shalmaneser 1.2.0.rc4 → 1.2.rc5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +47 -18
- data/bin/shalmaneser +8 -2
- data/doc/index.md +1 -0
- data/lib/shalmaneser/opt_parser.rb +68 -67
- metadata +49 -119
- data/bin/fred +0 -16
- data/bin/frprep +0 -34
- data/bin/rosy +0 -17
- data/lib/common/AbstractSynInterface.rb +0 -1229
- data/lib/common/Counter.rb +0 -18
- data/lib/common/EnduserMode.rb +0 -27
- data/lib/common/Eval.rb +0 -480
- data/lib/common/FixSynSemMapping.rb +0 -196
- data/lib/common/Graph.rb +0 -345
- data/lib/common/ISO-8859-1.rb +0 -24
- data/lib/common/ML.rb +0 -186
- data/lib/common/Mallet.rb +0 -236
- data/lib/common/Maxent.rb +0 -229
- data/lib/common/Optimise.rb +0 -195
- data/lib/common/Parser.rb +0 -213
- data/lib/common/RegXML.rb +0 -269
- data/lib/common/RosyConventions.rb +0 -171
- data/lib/common/STXmlTerminalOrder.rb +0 -194
- data/lib/common/SalsaTigerRegXML.rb +0 -2347
- data/lib/common/SalsaTigerXMLHelper.rb +0 -99
- data/lib/common/SynInterfaces.rb +0 -282
- data/lib/common/TabFormat.rb +0 -721
- data/lib/common/Tiger.rb +0 -1448
- data/lib/common/Timbl.rb +0 -144
- data/lib/common/Tree.rb +0 -61
- data/lib/common/config_data.rb +0 -470
- data/lib/common/config_format_element.rb +0 -220
- data/lib/common/headz.rb +0 -338
- data/lib/common/option_parser.rb +0 -13
- data/lib/common/prep_config_data.rb +0 -62
- data/lib/common/prep_helper.rb +0 -1330
- data/lib/common/ruby_class_extensions.rb +0 -310
- data/lib/db/db_interface.rb +0 -48
- data/lib/db/db_mysql.rb +0 -145
- data/lib/db/db_sqlite.rb +0 -280
- data/lib/db/db_table.rb +0 -239
- data/lib/db/db_wrapper.rb +0 -176
- data/lib/db/sql_query.rb +0 -243
- data/lib/ext/maxent/Classify.class +0 -0
- data/lib/ext/maxent/Train.class +0 -0
- data/lib/fred/Baseline.rb +0 -150
- data/lib/fred/FileZipped.rb +0 -31
- data/lib/fred/FredBOWContext.rb +0 -877
- data/lib/fred/FredConventions.rb +0 -232
- data/lib/fred/FredDetermineTargets.rb +0 -319
- data/lib/fred/FredEval.rb +0 -312
- data/lib/fred/FredFeatureExtractors.rb +0 -322
- data/lib/fred/FredFeatures.rb +0 -1061
- data/lib/fred/FredFeaturize.rb +0 -602
- data/lib/fred/FredNumTrainingSenses.rb +0 -27
- data/lib/fred/FredParameters.rb +0 -402
- data/lib/fred/FredSplit.rb +0 -84
- data/lib/fred/FredSplitPkg.rb +0 -180
- data/lib/fred/FredTest.rb +0 -606
- data/lib/fred/FredTrain.rb +0 -144
- data/lib/fred/PlotAndREval.rb +0 -480
- data/lib/fred/fred.rb +0 -47
- data/lib/fred/fred_config_data.rb +0 -185
- data/lib/fred/md5.rb +0 -23
- data/lib/fred/opt_parser.rb +0 -250
- data/lib/frprep/Ampersand.rb +0 -39
- data/lib/frprep/CollinsInterface.rb +0 -1165
- data/lib/frprep/Counter.rb +0 -18
- data/lib/frprep/FNCorpusXML.rb +0 -643
- data/lib/frprep/FNDatabase.rb +0 -144
- data/lib/frprep/FrameXML.rb +0 -513
- data/lib/frprep/Graph.rb +0 -345
- data/lib/frprep/MiniparInterface.rb +0 -1388
- data/lib/frprep/RegXML.rb +0 -269
- data/lib/frprep/STXmlTerminalOrder.rb +0 -194
- data/lib/frprep/SleepyInterface.rb +0 -384
- data/lib/frprep/TntInterface.rb +0 -44
- data/lib/frprep/TreetaggerInterface.rb +0 -327
- data/lib/frprep/do_parses.rb +0 -143
- data/lib/frprep/frprep.rb +0 -693
- data/lib/frprep/interfaces/berkeley_interface.rb +0 -372
- data/lib/frprep/interfaces/stanford_interface.rb +0 -353
- data/lib/frprep/interpreters/berkeley_interpreter.rb +0 -22
- data/lib/frprep/interpreters/stanford_interpreter.rb +0 -22
- data/lib/frprep/one_parsed_file.rb +0 -28
- data/lib/frprep/opt_parser.rb +0 -94
- data/lib/frprep/ruby_class_extensions.rb +0 -310
- data/lib/rosy/AbstractFeatureAndExternal.rb +0 -242
- data/lib/rosy/ExternalConfigData.rb +0 -58
- data/lib/rosy/FailedParses.rb +0 -130
- data/lib/rosy/FeatureInfo.rb +0 -242
- data/lib/rosy/GfInduce.rb +0 -1115
- data/lib/rosy/GfInduceFeature.rb +0 -148
- data/lib/rosy/InputData.rb +0 -294
- data/lib/rosy/RosyConfusability.rb +0 -338
- data/lib/rosy/RosyEval.rb +0 -465
- data/lib/rosy/RosyFeatureExtractors.rb +0 -1609
- data/lib/rosy/RosyFeaturize.rb +0 -281
- data/lib/rosy/RosyInspect.rb +0 -336
- data/lib/rosy/RosyIterator.rb +0 -478
- data/lib/rosy/RosyPhase2FeatureExtractors.rb +0 -230
- data/lib/rosy/RosyPruning.rb +0 -165
- data/lib/rosy/RosyServices.rb +0 -744
- data/lib/rosy/RosySplit.rb +0 -232
- data/lib/rosy/RosyTask.rb +0 -19
- data/lib/rosy/RosyTest.rb +0 -829
- data/lib/rosy/RosyTrain.rb +0 -234
- data/lib/rosy/RosyTrainingTestTable.rb +0 -787
- data/lib/rosy/TargetsMostFrequentFrame.rb +0 -60
- data/lib/rosy/View.rb +0 -418
- data/lib/rosy/opt_parser.rb +0 -379
- data/lib/rosy/rosy.rb +0 -78
- data/lib/rosy/rosy_config_data.rb +0 -121
- data/lib/shalmaneser/version.rb +0 -3
data/lib/rosy/RosySplit.rb
DELETED
@@ -1,232 +0,0 @@
|
|
1
|
-
# RosySplit
|
2
|
-
# KE, SP May 05
|
3
|
-
#
|
4
|
-
# One of the main task modules of Rosy:
|
5
|
-
# split training data into training and test parts
|
6
|
-
#
|
7
|
-
# A split is realized as two DB tables,
|
8
|
-
# one with the sentence IDs of the training part of the split,
|
9
|
-
# and one with the sentence IDs of the test part of the split.
|
10
|
-
#
|
11
|
-
# Additionally, each split table also contains all phase-2 features
|
12
|
-
# for the train/test part of the split:
|
13
|
-
# Phase 2 features are trained on training features and applied to
|
14
|
-
# test features. They need to be retrained for each split.
|
15
|
-
|
16
|
-
require "common/ruby_class_extensions"
|
17
|
-
|
18
|
-
# Frprep packages
|
19
|
-
require "common/prep_config_data"
|
20
|
-
|
21
|
-
# Rosy packages
|
22
|
-
require "rosy/FailedParses"
|
23
|
-
require "rosy/FeatureInfo"
|
24
|
-
require "common/RosyConventions"
|
25
|
-
require "rosy/RosyIterator"
|
26
|
-
require "rosy/RosyTask"
|
27
|
-
require "rosy/RosyTrainingTestTable"
|
28
|
-
require "rosy/View"
|
29
|
-
|
30
|
-
class RosySplit < RosyTask
|
31
|
-
|
32
|
-
def initialize(exp, # RosyConfigData object: experiment description
|
33
|
-
opts, # hash: runtime argument option (string) -> value (string)
|
34
|
-
ttt_obj) # RosyTrainingTestTable object
|
35
|
-
|
36
|
-
#####
|
37
|
-
# In enduser mode, this whole task is unavailable
|
38
|
-
in_enduser_mode_unavailable()
|
39
|
-
|
40
|
-
##
|
41
|
-
# remember the experiment description
|
42
|
-
|
43
|
-
@exp = exp
|
44
|
-
@ttt_obj = ttt_obj
|
45
|
-
|
46
|
-
|
47
|
-
##
|
48
|
-
# check runtime options
|
49
|
-
|
50
|
-
# default values
|
51
|
-
@trainpercent = 90
|
52
|
-
@splitID = nil
|
53
|
-
|
54
|
-
opts.each do |opt,arg|
|
55
|
-
case opt
|
56
|
-
when "--trainpercent"
|
57
|
-
@trainpercent = arg.to_i
|
58
|
-
when "--logID"
|
59
|
-
@splitID = arg
|
60
|
-
else
|
61
|
-
# this is an option that is okay but has already been read and used by rosy.rb
|
62
|
-
end
|
63
|
-
end
|
64
|
-
|
65
|
-
#sanity checks
|
66
|
-
if @splitID.nil?
|
67
|
-
raise "I need an ID for the split in order to proceed. Parameter: --logID|-l"
|
68
|
-
end
|
69
|
-
if @trainpercent <= 0 or @trainpercent >= 100
|
70
|
-
raise "--trainpercent must be between 1 and 99."
|
71
|
-
end
|
72
|
-
|
73
|
-
# add preprocessing information to the experiment file object
|
74
|
-
# so we know what language the training data is in
|
75
|
-
preproc_filename = @exp.get("preproc_descr_file_train")
|
76
|
-
if not(preproc_filename)
|
77
|
-
$stderr.puts "Please set the name of the preprocessing exp. file name"
|
78
|
-
$stderr.puts "in the experiment file, parameter preproc_descr_file_train."
|
79
|
-
exit 1
|
80
|
-
elsif not(File.readable?(preproc_filename))
|
81
|
-
$stderr.puts "Error in the experiment file:"
|
82
|
-
$stderr.puts "Parameter preproc_descr_file_train has to be a readable file."
|
83
|
-
exit 1
|
84
|
-
end
|
85
|
-
preproc_exp = FrPrepConfigData.new(preproc_filename)
|
86
|
-
@exp.adjoin(preproc_exp)
|
87
|
-
|
88
|
-
# announce the task
|
89
|
-
$stderr.puts "---------"
|
90
|
-
$stderr.puts "Rosy experiment #{@exp.get("experiment_ID")}: Making split with ID #{@splitID}, training data percentage #{@trainpercent}%"
|
91
|
-
$stderr.puts "---------"
|
92
|
-
end
|
93
|
-
|
94
|
-
#####
|
95
|
-
# perform
|
96
|
-
#
|
97
|
-
# perform a split of the training data and the "failed sentences" object
|
98
|
-
# the split is written to a DB table, the failed sentence splits are written to files
|
99
|
-
def perform()
|
100
|
-
|
101
|
-
#################################
|
102
|
-
# 1. treat the failed sentences
|
103
|
-
perform_failed_parses()
|
104
|
-
|
105
|
-
###############################
|
106
|
-
# 2. get the main table, split it, and write the result to two new tables
|
107
|
-
perform_make_split()
|
108
|
-
|
109
|
-
###############################
|
110
|
-
# 3. Repeat the training and extraction of phase 2 features for this split,
|
111
|
-
# and write the result to the split tables
|
112
|
-
|
113
|
-
end
|
114
|
-
|
115
|
-
#######
|
116
|
-
# split index column name
|
117
|
-
def RosySplit.split_index_colname()
|
118
|
-
return "split_index"
|
119
|
-
end
|
120
|
-
|
121
|
-
############
|
122
|
-
# make_join_restriction
|
123
|
-
#
|
124
|
-
# Given a splitID, the main table to be split,
|
125
|
-
# the dataset (train or test), and the experiment file object,
|
126
|
-
# make a ValueRestriction object that can be passed to a view initialization:
|
127
|
-
#
|
128
|
-
# restrict main table rows to those that occur in the correct part
|
129
|
-
# (part = train or part = test) of the split with the given ID
|
130
|
-
#
|
131
|
-
# returns: VarVarRestriction object
|
132
|
-
def RosySplit.make_join_restriction(splitID, # string: splitlogID
|
133
|
-
table, # DBtable object
|
134
|
-
dataset, # string: "train", "test"
|
135
|
-
ttt_obj) # RosyTrainingTestTable object
|
136
|
-
|
137
|
-
return VarVarRestriction.new(table.table_name + "." + table.index_name,
|
138
|
-
ttt_obj.splittable_name(splitID, dataset) + "." + RosySplit.split_index_colname())
|
139
|
-
|
140
|
-
end
|
141
|
-
|
142
|
-
###########
|
143
|
-
private
|
144
|
-
|
145
|
-
##########
|
146
|
-
# perform_failed_parses:
|
147
|
-
#
|
148
|
-
# this is the part of the perform() method
|
149
|
-
# that splits the sentences with failed parses
|
150
|
-
# into a training and a test part
|
151
|
-
# and remembers this split
|
152
|
-
def perform_failed_parses()
|
153
|
-
# read file with failed parses
|
154
|
-
failed_parses_filename =
|
155
|
-
File.new_filename(@exp.instantiate("rosy_dir",
|
156
|
-
"exp_ID" => @exp.get("experiment_ID")),
|
157
|
-
@exp.instantiate("failed_file",
|
158
|
-
"exp_ID" => @exp.get("experiment_ID"),
|
159
|
-
"split_ID" => "none",
|
160
|
-
"dataset" => "none"))
|
161
|
-
|
162
|
-
|
163
|
-
fp_obj = FailedParses.new()
|
164
|
-
fp_obj.load(failed_parses_filename)
|
165
|
-
|
166
|
-
# split and write to appropriate files
|
167
|
-
fp_train_obj, fp_test_obj = fp_obj.make_split(@trainpercent)
|
168
|
-
|
169
|
-
train_filename =
|
170
|
-
File.new_filename(@exp.instantiate("rosy_dir",
|
171
|
-
"exp_ID" => @exp.get("experiment_ID")),
|
172
|
-
@exp.instantiate("failed_file",
|
173
|
-
"exp_ID" => @exp.get("experiment_ID"),
|
174
|
-
"split_ID" => @splitID,
|
175
|
-
"dataset" => "train"))
|
176
|
-
|
177
|
-
fp_train_obj.save(train_filename)
|
178
|
-
|
179
|
-
test_filename =
|
180
|
-
File.new_filename(@exp.instantiate("rosy_dir",
|
181
|
-
"exp_ID" => @exp.get("experiment_ID")),
|
182
|
-
@exp.instantiate("failed_file",
|
183
|
-
"exp_ID" => @exp.get("experiment_ID"),
|
184
|
-
"split_ID" => @splitID,
|
185
|
-
"dataset" => "test"))
|
186
|
-
|
187
|
-
fp_test_obj.save(test_filename)
|
188
|
-
end
|
189
|
-
|
190
|
-
##########
|
191
|
-
# perform_make_split
|
192
|
-
#
|
193
|
-
# this is the part of the perform() method
|
194
|
-
# that makes the actual split
|
195
|
-
# at random and stores it in new database tables
|
196
|
-
def perform_make_split()
|
197
|
-
$stderr.puts "Making split with ID #{@splitID}"
|
198
|
-
|
199
|
-
# get a view of the main table
|
200
|
-
maintable = @ttt_obj.existing_train_table()
|
201
|
-
|
202
|
-
# construct new DB tables for the train and test part of the new split:
|
203
|
-
# get table name and join column name
|
204
|
-
split_train_table = @ttt_obj.new_split_table(@splitID, "train", RosySplit.split_index_colname())
|
205
|
-
split_test_table = @ttt_obj.new_split_table(@splitID, "test", RosySplit.split_index_colname())
|
206
|
-
|
207
|
-
# make split: put each sentence ID into either the train or the test table
|
208
|
-
# based on whether a random number btw. 0 and 100 is larger than @trainpercent or not
|
209
|
-
|
210
|
-
|
211
|
-
# go through training data one frame at a time
|
212
|
-
iterator = RosyIterator.new(@ttt_obj, @exp, "train", "xwise"=>"frame")
|
213
|
-
iterator.each_group { |dummy1, dummy2|
|
214
|
-
view = iterator.get_a_view_for_current_group(["sentid", maintable.index_name])
|
215
|
-
view.each_sentence() { |sentence|
|
216
|
-
if rand(100) > @trainpercent
|
217
|
-
# put this sentence into the test table
|
218
|
-
table = split_test_table
|
219
|
-
else
|
220
|
-
# put this sentence into the training table
|
221
|
-
table = split_train_table
|
222
|
-
end
|
223
|
-
sentence.each { |instance|
|
224
|
-
table.insert_row([[RosySplit.split_index_colname(), instance[maintable.index_name]],
|
225
|
-
["sentid", instance["sentid"]]])
|
226
|
-
}
|
227
|
-
}
|
228
|
-
view.close()
|
229
|
-
}
|
230
|
-
end
|
231
|
-
|
232
|
-
end
|
data/lib/rosy/RosyTask.rb
DELETED
@@ -1,19 +0,0 @@
|
|
1
|
-
##
|
2
|
-
# RosyTask
|
3
|
-
# KE, SP April 05
|
4
|
-
#
|
5
|
-
# this is the abstract class that describes the interface for
|
6
|
-
# the task classes of Rosy.
|
7
|
-
#
|
8
|
-
# all task classes should have a perform() method that actually
|
9
|
-
# performs the task.
|
10
|
-
|
11
|
-
class RosyTask
|
12
|
-
def initialize()
|
13
|
-
raise "Shouldn't be here! I'm an abstract class"
|
14
|
-
end
|
15
|
-
|
16
|
-
def perform()
|
17
|
-
raise "Should be overwritten by the inheriting class!"
|
18
|
-
end
|
19
|
-
end
|
data/lib/rosy/RosyTest.rb
DELETED
@@ -1,829 +0,0 @@
|
|
1
|
-
# RosyTest
|
2
|
-
# KE May 05
|
3
|
-
#
|
4
|
-
# One of the main task modules of Rosy:
|
5
|
-
# apply classifiers
|
6
|
-
|
7
|
-
# Standard library packages
|
8
|
-
require "tempfile"
|
9
|
-
require 'fileutils'
|
10
|
-
|
11
|
-
# Salsa packages
|
12
|
-
require "common/Parser"
|
13
|
-
require "common/SalsaTigerRegXML"
|
14
|
-
require "common/SynInterfaces"
|
15
|
-
require "common/ruby_class_extensions"
|
16
|
-
|
17
|
-
# Rosy packages
|
18
|
-
require "rosy/FeatureInfo"
|
19
|
-
require "common/ML"
|
20
|
-
require "common/RosyConventions"
|
21
|
-
require "rosy/RosyIterator"
|
22
|
-
require "rosy/RosyTask"
|
23
|
-
require "rosy/RosyTrainingTestTable"
|
24
|
-
require "rosy/View"
|
25
|
-
|
26
|
-
# Frprep packages
|
27
|
-
#require "common/prep_config_data" # AB: what the fuck???
|
28
|
-
|
29
|
-
##########################################################################
|
30
|
-
# classifier combination class
|
31
|
-
class ClassifierCombination
|
32
|
-
|
33
|
-
# new(): just remember experiment file object
|
34
|
-
def initialize(exp)
|
35
|
-
@exp = exp
|
36
|
-
end
|
37
|
-
|
38
|
-
# combine:
|
39
|
-
#
|
40
|
-
# given a list of classifier results --
|
41
|
-
# where a classifier result is a list of strings,
|
42
|
-
# one string (= assigned class) for each instance,
|
43
|
-
# and where each list of classifier results has the same length --
|
44
|
-
# for each instance, combine individual classifier results
|
45
|
-
# into a single judgement
|
46
|
-
#
|
47
|
-
# returns: an array of strings: one combined classifier result,
|
48
|
-
# one string (=assigned class) for each instance
|
49
|
-
def combine(classifier_results) #array:array:string, list of classifier results
|
50
|
-
|
51
|
-
if classifier_results.length() == 1
|
52
|
-
return classifier_results.first
|
53
|
-
elsif classifier_results.length() == 0
|
54
|
-
raise "Can't do classification with zero classifiers."
|
55
|
-
else
|
56
|
-
raise "True classifier combination not implemented yet"
|
57
|
-
end
|
58
|
-
end
|
59
|
-
end
|
60
|
-
|
61
|
-
|
62
|
-
##########################################################################
|
63
|
-
# main class in this package:
|
64
|
-
# applying classifiers
|
65
|
-
class RosyTest < RosyTask
|
66
|
-
|
67
|
-
#####
|
68
|
-
# new:
|
69
|
-
#
|
70
|
-
# initialize everything for applying classifiers
|
71
|
-
#
|
72
|
-
# argrec_apply: apply trained argrec classifiers to
|
73
|
-
# training data, which means that almost everything is different
|
74
|
-
def initialize(exp, # RosyConfigData object: experiment description
|
75
|
-
opts, # hash: runtime argument option (string) -> value (string)
|
76
|
-
ttt_obj, # RosyTrainingTestTable object
|
77
|
-
argrec_apply = false) # boolean. true: see above
|
78
|
-
|
79
|
-
##
|
80
|
-
# remember the experiment description
|
81
|
-
|
82
|
-
@exp = exp
|
83
|
-
@ttt_obj = ttt_obj
|
84
|
-
@argrec_apply = argrec_apply
|
85
|
-
|
86
|
-
##
|
87
|
-
# check runtime options
|
88
|
-
|
89
|
-
# defaults:
|
90
|
-
@step = "both"
|
91
|
-
@splitID = nil
|
92
|
-
@testID = default_test_ID()
|
93
|
-
@produce_output = true
|
94
|
-
|
95
|
-
opts.each { |opt,arg|
|
96
|
-
case opt
|
97
|
-
when "--step"
|
98
|
-
unless ["argrec", "arglab", "both", "onestep"].include? arg
|
99
|
-
raise "Classification step must be one of: argrec, arglab, both, onestep. I got: " + arg.to_s
|
100
|
-
end
|
101
|
-
@step = arg
|
102
|
-
|
103
|
-
when "--logID"
|
104
|
-
@splitID = arg
|
105
|
-
|
106
|
-
when "--testID"
|
107
|
-
@testID = arg
|
108
|
-
|
109
|
-
when "--nooutput"
|
110
|
-
@produce_output = false
|
111
|
-
|
112
|
-
else
|
113
|
-
# this is an option that is okay but has already been read and used by rosy.rb
|
114
|
-
end
|
115
|
-
}
|
116
|
-
|
117
|
-
##
|
118
|
-
# check: if this is about a split, do we have it?
|
119
|
-
# if it is about a test, do we have it?
|
120
|
-
if @splitID
|
121
|
-
unless @ttt_obj.splitIDs().include?(@splitID)
|
122
|
-
$stderr.puts "Sorry, I have no data for split ID #{@splitID}."
|
123
|
-
exit 1
|
124
|
-
end
|
125
|
-
else
|
126
|
-
if not(@argrec_apply) and not(@ttt_obj.testIDs().include?(@testID))
|
127
|
-
$stderr.puts "Sorry, I have no data for test ID #{@testID}."
|
128
|
-
exit 1
|
129
|
-
end
|
130
|
-
end
|
131
|
-
|
132
|
-
##
|
133
|
-
# determine classifiers
|
134
|
-
#
|
135
|
-
# get_lf returns: array of pairs [classifier_name, options[array]]
|
136
|
-
#
|
137
|
-
# @classifiers: list of pairs [Classifier object, classifier name(string)]
|
138
|
-
@classifiers = @exp.get_lf("classifier").map { |classif_name, options|
|
139
|
-
[Classifier.new(classif_name, options), classif_name]
|
140
|
-
}
|
141
|
-
# sanity check: we need at least one classifier
|
142
|
-
if @classifiers.empty?
|
143
|
-
raise "I need at least one classifier, please specify using exp. file option 'classifier'"
|
144
|
-
end
|
145
|
-
|
146
|
-
# make classifier combination object
|
147
|
-
@combinator = ClassifierCombination.new(@exp)
|
148
|
-
|
149
|
-
if not(@argrec_apply)
|
150
|
-
# normal run
|
151
|
-
|
152
|
-
#####
|
153
|
-
# Enduser mode: only steps "both" and "onestep" available.
|
154
|
-
# testing only on test data, not on split data
|
155
|
-
in_enduser_mode_ensure(["both", "onestep"].include?(@step))
|
156
|
-
|
157
|
-
##
|
158
|
-
# add preprocessing information to the experiment file object
|
159
|
-
# @note AB: Commented out due to separation of PrepConfigData:
|
160
|
-
# information for SynInteraces required.
|
161
|
-
# if @splitID
|
162
|
-
# # use split data
|
163
|
-
# preproc_param = "preproc_descr_file_train"
|
164
|
-
# else
|
165
|
-
# # use test data
|
166
|
-
# preproc_param = "preproc_descr_file_test"
|
167
|
-
# end
|
168
|
-
|
169
|
-
# preproc_expname = @exp.get(preproc_param)
|
170
|
-
# if not(preproc_expname)
|
171
|
-
# $stderr.puts "Please set the name of the preprocessing exp. file name"
|
172
|
-
# $stderr.puts "in the experiment file, parameter #{preproc_param}."
|
173
|
-
# exit 1
|
174
|
-
# elsif not(File.readable?(preproc_expname))
|
175
|
-
# $stderr.puts "Error in the experiment file:"
|
176
|
-
# $stderr.puts "Parameter #{preproc_param} has to be a readable file."
|
177
|
-
# exit 1
|
178
|
-
# end
|
179
|
-
# preproc_exp = FrPrepConfigData.new(preproc_expname)
|
180
|
-
# @exp.adjoin(preproc_exp)
|
181
|
-
|
182
|
-
# announce the task
|
183
|
-
$stderr.puts "---------"
|
184
|
-
$stderr.print "Rosy experiment #{@exp.get("experiment_ID")}: Testing "
|
185
|
-
if @splitID
|
186
|
-
$stderr.puts "on split dataset #{@splitID}"
|
187
|
-
else
|
188
|
-
$stderr.puts "on test dataset #{@testID}"
|
189
|
-
end
|
190
|
-
$stderr.puts "---------"
|
191
|
-
end
|
192
|
-
end
|
193
|
-
|
194
|
-
|
195
|
-
##################################################################
|
196
|
-
# perform
|
197
|
-
#
|
198
|
-
# apply trained classifiers to the given (test) data
|
199
|
-
def perform()
|
200
|
-
if @step == "both"
|
201
|
-
# both? then do first argrec, then arglab
|
202
|
-
$stderr.puts "Rosy testing step argrec"
|
203
|
-
|
204
|
-
previous_produce_output = @produce_output # no output in argrec
|
205
|
-
@produce_output = false # when performing both steps in a row
|
206
|
-
|
207
|
-
@step = "argrec"
|
208
|
-
perform_aux()
|
209
|
-
|
210
|
-
$stderr.puts "Rosy testing step arglab"
|
211
|
-
@produce_output = previous_produce_output
|
212
|
-
@step = "arglab"
|
213
|
-
perform_aux()
|
214
|
-
else
|
215
|
-
# not both? then just do one
|
216
|
-
$stderr.puts "Rosy testing step " + @step
|
217
|
-
perform_aux()
|
218
|
-
end
|
219
|
-
|
220
|
-
####
|
221
|
-
# Enduser mode: remove DB table with test data
|
222
|
-
if $ENDUSER_MODE
|
223
|
-
$stderr.puts "---"
|
224
|
-
$stderr.puts "Cleanup: Removing DB table with test data."
|
225
|
-
|
226
|
-
unless @testID
|
227
|
-
raise "Shouldn't be here"
|
228
|
-
end
|
229
|
-
|
230
|
-
@ttt_obj.remove_test_table(@testID)
|
231
|
-
end
|
232
|
-
end
|
233
|
-
|
234
|
-
######################
|
235
|
-
# get_result_column_name
|
236
|
-
#
|
237
|
-
# returns the column name for the current run,
|
238
|
-
# i.e. the name of the column where this object's perform method
|
239
|
-
# writes its data
|
240
|
-
def get_result_column_name()
|
241
|
-
return @run_column
|
242
|
-
end
|
243
|
-
|
244
|
-
#################################
|
245
|
-
private
|
246
|
-
|
247
|
-
# perform_aux: do the actual work of the perform() method
|
248
|
-
# moved here because of the possibility of having @step=="both",
|
249
|
-
# which makes it necessary to perform two test steps one after the other
|
250
|
-
def perform_aux()
|
251
|
-
|
252
|
-
@iterator, @run_column = get_iterator(true)
|
253
|
-
|
254
|
-
####
|
255
|
-
# get the list of relevant features,
|
256
|
-
# remove the features that describe the unit by which we train,
|
257
|
-
# since they are going to be constant throughout the training file
|
258
|
-
|
259
|
-
@features = @ttt_obj.feature_info.get_model_features(@step) -
|
260
|
-
@iterator.get_xwise_column_names()
|
261
|
-
|
262
|
-
# but add the gold feature
|
263
|
-
unless @features.include? "gold"
|
264
|
-
@features << "gold"
|
265
|
-
end
|
266
|
-
|
267
|
-
####
|
268
|
-
# for each group (as defined by the @iterator):
|
269
|
-
# apply the group-specific classifier,
|
270
|
-
# write the result into the database, into
|
271
|
-
# the column named @run_column
|
272
|
-
classif_dir = classifier_directory_name(@exp, @step, @splitID)
|
273
|
-
|
274
|
-
@iterator.each_group { |group_descr_hash, group|
|
275
|
-
|
276
|
-
$stderr.puts "Applying classifiers to: " + group.to_s
|
277
|
-
|
278
|
-
# get data for current group from database:
|
279
|
-
|
280
|
-
# make a view: model features
|
281
|
-
feature_view = @iterator.get_a_view_for_current_group(@features)
|
282
|
-
|
283
|
-
if feature_view.length() == 0
|
284
|
-
# no test data in this view: next group
|
285
|
-
feature_view.close()
|
286
|
-
next
|
287
|
-
end
|
288
|
-
|
289
|
-
# another view for writing the result
|
290
|
-
result_view = @iterator.get_a_view_for_current_group([@run_column])
|
291
|
-
|
292
|
-
# read trained classifiers
|
293
|
-
# classifiers_read_okay: boolean, true if reading the stored classifier(s) succeeded
|
294
|
-
classifiers_read_okay = true
|
295
|
-
|
296
|
-
@classifiers.each { |classifier, classifier_name|
|
297
|
-
|
298
|
-
stored_classifier = classif_dir +
|
299
|
-
@exp.instantiate("classifier_file",
|
300
|
-
"classif" => classifier_name,
|
301
|
-
"group" => group.gsub(/ /, "_"))
|
302
|
-
|
303
|
-
status = classifier.read(stored_classifier)
|
304
|
-
unless status
|
305
|
-
STDERR.puts "[RosyTest] Error: could not read classifier."
|
306
|
-
classifiers_read_okay = false
|
307
|
-
end
|
308
|
-
|
309
|
-
}
|
310
|
-
|
311
|
-
classification_result = Array.new
|
312
|
-
|
313
|
-
if classifiers_read_okay
|
314
|
-
# apply classifiers, write result to database
|
315
|
-
classification_result = apply_classifiers(feature_view, group, "test")
|
316
|
-
end
|
317
|
-
|
318
|
-
if classification_result == Array.new
|
319
|
-
# either classifiers did not read OK, or some problem during classification:
|
320
|
-
# label everything with NONE
|
321
|
-
result_view.each_instance_s {|inst|
|
322
|
-
classification_result << @exp.get("noval")
|
323
|
-
}
|
324
|
-
end
|
325
|
-
|
326
|
-
result_view.update_column(@run_column,
|
327
|
-
classification_result)
|
328
|
-
feature_view.close()
|
329
|
-
result_view.close()
|
330
|
-
}
|
331
|
-
|
332
|
-
# pruning? then set the result for pruned nodes to "noval"
|
333
|
-
# if we are doing argrec or onestep
|
334
|
-
integrate_pruning_into_argrec_result()
|
335
|
-
|
336
|
-
# postprocessing:
|
337
|
-
# remove superfluous role labels, i.e. labels on nodes
|
338
|
-
# whose ancestors already bear the same label
|
339
|
-
if @step == "argrec" or @step == "onestep"
|
340
|
-
|
341
|
-
$stderr.puts "Postprocessing..."
|
342
|
-
|
343
|
-
# iterator for doing the postprocessing:
|
344
|
-
# no pruning
|
345
|
-
@postprocessing_iterator, dummy = get_iterator(false)
|
346
|
-
|
347
|
-
@postprocessing_iterator.each_group { |group_descr_hash, group|
|
348
|
-
|
349
|
-
view = @postprocessing_iterator.get_a_view_for_current_group(["nodeID", "sentid", @run_column])
|
350
|
-
|
351
|
-
# remove superfluous labels, write the result back to the DB
|
352
|
-
postprocess_classification(view, @run_column)
|
353
|
-
view.close()
|
354
|
-
}
|
355
|
-
end
|
356
|
-
|
357
|
-
|
358
|
-
# all went well, so confirm this run
|
359
|
-
if @argrec_apply
|
360
|
-
# argrec_apply: don't add preprocessing info again, and
|
361
|
-
# get view maker for the training data
|
362
|
-
@ttt_obj.confirm_runlog("argrec", "train", @testID, @splitID, @run_column)
|
363
|
-
else
|
364
|
-
# normal run
|
365
|
-
@ttt_obj.confirm_runlog(@step, "test", @testID, @splitID, @run_column)
|
366
|
-
end
|
367
|
-
|
368
|
-
####
|
369
|
-
# If we are being asked to produce SalsaTigerXML output:
|
370
|
-
# produce it.
|
371
|
-
if @produce_output
|
372
|
-
write_stxml_output()
|
373
|
-
end
|
374
|
-
end
|
375
|
-
|
376
|
-
#########################
|
377
|
-
# returns a pair [iterator, run_column]
|
378
|
-
# for the current settings
|
379
|
-
#
|
380
|
-
# prune = true: If pruning has been enabled,
|
381
|
-
# RosyIterator will add the appropriate DB column restrictions
|
382
|
-
# such that pruned constituents do nto enter into training
|
383
|
-
def get_iterator(prune) #Boolean
|
384
|
-
##
|
385
|
-
# make appropriate iterator object, get column name for the current run
|
386
|
-
#
|
387
|
-
if @argrec_apply
|
388
|
-
# get view maker for the training data
|
389
|
-
iterator = RosyIterator.new(@ttt_obj, @exp, "train",
|
390
|
-
"step" => @step,
|
391
|
-
"splitID" => @splitID,
|
392
|
-
"prune" => prune)
|
393
|
-
run_column = @ttt_obj.new_runlog("argrec", "train", @testID, @splitID)
|
394
|
-
|
395
|
-
else
|
396
|
-
# normal run
|
397
|
-
|
398
|
-
# hand all the info to the RosyIterator object
|
399
|
-
# It will figure out what view I'll need
|
400
|
-
iterator = RosyIterator.new(@ttt_obj, @exp, "test",
|
401
|
-
"step" => @step,
|
402
|
-
"testID" => @testID,
|
403
|
-
"splitID" => @splitID,
|
404
|
-
"prune" => prune)
|
405
|
-
|
406
|
-
run_column = @ttt_obj.new_runlog(@step, "test", @testID, @splitID)
|
407
|
-
end
|
408
|
-
|
409
|
-
return [iterator, run_column]
|
410
|
-
end
|
411
|
-
|
412
|
-
#########################
|
413
|
-
# integrate pruning result into argrec result
|
414
|
-
def integrate_pruning_into_argrec_result()
|
415
|
-
if ["argrec", "onestep"].include? @step
|
416
|
-
# we only need to integrate pruning results into argument recognition
|
417
|
-
|
418
|
-
# get iterator that doesn't do pruning
|
419
|
-
iterator, run_column = get_iterator(false)
|
420
|
-
Pruning.integrate_pruning_into_run(run_column, iterator, @exp)
|
421
|
-
end
|
422
|
-
end
|
423
|
-
|
424
|
-
#########################
|
425
|
-
def apply_classifiers(view, # DBView object: data to be classified
|
426
|
-
group, # string: frame or target POS we are classifying
|
427
|
-
dataset) # string: train/test
|
428
|
-
|
429
|
-
# make input file for classifiers
|
430
|
-
tf_input = Tempfile.new("rosy")
|
431
|
-
view.each_instance_s { |instance_string|
|
432
|
-
# change punctuation to _PUNCT_
|
433
|
-
# and change empty space to _
|
434
|
-
# because otherwise some classifiers may spit
|
435
|
-
tf_input.puts prepare_output_for_classifiers(instance_string)
|
436
|
-
}
|
437
|
-
tf_input.close()
|
438
|
-
# make output file for classifiers
|
439
|
-
tf_output = Tempfile.new("rosy")
|
440
|
-
tf_output.close()
|
441
|
-
|
442
|
-
###
|
443
|
-
# apply classifiers
|
444
|
-
|
445
|
-
# classifier_results: array:array of strings, a list of classifier results,
|
446
|
-
# each result a list of assigned classes(string), one class for each instance of the view
|
447
|
-
classifier_results = Array.new
|
448
|
-
|
449
|
-
@classifiers.each { |classifier, classifier_name|
|
450
|
-
|
451
|
-
|
452
|
-
# did we manage to classify the test data?
|
453
|
-
# there may be errors on the way (eg no training data)
|
454
|
-
|
455
|
-
success = classifier.apply(tf_input.path(), tf_output.path())
|
456
|
-
|
457
|
-
if success
|
458
|
-
|
459
|
-
# read classifier output from file
|
460
|
-
classifier_results << classifier.read_resultfile(tf_output.path()).map { |instance_result|
|
461
|
-
# instance_result is a list of pairs [label, confidence]
|
462
|
-
# such that the label with the highest confidence is first
|
463
|
-
if instance_result.empty?
|
464
|
-
# oops, no results
|
465
|
-
nil
|
466
|
-
else
|
467
|
-
# label of the first label/confidence pair
|
468
|
-
instance_result.first().first()
|
469
|
-
end
|
470
|
-
}.compact()
|
471
|
-
|
472
|
-
else
|
473
|
-
# error: return empty Array, so that error handling can take over in perform_aux()
|
474
|
-
return Array.new
|
475
|
-
end
|
476
|
-
}
|
477
|
-
|
478
|
-
# if we are here, all classifiers have succeeded...
|
479
|
-
|
480
|
-
# clean up
|
481
|
-
tf_input.close(true)
|
482
|
-
tf_output.close(true)
|
483
|
-
|
484
|
-
# combine classifiers
|
485
|
-
return @combinator.combine(classifier_results)
|
486
|
-
end
|
487
|
-
|
488
|
-
###
|
489
|
-
# postprocess_classification
|
490
|
-
#
|
491
|
-
# given output of a learner,
|
492
|
-
# postprocess the output:
|
493
|
-
# map cases of
|
494
|
-
# FE
|
495
|
-
# / \
|
496
|
-
# ...
|
497
|
-
# \
|
498
|
-
# FE
|
499
|
-
#
|
500
|
-
# to
|
501
|
-
# FE
|
502
|
-
# / \
|
503
|
-
# ...
|
504
|
-
# \
|
505
|
-
# NONE
|
506
|
-
def postprocess_classification(view, # DBView object: node IDs
|
507
|
-
run_column) # string: name of current run column
|
508
|
-
|
509
|
-
|
510
|
-
# keep new values for run_column for all rows in view
|
511
|
-
# will be used for update in the end
|
512
|
-
result = Array.new()
|
513
|
-
|
514
|
-
view.each_sentence() { |sentence|
|
515
|
-
|
516
|
-
# returns hash:
|
517
|
-
# node index -> array of node indices: ancestors of the given node
|
518
|
-
# indices are indices in the 'sentence' array
|
519
|
-
ancestors = make_ancestor_hash(sentence)
|
520
|
-
|
521
|
-
# test output
|
522
|
-
# $stderr.puts "nodeID values:"
|
523
|
-
# sentence.each_with_index { |inst, index|
|
524
|
-
# $stderr.puts "#{index}) #{inst["nodeID"]}"
|
525
|
-
# }
|
526
|
-
# $stderr.puts "\nAncestor hash:"
|
527
|
-
# ancestors.each_pair { |node_ix, ancestors|
|
528
|
-
# $stderr.puts "#{node_ix} -> " + ancestors.map { |a| a.to_s }.join(", ")
|
529
|
-
# }
|
530
|
-
# $stderr.puts "press enter"
|
531
|
-
# $stdin.gets()
|
532
|
-
|
533
|
-
sentence.each_with_index { |instance, inst_index|
|
534
|
-
|
535
|
-
# check whether this instance has an equally labeled ancestor
|
536
|
-
has_equally_labeled_ancestor = false
|
537
|
-
|
538
|
-
if (instance[run_column] != @exp.get("noval")) and
|
539
|
-
ancestors[inst_index]
|
540
|
-
|
541
|
-
if ancestors[inst_index].detect { |anc_index|
|
542
|
-
sentence[anc_index][run_column] == instance[run_column]
|
543
|
-
}
|
544
|
-
has_equally_labeled_ancestor = true
|
545
|
-
else
|
546
|
-
has_equally_labeled_ancestor = false
|
547
|
-
end
|
548
|
-
end
|
549
|
-
|
550
|
-
|
551
|
-
if has_equally_labeled_ancestor
|
552
|
-
result << @exp.get("noval")
|
553
|
-
else
|
554
|
-
result << instance[run_column]
|
555
|
-
end
|
556
|
-
}
|
557
|
-
}
|
558
|
-
|
559
|
-
|
560
|
-
# # checking: how many labels have we deleted?
|
561
|
-
# before = 0
|
562
|
-
# view.each_sentence { |s|
|
563
|
-
# s.each { |inst|
|
564
|
-
# unless inst[run_column] == @exp.get("noval")
|
565
|
-
# before += 1
|
566
|
-
# end
|
567
|
-
# }
|
568
|
-
# }
|
569
|
-
# after = 0
|
570
|
-
# result.each { |r|
|
571
|
-
# unless r == @exp.get("noval")
|
572
|
-
# after += 1
|
573
|
-
# end
|
574
|
-
# }
|
575
|
-
# $stderr.puts "Non-NONE labels before: #{before}"
|
576
|
-
# $stderr.puts "Non-NONE labels after: #{after}"
|
577
|
-
|
578
|
-
|
579
|
-
# update DB to new result
|
580
|
-
view.update_column(run_column, result)
|
581
|
-
end
|
582
|
-
|
583
|
-
##
|
584
|
-
# make_ancestor_hash
|
585
|
-
#
|
586
|
-
# given a sentence as returned by view.each_sentence
|
587
|
-
# (an array of hashes: column_name -> column_value),
|
588
|
-
# use the column nodeID to map each instance of the sentence to its
|
589
|
-
# ancestors
|
590
|
-
#
|
591
|
-
# returns: hash instanceID(integer) -> array:instanceIDs(integers)
|
592
|
-
# mapping each instance to the list of its ancestors
|
593
|
-
def make_ancestor_hash(sentence) # array:hash: column_name(string) -> column_value(object)
|
594
|
-
# for each instance: find the parent
|
595
|
-
# and store it in the parent_index hash
|
596
|
-
parent_index = Hash.new
|
597
|
-
|
598
|
-
|
599
|
-
# first make hash mapping each node ID to its index in the
|
600
|
-
# 'sentence' array
|
601
|
-
id_to_index = Hash.new()
|
602
|
-
sentence.each_with_index { |instance, index|
|
603
|
-
if instance["nodeID"]
|
604
|
-
myID, parentID = instance["nodeID"].split()
|
605
|
-
id_to_index[myID] = index
|
606
|
-
else
|
607
|
-
$stderr.puts "WARNING: no node ID for instance:\n"
|
608
|
-
$stderr.puts instance.values.join(",")
|
609
|
-
end
|
610
|
-
}
|
611
|
-
|
612
|
-
# now make hash mapping each node index to its parent index
|
613
|
-
sentence.each { |instance|
|
614
|
-
if instance["nodeID"]
|
615
|
-
myID, parentID = instance["nodeID"].split()
|
616
|
-
if parentID # root has no parent ID
|
617
|
-
|
618
|
-
# sanity check: do I know the indices?
|
619
|
-
if id_to_index[myID] and id_to_index[parentID]
|
620
|
-
parent_index[id_to_index[myID]] = id_to_index[parentID]
|
621
|
-
else
|
622
|
-
$stderr.puts "RosyTest postprocessing WARNING: found ID for unseen nodes"
|
623
|
-
end
|
624
|
-
end
|
625
|
-
else
|
626
|
-
$stderr.puts "RosyTest postprocessing WARNING: no node ID for instance:\n"
|
627
|
-
$stderr.puts instance.values.join(",")
|
628
|
-
end
|
629
|
-
}
|
630
|
-
|
631
|
-
# for each instance: gather ancestor IDs
|
632
|
-
# and store them in the ancestor_index hash
|
633
|
-
ancestor_index = Hash.new
|
634
|
-
|
635
|
-
parent_index.each_key { |node_index|
|
636
|
-
ancestor_index[node_index] = Array.new
|
637
|
-
ancestor = parent_index[node_index]
|
638
|
-
|
639
|
-
while ancestor
|
640
|
-
if ancestor_index[node_index].include? ancestor
|
641
|
-
# we seem to have run into a loop
|
642
|
-
# this should not happen, but it has happened anyway ;-)
|
643
|
-
# STDERR.puts "Warning: node #{ancestor} is its own ancestor!"
|
644
|
-
break
|
645
|
-
end
|
646
|
-
ancestor_index[node_index] << ancestor
|
647
|
-
ancestor = parent_index[ancestor]
|
648
|
-
end
|
649
|
-
}
|
650
|
-
return ancestor_index
|
651
|
-
end
|
652
|
-
|
653
|
-
################
|
654
|
-
# write_stxml_output
|
655
|
-
#
|
656
|
-
# Output the result of Rosy as SalsaTigerXML:
|
657
|
-
# Take the input SalsaTigerXML data,
|
658
|
-
# and write them to directory_output
|
659
|
-
# (or, lacking that, to <rosy_dir>/<experiment_ID>/output),
|
660
|
-
# taking over the frames from the input data
|
661
|
-
# and supplanting any FEs that might be set in the input data
|
662
|
-
# by the ones newly assigned by Rosy.
|
663
|
-
def write_stxml_output()
|
664
|
-
|
665
|
-
##
|
666
|
-
# determine input and output directory
|
667
|
-
rosy_dir = File.new_dir(@exp.instantiate("rosy_dir",
|
668
|
-
"exp_ID" => @exp.get("experiment_ID")))
|
669
|
-
if @splitID
|
670
|
-
# split data is being used: part of the training data
|
671
|
-
input_directory = File.existing_dir(rosy_dir,"input_dir/train")
|
672
|
-
else
|
673
|
-
# test data is being used
|
674
|
-
input_directory = File.existing_dir(rosy_dir, "input_dir/test")
|
675
|
-
end
|
676
|
-
|
677
|
-
|
678
|
-
if @exp.get("directory_output")
|
679
|
-
# user has set an explicit output directory
|
680
|
-
output_directory = File.new_dir(@exp.get("directory_output"))
|
681
|
-
else
|
682
|
-
# no output directory has been set: use default
|
683
|
-
output_directory = File.new_dir(@exp.instantiate("rosy_dir", "exp_ID" => @exp.get("experiment_ID")),
|
684
|
-
"output")
|
685
|
-
end
|
686
|
-
|
687
|
-
###
|
688
|
-
# find appropriate class for interpreting syntactic structures
|
689
|
-
interpreter_class = SynInterfaces.get_interpreter_according_to_exp(@exp)
|
690
|
-
|
691
|
-
|
692
|
-
$stderr.puts "Writing SalsaTigerXML output to #{output_directory}"
|
693
|
-
|
694
|
-
###
|
695
|
-
# read in all FEs that have been assigned
|
696
|
-
# sentid_to_assigned: hash <sent ID, frame ID> (string) -> array of pairs [FE, node ID]
|
697
|
-
sentid_to_assigned = Hash.new
|
698
|
-
@iterator.each_group { |group_descr_hash, group|
|
699
|
-
view = @iterator.get_a_view_for_current_group([@run_column, "nodeID", "sentid"])
|
700
|
-
|
701
|
-
view.each_hash { |inst_hash|
|
702
|
-
# if this sentence ID/frame ID pair is in the test data,
|
703
|
-
# its hash entry will at least be nonnil, even if no
|
704
|
-
# FEs have been assigned for it
|
705
|
-
unless sentid_to_assigned[inst_hash["sentid"]]
|
706
|
-
sentid_to_assigned[inst_hash["sentid"]] = Array.new
|
707
|
-
end
|
708
|
-
|
709
|
-
# if nothing has been assigned to this instance, don't record it
|
710
|
-
if inst_hash[@run_column].nil? or inst_hash[@run_column] == @exp.get("noval")
|
711
|
-
next
|
712
|
-
end
|
713
|
-
|
714
|
-
# record instance
|
715
|
-
sentid_to_assigned[inst_hash["sentid"]] << [inst_hash[@run_column], inst_hash["nodeID"]]
|
716
|
-
}
|
717
|
-
view.close()
|
718
|
-
}
|
719
|
-
|
720
|
-
###
|
721
|
-
# write stuff
|
722
|
-
|
723
|
-
##
|
724
|
-
# iterate through input files
|
725
|
-
Dir[input_directory + "*.xml.gz"].each { |infilename|
|
726
|
-
|
727
|
-
# unpack input file
|
728
|
-
tempfile = Tempfile.new("RosyTest")
|
729
|
-
tempfile.close()
|
730
|
-
%x{gunzip -c #{infilename} > #{tempfile.path()}}
|
731
|
-
|
732
|
-
# open input and output file
|
733
|
-
infile = FilePartsParser.new(tempfile.path())
|
734
|
-
outfilename = output_directory + File.basename(infilename, ".gz")
|
735
|
-
begin
|
736
|
-
outfile = File.new(outfilename, "w")
|
737
|
-
rescue
|
738
|
-
raise "Could not write to SalsaTigerXML output file #{outfilename}"
|
739
|
-
end
|
740
|
-
|
741
|
-
# write header to output file
|
742
|
-
outfile.puts infile.head()
|
743
|
-
|
744
|
-
##
|
745
|
-
# each input sentence: integrate newly assigned roles
|
746
|
-
infile.scan_s { |sent_string|
|
747
|
-
sent = SalsaTigerSentence.new(sent_string)
|
748
|
-
|
749
|
-
##
|
750
|
-
# each input frame: remove old roles, add new ones
|
751
|
-
sent.frames.each { |frame|
|
752
|
-
|
753
|
-
# this corresponds to the sentid feature in the database
|
754
|
-
sent_frame_id = construct_instance_id(sent.id(), frame.id())
|
755
|
-
|
756
|
-
if sentid_to_assigned[sent_frame_id].nil? and @splitID
|
757
|
-
# we are using a split of the training data, and
|
758
|
-
# this sentence/frame ID pair does not
|
759
|
-
# seem to be in the test part of the split
|
760
|
-
# so do not show the frame
|
761
|
-
#
|
762
|
-
# Note that if we are _not_ working on a split,
|
763
|
-
# we are not discarding any frames or sentences
|
764
|
-
sent.remove_frame(frame)
|
765
|
-
end
|
766
|
-
|
767
|
-
# remove old roles, but do not remove target
|
768
|
-
old_fes = frame.children()
|
769
|
-
old_fes.each { |old_fe|
|
770
|
-
unless old_fe.name() == "target"
|
771
|
-
frame.remove_child(old_fe)
|
772
|
-
end
|
773
|
-
}
|
774
|
-
|
775
|
-
if sentid_to_assigned[sent_frame_id].nil?
|
776
|
-
# nothing assigned to this frame -- go on
|
777
|
-
next
|
778
|
-
end
|
779
|
-
|
780
|
-
# assign new roles:
|
781
|
-
# each FE occurring for this sentence ID plus frame ID:
|
782
|
-
# collect all node ID / parentnode ID pairs listed for that FE,
|
783
|
-
# map the IDs to actual nodes, and assign the FE.
|
784
|
-
sentid_to_assigned[sent_frame_id].map { |fe_name, npp| fe_name }.uniq.each { |fe_name|
|
785
|
-
# each FE
|
786
|
-
|
787
|
-
nodes = sentid_to_assigned[sent_frame_id].select { |other_fe_name, npp|
|
788
|
-
# collect node ID / parentnode ID pairs listed for that FE
|
789
|
-
other_fe_name == fe_name
|
790
|
-
|
791
|
-
}.map { |other_fe_name, nodeid_plus_parent_id|
|
792
|
-
# map the node ID / parentnode ID pair to an actual node
|
793
|
-
|
794
|
-
node_id, parent_id = nodeid_plus_parent_id.split()
|
795
|
-
if node_id == @exp.get("noval")
|
796
|
-
$stderr.puts "Warning: got NONE for a node ID"
|
797
|
-
node = nil
|
798
|
-
|
799
|
-
else
|
800
|
-
node = sent.syn_node_with_id(node_id)
|
801
|
-
unless node
|
802
|
-
$stderr.puts "Warning: could not find node with ID #{node_id}"
|
803
|
-
end
|
804
|
-
end
|
805
|
-
|
806
|
-
node
|
807
|
-
}.compact
|
808
|
-
|
809
|
-
# assign the FE
|
810
|
-
sent.add_fe(frame, fe_name, interpreter_class.max_constituents(nodes, sent))
|
811
|
-
} # each FE
|
812
|
-
} # each frame
|
813
|
-
|
814
|
-
# write changed sentence to output file
|
815
|
-
# if we are working on a split of the training data,
|
816
|
-
# write the sentence only if there are frames in it
|
817
|
-
if sent.frames.length() == 0 and @splitID
|
818
|
-
# split of the training data, and no frames
|
819
|
-
else
|
820
|
-
outfile.puts sent.get()
|
821
|
-
end
|
822
|
-
} # each sentence
|
823
|
-
|
824
|
-
# write footer to output file
|
825
|
-
outfile.puts infile.tail()
|
826
|
-
tempfile.close(true)
|
827
|
-
} # each input file
|
828
|
-
end
|
829
|
-
end
|