statsample 0.12.0 → 0.13.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data.tar.gz.sig +2 -1
- data/History.txt +11 -0
- data/Manifest.txt +2 -3
- data/README.txt +0 -17
- data/Rakefile +10 -9
- data/data/locale/es/LC_MESSAGES/statsample.mo +0 -0
- data/examples/principal_axis.rb +2 -0
- data/examples/u_test.rb +8 -0
- data/lib/distribution.rb +1 -1
- data/lib/statsample.rb +12 -12
- data/lib/statsample/anova/oneway.rb +4 -4
- data/lib/statsample/bivariate.rb +10 -3
- data/lib/statsample/bivariate/pearson.rb +55 -0
- data/lib/statsample/dataset.rb +57 -49
- data/lib/statsample/dominanceanalysis.rb +1 -2
- data/lib/statsample/dominanceanalysis/bootstrap.rb +46 -54
- data/lib/statsample/factor.rb +0 -1
- data/lib/statsample/factor/parallelanalysis.rb +9 -13
- data/lib/statsample/factor/pca.rb +5 -10
- data/lib/statsample/factor/principalaxis.rb +27 -33
- data/lib/statsample/matrix.rb +11 -11
- data/lib/statsample/mle.rb +0 -1
- data/lib/statsample/regression.rb +0 -1
- data/lib/statsample/reliability.rb +2 -2
- data/lib/statsample/reliability/multiscaleanalysis.rb +62 -15
- data/lib/statsample/reliability/scaleanalysis.rb +5 -6
- data/lib/statsample/test/f.rb +2 -5
- data/lib/statsample/test/levene.rb +2 -5
- data/lib/statsample/test/t.rb +4 -13
- data/lib/statsample/test/umannwhitney.rb +19 -19
- data/po/es/statsample.mo +0 -0
- data/po/es/statsample.po +304 -111
- data/po/statsample.pot +224 -90
- data/test/test_bivariate.rb +8 -69
- data/test/test_reliability.rb +3 -4
- metadata +30 -18
- metadata.gz.sig +0 -0
- data/lib/statsample/bivariate/polychoric.rb +0 -893
- data/lib/statsample/bivariate/tetrachoric.rb +0 -457
- data/test/test_bivariate_polychoric.rb +0 -70
@@ -1,4 +1,3 @@
|
|
1
|
-
|
2
1
|
module Statsample
|
3
2
|
# Dominance Analysis is a procedure based on an examination of the R<sup>2</sup> values
|
4
3
|
# for all possible subset models, to identify the relevance of one or more
|
@@ -57,7 +56,7 @@ module Statsample
|
|
57
56
|
# * Azen, R. & Budescu, D.V. (2006). Comparing predictors in Multivariate Regression Models: An extension of Dominance Analysis. <em>Journal of Educational and Behavioral Statistics, 31</em>(2), 157-180.
|
58
57
|
#
|
59
58
|
class DominanceAnalysis
|
60
|
-
|
59
|
+
include Summarizable
|
61
60
|
# Class to generate the regressions. Default to Statsample::Regression::Multiple::MatrixEngine
|
62
61
|
attr_accessor :regression_class
|
63
62
|
# Name of analysis
|
@@ -66,9 +66,8 @@ module Statsample
|
|
66
66
|
#
|
67
67
|
# * Azen, R. & Budescu, D.V. (2003). The dominance analysis approach for comparing predictors in multiple regression. <em>Psychological Methods, 8</em>(2), 129-148.
|
68
68
|
class Bootstrap
|
69
|
-
include GetText
|
70
69
|
include Writable
|
71
|
-
|
70
|
+
include Summarizable
|
72
71
|
# Total Dominance results
|
73
72
|
attr_reader :samples_td
|
74
73
|
# Conditional Dominance results
|
@@ -169,68 +168,61 @@ module Statsample
|
|
169
168
|
}
|
170
169
|
end
|
171
170
|
end
|
172
|
-
# Summary of analysis
|
173
|
-
def summary
|
174
|
-
rp=ReportBuilder.new().add(self).to_text
|
175
|
-
end
|
176
|
-
|
177
171
|
def t
|
178
172
|
Distribution::T.p_value(1-((1-@alpha) / 2), @n_samples - 1)
|
179
173
|
end
|
180
|
-
def report_building(
|
174
|
+
def report_building(builder) # :nodoc:
|
181
175
|
raise "You should bootstrap first" if @n_samples==0
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
table.
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
generator.parse_element(table)
|
226
|
-
generator.html("</div>")
|
176
|
+
builder.section(:name=>@name) do |generator|
|
177
|
+
generator.text _("Sample size: %d\n") % @n_samples
|
178
|
+
generator.text "t: #{t}\n"
|
179
|
+
generator.text _("Linear Regression Engine: %s") % @regression_class.name
|
180
|
+
|
181
|
+
table=ReportBuilder::Table.new(:name=>"Bootstrap report", :header => [_("pairs"), "sD","Dij", _("SE(Dij)"), "Pij", "Pji", "Pno", _("Reproducibility")])
|
182
|
+
table.row([_("Complete dominance"),"","","","","","",""])
|
183
|
+
table.hr
|
184
|
+
@pairs.each{|pair|
|
185
|
+
std=@samples_td[pair].to_vector(:scale)
|
186
|
+
ttd=da.total_dominance_pairwise(pair[0],pair[1])
|
187
|
+
table.row(summary_pairs(pair,std,ttd))
|
188
|
+
}
|
189
|
+
table.hr
|
190
|
+
table.row([_("Conditional dominance"),"","","","","","",""])
|
191
|
+
table.hr
|
192
|
+
@pairs.each{|pair|
|
193
|
+
std=@samples_cd[pair].to_vector(:scale)
|
194
|
+
ttd=da.conditional_dominance_pairwise(pair[0],pair[1])
|
195
|
+
table.row(summary_pairs(pair,std,ttd))
|
196
|
+
|
197
|
+
}
|
198
|
+
table.hr
|
199
|
+
table.row([_("General Dominance"),"","","","","","",""])
|
200
|
+
table.hr
|
201
|
+
@pairs.each{|pair|
|
202
|
+
std=@samples_gd[pair].to_vector(:scale)
|
203
|
+
ttd=da.general_dominance_pairwise(pair[0],pair[1])
|
204
|
+
table.row(summary_pairs(pair,std,ttd))
|
205
|
+
}
|
206
|
+
generator.parse_element(table)
|
207
|
+
|
208
|
+
table=ReportBuilder::Table.new(:name=>_("General averages"), :header=>[_("var"), _("mean"), _("se"), _("p.5"), _("p.95")])
|
209
|
+
|
210
|
+
@fields.each{|f|
|
211
|
+
v=@samples_ga[f].to_vector(:scale)
|
212
|
+
row=[@ds[f].name, sprintf("%0.3f",v.mean), sprintf("%0.3f",v.sd), sprintf("%0.3f",v.percentil(5)),sprintf("%0.3f",v.percentil(95))]
|
213
|
+
table.row(row)
|
214
|
+
|
215
|
+
}
|
216
|
+
|
217
|
+
generator.parse_element(table)
|
218
|
+
end
|
227
219
|
end
|
228
220
|
def summary_pairs(pair,std,ttd)
|
229
221
|
freqs=std.proportions
|
230
222
|
[0, 0.5, 1].each{|n|
|
231
223
|
freqs[n]=0 if freqs[n].nil?
|
232
224
|
}
|
233
|
-
name
|
225
|
+
name="%s - %s" % [@ds[pair[0]].name, @ds[pair[1]].name]
|
234
226
|
[name,f(ttd,1),f(std.mean,4),f(std.sd),f(freqs[1]), f(freqs[0]), f(freqs[0.5]), f(freqs[ttd])]
|
235
227
|
end
|
236
228
|
def f(v,n=3)
|
data/lib/statsample/factor.rb
CHANGED
@@ -15,7 +15,7 @@ module Factor
|
|
15
15
|
class ParallelAnalysis
|
16
16
|
|
17
17
|
include DirtyMemoize
|
18
|
-
|
18
|
+
include Summarizable
|
19
19
|
# Number of random sets to produce. 50 by default
|
20
20
|
attr_accessor :iterations
|
21
21
|
# Name of analysis
|
@@ -47,7 +47,7 @@ class ParallelAnalysis
|
|
47
47
|
@n_variables=@fields.size
|
48
48
|
@n_cases=ds.cases
|
49
49
|
opts_default={
|
50
|
-
:name=>"Parallel Analysis",
|
50
|
+
:name=>_("Parallel Analysis"),
|
51
51
|
:iterations=>50,
|
52
52
|
:bootstrap_method => :raw_data,
|
53
53
|
:factor_class => Statsample::Factor::PCA,
|
@@ -59,10 +59,6 @@ class ParallelAnalysis
|
|
59
59
|
@opts[:matrix_method]==:correlation_matrix if @opts[:bootstrap_method]==:parameters
|
60
60
|
opts_default.keys.each {|k| send("#{k}=", @opts[k]) }
|
61
61
|
end
|
62
|
-
# Summary of results
|
63
|
-
def summary
|
64
|
-
ReportBuilder.new(:no_title=>true).add(self).to_text
|
65
|
-
end
|
66
62
|
# Number of factor to retent
|
67
63
|
def number_of_factors
|
68
64
|
total=0
|
@@ -73,13 +69,13 @@ class ParallelAnalysis
|
|
73
69
|
end
|
74
70
|
def report_building(g) #:nodoc:
|
75
71
|
g.section(:name=>@name) do |s|
|
76
|
-
s.text "Bootstrap Method:
|
77
|
-
s.text "Correlation Matrix type :
|
78
|
-
s.text "Number of variables:
|
79
|
-
s.text "Number of cases:
|
80
|
-
s.text "Number of iterations:
|
81
|
-
s.text "Number or factors to preserve:
|
82
|
-
s.table(:name=>"Eigenvalues", :header=>["Eigenvalue", "actual", "mean","p.#{percentil}","preserve?"]) do |t|
|
72
|
+
s.text _("Bootstrap Method: %s") % bootstrap_method
|
73
|
+
s.text _("Correlation Matrix type : %s") % matrix_method
|
74
|
+
s.text _("Number of variables: %d") % @n_variables
|
75
|
+
s.text _("Number of cases: %d") % @n_cases
|
76
|
+
s.text _("Number of iterations: %d") % @iterations
|
77
|
+
s.text _("Number or factors to preserve: %d") % number_of_factors
|
78
|
+
s.table(:name=>_("Eigenvalues"), :header=>[_("Eigenvalue"), _("actual"), _("mean"),"p.#{percentil}",_("preserve?")]) do |t|
|
83
79
|
ds_eigenvalues.fields.each_with_index do |f,i|
|
84
80
|
v=ds_eigenvalues[f]
|
85
81
|
t.row [i+1, "%0.4f" % @original[i], "%0.4f" % v.mean, "%0.4f" % v.percentil(percentil), (v.percentil(percentil)>0 and @original[i] > v.percentil(percentil)) ? "Yes":""]
|
@@ -36,8 +36,7 @@ module Factor
|
|
36
36
|
attr_accessor :m
|
37
37
|
# Use GSL if available
|
38
38
|
attr_accessor :use_gsl
|
39
|
-
include
|
40
|
-
bindtextdomain("statsample")
|
39
|
+
include Summarizable
|
41
40
|
|
42
41
|
def initialize(matrix, opts=Hash.new)
|
43
42
|
@use_gsl=nil
|
@@ -139,25 +138,21 @@ module Factor
|
|
139
138
|
@eigenpairs=@eigenpairs.sort.reverse
|
140
139
|
end
|
141
140
|
|
142
|
-
def summary
|
143
|
-
ReportBuilder.new(:no_title=>true).add(self).to_text
|
144
|
-
end
|
145
141
|
def report_building(builder) # :nodoc:
|
146
142
|
builder.section(:name=>@name) do |generator|
|
147
|
-
generator.text "Number of factors:
|
148
|
-
generator.table(:name=>_("Communalities"), :header=>["Variable","Initial","Extraction"]) do |t|
|
143
|
+
generator.text _("Number of factors: %d") % m
|
144
|
+
generator.table(:name=>_("Communalities"), :header=>[_("Variable"),_("Initial"),_("Extraction")]) do |t|
|
149
145
|
communalities(m).each_with_index {|com,i|
|
150
146
|
t.row([i, 1.0, sprintf("%0.3f", com)])
|
151
147
|
}
|
152
148
|
end
|
153
|
-
generator.table(:name=>_("Eigenvalues"), :header=>["Variable","Value"]) do |t|
|
149
|
+
generator.table(:name=>_("Eigenvalues"), :header=>[_("Variable"),_("Value")]) do |t|
|
154
150
|
eigenvalues.each_with_index {|eigenvalue,i|
|
155
151
|
t.row([i, sprintf("%0.3f",eigenvalue)])
|
156
152
|
}
|
157
153
|
end
|
158
154
|
|
159
|
-
generator.table(:name=>_("Component Matrix"), :header=>["Variable"]+m.times.collect {|c| c+1}) do |t|
|
160
|
-
|
155
|
+
generator.table(:name=>_("Component Matrix"), :header=>[_("Variable")]+m.times.collect {|c| c+1}) do |t|
|
161
156
|
i=0
|
162
157
|
component_matrix(m).to_a.each do |row|
|
163
158
|
t.row([i]+row.collect {|c| sprintf("%0.3f",c)})
|
@@ -28,12 +28,11 @@ module Factor
|
|
28
28
|
#
|
29
29
|
class PrincipalAxis
|
30
30
|
include DirtyMemoize
|
31
|
+
include Summarizable
|
31
32
|
# Minimum difference between succesive iterations on sum of communalities
|
32
33
|
DELTA=1e-3
|
33
34
|
# Maximum number of iterations
|
34
35
|
MAX_ITERATIONS=50
|
35
|
-
include GetText
|
36
|
-
bindtextdomain("statsample")
|
37
36
|
# Number of factors. Set by default to the number of factors
|
38
37
|
# with eigen values > 1 on PCA over data
|
39
38
|
attr_accessor :m
|
@@ -58,6 +57,12 @@ module Factor
|
|
58
57
|
|
59
58
|
def initialize(matrix, opts=Hash.new)
|
60
59
|
@matrix=matrix
|
60
|
+
if @matrix.respond_to? :fields
|
61
|
+
@fields=@matrix.fields
|
62
|
+
else
|
63
|
+
@fields=@matrix.row_size.times.map {|i| _("Variable %d") % (i+1)}
|
64
|
+
end
|
65
|
+
|
61
66
|
@name=""
|
62
67
|
@m=nil
|
63
68
|
@initial_eigenvalues=nil
|
@@ -167,40 +172,29 @@ module Factor
|
|
167
172
|
rxx=Matrix.rows(rows)
|
168
173
|
[rxx,rxy]
|
169
174
|
end
|
170
|
-
def summary
|
171
|
-
rp=ReportBuilder.new()
|
172
|
-
rp.add(self)
|
173
|
-
rp.to_text
|
174
|
-
end
|
175
175
|
def report_building(generator)
|
176
176
|
iterate if @clean
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
i=0
|
198
|
-
component_matrix(m).to_a.each do |row|
|
199
|
-
t.row([i]+row.collect {|c| sprintf("%0.3f",c)})
|
200
|
-
i+=1
|
177
|
+
generator.section(:name=>@name) do |s|
|
178
|
+
s.text _("Number of factors: %d") % m
|
179
|
+
s.text _("Iterations: %d") % @iterations
|
180
|
+
s.table(:name=>_("Communalities"), :header=>[_("Variable"),_("Initial"),_("Extraction")]) do |t|
|
181
|
+
communalities(m).each_with_index {|com,i|
|
182
|
+
t.row([@fields[i], sprintf("%0.4f", initial_communalities[i]), sprintf("%0.3f", com)])
|
183
|
+
}
|
184
|
+
end
|
185
|
+
s.table(:name=>_("Eigenvalues"), :header=>[_("Variable"),_("Value")]) do |t|
|
186
|
+
@initial_eigenvalues.each_with_index {|eigenvalue,i|
|
187
|
+
t.row([@fields[i], sprintf("%0.3f",eigenvalue)])
|
188
|
+
}
|
189
|
+
end
|
190
|
+
s.table(:name=>_("Component Matrix"), :header=>["Variable"]+m.times.collect {|c| c+1}) do |t|
|
191
|
+
i=0
|
192
|
+
component_matrix(m).to_a.each do |row|
|
193
|
+
t.row([@fields[i]]+row.collect {|c| sprintf("%0.3f",c)})
|
194
|
+
i+=1
|
195
|
+
end
|
196
|
+
end
|
201
197
|
end
|
202
|
-
generator.parse_element(t)
|
203
|
-
generator.html("</div>")
|
204
198
|
end
|
205
199
|
|
206
200
|
dirty_writer :max_iterations, :epsilon, :smc
|
data/lib/statsample/matrix.rb
CHANGED
@@ -37,12 +37,8 @@ module Statsample
|
|
37
37
|
#
|
38
38
|
module CovariateMatrix
|
39
39
|
include Summarizable
|
40
|
-
|
41
|
-
|
42
|
-
rp=ReportBuilder.new()
|
43
|
-
rp.add(self)
|
44
|
-
rp.to_text
|
45
|
-
end
|
40
|
+
@@covariatematrix=0
|
41
|
+
|
46
42
|
# Get type of covariate matrix. Could be :covariance or :correlation
|
47
43
|
def type
|
48
44
|
if row_size==column_size
|
@@ -81,7 +77,7 @@ module Statsample
|
|
81
77
|
end
|
82
78
|
def fields
|
83
79
|
raise "Should be square" if !square?
|
84
|
-
|
80
|
+
fields_x
|
85
81
|
end
|
86
82
|
def fields=(v)
|
87
83
|
raise "Matrix should be square" if !square?
|
@@ -97,17 +93,21 @@ module Statsample
|
|
97
93
|
@fields_y=v
|
98
94
|
end
|
99
95
|
def fields_x
|
100
|
-
@fields_x||=row_size.times.collect {|i| i}
|
96
|
+
@fields_x||=row_size.times.collect {|i| _("X%d") % i}
|
101
97
|
end
|
102
98
|
def fields_y
|
103
|
-
@fields_y||=column_size.times.collect {|i| i}
|
99
|
+
@fields_y||=column_size.times.collect {|i| _("Y%d") % i}
|
104
100
|
end
|
105
101
|
|
106
102
|
def name=(v)
|
107
103
|
@name=v
|
108
104
|
end
|
109
105
|
def name
|
110
|
-
@name
|
106
|
+
@name||=get_new_name
|
107
|
+
end
|
108
|
+
def get_new_name
|
109
|
+
@@covariatematrix+=1
|
110
|
+
_("Covariate matrix %d") % @@covariatematrix
|
111
111
|
end
|
112
112
|
# Select a submatrix of factors. If you have a correlation matrix
|
113
113
|
# with a, b and c, you could obtain a submatrix of correlations of
|
@@ -149,7 +149,7 @@ module Statsample
|
|
149
149
|
matrix
|
150
150
|
end
|
151
151
|
def report_building(generator)
|
152
|
-
@name||= (type==:correlation ? "Correlation":"Covariance")+" Matrix"
|
152
|
+
@name||= (type==:correlation ? _("Correlation"):_("Covariance"))+_(" Matrix")
|
153
153
|
generator.table(:name=>@name, :header=>[""]+fields_y) do |t|
|
154
154
|
row_size.times {|i|
|
155
155
|
t.row([fields_x[i]]+@rows[i].collect {|i1| sprintf("%0.3f",i1).gsub("0.",".")})
|
data/lib/statsample/mle.rb
CHANGED
@@ -108,7 +108,7 @@ module Statsample
|
|
108
108
|
out
|
109
109
|
end # def
|
110
110
|
end # self
|
111
|
-
|
112
|
-
|
111
|
+
end # Reliability
|
112
|
+
end # Statsample
|
113
113
|
require 'statsample/reliability/scaleanalysis.rb'
|
114
114
|
require 'statsample/reliability/multiscaleanalysis.rb'
|
@@ -1,33 +1,62 @@
|
|
1
1
|
module Statsample
|
2
2
|
module Reliability
|
3
|
-
# DSL for analysis of multiple scales analysis.
|
4
|
-
#
|
3
|
+
# DSL for analysis of multiple scales analysis.
|
4
|
+
# Retrieves reliability analysis for each scale and
|
5
|
+
# provides fast accessors to correlations matrix,
|
6
|
+
# PCA and Factor Analysis.
|
7
|
+
#
|
5
8
|
# == Usage
|
6
9
|
# @x1=[1,1,1,1,2,2,2,2,3,3,3,30].to_vector(:scale)
|
7
10
|
# @x2=[1,1,1,2,2,3,3,3,3,4,4,50].to_vector(:scale)
|
8
11
|
# @x3=[2,2,1,1,1,2,2,2,3,4,5,40].to_vector(:scale)
|
9
12
|
# @x4=[1,2,3,4,4,4,4,3,4,4,5,30].to_vector(:scale)
|
10
13
|
# ds={'x1'=>@x1,'x2'=>@x2,'x3'=>@x3,'x4'=>@x4}.to_dataset
|
11
|
-
#
|
12
|
-
#
|
13
|
-
#
|
14
|
-
#
|
15
|
-
# m.
|
14
|
+
# opts={:name=>"Scales", # Name of analysis
|
15
|
+
# :summary_correlation_matrix=>true, # Add correlation matrix
|
16
|
+
# :summary_pca } # Add PCA between scales
|
17
|
+
# msa=Statsample::Reliability::MultiScaleAnalysis.new(opts) do |m|
|
18
|
+
# m.scale :s1, ds.clone(%w{x1 x2})
|
19
|
+
# m.scale :s2, ds.clone(%w{x3 x4}), {:name=>"Scale 2"}
|
16
20
|
# end
|
17
|
-
#
|
21
|
+
# # Retrieve summary
|
22
|
+
# puts msa.summary
|
18
23
|
class MultiScaleAnalysis
|
19
24
|
include Statsample::Summarizable
|
25
|
+
# Hash with scales
|
20
26
|
attr_reader :scales
|
27
|
+
# Name of analysis
|
21
28
|
attr_accessor :name
|
29
|
+
# Add a correlation matrix on summary
|
22
30
|
attr_accessor :summary_correlation_matrix
|
31
|
+
# Add PCA to summary
|
23
32
|
attr_accessor :summary_pca
|
33
|
+
# Add Principal Axis to summary
|
34
|
+
attr_accessor :summary_principal_axis
|
35
|
+
# Options for Factor::PCA object
|
24
36
|
attr_accessor :pca_options
|
37
|
+
# Options for Factor::PrincipalAxis
|
38
|
+
attr_accessor :principal_axis_options
|
39
|
+
# Generates a new MultiScaleAnalysis
|
40
|
+
# Opts could be any accessor of the class
|
41
|
+
# * :name,
|
42
|
+
# * :summary_correlation_matrix
|
43
|
+
# * :summary_pca
|
44
|
+
# * :summary_principal_axis
|
45
|
+
# * :pca_options
|
46
|
+
# * :factor_analysis_options
|
47
|
+
#
|
48
|
+
# If block given, all methods should be called
|
49
|
+
# inside object environment.
|
50
|
+
#
|
25
51
|
def initialize(opts=Hash.new, &block)
|
26
52
|
@scales=Hash.new
|
27
53
|
opts_default={ :name=>_("Multiple Scale analysis"),
|
28
54
|
:summary_correlation_matrix=>false,
|
29
55
|
:summary_pca=>false,
|
30
|
-
:
|
56
|
+
:summary_principal_axis=>false,
|
57
|
+
:pca_options=>Hash.new,
|
58
|
+
:principal_axis_options=>Hash.new
|
59
|
+
}
|
31
60
|
@opts=opts_default.merge(opts)
|
32
61
|
@opts.each{|k,v|
|
33
62
|
self.send("#{k}=",v) if self.respond_to? k
|
@@ -37,6 +66,12 @@ module Statsample
|
|
37
66
|
block.arity<1 ? instance_eval(&block) : block.call(self)
|
38
67
|
end
|
39
68
|
end
|
69
|
+
# Add or retrieve a scale to analysis.
|
70
|
+
# If second parameters is a dataset, generates a ScaleAnalysis
|
71
|
+
# for <tt>ds</tt>, named <tt>code</tt> with options <tt>opts</tt>.
|
72
|
+
#
|
73
|
+
# If second parameters is empty, returns the ScaleAnalysis
|
74
|
+
# <tt>code</tt>.
|
40
75
|
def scale(code,ds=nil, opts=nil)
|
41
76
|
if ds.nil?
|
42
77
|
@scales[code]
|
@@ -45,17 +80,24 @@ module Statsample
|
|
45
80
|
@scales[code]=ScaleAnalysis.new(ds, opts)
|
46
81
|
end
|
47
82
|
end
|
83
|
+
# Delete ScaleAnalysis named <tt>code</tt>
|
48
84
|
def delete_scale(code)
|
49
85
|
@scales.delete code
|
50
86
|
end
|
51
|
-
|
87
|
+
# Retrieves a Principal Component Analysis (Factor::PCA)
|
88
|
+
# using all scales, using <tt>opts</tt> a options.
|
89
|
+
def pca(opts=nil)
|
90
|
+
opts||=pca_options
|
52
91
|
Statsample::Factor::PCA.new(correlation_matrix,opts)
|
53
92
|
end
|
54
|
-
|
55
|
-
|
56
|
-
|
93
|
+
# Retrieves a PrincipalAxis Analysis (Factor::PrincipalAxis)
|
94
|
+
# using all scales, using <tt>opts</tt> a options.
|
95
|
+
def principal_axis_analysis(opts=nil)
|
96
|
+
opts||=principal_axis_options
|
97
|
+
Statsample::Factor::PrincipalAxis.new(correlation_matrix,opts)
|
57
98
|
end
|
58
|
-
|
99
|
+
# Retrieves a Correlation Matrix between scales.
|
100
|
+
#
|
59
101
|
def correlation_matrix
|
60
102
|
vectors=Hash.new
|
61
103
|
@scales.each_pair do |code,scale|
|
@@ -63,7 +105,7 @@ module Statsample
|
|
63
105
|
end
|
64
106
|
Statsample::Bivariate.correlation_matrix(vectors.to_dataset)
|
65
107
|
end
|
66
|
-
def report_building(b)
|
108
|
+
def report_building(b) # :nodoc:
|
67
109
|
b.section(:name=>name) do |s|
|
68
110
|
s.section(:name=>_("Reliability analysis of scales")) do |s2|
|
69
111
|
@scales.each_pair do |k,scale|
|
@@ -80,6 +122,11 @@ module Statsample
|
|
80
122
|
s2.parse_element(pca)
|
81
123
|
end
|
82
124
|
end
|
125
|
+
if summary_principal_axis
|
126
|
+
s.section(:name=>_("Principal Axis for %s") % name) do |s2|
|
127
|
+
s2.parse_element(principal_axis_analysis)
|
128
|
+
end
|
129
|
+
end
|
83
130
|
end
|
84
131
|
end
|
85
132
|
end
|