statsample 0.12.0 → 0.13.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. data.tar.gz.sig +2 -1
  2. data/History.txt +11 -0
  3. data/Manifest.txt +2 -3
  4. data/README.txt +0 -17
  5. data/Rakefile +10 -9
  6. data/data/locale/es/LC_MESSAGES/statsample.mo +0 -0
  7. data/examples/principal_axis.rb +2 -0
  8. data/examples/u_test.rb +8 -0
  9. data/lib/distribution.rb +1 -1
  10. data/lib/statsample.rb +12 -12
  11. data/lib/statsample/anova/oneway.rb +4 -4
  12. data/lib/statsample/bivariate.rb +10 -3
  13. data/lib/statsample/bivariate/pearson.rb +55 -0
  14. data/lib/statsample/dataset.rb +57 -49
  15. data/lib/statsample/dominanceanalysis.rb +1 -2
  16. data/lib/statsample/dominanceanalysis/bootstrap.rb +46 -54
  17. data/lib/statsample/factor.rb +0 -1
  18. data/lib/statsample/factor/parallelanalysis.rb +9 -13
  19. data/lib/statsample/factor/pca.rb +5 -10
  20. data/lib/statsample/factor/principalaxis.rb +27 -33
  21. data/lib/statsample/matrix.rb +11 -11
  22. data/lib/statsample/mle.rb +0 -1
  23. data/lib/statsample/regression.rb +0 -1
  24. data/lib/statsample/reliability.rb +2 -2
  25. data/lib/statsample/reliability/multiscaleanalysis.rb +62 -15
  26. data/lib/statsample/reliability/scaleanalysis.rb +5 -6
  27. data/lib/statsample/test/f.rb +2 -5
  28. data/lib/statsample/test/levene.rb +2 -5
  29. data/lib/statsample/test/t.rb +4 -13
  30. data/lib/statsample/test/umannwhitney.rb +19 -19
  31. data/po/es/statsample.mo +0 -0
  32. data/po/es/statsample.po +304 -111
  33. data/po/statsample.pot +224 -90
  34. data/test/test_bivariate.rb +8 -69
  35. data/test/test_reliability.rb +3 -4
  36. metadata +30 -18
  37. metadata.gz.sig +0 -0
  38. data/lib/statsample/bivariate/polychoric.rb +0 -893
  39. data/lib/statsample/bivariate/tetrachoric.rb +0 -457
  40. data/test/test_bivariate_polychoric.rb +0 -70
data.tar.gz.sig CHANGED
@@ -1 +1,2 @@
1
- HG��@��^� uH�
1
+ 2�����׌��Ab���Է����;P
2
+ ��m��Iƚ��Xr�(ηV����:Pd�Y�����L���ϡ���-R���'��;�2l�n'40XH���!�(�l=�,�gX�|�N���{L�--�sWtr/b��^L�-tB?�I%�H�o�fk#HI��uc�V��c�0 ��T���x��)� ���v�(�f<0$�Zev��S��^�t*F̞�@�U�2d���8���(v��JUs�Q6�Ǐ/�#���S�;
data/History.txt CHANGED
@@ -1,3 +1,14 @@
1
+ === 0.13.0 / 2010-06-13
2
+
3
+ * Polychoric and Tetrachoric moved to gem statsample-bivariate-extension
4
+ * All classes left with summary method include Summarizable now. Every method which return localizable string is now parsed with _()
5
+ * Correct implementation of Reliability::MultiScaleAnalysis.
6
+ * Spanish translation for Mann-Whitney's U
7
+ * Added example for Mann-Whitney's U test
8
+ * Better summary for Mann-Whitney's U Test
9
+ * Added Statsample::Bivariate::Pearson class to retrieve complete analysis for r correlations
10
+ * Bug fix on DominanceAnalysis::Bootstrap
11
+
1
12
  === 0.12.0 / 2010-06-09
2
13
 
3
14
  * Modified Rakefile to remove dependencies based on C extensions. These are moved to statsample-optimization
data/Manifest.txt CHANGED
@@ -25,6 +25,7 @@ examples/principal_axis.rb
25
25
  examples/reliability.rb
26
26
  examples/t_test.rb
27
27
  examples/tetrachoric.rb
28
+ examples/u_test.rb
28
29
  examples/vector.rb
29
30
  lib/distribution.rb
30
31
  lib/distribution/chisquare.rb
@@ -39,8 +40,7 @@ lib/statsample/anova.rb
39
40
  lib/statsample/anova/oneway.rb
40
41
  lib/statsample/anova/twoway.rb
41
42
  lib/statsample/bivariate.rb
42
- lib/statsample/bivariate/polychoric.rb
43
- lib/statsample/bivariate/tetrachoric.rb
43
+ lib/statsample/bivariate/pearson.rb
44
44
  lib/statsample/codification.rb
45
45
  lib/statsample/combination.rb
46
46
  lib/statsample/converter/csv.rb
@@ -101,7 +101,6 @@ test/test_anovatwoway.rb
101
101
  test/test_anovatwowaywithdataset.rb
102
102
  test/test_anovawithvectors.rb
103
103
  test/test_bivariate.rb
104
- test/test_bivariate_polychoric.rb
105
104
  test/test_codification.rb
106
105
  test/test_combination.rb
107
106
  test/test_crosstab.rb
data/README.txt CHANGED
@@ -76,23 +76,6 @@ Include:
76
76
  cm=Statsample::Bivariate.correlation_matrix(ds)
77
77
  puts cm.summary
78
78
 
79
- === Tetrachoric correlation
80
-
81
- require 'statsample'
82
- a=40
83
- b=10
84
- c=20
85
- d=30
86
- tetra=Statsample::Bivariate::Tetrachoric.new(a,b,c,d)
87
- puts tetra.summary
88
-
89
- === Polychoric correlation
90
-
91
- require 'statsample'
92
- ct=Matrix[[58,52,1],[26,58,3],[8,12,9]]
93
-
94
- poly=Statsample::Bivariate::Polychoric.new(ct)
95
- puts poly.summary
96
79
 
97
80
  == REQUIREMENTS:
98
81
 
data/Rakefile CHANGED
@@ -23,13 +23,13 @@ task :release do
23
23
  system %{git push origin master}
24
24
  end
25
25
  desc "Update pot/po files."
26
- task :updatepo do
26
+ task "gettext:updatepo" do
27
27
  require 'gettext/tools'
28
28
  GetText.update_pofiles("statsample", Dir.glob("{lib,bin}/**/*.{rb,rhtml}"), "statsample #{Statsample::VERSION}")
29
29
  end
30
30
 
31
31
  desc "Create mo-files"
32
- task :makemo do
32
+ task "gettext:makemo" do
33
33
  require 'gettext/tools'
34
34
  GetText.create_mofiles()
35
35
  # GetText.create_mofiles(true, "po", "locale") # This is for "Ruby on Rails".
@@ -40,7 +40,8 @@ h=Hoe.spec('statsample') do
40
40
  #self.testlib=:minitest
41
41
  self.rubyforge_name = "ruby-statsample"
42
42
  self.developer('Claudio Bustos', 'clbustos@gmail.com')
43
- self.extra_deps << ["spreadsheet","~>0.6.0"] << ["svg-graph", "~>1.0"] << ["reportbuilder", "~>1.0"] << ["minimization", "~>0.2.0"] << ["fastercsv"] << ["dirty-memoize", "~>0.0"] << ["extendmatrix","~>0.2.0"]
43
+ self.extra_deps << ["spreadsheet","~>0.6.0"] << ["svg-graph", "~>1.0"] << ["reportbuilder", "~>1.0"] << ["minimization", "~>0.2.0"] << ["fastercsv"] << ["dirty-memoize", "~>0.0"] << ["extendmatrix","~>0.2.0"] << ["statsample-bivariate-extension", "~>0.13.0"]
44
+
44
45
  self.extra_dev_deps << ["shoulda"]
45
46
  self.clean_globs << "test/images/*" << "demo/item_analysis/*" << "demo/Regression"
46
47
  self.post_install_message = <<-EOF
@@ -51,13 +52,13 @@ On *nix, you should install statsample-optimization
51
52
  to retrieve gems gsl, statistics2 and a C extension
52
53
  to speed some methods.
53
54
 
54
- $sudo gem install statsample-optimization
55
+ $ sudo gem install statsample-optimization
55
56
 
56
- To use it, on Ubuntu I recommend install
57
- build-essential and libgsl0-dev using apt-get and
58
- compile ruby 1.8 or 1.9 from source code first.
57
+ On Ubuntu, install build-essential and libgsl0-dev
58
+ using apt-get and compile ruby 1.8 or 1.9 from
59
+ source code first.
59
60
 
60
- $sudo apt-get install build-essential libgsl0-dev
61
+ $ sudo apt-get install build-essential libgsl0-dev
61
62
 
62
63
 
63
64
  *****************************************************
@@ -90,7 +91,7 @@ Rake::RDocTask.new(:docs) do |rd|
90
91
  end
91
92
 
92
93
 
93
- desc 'publicar a rdocs con analytics'
94
+ desc 'Publish rdocs with analytics support'
94
95
  task :publicar_docs => [:clean, :docs] do
95
96
  ruby %{agregar_adsense_a_doc.rb}
96
97
  path = File.expand_path("~/.rubyforge/user-config.yml")
@@ -4,5 +4,7 @@ $:.unshift(File.dirname(__FILE__)+'/../lib/')
4
4
  require 'statsample'
5
5
  matrix=Matrix[
6
6
  [1.0, 0.709501601093587, 0.877596585880047, 0.272219316266807], [0.709501601093587, 1.0, 0.291633797330304, 0.871141831433844], [0.877596585880047, 0.291633797330304, 1.0, -0.213373722977167], [0.272219316266807, 0.871141831433844, -0.213373722977167, 1.0]]
7
+ matrix.extend Statsample::CovariateMatrix
8
+ #matrix.fields=%w{a b c d}
7
9
  fa=Statsample::Factor::PrincipalAxis.new(matrix,:m=>1,:smc=>false)
8
10
  puts fa.summary
@@ -0,0 +1,8 @@
1
+ #!/usr/bin/ruby
2
+ $:.unshift(File.dirname(__FILE__)+'/../lib')
3
+ require 'statsample'
4
+ a=10.times.map {rand(100)}.to_scale
5
+ b=20.times.map {(rand(20))**2+50}.to_scale
6
+
7
+ u=Statsample::Test::UMannWhitney.new(a,b)
8
+ puts u.summary
data/lib/distribution.rb CHANGED
@@ -1,7 +1,7 @@
1
1
  begin
2
2
  require 'statistics2'
3
3
  rescue LoadError
4
- puts "You should install statistics2"
4
+ puts "You should install statistics2"
5
5
  end
6
6
  # Several distributions modules to calculate cdf, inverse cdf and pdf
7
7
  # See Distribution::Pdf for interface.
data/lib/statsample.rb CHANGED
@@ -31,9 +31,9 @@ end
31
31
  class String
32
32
  def is_number?
33
33
  if self =~ /^-?\d+[,.]?\d*(e-?\d+)?$/
34
- true
34
+ true
35
35
  else
36
- false
36
+ false
37
37
  end
38
38
  end
39
39
  end
@@ -112,7 +112,7 @@ module Statsample
112
112
  false
113
113
  end
114
114
  end
115
- VERSION = '0.12.0'
115
+ VERSION = '0.13.0'
116
116
  SPLIT_TOKEN = ","
117
117
  autoload(:Database, 'statsample/converters')
118
118
  autoload(:Anova, 'statsample/anova')
@@ -201,19 +201,19 @@ module Statsample
201
201
 
202
202
 
203
203
 
204
- module Util
204
+ module Util
205
205
  # Reference: http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
206
206
  def normal_order_statistic_medians(i,n)
207
207
  if i==1
208
- u= 1.0 - normal_order_statistic_medians(n,n)
208
+ u= 1.0 - normal_order_statistic_medians(n,n)
209
209
  elsif i==n
210
- u=0.5**(1 / n.to_f)
210
+ u=0.5**(1 / n.to_f)
211
211
  else
212
- u= (i - 0.3175) / (n + 0.365)
212
+ u= (i - 0.3175) / (n + 0.365)
213
213
  end
214
214
  u
215
215
  end
216
- end
216
+ end
217
217
 
218
218
 
219
219
 
@@ -224,7 +224,7 @@ module Statsample
224
224
  fp.close
225
225
  end
226
226
  end
227
- # Provides basic method to generate summaries
227
+ # Provides method summary to generate summaries and include GetText
228
228
  module Summarizable
229
229
  include GetText
230
230
  bindtextdomain("statsample")
@@ -242,12 +242,12 @@ end
242
242
  begin
243
243
  require 'statsamplert'
244
244
  rescue LoadError
245
- module Statsample
246
- OPTIMIZED=false
245
+ module Statsample
246
+ OPTIMIZED=false
247
247
  end
248
248
  end
249
249
 
250
250
  require 'statsample/vector'
251
251
  require 'statsample/dataset'
252
252
  require 'statsample/crosstab'
253
- require 'statsample/matrix'
253
+ require 'statsample/matrix'
@@ -32,8 +32,8 @@ module Statsample
32
32
  @ss_total=@ss_num+@ss_den
33
33
  @ms_total=@ms_num+@ms_den
34
34
  opts_default={:name=>"ANOVA",
35
- :name_denominator=>"Explained variance",
36
- :name_numerator=>"Unexplained variance"}
35
+ :name_denominator=>_("Explained variance"),
36
+ :name_numerator=>_("Unexplained variance")}
37
37
  @opts=opts_default.merge(opts)
38
38
  opts_default.keys.each {|k|
39
39
  send("#{k}=", @opts[k])
@@ -89,8 +89,8 @@ module Statsample
89
89
  end
90
90
  opts||=Hash.new
91
91
  opts_default={:name=>_("Anova One-Way"),
92
- :name_numerator=>"Between Groups",
93
- :name_denominator=>"Within Groups",
92
+ :name_numerator=>_("Between Groups"),
93
+ :name_denominator=>_("Within Groups"),
94
94
  :summary_descriptives=>false,
95
95
  :summary_levene=>false}
96
96
  @opts=opts_default.merge(opts).merge(:ss_num=>ssbg, :ss_den=>sswg, :df_num=>df_bg, :df_den=>df_wg)
@@ -1,8 +1,15 @@
1
- require 'statsample/bivariate/tetrachoric'
2
- require 'statsample/bivariate/polychoric'
1
+ require 'statsample/bivariate/pearson'
2
+
3
3
  module Statsample
4
- # Diverse bivariate methods, including #covariance, #pearson correlation (r), #spearman ranked correlation (rho), #tetrachoric correlation and #polychoric correlation.
4
+ # Diverse methods and classes to calculate bivariate relations
5
+ # Specific classes:
6
+ # * Statsample::Bivariate::Pearson : Pearson correlation coefficient (r)
7
+ # * Statsample::Bivariate::Tetrachoric : Tetrachoric correlation
8
+ # * Statsample::Bivariate::Polychoric : Polychoric correlation (using joint, two-step and polychoric series)
5
9
  module Bivariate
10
+ autoload(:Polychoric, "statsample/bivariate/polychoric")
11
+ autoload(:Tetrachoric, "statsample/bivariate/tetrachoric")
12
+
6
13
  class << self
7
14
  # Covariance between two vectors
8
15
  def covariance(v1,v2)
@@ -0,0 +1,55 @@
1
+ module Statsample
2
+ module Bivariate
3
+ # = Pearson correlation coefficient (r)
4
+ #
5
+ # The moment-product Pearson's correlation coefficient, known as 'r'
6
+ # is a measure of bivariate associate between two continous
7
+ # variables.
8
+ #
9
+ # == Usage
10
+ # a = [1,2,3,4,5,6].to_scale
11
+ # b = [2,3,4,5,6,7].to_scale
12
+ # pearson = Statsample::Bivariate::Pearson.new(a,b)
13
+ # puts pearson.r
14
+ # puts pearson.t
15
+ # puts pearson.probability
16
+ #
17
+ # puts pearson.summary
18
+ #
19
+ class Pearson
20
+
21
+ include Statsample::Test
22
+ include Summarizable
23
+ # Name of correlation
24
+ attr_accessor :name
25
+ # Tails for probability (:both, :left or :right)
26
+ attr_accessor :tails
27
+ attr_accessor :n
28
+ def initialize(v1,v2,opts=Hash.new)
29
+ @v1_name,@v2_name = v1.name,v2.name
30
+ @v1,@v2 = Statsample.only_valid_clone(v1,v2)
31
+ @n=@v1.size
32
+ opts_default={
33
+ :name=>_("Correlation (%s - %s)") % [@v1_name, @v2_name],
34
+ :tails=>:both
35
+ }
36
+ @opts=opts.merge(opts_default)
37
+ @opts.each{|k,v|
38
+ self.send("#{k}=",v) if self.respond_to? k
39
+ }
40
+ end
41
+ def r
42
+ Statsample::Bivariate.pearson(@v1,@v2)
43
+ end
44
+ def t
45
+ Statsample::Bivariate.t_pearson(@v1,@v2)
46
+ end
47
+ def probability
48
+ p_using_cdf(Distribution::T.cdf(t, @v1.size-2), tails)
49
+ end
50
+ def report_building(builder)
51
+ builder.text(_("%s : r=%0.3f (t:%0.3f, g.l.=%d, p:%0.3f / %s tails)") % [@name, r,t, (n-2), probability, tails])
52
+ end
53
+ end
54
+ end
55
+ end
@@ -39,13 +39,15 @@ module Statsample
39
39
  #
40
40
  #
41
41
  # ==Usage
42
- # Create a empty dataset
42
+ # Create a empty dataset:
43
43
  # Dataset.new()
44
- # Create a dataset with three empty vectors, called <tt>v1</tt>, <tt>v2</tt> and <tt>v3</tt>
44
+ # Create a dataset with three empty vectors, called <tt>v1</tt>, <tt>v2</tt> and <tt>v3</tt>:
45
45
  # Dataset.new(%w{v1 v2 v3})
46
- # Create a dataset with two vectors
46
+ # Create a dataset with two vectors, called <tt>v1</tt>
47
+ # and <tt>v2</tt>:
47
48
  # Dataset.new({'v1'=>%w{1 2 3}.to_vector, 'v2'=>%w{4 5 6}.to_vector})
48
- # Create a dataset with two given vectors (v1 and v2), with vectors on inverted order
49
+ # Create a dataset with two given vectors (v1 and v2),
50
+ # with vectors on inverted order:
49
51
  # Dataset.new({'v2'=>v2,'v1'=>v1},['v2','v1'])
50
52
  #
51
53
  # The fast way to create a dataset uses Hash#to_dataset, with
@@ -59,7 +61,7 @@ module Statsample
59
61
  include Summarizable
60
62
  # Hash of Statsample::Vector
61
63
  attr_reader :vectors
62
- # Ordered names of vectors
64
+ # Ordered ids of vectors
63
65
  attr_reader :fields
64
66
  # Name of dataset
65
67
  attr_accessor:name
@@ -67,7 +69,7 @@ module Statsample
67
69
  attr_reader :cases
68
70
  # Location of pointer on enumerations methods (like #each)
69
71
  attr_reader :i
70
-
72
+
71
73
  # Generates a new dataset, using three vectors
72
74
  # - Rows
73
75
  # - Columns
@@ -87,7 +89,8 @@ module Statsample
87
89
  # b 1 0
88
90
  #
89
91
  # Useful to process outputs from databases
90
- #
92
+ #
93
+
91
94
  def self.crosstab_by_asignation(rows,columns,values)
92
95
  raise "Three vectors should be equal size" if rows.size!=columns.size or rows.size!=values.size
93
96
  cols_values=columns.factors
@@ -123,7 +126,6 @@ module Statsample
123
126
  # [fields] Array of names for vectors. Is only used for set the
124
127
  # order of variables. If empty, vectors keys on alfabethic order as
125
128
  # used as fields
126
-
127
129
  #
128
130
  def initialize(vectors={}, fields=[])
129
131
  @@n_dataset||=0
@@ -141,6 +143,10 @@ module Statsample
141
143
  end
142
144
  @i=nil
143
145
  end
146
+
147
+ #
148
+ # Returns a GSL::matrix
149
+ #
144
150
  def to_gsl_matrix
145
151
  matrix=GSL::Matrix.alloc(cases,@vectors.size)
146
152
  each_array do |row|
@@ -171,7 +177,7 @@ module Statsample
171
177
  end
172
178
  # Returns a duplicate of the Database
173
179
  # If fields given, only include those vectors.
174
- # Every vector will be dup
180
+ # Every vector will be dup.
175
181
  def dup(*fields_to_include)
176
182
  if fields_to_include.size==1 and fields_to_include[0].is_a? Array
177
183
  fields_to_include=fields_to_include[0]
@@ -186,6 +192,10 @@ module Statsample
186
192
  }
187
193
  Dataset.new(vectors,fields)
188
194
  end
195
+ # Returns (when possible) a cheap copy of dataset.
196
+ # If no vector have missing values, returns original vectors.
197
+ # If missing values presents, uses Dataset.dup_only_valid
198
+ #
189
199
  def clone_only_valid(*fields_to_include)
190
200
  if fields_to_include.size==1 and fields_to_include[0].is_a? Array
191
201
  fields_to_include=fields_to_include[0]
@@ -240,7 +250,7 @@ module Statsample
240
250
  ds_new.update_valid_data
241
251
  ds_new
242
252
  end
243
- # Returns a dataset with standarized data
253
+ # Returns a dataset with standarized data
244
254
  def standarize
245
255
  ds=dup()
246
256
  ds.fields.each do |f|
@@ -261,15 +271,18 @@ module Statsample
261
271
  def ==(d2)
262
272
  @vectors==d2.vectors and @fields==d2.fields
263
273
  end
274
+ # Returns vector <tt>c</tt>
264
275
  def col(c)
265
276
  @vectors[c]
266
277
  end
267
278
  alias_method :vector, :col
268
- def add_vector(name,vector)
279
+ # Equal to Dataset[<tt>name</tt>]=<tt>vector</tt>
280
+ def add_vector(name, vector)
269
281
  raise ArgumentError, "Vector have different size" if vector.size!=@cases
270
282
  @vectors[name]=vector
271
283
  check_order
272
284
  end
285
+ # Returns true if dataset have vector <tt>v</tt>
273
286
  def has_vector? (v)
274
287
  return @vectors.has_key?(v)
275
288
  end
@@ -295,8 +308,8 @@ module Statsample
295
308
  # * Hash: keys equal to fields
296
309
  # If uvd is false, #update_valid_data is not executed after
297
310
  # inserting a case. This is very useful if you want to increase the
298
- # performance on inserting many cases,
299
- # because #update_valid_data performs check on vectors and on the dataset
311
+ # performance on inserting many cases, because #update_valid_data
312
+ # performs check on vectors and on the dataset
300
313
 
301
314
  def add_case(v,uvd=true)
302
315
  case v
@@ -323,7 +336,7 @@ module Statsample
323
336
  @fields.each{|f| @vectors[f].set_valid_data}
324
337
  check_length
325
338
  end
326
- # Delete a vector
339
+ # Delete vector named <tt>name</tt>.
327
340
  def delete_vector(name)
328
341
  @fields.delete(name)
329
342
  @vectors.delete(name)
@@ -345,26 +358,27 @@ module Statsample
345
358
  add_vector(name+join+k,v)
346
359
  }
347
360
  end
348
- def vector_by_calculation(type=:scale)
349
- a=[]
350
- each {|row|
351
- a.push(yield(row))
352
- }
353
- a.to_vector(type)
354
- end
355
- # Returns a vector with sumatory of fields
356
- # if fields parameter is empty, sum all fields
357
- def vector_sum(fields=nil)
358
- a=[]
359
- fields||=@fields
360
- collect_with_index do |row, i|
361
- if(fields.find{|f| !@vectors[f].data_with_nils[i]})
362
- nil
363
- else
364
- fields.inject(0) {|ac,v| ac + row[v].to_f}
365
- end
366
- end
367
- end
361
+
362
+ def vector_by_calculation(type=:scale)
363
+ a=[]
364
+ each do |row|
365
+ a.push(yield(row))
366
+ end
367
+ a.to_vector(type)
368
+ end
369
+ # Returns a vector with sumatory of fields
370
+ # if fields parameter is empty, sum all fields
371
+ def vector_sum(fields=nil)
372
+ a=[]
373
+ fields||=@fields
374
+ collect_with_index do |row, i|
375
+ if(fields.find{|f| !@vectors[f].data_with_nils[i]})
376
+ nil
377
+ else
378
+ fields.inject(0) {|ac,v| ac + row[v].to_f}
379
+ end
380
+ end
381
+ end
368
382
  # Check if #fields attribute is correct, after inserting or deleting vectors
369
383
  def check_fields(fields)
370
384
  fields||=@fields
@@ -614,14 +628,14 @@ module Statsample
614
628
  ds
615
629
  end
616
630
 
617
- # creates a new vector with the data of a given field which the block returns true
618
- def filter_field(field)
619
- a=[]
620
- each {|c|
621
- a.push(c[field]) if yield c
622
- }
623
- a.to_vector(@vectors[field].type)
624
- end
631
+ # creates a new vector with the data of a given field which the block returns true
632
+ def filter_field(field)
633
+ a=[]
634
+ each do |c|
635
+ a.push(c[field]) if yield c
636
+ end
637
+ a.to_vector(@vectors[field].type)
638
+ end
625
639
 
626
640
  def to_multiset_by_split_one_field(field)
627
641
  raise ArgumentError,"Should use a correct field name" if !@fields.include? field
@@ -802,8 +816,7 @@ module Statsample
802
816
  ds.update_valid_data
803
817
  ds
804
818
  end
805
-
806
- def report_building(b)
819
+ def report_building(b)
807
820
  b.section(:name=>@name) do |g|
808
821
  g.text _"Cases: %d" % cases
809
822
  @fields.each do |f|
@@ -811,11 +824,6 @@ module Statsample
811
824
  g.parse_element(@vectors[f])
812
825
  end
813
826
  end
814
- end
815
- def as_r
816
- require 'rsruby/dataframe'
817
- r=RSRuby.instance
818
-
819
827
  end
820
828
  end
821
829
  end