shalmaneser 1.2.0.rc4 → 1.2.rc5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +47 -18
- data/bin/shalmaneser +8 -2
- data/doc/index.md +1 -0
- data/lib/shalmaneser/opt_parser.rb +68 -67
- metadata +49 -119
- data/bin/fred +0 -16
- data/bin/frprep +0 -34
- data/bin/rosy +0 -17
- data/lib/common/AbstractSynInterface.rb +0 -1229
- data/lib/common/Counter.rb +0 -18
- data/lib/common/EnduserMode.rb +0 -27
- data/lib/common/Eval.rb +0 -480
- data/lib/common/FixSynSemMapping.rb +0 -196
- data/lib/common/Graph.rb +0 -345
- data/lib/common/ISO-8859-1.rb +0 -24
- data/lib/common/ML.rb +0 -186
- data/lib/common/Mallet.rb +0 -236
- data/lib/common/Maxent.rb +0 -229
- data/lib/common/Optimise.rb +0 -195
- data/lib/common/Parser.rb +0 -213
- data/lib/common/RegXML.rb +0 -269
- data/lib/common/RosyConventions.rb +0 -171
- data/lib/common/STXmlTerminalOrder.rb +0 -194
- data/lib/common/SalsaTigerRegXML.rb +0 -2347
- data/lib/common/SalsaTigerXMLHelper.rb +0 -99
- data/lib/common/SynInterfaces.rb +0 -282
- data/lib/common/TabFormat.rb +0 -721
- data/lib/common/Tiger.rb +0 -1448
- data/lib/common/Timbl.rb +0 -144
- data/lib/common/Tree.rb +0 -61
- data/lib/common/config_data.rb +0 -470
- data/lib/common/config_format_element.rb +0 -220
- data/lib/common/headz.rb +0 -338
- data/lib/common/option_parser.rb +0 -13
- data/lib/common/prep_config_data.rb +0 -62
- data/lib/common/prep_helper.rb +0 -1330
- data/lib/common/ruby_class_extensions.rb +0 -310
- data/lib/db/db_interface.rb +0 -48
- data/lib/db/db_mysql.rb +0 -145
- data/lib/db/db_sqlite.rb +0 -280
- data/lib/db/db_table.rb +0 -239
- data/lib/db/db_wrapper.rb +0 -176
- data/lib/db/sql_query.rb +0 -243
- data/lib/ext/maxent/Classify.class +0 -0
- data/lib/ext/maxent/Train.class +0 -0
- data/lib/fred/Baseline.rb +0 -150
- data/lib/fred/FileZipped.rb +0 -31
- data/lib/fred/FredBOWContext.rb +0 -877
- data/lib/fred/FredConventions.rb +0 -232
- data/lib/fred/FredDetermineTargets.rb +0 -319
- data/lib/fred/FredEval.rb +0 -312
- data/lib/fred/FredFeatureExtractors.rb +0 -322
- data/lib/fred/FredFeatures.rb +0 -1061
- data/lib/fred/FredFeaturize.rb +0 -602
- data/lib/fred/FredNumTrainingSenses.rb +0 -27
- data/lib/fred/FredParameters.rb +0 -402
- data/lib/fred/FredSplit.rb +0 -84
- data/lib/fred/FredSplitPkg.rb +0 -180
- data/lib/fred/FredTest.rb +0 -606
- data/lib/fred/FredTrain.rb +0 -144
- data/lib/fred/PlotAndREval.rb +0 -480
- data/lib/fred/fred.rb +0 -47
- data/lib/fred/fred_config_data.rb +0 -185
- data/lib/fred/md5.rb +0 -23
- data/lib/fred/opt_parser.rb +0 -250
- data/lib/frprep/Ampersand.rb +0 -39
- data/lib/frprep/CollinsInterface.rb +0 -1165
- data/lib/frprep/Counter.rb +0 -18
- data/lib/frprep/FNCorpusXML.rb +0 -643
- data/lib/frprep/FNDatabase.rb +0 -144
- data/lib/frprep/FrameXML.rb +0 -513
- data/lib/frprep/Graph.rb +0 -345
- data/lib/frprep/MiniparInterface.rb +0 -1388
- data/lib/frprep/RegXML.rb +0 -269
- data/lib/frprep/STXmlTerminalOrder.rb +0 -194
- data/lib/frprep/SleepyInterface.rb +0 -384
- data/lib/frprep/TntInterface.rb +0 -44
- data/lib/frprep/TreetaggerInterface.rb +0 -327
- data/lib/frprep/do_parses.rb +0 -143
- data/lib/frprep/frprep.rb +0 -693
- data/lib/frprep/interfaces/berkeley_interface.rb +0 -372
- data/lib/frprep/interfaces/stanford_interface.rb +0 -353
- data/lib/frprep/interpreters/berkeley_interpreter.rb +0 -22
- data/lib/frprep/interpreters/stanford_interpreter.rb +0 -22
- data/lib/frprep/one_parsed_file.rb +0 -28
- data/lib/frprep/opt_parser.rb +0 -94
- data/lib/frprep/ruby_class_extensions.rb +0 -310
- data/lib/rosy/AbstractFeatureAndExternal.rb +0 -242
- data/lib/rosy/ExternalConfigData.rb +0 -58
- data/lib/rosy/FailedParses.rb +0 -130
- data/lib/rosy/FeatureInfo.rb +0 -242
- data/lib/rosy/GfInduce.rb +0 -1115
- data/lib/rosy/GfInduceFeature.rb +0 -148
- data/lib/rosy/InputData.rb +0 -294
- data/lib/rosy/RosyConfusability.rb +0 -338
- data/lib/rosy/RosyEval.rb +0 -465
- data/lib/rosy/RosyFeatureExtractors.rb +0 -1609
- data/lib/rosy/RosyFeaturize.rb +0 -281
- data/lib/rosy/RosyInspect.rb +0 -336
- data/lib/rosy/RosyIterator.rb +0 -478
- data/lib/rosy/RosyPhase2FeatureExtractors.rb +0 -230
- data/lib/rosy/RosyPruning.rb +0 -165
- data/lib/rosy/RosyServices.rb +0 -744
- data/lib/rosy/RosySplit.rb +0 -232
- data/lib/rosy/RosyTask.rb +0 -19
- data/lib/rosy/RosyTest.rb +0 -829
- data/lib/rosy/RosyTrain.rb +0 -234
- data/lib/rosy/RosyTrainingTestTable.rb +0 -787
- data/lib/rosy/TargetsMostFrequentFrame.rb +0 -60
- data/lib/rosy/View.rb +0 -418
- data/lib/rosy/opt_parser.rb +0 -379
- data/lib/rosy/rosy.rb +0 -78
- data/lib/rosy/rosy_config_data.rb +0 -121
- data/lib/shalmaneser/version.rb +0 -3
data/lib/rosy/RosyTrain.rb
DELETED
@@ -1,234 +0,0 @@
|
|
1
|
-
# RosyTrain
|
2
|
-
# KE May 05
|
3
|
-
#
|
4
|
-
# One of the main task modules of Rosy:
|
5
|
-
# train classifiers
|
6
|
-
|
7
|
-
# Ruby standard library
|
8
|
-
require "tempfile"
|
9
|
-
|
10
|
-
|
11
|
-
# Rosy packages
|
12
|
-
require "rosy/RosyTask"
|
13
|
-
require "rosy/RosyTest"
|
14
|
-
require "common/RosyConventions"
|
15
|
-
require "rosy/RosyIterator"
|
16
|
-
require "rosy/RosyTrainingTestTable"
|
17
|
-
require "rosy/RosyPruning"
|
18
|
-
require "common/ML"
|
19
|
-
|
20
|
-
# Frprep packages
|
21
|
-
#require "common/prep_config_data"
|
22
|
-
|
23
|
-
class RosyTrain < RosyTask
|
24
|
-
|
25
|
-
def initialize(exp, # RosyConfigData object: experiment description
|
26
|
-
opts, # hash: runtime argument option (string) -> value (string)
|
27
|
-
ttt_obj) # RosyTrainingTestTable object
|
28
|
-
|
29
|
-
#####
|
30
|
-
# In enduser mode, this whole task is unavailable
|
31
|
-
in_enduser_mode_unavailable()
|
32
|
-
|
33
|
-
##
|
34
|
-
# remember the experiment description
|
35
|
-
|
36
|
-
@exp = exp
|
37
|
-
@ttt_obj = ttt_obj
|
38
|
-
|
39
|
-
##
|
40
|
-
# check runtime options
|
41
|
-
|
42
|
-
# defaults:
|
43
|
-
@step = "both"
|
44
|
-
@splitID = nil
|
45
|
-
|
46
|
-
opts.each { |opt,arg|
|
47
|
-
case opt
|
48
|
-
when "--step"
|
49
|
-
unless ["argrec", "arglab", "onestep", "both"].include? arg
|
50
|
-
raise "Classification step must be one of: argrec, arglab, both, onestep. I got: " + arg.to_s
|
51
|
-
end
|
52
|
-
@step = arg
|
53
|
-
when "--logID"
|
54
|
-
@splitID = arg
|
55
|
-
else
|
56
|
-
# this is an option that is okay but has already been read and used by rosy.rb
|
57
|
-
end
|
58
|
-
}
|
59
|
-
|
60
|
-
##
|
61
|
-
# check: if this is about a split, do we have it?
|
62
|
-
if @splitID
|
63
|
-
unless @ttt_obj.splitIDs().include?(@splitID)
|
64
|
-
$stderr.puts "Sorry, I have no data for split ID #{@splitID}."
|
65
|
-
exit 0
|
66
|
-
end
|
67
|
-
end
|
68
|
-
|
69
|
-
##
|
70
|
-
# add preprocessing information to the experiment file object
|
71
|
-
# @note AB: Commented out due to separation of PrepConfigData.
|
72
|
-
# No information seems to be required.
|
73
|
-
# preproc_expname = @exp.get("preproc_descr_file_train")
|
74
|
-
# if not(preproc_expname)
|
75
|
-
# $stderr.puts "Please set the name of the preprocessing exp. file name"
|
76
|
-
# $stderr.puts "in the experiment file, parameter preproc_descr_file_train."
|
77
|
-
# exit 1
|
78
|
-
# elsif not(File.readable?(preproc_expname))
|
79
|
-
# $stderr.puts "Error in the experiment file:"
|
80
|
-
# $stderr.puts "Parameter preproc_descr_file_train has to be a readable file."
|
81
|
-
# exit 1
|
82
|
-
# end
|
83
|
-
# preproc_exp = FrPrepConfigData.new(preproc_expname)
|
84
|
-
# @exp.adjoin(preproc_exp)
|
85
|
-
|
86
|
-
|
87
|
-
# get_lf returns: array of pairs [classifier_name, options[array]]
|
88
|
-
#
|
89
|
-
# @classifiers: list of pairs [Classifier object, classifier name(string)]
|
90
|
-
@classifiers = @exp.get_lf("classifier").map { |classif_name, options|
|
91
|
-
[Classifier.new(classif_name, options), classif_name]
|
92
|
-
}
|
93
|
-
# sanity check: we need at least one classifier
|
94
|
-
if @classifiers.empty?
|
95
|
-
raise "I need at least one classifier, please specify using exp. file option 'classifier'"
|
96
|
-
end
|
97
|
-
|
98
|
-
# announce the task
|
99
|
-
$stderr.puts "---------"
|
100
|
-
$stderr.print "Rosy experiment #{@exp.get("experiment_ID")}: Training "
|
101
|
-
if @splitID
|
102
|
-
$stderr.puts "on split dataset #{@splitID}"
|
103
|
-
else
|
104
|
-
$stderr.puts "on the complete training dataset"
|
105
|
-
end
|
106
|
-
$stderr.puts "---------"
|
107
|
-
end
|
108
|
-
|
109
|
-
#####
|
110
|
-
# perform
|
111
|
-
#
|
112
|
-
# do each of the inspection tasks set as options
|
113
|
-
def perform()
|
114
|
-
|
115
|
-
if @step == "both"
|
116
|
-
# both? then do first argrec, then arglab
|
117
|
-
$stderr.puts "Rosy training step argrec"
|
118
|
-
@step = "argrec"
|
119
|
-
perform_aux()
|
120
|
-
$stderr.puts "Rosy training step arglab"
|
121
|
-
@step = "arglab"
|
122
|
-
perform_aux()
|
123
|
-
else
|
124
|
-
# not both? then just do one
|
125
|
-
$stderr.puts "Rosy training step #{@step}"
|
126
|
-
perform_aux()
|
127
|
-
end
|
128
|
-
end
|
129
|
-
|
130
|
-
###############
|
131
|
-
private
|
132
|
-
|
133
|
-
# perform_aux: do the actual work of the perform() method
|
134
|
-
# moved here because of the possibility of having @step=="both",
|
135
|
-
# which makes it necessary to perform two training steps one after the other
|
136
|
-
def perform_aux()
|
137
|
-
|
138
|
-
if @step == "arglab" and not(@exp.get("assume_argrec_perfect"))
|
139
|
-
|
140
|
-
# KE Jan 31, 06: always redo computation of argrec on training data.
|
141
|
-
# We have had trouble with leftover runlogs too often
|
142
|
-
|
143
|
-
# i.e. apply argrec classifiers to argrec training data
|
144
|
-
$stderr.puts "Rosy: Applying argrec classifiers to argrec training data"
|
145
|
-
$stderr.puts " to produce arglab training input"
|
146
|
-
apply_obj = RosyTest.new(@exp,
|
147
|
-
{ "--nooutput" => nil,
|
148
|
-
"--logID" => @splitID,
|
149
|
-
"--step" => "argrec"},
|
150
|
-
@ttt_obj,
|
151
|
-
true) # argrec_apply: see above
|
152
|
-
|
153
|
-
apply_obj.perform()
|
154
|
-
end
|
155
|
-
|
156
|
-
# hand all the info to the RosyIterator object
|
157
|
-
# It will figure out what view I'll need.
|
158
|
-
#
|
159
|
-
# prune = true: If pruning has been enabled,
|
160
|
-
# RosyIterator will add the appropriate DB column restrictions
|
161
|
-
# such that pruned constituents do nto enter into training
|
162
|
-
|
163
|
-
@iterator = RosyIterator.new(@ttt_obj, @exp, "train",
|
164
|
-
"step" => @step,
|
165
|
-
"splitID" => @splitID,
|
166
|
-
"prune" => true)
|
167
|
-
|
168
|
-
if @iterator.num_groups() == 0
|
169
|
-
# no groups:
|
170
|
-
# may have been a problem with pruning.
|
171
|
-
$stderr.puts
|
172
|
-
$stderr.puts "WARNING: NO DATA TO TRAIN ON."
|
173
|
-
if Pruning.prune?(@exp)
|
174
|
-
$stderr.puts "This may be a problem with pruning:"
|
175
|
-
$stderr.print "Try removing the line starting in 'prune = ' "
|
176
|
-
$stderr.puts "from your experiment file."
|
177
|
-
end
|
178
|
-
$stderr.puts
|
179
|
-
end
|
180
|
-
|
181
|
-
|
182
|
-
####
|
183
|
-
# get the list of relevant features,
|
184
|
-
# remove the feature that describes the unit by which we train,
|
185
|
-
# since it is going to be constant throughout the training file
|
186
|
-
@features = @ttt_obj.feature_info.get_model_features(@step) -
|
187
|
-
@iterator.get_xwise_column_names()
|
188
|
-
# but add the gold feature
|
189
|
-
unless @features.include? "gold"
|
190
|
-
@features << "gold"
|
191
|
-
end
|
192
|
-
|
193
|
-
####
|
194
|
-
#for each frame/ for each target POS:
|
195
|
-
classif_dir = classifier_directory_name(@exp,@step, @splitID)
|
196
|
-
|
197
|
-
@iterator.each_group { |group_descr_hash, group|
|
198
|
-
|
199
|
-
$stderr.puts "Training: " + group.to_s
|
200
|
-
|
201
|
-
# get a view: model features, restrict frame/targetPOS to current group
|
202
|
-
|
203
|
-
view = @iterator.get_a_view_for_current_group(@features)
|
204
|
-
|
205
|
-
# make input file for classifiers:
|
206
|
-
# one instance per line, comma-separated list of features,
|
207
|
-
# last feature is the gold label.
|
208
|
-
tf = Tempfile.new("rosy")
|
209
|
-
|
210
|
-
view.each_instance_s { |instance_string|
|
211
|
-
# change punctuation to _PUNCT_
|
212
|
-
# and change empty space to _
|
213
|
-
# because otherwise some classifiers may spit
|
214
|
-
tf.puts prepare_output_for_classifiers(instance_string)
|
215
|
-
}
|
216
|
-
tf.close()
|
217
|
-
|
218
|
-
# train classifiers
|
219
|
-
@classifiers.each { |classifier, classifier_name|
|
220
|
-
|
221
|
-
# if an explicit classifier dir is given, use that one
|
222
|
-
output_name = classif_dir + @exp.instantiate("classifier_file",
|
223
|
-
"classif" => classifier_name,
|
224
|
-
"group" => group.gsub(/ /, "_"))
|
225
|
-
classifier.train(tf.path(), output_name)
|
226
|
-
}
|
227
|
-
|
228
|
-
# clean up
|
229
|
-
tf.close(true)
|
230
|
-
view.close()
|
231
|
-
}
|
232
|
-
|
233
|
-
end
|
234
|
-
end
|
@@ -1,787 +0,0 @@
|
|
1
|
-
# Rosy TrainingTestTable
|
2
|
-
# Katrin Erk Jan 2006
|
3
|
-
#
|
4
|
-
# manage the training, test and split database tables
|
5
|
-
# of Rosy
|
6
|
-
#
|
7
|
-
# columns of training and test table:
|
8
|
-
# - index column (added by DbTable object itself)
|
9
|
-
# - one column per feature to be computed.
|
10
|
-
# names of feature columns and their MySQL formats
|
11
|
-
# are given by the RosyFeatureInfo object
|
12
|
-
# - columns for classification results
|
13
|
-
# their names start with the classif_column_name entry
|
14
|
-
# given in the experiment file
|
15
|
-
# Their MySQL type is VARCHAR(20)
|
16
|
-
#
|
17
|
-
# columns of split tables:
|
18
|
-
# - sentence ID
|
19
|
-
# - index matching the training table index column
|
20
|
-
# - phase 2 features
|
21
|
-
#
|
22
|
-
# for all tables, training, test and split, there is
|
23
|
-
# a list of learner application results,
|
24
|
-
# i.e. the labels assigned to instances by some learner
|
25
|
-
# in some learner application run.
|
26
|
-
# For the training table there are classification results for
|
27
|
-
# argrec applied to training data.
|
28
|
-
# For each split table there are classification results for
|
29
|
-
# the test part of the split.
|
30
|
-
# For the test tables there are classification results for the test data.
|
31
|
-
# The runlog for each DB table lists the conditions of each run
|
32
|
-
# (which model features, argrec/arglab/onestep, etc.)
|
33
|
-
|
34
|
-
require "common/ruby_class_extensions"
|
35
|
-
|
36
|
-
require 'db/db_table'
|
37
|
-
require "rosy/FeatureInfo"
|
38
|
-
|
39
|
-
# @note AB: Possibly this file belongs to <lib/db>. Check it!
|
40
|
-
######################
|
41
|
-
class RosyTrainingTestTable
|
42
|
-
attr_reader :database, :maintable_name, :feature_names, :feature_info
|
43
|
-
|
44
|
-
######
|
45
|
-
# data structures for this class
|
46
|
-
# TttLog: contains known test IDs, splitIDs, runlogs for this
|
47
|
-
# experiment.
|
48
|
-
# testIDs: Array(string) known test IDs
|
49
|
-
# splitIDs: Array(string) known split IDs
|
50
|
-
# runlogs: Hash tablename(string) -> Array:RunLog
|
51
|
-
# All classification runs for the given DB table,
|
52
|
-
# listing classification column names along with the
|
53
|
-
# parameters of the classification run
|
54
|
-
#
|
55
|
-
# RunLog: contains information for one classification run
|
56
|
-
# step: string argrec/arglab/onestep
|
57
|
-
# learner: string concatenation of names of learners used for this run
|
58
|
-
# modelfeatures: model features for this run, encoded into
|
59
|
-
# an integer: take the list of feature names for this experiment
|
60
|
-
# in alphabetical order, then set a bit to one if the
|
61
|
-
# corresponding feature is in the list of model features
|
62
|
-
# xwise: string, xwise for this classification run,
|
63
|
-
# concatenation of the names of one or more
|
64
|
-
# features (on which groups of instances
|
65
|
-
# was the learner trained?)
|
66
|
-
# column: string, name of the DB table column with the results
|
67
|
-
# of this classification run
|
68
|
-
# okay: Boolean, false at first, set true on "confirm_runlog"
|
69
|
-
# Unconfirmed runlogs are considered nonexistent
|
70
|
-
# by existing_runlog, new_runlog, runlog_to_s
|
71
|
-
TttLog = Struct.new("TttLog", :testIDs, :splitIDs, :runlogs)
|
72
|
-
RunLog = Struct.new("RunLog", :step, :learner, :modelfeatures, :xwise, :column, :okay)
|
73
|
-
|
74
|
-
|
75
|
-
###
|
76
|
-
def initialize(exp, # RosyConfigData object
|
77
|
-
database) # Mysql object
|
78
|
-
@exp = exp
|
79
|
-
@feature_info = RosyFeatureInfo.new(@exp)
|
80
|
-
@database = database
|
81
|
-
|
82
|
-
###
|
83
|
-
# precompute values needed for opening tables:
|
84
|
-
# name prefix of classifier columns
|
85
|
-
@addcol_prefix = @exp.get("classif_column_name")
|
86
|
-
# name of the main table
|
87
|
-
@maintable_name = @exp.instantiate("main_table_name",
|
88
|
-
"exp_ID" => @exp.get("experiment_ID"))
|
89
|
-
# list of pairs [name, mysql format] for each feature (string*string)
|
90
|
-
@feature_columns = @feature_info.get_column_formats()
|
91
|
-
# list of feature names (strings)
|
92
|
-
@feature_names = @feature_info.get_column_names()
|
93
|
-
# make empty columns for classification results:
|
94
|
-
# list of pairs [name, mysql format] for each classifier column (string*string)
|
95
|
-
@classif_columns = Range.new(0,10).map {|id|
|
96
|
-
[
|
97
|
-
classifcolumn_name(id),
|
98
|
-
"VARCHAR(20)"
|
99
|
-
]
|
100
|
-
}
|
101
|
-
# columns for split tables:
|
102
|
-
# the main table's sentence ID column.
|
103
|
-
# later to be added: split index column copying the main table's index column
|
104
|
-
@split_columns = @feature_columns.select { |name, type|
|
105
|
-
name == "sentid"
|
106
|
-
}
|
107
|
-
|
108
|
-
###
|
109
|
-
# start the data structure for keeping lists of
|
110
|
-
# test and split IDs, classification run logs etc.
|
111
|
-
# test whether there is a pickle file.
|
112
|
-
# if so, read it
|
113
|
-
success = from_file()
|
114
|
-
unless success
|
115
|
-
# pickle file couldn't be read
|
116
|
-
# initialize to empty object
|
117
|
-
@log_obj = TttLog.new(Array.new, Array.new, Hash.new)
|
118
|
-
end
|
119
|
-
end
|
120
|
-
|
121
|
-
########
|
122
|
-
# saving and loading log data
|
123
|
-
def to_file(dir = nil)
|
124
|
-
begin
|
125
|
-
file = File.new(pickle_filename(dir), "w")
|
126
|
-
rescue
|
127
|
-
$stderr.puts "RosyTrainingTestTable ERROR: Couldn't write to pickle file " + pickle_filename(dir)
|
128
|
-
$stderr.puts "Will not be able to remember new runs."
|
129
|
-
return
|
130
|
-
end
|
131
|
-
Marshal.dump(@log_obj, file)
|
132
|
-
file.close()
|
133
|
-
end
|
134
|
-
|
135
|
-
def from_file(dir = nil)
|
136
|
-
filename = pickle_filename(dir)
|
137
|
-
|
138
|
-
if File.exists?(filename)
|
139
|
-
file = File.new(filename)
|
140
|
-
begin
|
141
|
-
@log_obj = Marshal.load(file)
|
142
|
-
rescue
|
143
|
-
# something went wrong, for example an empty pickle file
|
144
|
-
$stderr.puts "ROSY warning: could not read pickle #{filename}, assuming empty."
|
145
|
-
return false
|
146
|
-
end
|
147
|
-
|
148
|
-
if dir
|
149
|
-
# load from a different file than the normal one?
|
150
|
-
# then save this log to the normal file too
|
151
|
-
to_file()
|
152
|
-
end
|
153
|
-
|
154
|
-
return true
|
155
|
-
else
|
156
|
-
return false
|
157
|
-
end
|
158
|
-
end
|
159
|
-
|
160
|
-
########
|
161
|
-
# accessor methods for table names and log data
|
162
|
-
|
163
|
-
###
|
164
|
-
# returns: string, name of DB table with test data
|
165
|
-
def testtable_name(testID)
|
166
|
-
# no test ID given? use default
|
167
|
-
unless testID
|
168
|
-
testID = default_test_ID()
|
169
|
-
end
|
170
|
-
|
171
|
-
return @exp.instantiate("test_table_name",
|
172
|
-
"exp_ID" => @exp.get("experiment_ID"),
|
173
|
-
"test_ID" => testID)
|
174
|
-
end
|
175
|
-
|
176
|
-
|
177
|
-
###
|
178
|
-
# returns: name of a split table (string)
|
179
|
-
def splittable_name(splitID, # string
|
180
|
-
dataset) # string: train/test
|
181
|
-
|
182
|
-
return "rosy_#{@exp.get("experiment_ID")}_split_#{dataset}_#{splitID}"
|
183
|
-
end
|
184
|
-
|
185
|
-
###
|
186
|
-
# returns: test IDs for the current experiment (list of strings)
|
187
|
-
def testIDs()
|
188
|
-
return @log_obj.testIDs
|
189
|
-
end
|
190
|
-
|
191
|
-
###
|
192
|
-
# returns: test IDs for the current experiment (list of strings)
|
193
|
-
def splitIDs()
|
194
|
-
return @log_obj.splitIDs
|
195
|
-
end
|
196
|
-
|
197
|
-
###
|
198
|
-
# get a runlog, make a new one if necessary.
|
199
|
-
# If necessary, the table is extended by an additional column for this.
|
200
|
-
# returns: a string, the column name for the classification run.
|
201
|
-
def new_runlog(step, # argrec/arglab/onestep
|
202
|
-
dataset, # train/test
|
203
|
-
testID, # string (testID) or nil
|
204
|
-
splitID) # string (splitID) or nil
|
205
|
-
|
206
|
-
table_name = proper_table_for_runlog(step, dataset, testID, splitID)
|
207
|
-
loglist = get_runlogs(table_name)
|
208
|
-
runlog = encode_setting_into_runlog(step,dataset)
|
209
|
-
|
210
|
-
if (rl = existing_runlog_aux(loglist, runlog))
|
211
|
-
# runlog already exists
|
212
|
-
return rl.column
|
213
|
-
|
214
|
-
else
|
215
|
-
# runlog does not exist yet.
|
216
|
-
# find the first free column
|
217
|
-
existing_cols = loglist.select { |rl| rl.okay }.map { |rl| rl.column }
|
218
|
-
@classif_columns.each { |colname, format|
|
219
|
-
|
220
|
-
unless existing_cols.include? colname
|
221
|
-
# found an unused column name:
|
222
|
-
# use it
|
223
|
-
runlog.column = colname
|
224
|
-
add_to_runlog(table_name, runlog)
|
225
|
-
return colname
|
226
|
-
end
|
227
|
-
}
|
228
|
-
|
229
|
-
# no free column found in the list of classifier columns
|
230
|
-
# that is added to each table on construction.
|
231
|
-
# So we have to extend the table.
|
232
|
-
# First find out the complete list of used column names:
|
233
|
-
# all table columns starting with @addcol_prefix
|
234
|
-
used_classif_columns = Hash.new
|
235
|
-
@database.list_column_names(table_name).each { |column_name|
|
236
|
-
if column_name =~ /^#{@addcol_prefix}/
|
237
|
-
used_classif_columns[column_name] = true
|
238
|
-
end
|
239
|
-
}
|
240
|
-
# find the first unused column name in the DB table
|
241
|
-
run_id = 0
|
242
|
-
while used_classif_columns[classifcolumn_name(run_id)]
|
243
|
-
run_id += 1
|
244
|
-
end
|
245
|
-
colname = classifcolumn_name(run_id)
|
246
|
-
|
247
|
-
# add a column of this name to the table
|
248
|
-
table = DBTable.new(@database, table_name,
|
249
|
-
"open",
|
250
|
-
"addcol_prefix" => @addcol_prefix)
|
251
|
-
|
252
|
-
begin
|
253
|
-
table.change_format_add_columns([[colname, "VARCHAR(20)"]])
|
254
|
-
rescue MysqlError => e
|
255
|
-
puts "Caught MySQL error at "+Time.now.to_s
|
256
|
-
raise e
|
257
|
-
end
|
258
|
-
puts "Finished adding column at "+Time.now.to_s
|
259
|
-
|
260
|
-
# now use that column
|
261
|
-
runlog.column = colname
|
262
|
-
add_to_runlog(table_name, runlog)
|
263
|
-
return colname
|
264
|
-
end
|
265
|
-
end
|
266
|
-
|
267
|
-
###
|
268
|
-
# get an existing runlog
|
269
|
-
# returns: if successful, a string, the column name for the classification run.
|
270
|
-
# else nil.
|
271
|
-
def existing_runlog(step, # argrec/arglab/onestep
|
272
|
-
dataset, # train/test
|
273
|
-
testID, # string (testID) or nil
|
274
|
-
splitID) # string (splitID) or nil
|
275
|
-
|
276
|
-
loglist = get_runlogs(proper_table_for_runlog(step, dataset, testID, splitID))
|
277
|
-
if (rl = existing_runlog_aux(loglist, encode_setting_into_runlog(step,dataset)))
|
278
|
-
# runlog found
|
279
|
-
return rl.column
|
280
|
-
else
|
281
|
-
return nil
|
282
|
-
end
|
283
|
-
end
|
284
|
-
|
285
|
-
###
|
286
|
-
# confirm runlog:
|
287
|
-
# set "okay" to true
|
288
|
-
# necessary for new runlogs, otherwise they count as nonexistent
|
289
|
-
# fails silently if the runlog wasn't found
|
290
|
-
def confirm_runlog(step, # argrec/arglab/onestep
|
291
|
-
dataset, # train/test
|
292
|
-
testID, # string (testID) or nil
|
293
|
-
splitID, # string (splitID) or nil
|
294
|
-
runID) # string: run ID
|
295
|
-
loglist = get_runlogs(proper_table_for_runlog(step, dataset, testID, splitID))
|
296
|
-
rl = loglist.detect { |rl|
|
297
|
-
rl.column == runID
|
298
|
-
}
|
299
|
-
if rl
|
300
|
-
rl.okay = true
|
301
|
-
end
|
302
|
-
to_file()
|
303
|
-
end
|
304
|
-
|
305
|
-
|
306
|
-
###
|
307
|
-
# delete one run from the runlog
|
308
|
-
def delete_runlog(table_name, # string: name of DB table
|
309
|
-
column_name) # string: name of the run column
|
310
|
-
loglist = get_runlogs(table_name)
|
311
|
-
loglist.delete_if { |rl| rl.column == column_name }
|
312
|
-
to_file()
|
313
|
-
end
|
314
|
-
|
315
|
-
###
|
316
|
-
# runlog_to_s:
|
317
|
-
# concatenates the one_runlog_to_s results
|
318
|
-
# for all tables of this experiment
|
319
|
-
#
|
320
|
-
# If all runlogs are empty, returns "none known"
|
321
|
-
def runlog_to_s()
|
322
|
-
hashes = runlog_to_s_list()
|
323
|
-
|
324
|
-
# join text from hashes into a string, omit tables without runs
|
325
|
-
string = ""
|
326
|
-
hashes. each { |hash|
|
327
|
-
unless hash["runlist"].empty?
|
328
|
-
string << hash["header"]
|
329
|
-
string << hash["runlist"].map { |colname, text| text }.join("\n\n")
|
330
|
-
string << "\n\n"
|
331
|
-
end
|
332
|
-
}
|
333
|
-
|
334
|
-
if string.empty?
|
335
|
-
# no classifier runs at all up to now
|
336
|
-
return "(none known)"
|
337
|
-
else
|
338
|
-
return string
|
339
|
-
end
|
340
|
-
end
|
341
|
-
|
342
|
-
###
|
343
|
-
# runlog_to_s_list:
|
344
|
-
# returns a list of hashes with keys "table_name", "header", "runlist"
|
345
|
-
# where header is a string describing one of
|
346
|
-
# the DB tables of this experiment,
|
347
|
-
# and runlist is a list of pairs [ column_name, text],
|
348
|
-
# where text describes the classification run in the column column_name
|
349
|
-
def runlog_to_s_list()
|
350
|
-
retv = Array.new
|
351
|
-
|
352
|
-
# main table
|
353
|
-
retv << one_runlog_to_s("train", nil, nil)
|
354
|
-
|
355
|
-
# test tables
|
356
|
-
testIDs().each { |testID|
|
357
|
-
retv << one_runlog_to_s("test", testID, nil)
|
358
|
-
}
|
359
|
-
# split tables
|
360
|
-
splitIDs().each { |splitID|
|
361
|
-
["train", "test"].each { |dataset|
|
362
|
-
retv << one_runlog_to_s(dataset, nil, splitID)
|
363
|
-
}
|
364
|
-
}
|
365
|
-
|
366
|
-
return retv
|
367
|
-
end
|
368
|
-
|
369
|
-
#######
|
370
|
-
# create new training/test/split table
|
371
|
-
def new_train_table()
|
372
|
-
|
373
|
-
# remove old runlogs, if they exist
|
374
|
-
del_runlogs(@maintable_name)
|
375
|
-
|
376
|
-
# make table
|
377
|
-
return DBTable.new(@database, @maintable_name,
|
378
|
-
"new",
|
379
|
-
"col_formats" => @feature_columns + @classif_columns,
|
380
|
-
"index_cols" => @feature_info.get_index_columns(),
|
381
|
-
"addcol_prefix" => @addcol_prefix)
|
382
|
-
end
|
383
|
-
|
384
|
-
###
|
385
|
-
def new_test_table(testID = "apply") # string: test ID
|
386
|
-
|
387
|
-
# remove old runlogs, if they exist
|
388
|
-
del_runlogs(testtable_name(testID))
|
389
|
-
|
390
|
-
# remember test ID
|
391
|
-
unless @log_obj.testIDs.include? testID
|
392
|
-
@log_obj.testIDs << testID
|
393
|
-
to_file()
|
394
|
-
end
|
395
|
-
|
396
|
-
# make table
|
397
|
-
return DBTable.new(@database,
|
398
|
-
testtable_name(testID),
|
399
|
-
"new",
|
400
|
-
"col_formats" => @feature_columns + @classif_columns,
|
401
|
-
"index_cols" => @feature_info.get_index_columns(),
|
402
|
-
"addcol_prefix" => @addcol_prefix)
|
403
|
-
|
404
|
-
end
|
405
|
-
|
406
|
-
###
|
407
|
-
def new_split_table(splitID, # string: split ID
|
408
|
-
dataset, # string: train/test
|
409
|
-
split_index_colname) # string: name of index column for split tables
|
410
|
-
|
411
|
-
# remove old runlogs, if they exist
|
412
|
-
del_runlogs(splittable_name(splitID, dataset))
|
413
|
-
|
414
|
-
# remember split ID
|
415
|
-
unless @log_obj.splitIDs.include? splitID
|
416
|
-
@log_obj.splitIDs << splitID
|
417
|
-
to_file()
|
418
|
-
end
|
419
|
-
|
420
|
-
# determine the type of the index column
|
421
|
-
maintable = existing_train_table()
|
422
|
-
index_name_and_type = maintable.list_column_formats.assoc(maintable.index_name)
|
423
|
-
if index_name_and_type
|
424
|
-
split_index_type = index_name_and_type.last
|
425
|
-
else
|
426
|
-
$stderr.puts "WARNING: Could not determine type of maintable index column,"
|
427
|
-
$stderr.puts "Using int as default"
|
428
|
-
split_index_type = "INT"
|
429
|
-
end
|
430
|
-
|
431
|
-
# make table
|
432
|
-
return DBTable.new(@database,
|
433
|
-
splittable_name(splitID, dataset),
|
434
|
-
"new",
|
435
|
-
"col_formats" => @split_columns + [[split_index_colname, split_index_type]] + @classif_columns,
|
436
|
-
"index_cols" => [split_index_colname],
|
437
|
-
"addcol_prefix" => @addcol_prefix)
|
438
|
-
end
|
439
|
-
|
440
|
-
|
441
|
-
#######
|
442
|
-
# open existing training or test table
|
443
|
-
def existing_train_table()
|
444
|
-
return DBTable.new(@database, @maintable_name,
|
445
|
-
"open",
|
446
|
-
"col_names" => @feature_names,
|
447
|
-
"addcol_prefix" => @addcol_prefix)
|
448
|
-
end
|
449
|
-
|
450
|
-
###
|
451
|
-
def existing_test_table(testID = "apply")
|
452
|
-
return DBTable.new(@database,
|
453
|
-
testtable_name(testID),
|
454
|
-
"open",
|
455
|
-
"col_names" => @feature_names,
|
456
|
-
"addcol_prefix" => @addcol_prefix)
|
457
|
-
end
|
458
|
-
|
459
|
-
###
|
460
|
-
def existing_split_table(splitID, # string: split ID
|
461
|
-
dataset, # string: train/test
|
462
|
-
split_index_colname)
|
463
|
-
|
464
|
-
return DBTable.new(@database,
|
465
|
-
splittable_name(splitID, dataset),
|
466
|
-
"open",
|
467
|
-
"col_names" => @split_columns.map { |name, type| name} + [split_index_colname],
|
468
|
-
"addcol_prefix" => @addcol_prefix)
|
469
|
-
end
|
470
|
-
|
471
|
-
##################
|
472
|
-
# table existence tests
|
473
|
-
|
474
|
-
###
|
475
|
-
def train_table_exists?()
|
476
|
-
return @database.list_tables().include?(@maintable_name)
|
477
|
-
end
|
478
|
-
|
479
|
-
###
|
480
|
-
def test_table_exists?(testID) # string
|
481
|
-
return @database.list_tables().include?(testtable_name(testID))
|
482
|
-
end
|
483
|
-
|
484
|
-
###
|
485
|
-
def split_table_exists?(splitID, # string
|
486
|
-
dataset) # string: train/test
|
487
|
-
return @database.list_tables().include?(splittable_name(splitID, dataset))
|
488
|
-
end
|
489
|
-
|
490
|
-
##################3
|
491
|
-
# remove tables
|
492
|
-
|
493
|
-
###
|
494
|
-
def remove_train_table()
|
495
|
-
if train_table_exists?
|
496
|
-
del_runlogs(@maintable_name)
|
497
|
-
remove_table(@maintable_name)
|
498
|
-
end
|
499
|
-
end
|
500
|
-
|
501
|
-
###
|
502
|
-
def remove_test_table(testID) # string
|
503
|
-
# remove ID from log
|
504
|
-
@log_obj.testIDs.delete(testID)
|
505
|
-
to_file()
|
506
|
-
|
507
|
-
# remove DB table
|
508
|
-
if test_table_exists?(testID)
|
509
|
-
del_runlogs(testtable_name(testID))
|
510
|
-
remove_table(testtable_name(testID))
|
511
|
-
end
|
512
|
-
end
|
513
|
-
|
514
|
-
###
|
515
|
-
def remove_split_table(splitID, # string
|
516
|
-
dataset) # string: train/test
|
517
|
-
# remove ID from log
|
518
|
-
@log_obj.splitIDs.delete(splitID)
|
519
|
-
to_file()
|
520
|
-
|
521
|
-
# remove DB table
|
522
|
-
if split_table_exists?(splitID, dataset)
|
523
|
-
del_runlogs(splittable_name(splitID, dataset))
|
524
|
-
remove_table(splittable_name(splitID, dataset))
|
525
|
-
end
|
526
|
-
end
|
527
|
-
|
528
|
-
|
529
|
-
###################################
|
530
|
-
private
|
531
|
-
|
532
|
-
###
|
533
|
-
# returns: string, name of DB column with classification result
|
534
|
-
def classifcolumn_name(id)
|
535
|
-
return @addcol_prefix + "_" + id.to_s
|
536
|
-
end
|
537
|
-
|
538
|
-
###
|
539
|
-
# remove DB table
|
540
|
-
# returns: nothing
|
541
|
-
def remove_table(table_name)
|
542
|
-
begin
|
543
|
-
@database.drop_table(table_name)
|
544
|
-
rescue
|
545
|
-
$stderr.puts "Error: Removal of data table #{table_name} failed:"
|
546
|
-
$stderr.puts $!
|
547
|
-
end
|
548
|
-
end
|
549
|
-
|
550
|
-
###
|
551
|
-
# returns: string, name of pickle file
|
552
|
-
def pickle_filename(dir)
|
553
|
-
if dir
|
554
|
-
# use externally defined directory
|
555
|
-
dir = File.new_dir(dir)
|
556
|
-
else
|
557
|
-
# use my own directory
|
558
|
-
dir = File.new_dir(@exp.instantiate("rosy_dir",
|
559
|
-
"exp_ID" => @exp.get("experiment_ID")))
|
560
|
-
end
|
561
|
-
|
562
|
-
return dir + "ttt_data.pkl"
|
563
|
-
end
|
564
|
-
|
565
|
-
########
|
566
|
-
# access and remove runlogs for a given DB table
|
567
|
-
|
568
|
-
###
|
569
|
-
# returns: an Array of RunLog objects
|
570
|
-
def get_runlogs(table_name) # string: DB table name
|
571
|
-
unless @log_obj.runlogs[table_name]
|
572
|
-
@log_obj.runlogs[table_name] = Array.new
|
573
|
-
end
|
574
|
-
|
575
|
-
return @log_obj.runlogs[table_name]
|
576
|
-
end
|
577
|
-
|
578
|
-
###
|
579
|
-
# removes from @log_obj.runlogs the array of RunLog objects
|
580
|
-
# for the given DB table.
|
581
|
-
# Saves the changed @log_obj to file.
|
582
|
-
def del_runlogs(table_name) # string: DB table name
|
583
|
-
@log_obj.runlogs.delete(table_name)
|
584
|
-
to_file()
|
585
|
-
end
|
586
|
-
|
587
|
-
###
|
588
|
-
# add a line to a runlog,
|
589
|
-
# save log object to file
|
590
|
-
def add_to_runlog(table_name, # string: DB table name
|
591
|
-
runlog)
|
592
|
-
get_runlogs(table_name) << runlog
|
593
|
-
to_file()
|
594
|
-
end
|
595
|
-
|
596
|
-
###
|
597
|
-
# constructs the appropriate DB table name for a given runlog request
|
598
|
-
# returns: string, DB table name
|
599
|
-
def proper_table_for_runlog(step, # argrec/arglab/onestep
|
600
|
-
dataset, # train/test
|
601
|
-
testID, # test ID or nil
|
602
|
-
splitID) # splitID or nil
|
603
|
-
|
604
|
-
# sanity check: runlog for training data? this can only be the argrec step
|
605
|
-
if dataset == "train" and step and step != "argrec"
|
606
|
-
raise "Shouldn't be here: #{dataset} #{step}"
|
607
|
-
end
|
608
|
-
|
609
|
-
if splitID
|
610
|
-
# access runlogs of a split table
|
611
|
-
return splittable_name(splitID, dataset)
|
612
|
-
end
|
613
|
-
|
614
|
-
case dataset
|
615
|
-
when "train"
|
616
|
-
return @maintable_name
|
617
|
-
when "test"
|
618
|
-
return testtable_name(testID)
|
619
|
-
else
|
620
|
-
raise "Shouldn't be here"
|
621
|
-
end
|
622
|
-
end
|
623
|
-
|
624
|
-
###
|
625
|
-
# encode setting into runlog
|
626
|
-
# collects information on step, learner, model features and xwise
|
627
|
-
# and returns them in a RunLog object
|
628
|
-
# leaves the column entry of the RunLog object nil
|
629
|
-
def encode_setting_into_runlog(step,
|
630
|
-
dataset)
|
631
|
-
rl = RunLog.new(nil, nil, nil, nil, nil, false)
|
632
|
-
|
633
|
-
# step: encode only if this is a classification run on test data
|
634
|
-
unless dataset == "train"
|
635
|
-
rl.step = step
|
636
|
-
end
|
637
|
-
|
638
|
-
# learner: concatenation of all learners named in the experiment file,
|
639
|
-
# sorted alphabetically.
|
640
|
-
#
|
641
|
-
# @exp.get_lf("classifier") returns: array of pairs [classifier_name, options[array]]
|
642
|
-
rl.learner = @exp.get_lf("classifier").map { |classif_name, options| classif_name }.sort.join(" ")
|
643
|
-
|
644
|
-
# model features: encode into a number
|
645
|
-
rl.modelfeatures = encode_model_features(step)
|
646
|
-
|
647
|
-
# xwise: read from experiment file
|
648
|
-
rl.xwise = @exp.get("xwise_" + step)
|
649
|
-
unless rl.xwise
|
650
|
-
# default: read one frame at a time
|
651
|
-
rl.xwise = "frame"
|
652
|
-
end
|
653
|
-
|
654
|
-
return rl
|
655
|
-
end
|
656
|
-
|
657
|
-
###
|
658
|
-
# auxiliary for "new runlog" and "existing runlog"
|
659
|
-
# to avoid double computation
|
660
|
-
#
|
661
|
-
# get a list of RunLog objects, check against a given
|
662
|
-
# RunLog object
|
663
|
-
#
|
664
|
-
# returns: runlog object, if found in the given list,
|
665
|
-
# i.e. if all entries except the column name match
|
666
|
-
# and okay == true
|
667
|
-
# else returns nil
|
668
|
-
def existing_runlog_aux(runlogs, # list of RunLog objects
|
669
|
-
runlog) # RunLog object
|
670
|
-
|
671
|
-
runlogs.each { |rl|
|
672
|
-
if rl.step == runlog.step and
|
673
|
-
rl.learner == runlog.learner and
|
674
|
-
rl.modelfeatures == runlog.modelfeatures and
|
675
|
-
rl.xwise == runlog.xwise and
|
676
|
-
rl.okay
|
677
|
-
|
678
|
-
return rl
|
679
|
-
end
|
680
|
-
}
|
681
|
-
|
682
|
-
# no luck
|
683
|
-
return nil
|
684
|
-
end
|
685
|
-
|
686
|
-
############
|
687
|
-
# model features: encode into a number, decode from number
|
688
|
-
|
689
|
-
###
|
690
|
-
# returns: an integer, encoding of the model features
|
691
|
-
def encode_model_features(step) # string: train/test
|
692
|
-
# list model features as hash
|
693
|
-
temp = @feature_info.get_model_features(step)
|
694
|
-
model_features = Hash.new
|
695
|
-
temp.each { |feature_name|
|
696
|
-
model_features[feature_name] = true
|
697
|
-
}
|
698
|
-
|
699
|
-
num = 0
|
700
|
-
@feature_names.sort.each_with_index { |feature_name, ix|
|
701
|
-
if model_features[feature_name]
|
702
|
-
# set the ix-th bit in num from the right
|
703
|
-
num |= 2**ix
|
704
|
-
end
|
705
|
-
}
|
706
|
-
|
707
|
-
return num
|
708
|
-
end
|
709
|
-
|
710
|
-
###
|
711
|
-
# returns: a list of strings, the model features
|
712
|
-
def decode_model_features(num) # integer: result of encode_model_features
|
713
|
-
|
714
|
-
model_features = Array.new
|
715
|
-
@feature_names.sort.each_with_index { |feature_name, ix|
|
716
|
-
if num[ix] == 1
|
717
|
-
model_features << feature_name
|
718
|
-
end
|
719
|
-
}
|
720
|
-
|
721
|
-
return model_features
|
722
|
-
end
|
723
|
-
|
724
|
-
###
|
725
|
-
# one_runlog_to_s:
|
726
|
-
# returns a hash with keys "table_name", "header", "runlist"
|
727
|
-
# table_name is a string: the table name
|
728
|
-
# header is a string describing the table
|
729
|
-
# runlist is a list of pairs [column name, descr] (string*string)
|
730
|
-
# where column name is the classifier column name and descr describes
|
731
|
-
# one classification run on table_name
|
732
|
-
#
|
733
|
-
# If the loglist is empty for this table, descr is empty
|
734
|
-
def one_runlog_to_s(dataset, # train/test
|
735
|
-
testID, # test ID
|
736
|
-
splitID) # split ID or nil
|
737
|
-
|
738
|
-
table_name = proper_table_for_runlog(nil, dataset, testID, splitID)
|
739
|
-
loglist = get_runlogs(table_name)
|
740
|
-
|
741
|
-
header = "Classification runs for the #{dataset} table "
|
742
|
-
if splitID
|
743
|
-
header << " of split '#{splitID}' "
|
744
|
-
elsif dataset == "test" and testID
|
745
|
-
header << "'#{testID}' "
|
746
|
-
end
|
747
|
-
if dataset == "train"
|
748
|
-
header << "(applying argrec classifiers to training data) "
|
749
|
-
end
|
750
|
-
header << "of experiment '#{@exp.get("experiment_ID")}'\n\n"
|
751
|
-
|
752
|
-
descr = Array.new
|
753
|
-
loglist.each { |rl|
|
754
|
-
unless rl.okay
|
755
|
-
next
|
756
|
-
end
|
757
|
-
|
758
|
-
string = ""
|
759
|
-
if dataset == "test"
|
760
|
-
string << "Step #{rl.step} "
|
761
|
-
end
|
762
|
-
string << "Xwise: #{rl.xwise} Learners: #{rl.learner}\n"
|
763
|
-
string << "Model features:\n\t"
|
764
|
-
count = 0
|
765
|
-
decode_model_features(rl.modelfeatures).each { |feature_name|
|
766
|
-
if count % 5 != 0
|
767
|
-
string << ", "
|
768
|
-
end
|
769
|
-
count += 1
|
770
|
-
string << feature_name
|
771
|
-
if count % 5 == 0
|
772
|
-
string << "\n\t"
|
773
|
-
end
|
774
|
-
}
|
775
|
-
descr << [rl.column, string]
|
776
|
-
}
|
777
|
-
|
778
|
-
return {
|
779
|
-
"table_name" => table_name,
|
780
|
-
"header" => header,
|
781
|
-
"runlist" => descr
|
782
|
-
}
|
783
|
-
end
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
end
|