rumale 0.19.0 → 0.20.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.rubocop.yml +5 -29
- data/CHANGELOG.md +28 -0
- data/lib/rumale.rb +7 -10
- data/lib/rumale/clustering/hdbscan.rb +3 -3
- data/lib/rumale/clustering/k_means.rb +1 -1
- data/lib/rumale/clustering/k_medoids.rb +1 -1
- data/lib/rumale/clustering/mini_batch_k_means.rb +139 -0
- data/lib/rumale/dataset.rb +4 -4
- data/lib/rumale/decomposition/nmf.rb +2 -2
- data/lib/rumale/ensemble/random_forest_classifier.rb +1 -1
- data/lib/rumale/ensemble/random_forest_regressor.rb +1 -1
- data/lib/rumale/feature_extraction/feature_hasher.rb +1 -1
- data/lib/rumale/feature_extraction/hash_vectorizer.rb +1 -1
- data/lib/rumale/feature_extraction/tfidf_transformer.rb +113 -0
- data/lib/rumale/kernel_approximation/nystroem.rb +1 -1
- data/lib/rumale/kernel_machine/kernel_svc.rb +1 -1
- data/lib/rumale/linear_model/base_sgd.rb +1 -1
- data/lib/rumale/manifold/tsne.rb +1 -1
- data/lib/rumale/model_selection/cross_validation.rb +3 -2
- data/lib/rumale/model_selection/group_k_fold.rb +93 -0
- data/lib/rumale/model_selection/group_shuffle_split.rb +115 -0
- data/lib/rumale/model_selection/k_fold.rb +1 -1
- data/lib/rumale/model_selection/shuffle_split.rb +5 -5
- data/lib/rumale/model_selection/stratified_k_fold.rb +1 -1
- data/lib/rumale/model_selection/stratified_shuffle_split.rb +13 -9
- data/lib/rumale/multiclass/one_vs_rest_classifier.rb +2 -2
- data/lib/rumale/nearest_neighbors/vp_tree.rb +1 -1
- data/lib/rumale/neural_network/adam.rb +1 -1
- data/lib/rumale/neural_network/base_mlp.rb +1 -1
- data/lib/rumale/preprocessing/binarizer.rb +60 -0
- data/lib/rumale/preprocessing/l1_normalizer.rb +62 -0
- data/lib/rumale/preprocessing/l2_normalizer.rb +2 -1
- data/lib/rumale/preprocessing/max_normalizer.rb +62 -0
- data/lib/rumale/probabilistic_output.rb +1 -1
- data/lib/rumale/version.rb +1 -1
- metadata +12 -15
- data/lib/rumale/linear_model/base_linear_model.rb +0 -102
- data/lib/rumale/optimizer/ada_grad.rb +0 -42
- data/lib/rumale/optimizer/adam.rb +0 -56
- data/lib/rumale/optimizer/nadam.rb +0 -67
- data/lib/rumale/optimizer/rmsprop.rb +0 -50
- data/lib/rumale/optimizer/sgd.rb +0 -46
- data/lib/rumale/optimizer/yellow_fin.rb +0 -104
- data/lib/rumale/polynomial_model/base_factorization_machine.rb +0 -125
- data/lib/rumale/polynomial_model/factorization_machine_classifier.rb +0 -220
- data/lib/rumale/polynomial_model/factorization_machine_regressor.rb +0 -134
@@ -0,0 +1,113 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/base_estimator'
|
4
|
+
require 'rumale/base/transformer'
|
5
|
+
require 'rumale/preprocessing/l1_normalizer'
|
6
|
+
require 'rumale/preprocessing/l2_normalizer'
|
7
|
+
|
8
|
+
module Rumale
|
9
|
+
module FeatureExtraction
|
10
|
+
# Transform sample matrix with term frequecy (tf) to a normalized tf-idf (inverse document frequency) reprensentation.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# encoder = Rumale::FeatureExtraction::HashVectorizer.new
|
14
|
+
# x = encoder.fit_transform([
|
15
|
+
# { foo: 1, bar: 2 },
|
16
|
+
# { foo: 3, baz: 1 }
|
17
|
+
# ])
|
18
|
+
#
|
19
|
+
# # > pp x
|
20
|
+
# # Numo::DFloat#shape=[2,3]
|
21
|
+
# # [[2, 0, 1],
|
22
|
+
# # [0, 1, 3]]
|
23
|
+
#
|
24
|
+
# transformer = Rumale::FeatureExtraction::TfidfTransformer.new
|
25
|
+
# x_tfidf = transformer.fit_transform(x)
|
26
|
+
#
|
27
|
+
# # > pp x_tfidf
|
28
|
+
# # Numo::DFloat#shape=[2,3]
|
29
|
+
# # [[0.959056, 0, 0.283217],
|
30
|
+
# # [0, 0.491506, 0.870874]]
|
31
|
+
#
|
32
|
+
# *Reference*
|
33
|
+
# - Manning, C D., Raghavan, P., and Schutze, H., "Introduction to Information Retrieval," Cambridge University Press., 2008.
|
34
|
+
class TfidfTransformer
|
35
|
+
include Base::BaseEstimator
|
36
|
+
include Base::Transformer
|
37
|
+
|
38
|
+
# Return the vector consists of inverse document frequency.
|
39
|
+
# @return [Numo::DFloat] (shape: [n_features])
|
40
|
+
attr_reader :idf
|
41
|
+
|
42
|
+
# Create a new transfomer for converting tf vectors to tf-idf vectors.
|
43
|
+
#
|
44
|
+
# @param norm [String] The normalization method to be used ('l1', 'l2' and 'none').
|
45
|
+
# @param use_idf [Boolean] The flag indicating whether to use inverse document frequency weighting.
|
46
|
+
# @param smooth_idf [Boolean] The flag indicating whether to apply idf smoothing by log((n_samples + 1) / (df + 1)) + 1.
|
47
|
+
# @param sublinear_tf [Boolean] The flag indicating whether to perform subliner tf scaling by 1 + log(tf).
|
48
|
+
def initialize(norm: 'l2', use_idf: true, smooth_idf: false, sublinear_tf: false)
|
49
|
+
check_params_string(norm: norm)
|
50
|
+
check_params_boolean(use_idf: use_idf, smooth_idf: smooth_idf, sublinear_tf: sublinear_tf)
|
51
|
+
@params = {}
|
52
|
+
@params[:norm] = norm
|
53
|
+
@params[:use_idf] = use_idf
|
54
|
+
@params[:smooth_idf] = smooth_idf
|
55
|
+
@params[:sublinear_tf] = sublinear_tf
|
56
|
+
@idf = nil
|
57
|
+
end
|
58
|
+
|
59
|
+
# Calculate the inverse document frequency for weighting.
|
60
|
+
#
|
61
|
+
# @overload fit(x) -> TfidfTransformer
|
62
|
+
#
|
63
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate the idf values.
|
64
|
+
# @return [TfidfTransformer]
|
65
|
+
def fit(x, _y = nil)
|
66
|
+
return self unless @params[:use_idf]
|
67
|
+
|
68
|
+
x = check_convert_sample_array(x)
|
69
|
+
|
70
|
+
n_samples = x.shape[0]
|
71
|
+
df = x.class.cast(x.gt(0.0).count(0))
|
72
|
+
|
73
|
+
if @params[:smooth_idf]
|
74
|
+
df += 1
|
75
|
+
n_samples += 1
|
76
|
+
end
|
77
|
+
|
78
|
+
@idf = Numo::NMath.log(n_samples / df) + 1
|
79
|
+
|
80
|
+
self
|
81
|
+
end
|
82
|
+
|
83
|
+
# Calculate the idf values, and then transfrom samples to the tf-idf representation.
|
84
|
+
#
|
85
|
+
# @overload fit_transform(x) -> Numo::DFloat
|
86
|
+
#
|
87
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to calculate idf and be transformed to tf-idf representation.
|
88
|
+
# @return [Numo::DFloat] The transformed samples.
|
89
|
+
def fit_transform(x, _y = nil)
|
90
|
+
fit(x).transform(x)
|
91
|
+
end
|
92
|
+
|
93
|
+
# Perform transforming the given samples to the tf-idf representation.
|
94
|
+
#
|
95
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features]) The samples to be transformed.
|
96
|
+
# @return [Numo::DFloat] The transformed samples.
|
97
|
+
def transform(x)
|
98
|
+
x = check_convert_sample_array(x)
|
99
|
+
z = x.dup
|
100
|
+
|
101
|
+
z[z.ne(0)] = Numo::NMath.log(z[z.ne(0)]) + 1 if @params[:sublinear_tf]
|
102
|
+
z *= @idf if @params[:use_idf]
|
103
|
+
case @params[:norm]
|
104
|
+
when 'l2'
|
105
|
+
z = Rumale::Preprocessing::L2Normalizer.new.fit_transform(z)
|
106
|
+
when 'l1'
|
107
|
+
z = Rumale::Preprocessing::L1Normalizer.new.fit_transform(z)
|
108
|
+
end
|
109
|
+
z
|
110
|
+
end
|
111
|
+
end
|
112
|
+
end
|
113
|
+
end
|
@@ -69,7 +69,7 @@ module Rumale
|
|
69
69
|
n_components = [1, [@params[:n_components], n_samples].min].max
|
70
70
|
|
71
71
|
# random sampling.
|
72
|
-
@component_indices = Numo::Int32.cast(
|
72
|
+
@component_indices = Numo::Int32.cast(Array(0...n_samples).shuffle(random: sub_rng)[0...n_components])
|
73
73
|
@components = x[@component_indices, true]
|
74
74
|
|
75
75
|
# calculate normalizing factor.
|
@@ -172,7 +172,7 @@ module Rumale
|
|
172
172
|
# Start optimization.
|
173
173
|
@params[:max_iter].times do |t|
|
174
174
|
# random sampling
|
175
|
-
rand_ids =
|
175
|
+
rand_ids = Array(0...n_training_samples).shuffle(random: sub_rng) if rand_ids.empty?
|
176
176
|
target_id = rand_ids.shift
|
177
177
|
# update the weight vector
|
178
178
|
func = (weight_vec * bin_y).dot(x[target_id, true].transpose).to_f
|
@@ -209,7 +209,7 @@ module Rumale
|
|
209
209
|
l1_penalty = LinearModel::Penalty::L1Penalty.new(reg_param: l1_reg_param) if apply_l1_penalty?
|
210
210
|
# Optimization.
|
211
211
|
@params[:max_iter].times do |t|
|
212
|
-
sample_ids =
|
212
|
+
sample_ids = Array(0...n_samples)
|
213
213
|
sample_ids.shuffle!(random: sub_rng)
|
214
214
|
until (subset_ids = sample_ids.shift(@params[:batch_size])).empty?
|
215
215
|
# sampling
|
data/lib/rumale/manifold/tsne.rb
CHANGED
@@ -102,7 +102,7 @@ module Rumale
|
|
102
102
|
break if terminate?(hi_prob_mat, lo_prob_mat)
|
103
103
|
|
104
104
|
a = hi_prob_mat * lo_prob_mat
|
105
|
-
b = lo_prob_mat
|
105
|
+
b = lo_prob_mat**2
|
106
106
|
y = (b.dot(one_vec) * y + (a - b).dot(y)) / a.dot(one_vec)
|
107
107
|
lo_prob_mat = t_distributed_probability_matrix(y)
|
108
108
|
@n_iter = t + 1
|
@@ -69,10 +69,11 @@ module Rumale
|
|
69
69
|
# the return_train_score is false.
|
70
70
|
def perform(x, y)
|
71
71
|
x = check_convert_sample_array(x)
|
72
|
-
|
72
|
+
case @estimator
|
73
|
+
when Rumale::Base::Classifier
|
73
74
|
y = check_convert_label_array(y)
|
74
75
|
check_sample_label_size(x, y)
|
75
|
-
|
76
|
+
when Rumale::Base::Regressor
|
76
77
|
y = check_convert_tvalue_array(y)
|
77
78
|
check_sample_tvalue_size(x, y)
|
78
79
|
else
|
@@ -0,0 +1,93 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/splitter'
|
4
|
+
require 'rumale/preprocessing/label_encoder'
|
5
|
+
|
6
|
+
module Rumale
|
7
|
+
module ModelSelection
|
8
|
+
# GroupKFold is a class that generates the set of data indices for K-fold cross-validation.
|
9
|
+
# The data points belonging to the same group do not be split into different folds.
|
10
|
+
# The number of groups should be greater than or equal to the number of splits.
|
11
|
+
#
|
12
|
+
# @example
|
13
|
+
# cv = Rumale::ModelSelection::GroupKFold.new(n_splits: 3)
|
14
|
+
# x = Numo::DFloat.new(8, 2).rand
|
15
|
+
# groups = Numo::Int32[1, 1, 1, 2, 2, 3, 3, 3]
|
16
|
+
# cv.split(x, nil, groups).each do |train_ids, test_ids|
|
17
|
+
# puts '---'
|
18
|
+
# pp train_ids
|
19
|
+
# pp test_ids
|
20
|
+
# end
|
21
|
+
#
|
22
|
+
# # ---
|
23
|
+
# # [0, 1, 2, 3, 4]
|
24
|
+
# # [5, 6, 7]
|
25
|
+
# # ---
|
26
|
+
# # [3, 4, 5, 6, 7]
|
27
|
+
# # [0, 1, 2]
|
28
|
+
# # ---
|
29
|
+
# # [0, 1, 2, 5, 6, 7]
|
30
|
+
# # [3, 4]
|
31
|
+
#
|
32
|
+
class GroupKFold
|
33
|
+
include Base::Splitter
|
34
|
+
|
35
|
+
# Return the number of folds.
|
36
|
+
# @return [Integer]
|
37
|
+
attr_reader :n_splits
|
38
|
+
|
39
|
+
# Create a new data splitter for grouped K-fold cross validation.
|
40
|
+
#
|
41
|
+
# @param n_splits [Integer] The number of folds.
|
42
|
+
def initialize(n_splits: 5)
|
43
|
+
check_params_numeric(n_splits: n_splits)
|
44
|
+
@n_splits = n_splits
|
45
|
+
end
|
46
|
+
|
47
|
+
# Generate data indices for grouped K-fold cross validation.
|
48
|
+
#
|
49
|
+
# @overload split(x, y, groups) -> Array
|
50
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
51
|
+
# The dataset to be used to generate data indices for grouped K-fold cross validation.
|
52
|
+
# @param y [Numo::Int32] (shape: [n_samples])
|
53
|
+
# This argument exists to unify the interface between the K-fold methods, it is not used in the method.
|
54
|
+
# @param groups [Numo::Int32] (shape: [n_samples])
|
55
|
+
# The group labels to be used to generate data indices for grouped K-fold cross validation.
|
56
|
+
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
57
|
+
def split(x, _y, groups)
|
58
|
+
x = check_convert_sample_array(x)
|
59
|
+
groups = check_convert_label_array(groups)
|
60
|
+
check_sample_label_size(x, groups)
|
61
|
+
|
62
|
+
encoder = Rumale::Preprocessing::LabelEncoder.new
|
63
|
+
groups = encoder.fit_transform(groups)
|
64
|
+
n_groups = encoder.classes.size
|
65
|
+
|
66
|
+
raise ArgumentError, 'The number of groups should be greater than or equal to the number of splits.' if n_groups < @n_splits
|
67
|
+
|
68
|
+
n_samples_per_group = groups.bincount
|
69
|
+
group_ids = n_samples_per_group.sort_index.reverse
|
70
|
+
n_samples_per_group = n_samples_per_group[group_ids]
|
71
|
+
|
72
|
+
n_samples_per_fold = Numo::Int32.zeros(@n_splits)
|
73
|
+
group_to_fold = Numo::Int32.zeros(n_groups)
|
74
|
+
|
75
|
+
n_samples_per_group.each_with_index do |weight, id|
|
76
|
+
min_sample_fold_id = n_samples_per_fold.min_index
|
77
|
+
n_samples_per_fold[min_sample_fold_id] += weight
|
78
|
+
group_to_fold[group_ids[id]] = min_sample_fold_id
|
79
|
+
end
|
80
|
+
|
81
|
+
n_samples = x.shape[0]
|
82
|
+
sample_ids = Array(0...n_samples)
|
83
|
+
fold_ids = group_to_fold[groups]
|
84
|
+
|
85
|
+
Array.new(@n_splits) do |fid|
|
86
|
+
test_ids = fold_ids.eq(fid).where.to_a
|
87
|
+
train_ids = sample_ids - test_ids
|
88
|
+
[train_ids, test_ids]
|
89
|
+
end
|
90
|
+
end
|
91
|
+
end
|
92
|
+
end
|
93
|
+
end
|
@@ -0,0 +1,115 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require 'rumale/base/splitter'
|
4
|
+
|
5
|
+
module Rumale
|
6
|
+
module ModelSelection
|
7
|
+
# GroupShuffleSplit is a class that generates the set of data indices
|
8
|
+
# for random permutation cross-validation by randomly selecting group labels.
|
9
|
+
#
|
10
|
+
# @example
|
11
|
+
# cv = Rumale::ModelSelection::GroupShuffleSplit.new(n_splits: 2, test_size: 0.2, random_seed: 1)
|
12
|
+
# x = Numo::DFloat.new(8, 2).rand
|
13
|
+
# groups = Numo::Int32[1, 1, 1, 2, 2, 3, 3, 3]
|
14
|
+
# cv.split(x, nil, groups).each do |train_ids, test_ids|
|
15
|
+
# puts '---'
|
16
|
+
# pp train_ids
|
17
|
+
# pp test_ids
|
18
|
+
# end
|
19
|
+
#
|
20
|
+
# # ---
|
21
|
+
# # [0, 1, 2, 5, 6, 7]
|
22
|
+
# # [3, 4]
|
23
|
+
# # ---
|
24
|
+
# # [3, 4, 5, 6, 7]
|
25
|
+
# # [0, 1, 2]
|
26
|
+
#
|
27
|
+
class GroupShuffleSplit
|
28
|
+
include Base::Splitter
|
29
|
+
|
30
|
+
# Return the number of folds.
|
31
|
+
# @return [Integer]
|
32
|
+
attr_reader :n_splits
|
33
|
+
|
34
|
+
# Return the random generator for shuffling the dataset.
|
35
|
+
# @return [Random]
|
36
|
+
attr_reader :rng
|
37
|
+
|
38
|
+
# Create a new data splitter for random permutation cross validation with given group labels.
|
39
|
+
#
|
40
|
+
# @param n_splits [Integer] The number of folds.
|
41
|
+
# @param test_size [Float] The ratio of number of groups for test data.
|
42
|
+
# @param train_size [Float/Nil] The ratio of number of groups for train data.
|
43
|
+
# @param random_seed [Integer] The seed value using to initialize the random generator.
|
44
|
+
def initialize(n_splits: 5, test_size: 0.2, train_size: nil, random_seed: nil)
|
45
|
+
check_params_numeric(n_splits: n_splits, test_size: test_size)
|
46
|
+
check_params_numeric_or_nil(train_size: train_size, random_seed: random_seed)
|
47
|
+
check_params_positive(n_splits: n_splits)
|
48
|
+
check_params_positive(test_size: test_size)
|
49
|
+
check_params_positive(train_size: train_size) unless train_size.nil?
|
50
|
+
@n_splits = n_splits
|
51
|
+
@test_size = test_size
|
52
|
+
@train_size = train_size
|
53
|
+
@random_seed = random_seed
|
54
|
+
@random_seed ||= srand
|
55
|
+
@rng = Random.new(@random_seed)
|
56
|
+
end
|
57
|
+
|
58
|
+
# Generate train and test data indices by randomly selecting group labels.
|
59
|
+
#
|
60
|
+
# @overload split(x, y, groups) -> Array
|
61
|
+
# @param x [Numo::DFloat] (shape: [n_samples, n_features])
|
62
|
+
# The dataset to be used to generate data indices for random permutation cross validation.
|
63
|
+
# @param y [Numo::Int32] (shape: [n_samples])
|
64
|
+
# This argument exists to unify the interface between the K-fold methods, it is not used in the method.
|
65
|
+
# @param groups [Numo::Int32] (shape: [n_samples])
|
66
|
+
# The group labels to be used to generate data indices for random permutation cross validation.
|
67
|
+
# @return [Array] The set of data indices for constructing the training and testing dataset in each fold.
|
68
|
+
def split(x, _y, groups)
|
69
|
+
x = check_convert_sample_array(x)
|
70
|
+
groups = check_convert_label_array(groups)
|
71
|
+
check_sample_label_size(x, groups)
|
72
|
+
|
73
|
+
classes = groups.to_a.uniq.sort
|
74
|
+
n_groups = classes.size
|
75
|
+
n_test_groups = (@test_size * n_groups).ceil.to_i
|
76
|
+
n_train_groups = @train_size.nil? ? n_groups - n_test_groups : (@train_size * n_groups).floor.to_i
|
77
|
+
|
78
|
+
unless n_test_groups.between?(1, n_groups)
|
79
|
+
raise RangeError,
|
80
|
+
'The number of groups in test split must be not less than 1 and not more than the number of groups.'
|
81
|
+
end
|
82
|
+
unless n_train_groups.between?(1, n_groups)
|
83
|
+
raise RangeError,
|
84
|
+
'The number of groups in train split must be not less than 1 and not more than the number of groups.'
|
85
|
+
end
|
86
|
+
if (n_test_groups + n_train_groups) > n_groups
|
87
|
+
raise RangeError,
|
88
|
+
'The total number of groups in test split and train split must be not more than the number of groups.'
|
89
|
+
end
|
90
|
+
|
91
|
+
sub_rng = @rng.dup
|
92
|
+
|
93
|
+
Array.new(@n_splits) do
|
94
|
+
test_group_ids = classes.sample(n_test_groups, random: sub_rng)
|
95
|
+
train_group_ids = if @train_size.nil?
|
96
|
+
classes - test_group_ids
|
97
|
+
else
|
98
|
+
(classes - test_group_ids).sample(n_train_groups, random: sub_rng)
|
99
|
+
end
|
100
|
+
test_ids = in1d(groups, test_group_ids).where.to_a
|
101
|
+
train_ids = in1d(groups, train_group_ids).where.to_a
|
102
|
+
[train_ids, test_ids]
|
103
|
+
end
|
104
|
+
end
|
105
|
+
|
106
|
+
private
|
107
|
+
|
108
|
+
def in1d(a, b)
|
109
|
+
res = Numo::Bit.zeros(a.shape[0])
|
110
|
+
b.each { |v| res |= a.eq(v) }
|
111
|
+
res
|
112
|
+
end
|
113
|
+
end
|
114
|
+
end
|
115
|
+
end
|
@@ -62,7 +62,7 @@ module Rumale
|
|
62
62
|
end
|
63
63
|
sub_rng = @rng.dup
|
64
64
|
# Splits dataset ids to each fold.
|
65
|
-
dataset_ids =
|
65
|
+
dataset_ids = Array(0...n_samples)
|
66
66
|
dataset_ids.shuffle!(random: sub_rng) if @shuffle
|
67
67
|
fold_sets = Array.new(@n_splits) do |n|
|
68
68
|
n_fold_samples = n_samples / @n_splits
|
@@ -54,19 +54,19 @@ module Rumale
|
|
54
54
|
x = check_convert_sample_array(x)
|
55
55
|
# Initialize and check some variables.
|
56
56
|
n_samples = x.shape[0]
|
57
|
-
n_test_samples = (@test_size * n_samples).to_i
|
58
|
-
n_train_samples = @train_size.nil? ? n_samples - n_test_samples : (@train_size * n_samples).to_i
|
57
|
+
n_test_samples = (@test_size * n_samples).ceil.to_i
|
58
|
+
n_train_samples = @train_size.nil? ? n_samples - n_test_samples : (@train_size * n_samples).floor.to_i
|
59
59
|
unless @n_splits.between?(1, n_samples)
|
60
60
|
raise ArgumentError,
|
61
61
|
'The value of n_splits must be not less than 1 and not more than the number of samples.'
|
62
62
|
end
|
63
63
|
unless n_test_samples.between?(1, n_samples)
|
64
64
|
raise RangeError,
|
65
|
-
'The number of
|
65
|
+
'The number of samples in test split must be not less than 1 and not more than the number of samples.'
|
66
66
|
end
|
67
67
|
unless n_train_samples.between?(1, n_samples)
|
68
68
|
raise RangeError,
|
69
|
-
'The number of
|
69
|
+
'The number of samples in train split must be not less than 1 and not more than the number of samples.'
|
70
70
|
end
|
71
71
|
if (n_test_samples + n_train_samples) > n_samples
|
72
72
|
raise RangeError,
|
@@ -74,7 +74,7 @@ module Rumale
|
|
74
74
|
end
|
75
75
|
sub_rng = @rng.dup
|
76
76
|
# Returns array consisting of the training and testing ids for each fold.
|
77
|
-
dataset_ids =
|
77
|
+
dataset_ids = Array(0...n_samples)
|
78
78
|
Array.new(@n_splits) do
|
79
79
|
test_ids = dataset_ids.sample(n_test_samples, random: sub_rng)
|
80
80
|
train_ids = if @train_size.nil?
|
@@ -30,7 +30,7 @@ module Rumale
|
|
30
30
|
# @return [Random]
|
31
31
|
attr_reader :rng
|
32
32
|
|
33
|
-
# Create a new data splitter for K-fold cross validation.
|
33
|
+
# Create a new data splitter for stratified K-fold cross validation.
|
34
34
|
#
|
35
35
|
# @param n_splits [Integer] The number of folds.
|
36
36
|
# @param shuffle [Boolean] The flag indicating whether to shuffle the dataset.
|
@@ -66,15 +66,15 @@ module Rumale
|
|
66
66
|
raise ArgumentError,
|
67
67
|
'The value of n_splits must be not less than 1 and not more than the number of samples in each class.'
|
68
68
|
end
|
69
|
-
unless enough_data_size_each_class?(y, @test_size)
|
69
|
+
unless enough_data_size_each_class?(y, @test_size, 'test')
|
70
70
|
raise RangeError,
|
71
|
-
'The number of
|
71
|
+
'The number of samples in test split must be not less than 1 and not more than the number of samples in each class.'
|
72
72
|
end
|
73
|
-
unless enough_data_size_each_class?(y, train_sz)
|
73
|
+
unless enough_data_size_each_class?(y, train_sz, 'train')
|
74
74
|
raise RangeError,
|
75
|
-
'The number of
|
75
|
+
'The number of samples in train split must be not less than 1 and not more than the number of samples in each class.'
|
76
76
|
end
|
77
|
-
unless enough_data_size_each_class?(y, train_sz + @test_size)
|
77
|
+
unless enough_data_size_each_class?(y, train_sz + @test_size, 'train')
|
78
78
|
raise RangeError,
|
79
79
|
'The total number of samples in test split and train split must be not more than the number of samples in each class.'
|
80
80
|
end
|
@@ -85,12 +85,12 @@ module Rumale
|
|
85
85
|
test_ids = []
|
86
86
|
sample_ids_each_class.each do |sample_ids|
|
87
87
|
n_samples = sample_ids.size
|
88
|
-
n_test_samples = (@test_size * n_samples).to_i
|
89
|
-
n_train_samples = (train_sz * n_samples).to_i
|
88
|
+
n_test_samples = (@test_size * n_samples).ceil.to_i
|
90
89
|
test_ids += sample_ids.sample(n_test_samples, random: sub_rng)
|
91
90
|
train_ids += if @train_size.nil?
|
92
91
|
sample_ids - test_ids
|
93
92
|
else
|
93
|
+
n_train_samples = (train_sz * n_samples).floor.to_i
|
94
94
|
(sample_ids - test_ids).sample(n_train_samples, random: sub_rng)
|
95
95
|
end
|
96
96
|
end
|
@@ -104,9 +104,13 @@ module Rumale
|
|
104
104
|
y.to_a.uniq.map { |label| y.eq(label).where.size }.all? { |n_samples| @n_splits.between?(1, n_samples) }
|
105
105
|
end
|
106
106
|
|
107
|
-
def enough_data_size_each_class?(y, data_size)
|
107
|
+
def enough_data_size_each_class?(y, data_size, data_type)
|
108
108
|
y.to_a.uniq.map { |label| y.eq(label).where.size }.all? do |n_samples|
|
109
|
-
|
109
|
+
if data_type == 'test'
|
110
|
+
(data_size * n_samples).ceil.to_i.between?(1, n_samples)
|
111
|
+
else
|
112
|
+
(data_size * n_samples).floor.to_i.between?(1, n_samples)
|
113
|
+
end
|
110
114
|
end
|
111
115
|
end
|
112
116
|
end
|