rumale 0.19.0 → 0.20.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.rubocop.yml +5 -29
- data/CHANGELOG.md +28 -0
- data/lib/rumale.rb +7 -10
- data/lib/rumale/clustering/hdbscan.rb +3 -3
- data/lib/rumale/clustering/k_means.rb +1 -1
- data/lib/rumale/clustering/k_medoids.rb +1 -1
- data/lib/rumale/clustering/mini_batch_k_means.rb +139 -0
- data/lib/rumale/dataset.rb +4 -4
- data/lib/rumale/decomposition/nmf.rb +2 -2
- data/lib/rumale/ensemble/random_forest_classifier.rb +1 -1
- data/lib/rumale/ensemble/random_forest_regressor.rb +1 -1
- data/lib/rumale/feature_extraction/feature_hasher.rb +1 -1
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +1 -1
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +113 -0
- data/lib/rumale/kernel_approximation/nystroem.rb +1 -1
- data/lib/rumale/kernel_machine/kernel_svc.rb +1 -1
- data/lib/rumale/linear_model/base_sgd.rb +1 -1
- data/lib/rumale/manifold/tsne.rb +1 -1
- data/lib/rumale/model_selection/cross_validation.rb +3 -2
- data/lib/rumale/model_selection/group_k_fold.rb +93 -0
- data/lib/rumale/model_selection/group_shuffle_split.rb +115 -0
- data/lib/rumale/model_selection/k_fold.rb +1 -1
- data/lib/rumale/model_selection/shuffle_split.rb +5 -5
- data/lib/rumale/model_selection/stratified_k_fold.rb +1 -1
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +13 -9
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +2 -2
- data/lib/rumale/nearest_neighbors/vp_tree.rb +1 -1
- data/lib/rumale/neural_network/adam.rb +1 -1
- data/lib/rumale/neural_network/base_mlp.rb +1 -1
- data/lib/rumale/preprocessing/binarizer.rb +60 -0
- data/lib/rumale/preprocessing/l1_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +2 -1
- data/lib/rumale/preprocessing/max_normalizer.rb +62 -0
- data/lib/rumale/probabilistic_output.rb +1 -1
- data/lib/rumale/version.rb +1 -1
- metadata +12 -15
- data/lib/rumale/linear_model/base_linear_model.rb +0 -102
- data/lib/rumale/optimizer/ada_grad.rb +0 -42
- data/lib/rumale/optimizer/adam.rb +0 -56
- data/lib/rumale/optimizer/nadam.rb +0 -67
- data/lib/rumale/optimizer/rmsprop.rb +0 -50
- data/lib/rumale/optimizer/sgd.rb +0 -46
- data/lib/rumale/optimizer/yellow_fin.rb +0 -104
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +0 -125
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +0 -220
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +0 -134
@@ -1,220 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/classifier'
|
4
|
-
require 'rumale/polynomial_model/base_factorization_machine'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
# This module consists of the classes that implement polynomial models.
|
8
|
-
module PolynomialModel
|
9
|
-
# FactorizationMachineClassifier is a class that implements Factorization Machine
|
10
|
-
# with stochastic gradient descent (SGD) optimization.
|
11
|
-
# For multiclass classification problem, it uses one-vs-the-rest strategy.
|
12
|
-
#
|
13
|
-
# @deprecated
|
14
|
-
# FactorizationMachineClassifier will be deleted in version 0.20.0.
|
15
|
-
# The Ruamle author recommends using the xlearn gem instead.
|
16
|
-
#
|
17
|
-
# @example
|
18
|
-
# estimator =
|
19
|
-
# Rumale::PolynomialModel::FactorizationMachineClassifier.new(
|
20
|
-
# n_factors: 10, loss: 'hinge', reg_param_linear: 0.001, reg_param_factor: 0.001,
|
21
|
-
# max_iter: 500, batch_size: 50, random_seed: 1)
|
22
|
-
# estimator.fit(training_samples, traininig_labels)
|
23
|
-
# results = estimator.predict(testing_samples)
|
24
|
-
#
|
25
|
-
# *Reference*
|
26
|
-
# - Rendle, S., "Factorization Machines with libFM," ACM TIST, vol. 3 (3), pp. 57:1--57:22, 2012.
|
27
|
-
# - Rendle, S., "Factorization Machines," Proc. ICDM'10, pp. 995--1000, 2010.
|
28
|
-
class FactorizationMachineClassifier < BaseFactorizationMachine
|
29
|
-
include Base::Classifier
|
30
|
-
|
31
|
-
# Return the factor matrix for Factorization Machine.
|
32
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_factors, n_features])
|
33
|
-
attr_reader :factor_mat
|
34
|
-
|
35
|
-
# Return the weight vector for Factorization Machine.
|
36
|
-
# @return [Numo::DFloat] (shape: [n_classes, n_features])
|
37
|
-
attr_reader :weight_vec
|
38
|
-
|
39
|
-
# Return the bias term for Factoriazation Machine.
|
40
|
-
# @return [Numo::DFloat] (shape: [n_classes])
|
41
|
-
attr_reader :bias_term
|
42
|
-
|
43
|
-
# Return the class labels.
|
44
|
-
# @return [Numo::Int32] (shape: [n_classes])
|
45
|
-
attr_reader :classes
|
46
|
-
|
47
|
-
# Return the random generator for random sampling.
|
48
|
-
# @return [Random]
|
49
|
-
attr_reader :rng
|
50
|
-
|
51
|
-
# Create a new classifier with Factorization Machine.
|
52
|
-
#
|
53
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
54
|
-
# @param loss [String] The loss function ('hinge' or 'logistic').
|
55
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
56
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
57
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
58
|
-
# how many times the whole data is given to the training process.
|
59
|
-
# @param batch_size [Integer] The size of the mini batches.
|
60
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
61
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
62
|
-
# If nil is given, Nadam is used.
|
63
|
-
# @param n_jobs [Integer] The number of jobs for running the fit and predict methods in parallel.
|
64
|
-
# If nil is given, the methods do not execute in parallel.
|
65
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
66
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
67
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
68
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
69
|
-
def initialize(n_factors: 2, loss: 'hinge', reg_param_linear: 1.0, reg_param_factor: 1.0,
|
70
|
-
max_iter: 200, batch_size: 50, tol: 1e-4,
|
71
|
-
optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
|
72
|
-
warn 'warning: FactorizationMachineClassifier is deprecated. This class will be deleted in version 0.20.0.'
|
73
|
-
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
74
|
-
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size, tol: tol)
|
75
|
-
check_params_string(loss: loss)
|
76
|
-
check_params_boolean(verbose: verbose)
|
77
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
78
|
-
check_params_positive(n_factors: n_factors,
|
79
|
-
reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
80
|
-
max_iter: max_iter, batch_size: batch_size)
|
81
|
-
super
|
82
|
-
@classes = nil
|
83
|
-
end
|
84
|
-
|
85
|
-
# Fit the model with given training data.
|
86
|
-
#
|
87
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
88
|
-
# @param y [Numo::Int32] (shape: [n_samples]) The labels to be used for fitting the model.
|
89
|
-
# @return [FactorizationMachineClassifier] The learned classifier itself.
|
90
|
-
def fit(x, y)
|
91
|
-
x = check_convert_sample_array(x)
|
92
|
-
y = check_convert_label_array(y)
|
93
|
-
check_sample_label_size(x, y)
|
94
|
-
|
95
|
-
@classes = Numo::Int32[*y.to_a.uniq.sort]
|
96
|
-
|
97
|
-
if multiclass_problem?
|
98
|
-
n_classes = @classes.size
|
99
|
-
n_features = x.shape[1]
|
100
|
-
@factor_mat = Numo::DFloat.zeros(n_classes, @params[:n_factors], n_features)
|
101
|
-
@weight_vec = Numo::DFloat.zeros(n_classes, n_features)
|
102
|
-
@bias_term = Numo::DFloat.zeros(n_classes)
|
103
|
-
if enable_parallel?
|
104
|
-
# :nocov:
|
105
|
-
models = parallel_map(n_classes) do |n|
|
106
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
107
|
-
partial_fit(x, bin_y)
|
108
|
-
end
|
109
|
-
# :nocov:
|
110
|
-
n_classes.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = models[n] }
|
111
|
-
else
|
112
|
-
n_classes.times do |n|
|
113
|
-
bin_y = Numo::Int32.cast(y.eq(@classes[n])) * 2 - 1
|
114
|
-
@factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, bin_y)
|
115
|
-
end
|
116
|
-
end
|
117
|
-
else
|
118
|
-
negative_label = @classes[0]
|
119
|
-
bin_y = Numo::Int32.cast(y.ne(negative_label)) * 2 - 1
|
120
|
-
@factor_mat, @weight_vec, @bias_term = partial_fit(x, bin_y)
|
121
|
-
end
|
122
|
-
|
123
|
-
self
|
124
|
-
end
|
125
|
-
|
126
|
-
# Calculate confidence scores for samples.
|
127
|
-
#
|
128
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to compute the scores.
|
129
|
-
# @return [Numo::DFloat] (shape: [n_samples]) Confidence score per sample.
|
130
|
-
def decision_function(x)
|
131
|
-
x = check_convert_sample_array(x)
|
132
|
-
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
133
|
-
factor_term = if multiclass_problem?
|
134
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
|
135
|
-
else
|
136
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
137
|
-
end
|
138
|
-
linear_term + factor_term
|
139
|
-
end
|
140
|
-
|
141
|
-
# Predict class labels for samples.
|
142
|
-
#
|
143
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the labels.
|
144
|
-
# @return [Numo::Int32] (shape: [n_samples]) Predicted class label per sample.
|
145
|
-
def predict(x)
|
146
|
-
x = check_convert_sample_array(x)
|
147
|
-
|
148
|
-
n_samples = x.shape[0]
|
149
|
-
predicted = if multiclass_problem?
|
150
|
-
decision_values = decision_function(x)
|
151
|
-
if enable_parallel?
|
152
|
-
parallel_map(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
153
|
-
else
|
154
|
-
Array.new(n_samples) { |n| @classes[decision_values[n, true].max_index] }
|
155
|
-
end
|
156
|
-
else
|
157
|
-
decision_values = decision_function(x).ge(0.0).to_a
|
158
|
-
Array.new(n_samples) { |n| @classes[decision_values[n]] }
|
159
|
-
end
|
160
|
-
Numo::Int32.asarray(predicted)
|
161
|
-
end
|
162
|
-
|
163
|
-
# Predict probability for samples.
|
164
|
-
#
|
165
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the probailities.
|
166
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_classes]) Predicted probability of each class per sample.
|
167
|
-
def predict_proba(x)
|
168
|
-
x = check_convert_sample_array(x)
|
169
|
-
proba = 1.0 / (Numo::NMath.exp(-decision_function(x)) + 1.0)
|
170
|
-
return (proba.transpose / proba.sum(axis: 1)).transpose.dup if multiclass_problem?
|
171
|
-
|
172
|
-
n_samples, = x.shape
|
173
|
-
probs = Numo::DFloat.zeros(n_samples, 2)
|
174
|
-
probs[true, 1] = proba
|
175
|
-
probs[true, 0] = 1.0 - proba
|
176
|
-
probs
|
177
|
-
end
|
178
|
-
|
179
|
-
private
|
180
|
-
|
181
|
-
def bin_decision_function(x, ex_x, factor, weight)
|
182
|
-
ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
183
|
-
end
|
184
|
-
|
185
|
-
def loss_func(x, ex_x, y, factor, weight)
|
186
|
-
z = bin_decision_function(x, ex_x, factor, weight)
|
187
|
-
if @params[:loss] == 'hinge'
|
188
|
-
z.class.maximum(0.0, 1 - y * z).sum.fdiv(y.shape[0])
|
189
|
-
else
|
190
|
-
Numo::NMath.log(1 + Numo::NMath.exp(-y * z)).sum.fdiv(y.shape[0])
|
191
|
-
end
|
192
|
-
end
|
193
|
-
|
194
|
-
def hinge_loss_gradient(x, ex_x, y, factor, weight)
|
195
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
196
|
-
gradient = Numo::DFloat.zeros(evaluated.size)
|
197
|
-
gradient[evaluated < 1.0] = -y[evaluated < 1.0]
|
198
|
-
gradient
|
199
|
-
end
|
200
|
-
|
201
|
-
def logistic_loss_gradient(x, ex_x, y, factor, weight)
|
202
|
-
evaluated = y * bin_decision_function(x, ex_x, factor, weight)
|
203
|
-
sigmoid_func = 1.0 / (Numo::NMath.exp(-evaluated) + 1.0)
|
204
|
-
(sigmoid_func - 1.0) * y
|
205
|
-
end
|
206
|
-
|
207
|
-
def loss_gradient(x, ex_x, y, factor, weight)
|
208
|
-
if @params[:loss] == 'hinge'
|
209
|
-
hinge_loss_gradient(x, ex_x, y, factor, weight)
|
210
|
-
else
|
211
|
-
logistic_loss_gradient(x, ex_x, y, factor, weight)
|
212
|
-
end
|
213
|
-
end
|
214
|
-
|
215
|
-
def multiclass_problem?
|
216
|
-
@classes.size > 2
|
217
|
-
end
|
218
|
-
end
|
219
|
-
end
|
220
|
-
end
|
@@ -1,134 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
|
3
|
-
require 'rumale/base/regressor'
|
4
|
-
require 'rumale/polynomial_model/base_factorization_machine'
|
5
|
-
|
6
|
-
module Rumale
|
7
|
-
module PolynomialModel
|
8
|
-
# FactorizationMachineRegressor is a class that implements Factorization Machine
|
9
|
-
# with stochastic gradient descent (SGD) optimization.
|
10
|
-
#
|
11
|
-
# @deprecated
|
12
|
-
# FactorizationMachineRegressor will be deleted in version 0.20.0.
|
13
|
-
# The Ruamle author recommends using the xlearn gem instead.
|
14
|
-
#
|
15
|
-
# @example
|
16
|
-
# estimator =
|
17
|
-
# Rumale::PolynomialModel::FactorizationMachineRegressor.new(
|
18
|
-
# n_factors: 10, reg_param_linear: 0.1, reg_param_factor: 0.1,
|
19
|
-
# max_iter: 500, batch_size: 50, random_seed: 1)
|
20
|
-
# estimator.fit(training_samples, traininig_values)
|
21
|
-
# results = estimator.predict(testing_samples)
|
22
|
-
#
|
23
|
-
# *Reference*
|
24
|
-
# - Rendle, S., "Factorization Machines with libFM," ACM TIST, vol. 3 (3), pp. 57:1--57:22, 2012.
|
25
|
-
# - Rendle, S., "Factorization Machines," Proc. ICDM'10, pp. 995--1000, 2010.
|
26
|
-
class FactorizationMachineRegressor < BaseFactorizationMachine
|
27
|
-
include Base::Regressor
|
28
|
-
|
29
|
-
# Return the factor matrix for Factorization Machine.
|
30
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_factors, n_features])
|
31
|
-
attr_reader :factor_mat
|
32
|
-
|
33
|
-
# Return the weight vector for Factorization Machine.
|
34
|
-
# @return [Numo::DFloat] (shape: [n_outputs, n_features])
|
35
|
-
attr_reader :weight_vec
|
36
|
-
|
37
|
-
# Return the bias term for Factoriazation Machine.
|
38
|
-
# @return [Numo::DFloat] (shape: [n_outputs])
|
39
|
-
attr_reader :bias_term
|
40
|
-
|
41
|
-
# Return the random generator for random sampling.
|
42
|
-
# @return [Random]
|
43
|
-
attr_reader :rng
|
44
|
-
|
45
|
-
# Create a new regressor with Factorization Machine.
|
46
|
-
#
|
47
|
-
# @param n_factors [Integer] The maximum number of iterations.
|
48
|
-
# @param reg_param_linear [Float] The regularization parameter for linear model.
|
49
|
-
# @param reg_param_factor [Float] The regularization parameter for factor matrix.
|
50
|
-
# @param max_iter [Integer] The maximum number of epochs that indicates
|
51
|
-
# how many times the whole data is given to the training process.
|
52
|
-
# @param batch_size [Integer] The size of the mini batches.
|
53
|
-
# @param tol [Float] The tolerance of loss for terminating optimization.
|
54
|
-
# @param optimizer [Optimizer] The optimizer to calculate adaptive learning rate.
|
55
|
-
# If nil is given, Nadam is used.
|
56
|
-
# @param n_jobs [Integer] The number of jobs for running the fit method in parallel.
|
57
|
-
# If nil is given, the method does not execute in parallel.
|
58
|
-
# If zero or less is given, it becomes equal to the number of processors.
|
59
|
-
# This parameter is ignored if the Parallel gem is not loaded.
|
60
|
-
# @param verbose [Boolean] The flag indicating whether to output loss during iteration.
|
61
|
-
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
62
|
-
def initialize(n_factors: 2, reg_param_linear: 1.0, reg_param_factor: 1.0,
|
63
|
-
max_iter: 200, batch_size: 50, tol: 1e-4,
|
64
|
-
optimizer: nil, n_jobs: nil, verbose: false, random_seed: nil)
|
65
|
-
warn 'warning: FactorizationMachineClassifier is deprecated. This class will be deleted in version 0.20.0.'
|
66
|
-
check_params_numeric(reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
67
|
-
n_factors: n_factors, max_iter: max_iter, batch_size: batch_size, tol: tol)
|
68
|
-
check_params_boolean(verbose: verbose)
|
69
|
-
check_params_numeric_or_nil(n_jobs: n_jobs, random_seed: random_seed)
|
70
|
-
check_params_positive(n_factors: n_factors, reg_param_linear: reg_param_linear, reg_param_factor: reg_param_factor,
|
71
|
-
max_iter: max_iter, batch_size: batch_size)
|
72
|
-
keywd_args = method(:initialize).parameters.map { |_t, arg| [arg, binding.local_variable_get(arg)] }.to_h.merge(loss: nil)
|
73
|
-
super(**keywd_args)
|
74
|
-
end
|
75
|
-
|
76
|
-
# Fit the model with given training data.
|
77
|
-
#
|
78
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The training data to be used for fitting the model.
|
79
|
-
# @param y [Numo::Int32] (shape: [n_samples, n_outputs]) The target values to be used for fitting the model.
|
80
|
-
# @return [FactorizationMachineRegressor] The learned regressor itself.
|
81
|
-
def fit(x, y)
|
82
|
-
x = check_convert_sample_array(x)
|
83
|
-
y = check_convert_tvalue_array(y)
|
84
|
-
check_sample_tvalue_size(x, y)
|
85
|
-
|
86
|
-
n_outputs = y.shape[1].nil? ? 1 : y.shape[1]
|
87
|
-
_n_samples, n_features = x.shape
|
88
|
-
|
89
|
-
if n_outputs > 1
|
90
|
-
@factor_mat = Numo::DFloat.zeros(n_outputs, @params[:n_factors], n_features)
|
91
|
-
@weight_vec = Numo::DFloat.zeros(n_outputs, n_features)
|
92
|
-
@bias_term = Numo::DFloat.zeros(n_outputs)
|
93
|
-
if enable_parallel?
|
94
|
-
models = parallel_map(n_outputs) { |n| partial_fit(x, y[true, n]) }
|
95
|
-
n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = models[n] }
|
96
|
-
else
|
97
|
-
n_outputs.times { |n| @factor_mat[n, true, true], @weight_vec[n, true], @bias_term[n] = partial_fit(x, y[true, n]) }
|
98
|
-
end
|
99
|
-
else
|
100
|
-
@factor_mat, @weight_vec, @bias_term = partial_fit(x, y)
|
101
|
-
end
|
102
|
-
|
103
|
-
self
|
104
|
-
end
|
105
|
-
|
106
|
-
# Predict values for samples.
|
107
|
-
#
|
108
|
-
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to predict the values.
|
109
|
-
# @return [Numo::DFloat] (shape: [n_samples, n_outputs]) Predicted values per sample.
|
110
|
-
def predict(x)
|
111
|
-
x = check_convert_sample_array(x)
|
112
|
-
linear_term = @bias_term + x.dot(@weight_vec.transpose)
|
113
|
-
factor_term = if @weight_vec.shape[1].nil?
|
114
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(0)
|
115
|
-
else
|
116
|
-
0.5 * (@factor_mat.dot(x.transpose)**2 - (@factor_mat**2).dot(x.transpose**2)).sum(1).transpose
|
117
|
-
end
|
118
|
-
linear_term + factor_term
|
119
|
-
end
|
120
|
-
|
121
|
-
private
|
122
|
-
|
123
|
-
def loss_func(x, ex_x, y, factor, weight)
|
124
|
-
z = ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
125
|
-
((z - y)**2).sum.fdiv(y.shape[0])
|
126
|
-
end
|
127
|
-
|
128
|
-
def loss_gradient(x, ex_x, y, factor, weight)
|
129
|
-
z = ex_x.dot(weight) + 0.5 * (factor.dot(x.transpose)**2 - (factor**2).dot(x.transpose**2)).sum(0)
|
130
|
-
2.0 * (z - y)
|
131
|
-
end
|
132
|
-
end
|
133
|
-
end
|
134
|
-
end
|