|
-
chisq=chisq+((cont[l]**2).quo(row[i]*colmn[j]))
|
673
|
-
l=l+@m
|
674
|
-
end
|
675
|
-
end
|
676
|
-
|
677
|
-
phisq=chisq-1.0-(@mm*@nn).to_f / sum.to_f
|
678
|
-
phisq=0 if(phisq<0.0)
|
679
|
-
# Compute cumulative sum of columns and rows
|
680
|
-
sumc=[]
|
681
|
-
sumr=[]
|
682
|
-
sumc[1]=colmn[1]
|
683
|
-
sumr[1]=row[1]
|
684
|
-
cum=0
|
685
|
-
(1..@nn).each do |i| # goto 17 r20
|
686
|
-
cum=cum+colmn[i]
|
687
|
-
sumc[i]=cum
|
688
|
-
end
|
689
|
-
cum=0
|
690
|
-
(1..@mm).each do |i|
|
691
|
-
cum=cum+row[i]
|
692
|
-
sumr[i]=cum
|
693
|
-
end
|
694
|
-
alpha=[]
|
695
|
-
beta=[]
|
696
|
-
# Compute points of polytomy
|
697
|
-
(1..@mm).each do |i| #do 21
|
698
|
-
alpha[i]=Distribution::Normal.p_value(sumr[i] / sum.to_f)
|
699
|
-
end # 21
|
700
|
-
(1..@nn).each do |i| #do 22
|
701
|
-
beta[i]=Distribution::Normal.p_value(sumc[i] / sum.to_f)
|
702
|
-
end # 21
|
703
|
-
@alpha=alpha[1,alpha.size]
|
704
|
-
@beta=beta[1,beta.size]
|
705
|
-
@sumr=row[1,row.size]
|
706
|
-
@sumc=colmn[1,colmn.size]
|
707
|
-
@total=sum
|
708
|
-
|
709
|
-
# Compute Fourier coefficients a and b. Verified
|
710
|
-
h=hermit(alpha,@mm)
|
711
|
-
hh=hermit(beta,@nn)
|
712
|
-
a=[]
|
713
|
-
b=[]
|
714
|
-
if @m!=2 # goto 24
|
715
|
-
mmm=@m-2
|
716
|
-
(1..mmm).each do |i| #do 23
|
717
|
-
a1=sum.quo(row[i+1] * sumr[i] * sumr[i+1])
|
718
|
-
a2=sumr[i] * xnorm(alpha[i+1])
|
719
|
-
a3=sumr[i+1] * xnorm(alpha[i])
|
720
|
-
l=i
|
721
|
-
(1..7).each do |j| #do 23
|
722
|
-
a[l]=Math::sqrt(a1.quo(j))*(h[l+1] * a2 - h[l] * a3)
|
723
|
-
l=l+@mm
|
724
|
-
end
|
725
|
-
end #23
|
726
|
-
end
|
727
|
-
# 24
|
728
|
-
|
729
|
-
|
730
|
-
if @n!=2 # goto 26
|
731
|
-
nnn=@n-2
|
732
|
-
(1..nnn).each do |i| #do 25
|
733
|
-
a1=sum.quo(colmn[i+1] * sumc[i] * sumc[i+1])
|
734
|
-
a2=sumc[i] * xnorm(beta[i+1])
|
735
|
-
a3=sumc[i+1] * xnorm(beta[i])
|
736
|
-
l=i
|
737
|
-
(1..7).each do |j| #do 25
|
738
|
-
b[l]=Math::sqrt(a1.quo(j))*(a2 * hh[l+1] - a3*hh[l])
|
739
|
-
l=l+@nn
|
740
|
-
end # 25
|
741
|
-
end # 25
|
742
|
-
end
|
743
|
-
#26 r20
|
744
|
-
l = @mm
|
745
|
-
a1 = -sum * xnorm(alpha[@mm])
|
746
|
-
a2 = row[@m] * sumr[@mm]
|
747
|
-
(1..7).each do |j| # do 27
|
748
|
-
a[l]=a1 * h[l].quo(Math::sqrt(j*a2))
|
749
|
-
l=l+@mm
|
750
|
-
end # 27
|
751
|
-
|
752
|
-
l = @nn
|
753
|
-
a1 = -sum * xnorm(beta[@nn])
|
754
|
-
a2 = colmn[@n] * sumc[@nn]
|
755
|
-
|
756
|
-
(1..7).each do |j| # do 28
|
757
|
-
b[l]=a1 * hh[l].quo(Math::sqrt(j*a2))
|
758
|
-
l = l + @nn
|
759
|
-
end # 28
|
760
|
-
rcof=[]
|
761
|
-
# compute coefficients rcof of polynomial of order 8
|
762
|
-
rcof[1]=-phisq
|
763
|
-
(2..9).each do |i| # do 30
|
764
|
-
rcof[i]=0.0
|
765
|
-
end #30
|
766
|
-
m1=@mm
|
767
|
-
(1..@mm).each do |i| # do 31
|
768
|
-
m1=m1+1
|
769
|
-
m2=m1+@mm
|
770
|
-
m3=m2+@mm
|
771
|
-
m4=m3+@mm
|
772
|
-
m5=m4+@mm
|
773
|
-
m6=m5+@mm
|
774
|
-
n1=@nn
|
775
|
-
(1..@nn).each do |j| # do 31
|
776
|
-
n1=n1+1
|
777
|
-
n2=n1+@nn
|
778
|
-
n3=n2+@nn
|
779
|
-
n4=n3+@nn
|
780
|
-
n5=n4+@nn
|
781
|
-
n6=n5+@nn
|
782
|
-
|
783
|
-
rcof[3] = rcof[3] + a[i]**2 * b[j]**2
|
784
|
-
|
785
|
-
rcof[4] = rcof[4] + 2.0 * a[i] * a[m1] * b[j] * b[n1]
|
786
|
-
|
787
|
-
rcof[5] = rcof[5] + a[m1]**2 * b[n1]**2 +
|
788
|
-
2.0 * a[i] * a[m2] * b[j] * b[n2]
|
789
|
-
|
790
|
-
rcof[6] = rcof[6] + 2.0 * (a[i] * a[m3] * b[j] *
|
791
|
-
b[n3] + a[m1] * a[m2] * b[n1] * b[n2])
|
792
|
-
|
793
|
-
rcof[7] = rcof[7] + a[m2]**2 * b[n2]**2 +
|
794
|
-
2.0 * (a[i] * a[m4] * b[j] * b[n4] + a[m1] * a[m3] *
|
795
|
-
b[n1] * b[n3])
|
796
|
-
|
797
|
-
rcof[8] = rcof[8] + 2.0 * (a[i] * a[m5] * b[j] * b[n5] +
|
798
|
-
a[m1] * a[m4] * b[n1] * b[n4] + a[m2] * a[m3] * b[n2] * b[n3])
|
799
|
-
|
800
|
-
rcof[9] = rcof[9] + a[m3]**2 * b[n3]**2 +
|
801
|
-
2.0 * (a[i] * a[m6] * b[j] * b[n6] + a[m1] * a[m5] * b[n1] *
|
802
|
-
b[n5] + (a[m2] * a[m4] * b[n2] * b[n4]))
|
803
|
-
end # 31
|
804
|
-
end # 31
|
805
|
-
|
806
|
-
rcof=rcof[1,rcof.size]
|
807
|
-
poly = GSL::Poly.alloc(rcof)
|
808
|
-
roots=poly.solve
|
809
|
-
rootr=[nil]
|
810
|
-
rooti=[nil]
|
811
|
-
roots.each {|c|
|
812
|
-
rootr.push(c.real)
|
813
|
-
rooti.push(c.im)
|
814
|
-
}
|
815
|
-
@rootr=rootr
|
816
|
-
@rooti=rooti
|
817
|
-
|
818
|
-
norts=0
|
819
|
-
(1..7).each do |i| # do 43
|
820
|
-
|
821
|
-
next if rooti[i]!=0.0
|
822
|
-
if (covxy>=0.0)
|
823
|
-
next if(rootr[i]<0.0 or rootr[i]>1.0)
|
824
|
-
pcorl=rootr[i]
|
825
|
-
norts=norts+1
|
826
|
-
else
|
827
|
-
if (rootr[i]>=-1.0 and rootr[i]<0.0)
|
828
|
-
pcorl=rootr[i]
|
829
|
-
norts=norts+1
|
830
|
-
end
|
831
|
-
end
|
832
|
-
end # 43
|
833
|
-
raise "Error" if norts==0
|
834
|
-
@r=pcorl
|
835
|
-
|
836
|
-
@loglike_model=-loglike(@alpha, @beta, @r)
|
837
|
-
|
838
|
-
end
|
839
|
-
#Computes vector h(mm7) of orthogonal hermite...
|
840
|
-
def hermit(s,k) # :nodoc:
|
841
|
-
h=[]
|
842
|
-
(1..k).each do |i| # do 14
|
843
|
-
l=i
|
844
|
-
ll=i+k
|
845
|
-
lll=ll+k
|
846
|
-
h[i]=1.0
|
847
|
-
h[ll]=s[i]
|
848
|
-
v=1.0
|
849
|
-
(2..6).each do |j| #do 14
|
850
|
-
w=Math::sqrt(j)
|
851
|
-
h[lll]=(s[i]*h[ll] - v*h[l]).quo(w)
|
852
|
-
v=w
|
853
|
-
l=l+k
|
854
|
-
ll=ll+k
|
855
|
-
lll=lll+k
|
856
|
-
end
|
857
|
-
end
|
858
|
-
h
|
859
|
-
end
|
860
|
-
def xnorm(t) # :nodoc:
|
861
|
-
Math::exp(-0.5 * t **2) * (1.0/Math::sqrt(2*Math::PI))
|
862
|
-
end
|
863
|
-
|
864
|
-
def summary
|
865
|
-
rp=ReportBuilder.new(:no_title=>true).add(self).to_text
|
866
|
-
end
|
867
|
-
|
868
|
-
|
869
|
-
def report_building(generator) # :nodoc:
|
870
|
-
compute if dirty?
|
871
|
-
section=ReportBuilder::Section.new(:name=>@name)
|
872
|
-
t=ReportBuilder::Table.new(:name=>_("Contingence Table"), :header=>[""]+(@n.times.collect {|i| "Y=#{i}"})+["Total"])
|
873
|
-
@m.times do |i|
|
874
|
-
t.row(["X = #{i}"]+(@n.times.collect {|j| @matrix[i,j]}) + [@sumr[i]])
|
875
|
-
end
|
876
|
-
t.hr
|
877
|
-
t.row(["T"]+(@n.times.collect {|j| @sumc[j]})+[@total])
|
878
|
-
section.add(t)
|
879
|
-
section.add(sprintf("r: %0.4f",r))
|
880
|
-
t=ReportBuilder::Table.new(:name=>_("Thresholds"), :header=>["","Value"])
|
881
|
-
threshold_x.each_with_index {|val,i|
|
882
|
-
t.row(["Threshold X #{i}", sprintf("%0.4f", val)])
|
883
|
-
}
|
884
|
-
threshold_y.each_with_index {|val,i|
|
885
|
-
t.row(["Threshold Y #{i}", sprintf("%0.4f", val)])
|
886
|
-
}
|
887
|
-
section.add(t)
|
888
|
-
section.add(_("Test of bivariate normality: X2 = %0.3f, df = %d, p= %0.5f" % [ chi_square, chi_square_df, 1-Distribution::ChiSquare.cdf(chi_square, chi_square_df)]))
|
889
|
-
generator.parse_element(section)
|
890
|
-
end
|
891
|
-
end
|
892
|
-
end
|
893
|
-
end
|